WO2012153561A1 - Lithium titanate particles, active material, and method for producing lithium titanate particles - Google Patents

Lithium titanate particles, active material, and method for producing lithium titanate particles Download PDF

Info

Publication number
WO2012153561A1
WO2012153561A1 PCT/JP2012/054798 JP2012054798W WO2012153561A1 WO 2012153561 A1 WO2012153561 A1 WO 2012153561A1 JP 2012054798 W JP2012054798 W JP 2012054798W WO 2012153561 A1 WO2012153561 A1 WO 2012153561A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
titanate particles
ppm
mass
peak intensity
Prior art date
Application number
PCT/JP2012/054798
Other languages
French (fr)
Japanese (ja)
Inventor
和生 橋本
博文 竹本
寛之 藤野
吉積 田中
秀哉 吉武
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2013513953A priority Critical patent/JP5892161B2/en
Publication of WO2012153561A1 publication Critical patent/WO2012153561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium titanate particle suitable as an electrode material of an electricity storage device, a method for producing the same, and an active material using the lithium titanate particle.
  • Li 4 Ti 5 O 12 LiTi 2 O 4 , Li 2 TiO 3 and the like are known. Among these, Li 4 Ti 5 O 12 is attracting attention because of its particularly large capacity (theoretical value: 175 mAh / g).
  • Li 4/3 Ti 5/3 O 4 Li 4 Ti 5 O 12 is the main component, and the main peak intensity of Li 4/3 Ti 5/3 O 4 by the X-ray diffraction method is 100.
  • the main peak intensity of anatase-type titanium dioxide, rutile-type titanium dioxide, and Li 2 TiO 3 is all lithium titanate of 5 or less, and the crystallite diameter is 700 to 800 mm.
  • Crystalline lithium titanate is disclosed. According to Patent Document 1, since this lithium titanate has a small amount of components other than Li 4 Ti 5 O 12 , the initial charge / discharge capacity can be set to 165 mAh / g or more.
  • Patent Document 2 discloses at least one selected from the group consisting of Mg, Nb, Al, Zr, Ni and Co at the Ti site of Li 4/3 Ti 5/3 O 4 (Li 4 Ti 5 O 12 ). Including lithium titanate is disclosed. According to Patent Document 2, it is said that a high capacity can be obtained in high rate charge / discharge.
  • Patent Document 3 discloses that Be, B, C, Mg, Al, Si, P, Ca, Sc, V, and Ti at a Ti site of Li 4/3 Ti 5/3 O 4 (Li 4 Ti 5 O 12 ). Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, A lithium titanate substituted with Ta, W, Au, Hg, Pb or the like is disclosed. By replacing a part of titanium with a different element, this bulkiness can be suppressed, and there is a function of smoothly transferring ions and electrons between particles, thereby improving electrode performance.
  • Li sites of lithium titanate represented by the general formula Li X MY Ti Z O 4 are represented by cobalt, nickel, manganese, vanadium, iron, boron, aluminum having a valence of 2 or more.
  • Lithium titanate substituted with at least one metal selected from the group consisting of silicon, zirconium, strontium, magnesium and tin is disclosed.
  • Lithium titanate mainly composed of Li 4 Ti 5 O 12 as in Patent Documents 1 to 4 has a high capacity value and excellent rate characteristics, but further improvement of the rate characteristics is desired.
  • the rate characteristics refer to the relationship between charge / discharge current and dynamic capacity. It is said that the rate characteristic is high when the capacity decreases little even when charging / discharging with a large current. When the rate characteristic is high, the output density (the power (current ⁇ voltage) that can be taken out from the battery divided by the total weight or the total volume of the battery) increases, and it is excellent as an electrode material.
  • An object of the present invention is to provide a lithium titanate particle, an active material, and a method for producing a lithium titanate particle having high rate characteristics.
  • the present inventor has found that rate characteristics can be improved by using a metal-substituted lithium titanate containing Cr, Fe, and Ni, thereby completing the present invention. did. That is, the present invention provides the following (1) to (3).
  • Lithium titanate particles containing metal-substituted lithium titanate doped with Cr, Fe, and Ni (2) An active material containing the lithium titanate particles.
  • the lithium titanate particles including a firing step of heating a mixture containing Cr, Fe, and Ni, a titanium compound, and a lithium compound at a firing temperature of 600 to 1000 ° C. for a firing time of 10 to 120 minutes. Production method.
  • lithium titanate particles having high rate characteristics and suitable as an electrode material for an electricity storage device, a method for producing the same, and an active material.
  • the lithium titanate particles of the present invention contain metal-substituted lithium titanate doped with Cr, Fe, and Ni.
  • the metal-substituted lithium titanate doped with Cr, Fe, and Ni has high rate characteristics.
  • Metal-substituted lithium titanate of the present invention is Cr, Fe, and Ni doped into Li 4 Ti 5 O 12.
  • the metal-substituted lithium titanate is preferably represented by the following general formula (1). Li 4 + x Ti 5- y My O 12 (1) However, M must contain at least Cr, Fe, and Ni, and may further contain one or two of Zr and Al as optional components.
  • the metal-substituted lithium titanate represented by the general formula (1) has a spinel structure like Li 4 Ti 5 O 12 and has a large charge capacity and discharge capacity. In addition, the metal-substituted lithium titanate represented by the general formula (1) is excellent in rate characteristics as compared with Li 4 Ti 5 O 12 that is not metal-substituted as described later.
  • the values of x and y are preferably ⁇ 0.05 ⁇ x ⁇ 0.25 and 0 ⁇ y ⁇ 0.2. Within this range, the rate characteristics, charge capacity, and discharge capacity are good. From these viewpoints, the range of x is more preferably 0 ⁇ x ⁇ 0.25, still more preferably 0 ⁇ x ⁇ 0.2, and the range of y is more preferably 0.01 ⁇ y ⁇ 0. .2, more preferably 0.05 ⁇ y ⁇ 0.2, and still more preferably 0.08 to 0.15.
  • anatase-type titanium dioxide, rutile-type titanium dioxide, and Li 2 TiO 3 may be present in the lithium titanate particles.
  • the main peak intensity of the anatase-type titanium dioxide is preferably 5 Or less, more preferably 3 or less, still more preferably less than 1, and still more preferably 0.
  • the peak intensity corresponding to the main peak of Li 4 Ti 5 O 12 means the main peak existing at a position that approximates the main peak of Li 4 Ti 5 O 12 in the metal-substituted lithium titanate. It means peak intensity.
  • the main peak intensity of rutile titanium dioxide is preferably 5 or less. , More preferably 3 or less, even more preferably 2 or less, still more preferably 1 or less, and even more preferably 0.
  • the main peak intensity of the peak corresponding to Li 2 TiO 3 is preferably 3 or less. More preferably, it is 2 or less, More preferably, it is 1 or less, More preferably, it is 0.
  • the peak intensity corresponding to the main peak of Li 2 TiO 3 among the peaks of the compound obtained by doping the metal M with respect to Li 2 TiO 3, a main peak of Li 2 TiO 3 approximation It means the peak intensity of the main peak existing at the position.
  • the peak intensity refers to the height from the baseline to the peak top.
  • the Fe content relative to the entire lithium titanate particles is preferably 5 to 300 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is suppressed as it is 300 mass ppm or less. From these viewpoints, the Fe content is more preferably 10 to 250 ppm by mass, still more preferably 50 to 200 ppm by mass, and still more preferably 100 to 200 ppm by mass.
  • the content of Cr with respect to the entire lithium titanate particles is preferably 5 to 200 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is controlled as it is 200 mass ppm or less.
  • the Cr content is more preferably 10 to 150 ppm by mass, still more preferably 10 to 120 ppm by mass, and still more preferably 10 to 100 ppm by mass.
  • the content of Ni with respect to the entire lithium titanate particles is preferably 5 to 200 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is controlled as it is 200 mass ppm or less. From these viewpoints, the Ni content is more preferably 5 to 150 ppm by mass, still more preferably 5 to 120 ppm by mass, and still more preferably 5 to 100 ppm by mass.
  • the atomic ratio Li / Ti of Li to Ti is preferably 0.79 to 0.87. Within this range, the proportion of spinel-structured metal-substituted lithium titanate Li 4 Ti 5 O 12 in the lithium titanate particles increases, and the charge capacity and discharge capacity increase. In this respect, the atomic ratio Li / Ti is more preferably 0.79 to 0.85, further preferably 0.80 to 0.85, and still more preferably 0.81 to 0.85. More preferably, it is 0.82 to 0.85.
  • the lithium titanate particles may further contain Zr.
  • the content of Zr with respect to the entire lithium titanate particles is preferably 5 to 1000 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is controlled as it is 1000 mass ppm or less. From these viewpoints, the Zr content is more preferably 5 to 800 ppm by mass, further preferably 5 to 600 ppm by mass, still more preferably 50 to 150 ppm by mass, and still more preferably 80 ppm. ⁇ 120 ppm.
  • the lithium titanate particles may further contain Al.
  • the content of Al with respect to the entire lithium titanate particles is preferably 0.03 to 5% by mass. A rate characteristic becomes it favorable that it is 0.03 mass% or more. When the content is 5% by mass or less, a decrease in charge capacity and discharge capacity is suppressed. From these viewpoints, the Al content is more preferably 0.1 to 5% by mass, still more preferably 1 to 5% by mass, still more preferably 1 to 3% by mass, and still more preferably. Is 1 to 2% by mass.
  • the volume median particle size (D50) of the lithium titanate particles is preferably 0.1 to 1 ⁇ m. When it is 0.1 ⁇ m or more, aggregation and the like are suppressed when an electrode is prepared using the lithium titanate particles, and the handleability is excellent. When it is 1 ⁇ m or less, charge / discharge characteristics are improved. From these viewpoints, D50 is more preferably 0.2 to 0.9 ⁇ m, still more preferably 0.4 to 0.8 ⁇ m, still more preferably 0.5 to 0.7 ⁇ m, and still more. Preferably, it is 0.6 to 0.7 ⁇ m.
  • “volume median particle size (D50)” means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% when calculated from the smaller particle size. The measuring method is as described later.
  • the BET specific surface area (hereinafter also simply referred to as “specific surface area”) of lithium titanate particles by the nitrogen adsorption method is preferably 3 m 2 / g or more, more preferably 5 m 2 / g, from the viewpoint of improving rate characteristics. Or more, more preferably 7 m 2 / g or more. Also, from the viewpoint of reducing the amount of solvent when the lithium titanate particles are dispersed in a solvent in the process of producing an electrode to make a slurry, it is preferably 100 m 2 / g or less, more preferably 20 m 2 / g or less. More preferably, it is 10 m 2 / g or less. Therefore, the numerical range of the BRT specific surface area is preferably 3 to 100 m 2 / g, more preferably 5 to 20 m 2 / g, and further preferably 7 to 10 m 2 / g.
  • the bulk density and tap density of the lithium titanate particles are preferably large.
  • the bulk density is preferably 0.1 g / ml or more, more preferably 0.2 g / ml or more, still more preferably 0.3 g / ml or more, still more preferably 0.4 g / ml or more. is there.
  • the tap density is preferably 0.5 g / ml or more, more preferably 0.6 g / ml or more, still more preferably 0.7 g / ml or more, and even more preferably 0.8 g / ml or more. And more preferably 1 g / ml or more.
  • the pH of the lithium titanate particles is preferably 10-12.
  • it is 10 or more, there is an advantage that the dispersibility is good, and when it is 12 or less, there is an advantage that when the electrode slurry is produced, the slurry is gelled and cannot be slurried. From this viewpoint, it is more preferably 10.5 to 12, still more preferably 10.5 to 11.8, and still more preferably 11 to 11.8.
  • the pH of the lithium titanate particles means the pH of the dispersion when 10 g of lithium titanate particles are dispersed in 90 g of water.
  • the lithium titanate particles can be obtained by mixing and refining the raw materials, firing, and then performing post-treatment such as crushing.
  • ⁇ Raw material> As the Ti component, one or more of titanium compounds such as anatase type titanium dioxide and rutile type titanium dioxide are used.
  • the volume median particle size (D50) of this Ti component is preferably 0.2 to 5 ⁇ m. When it is 0.2 ⁇ m or more, aggregation is suppressed, and the particle diameter of the lithium titanate particles after firing becomes small. If the particle size is 5 ⁇ m or less, the particle size of the Ti titanate particles after firing is small because the particle size of the Ti component is small.
  • lithium compounds such as lithium hydroxide monohydrate, lithium oxide, lithium hydrogen carbonate, and lithium carbonate are used. This Li component melts during firing.
  • metal salts such as oxides, hydroxides, and carbonates are used.
  • Mixing / miniaturization can be performed by a conventional method, and either wet or dry process may be performed.
  • the device for efficiently obtaining the mixing is not particularly limited, but for example, a stirring device having stirring blades, an ultrasonic dispersion device, a homomixer, a mortar, a ball mill, a centrifugal ball mill, a planetary ball mill, a vibrating ball mill, an attritor type A high-speed ball mill, bead mill, roll mill, or other device that generates shearing force or impact force can be used.
  • a slurry in which a predetermined amount of the above raw material is mixed with water is stirred and mixed in a mixed layer, and then mixed and refined by a ball mill or a bead mill.
  • a ball mill or a bead mill There is no restriction
  • the solid content concentration of the obtained mixture is 10 mass% or more. When the solid content concentration is 10% by mass or more, the load during drying is reduced, and the production efficiency of lithium titanate is improved. After mixing and miniaturization in this way, the next firing is performed after drying as necessary.
  • the mixture is fired.
  • firing temperature is preferably 600 to 1000 ° C., more preferably 650 to 900 ° C., and further preferably 700 to 900 ° C.
  • the firing time is preferably 10 to 120 minutes, more preferably 15 to 120 minutes, still more preferably 20 to 120 minutes, and still more preferably 30 to 120 minutes.
  • the firing method is not particularly limited as long as it can be fired under the above conditions.
  • a firing method that can be used a fixed bed type firing furnace, a roller hearth type firing furnace, a mesh belt type firing furnace, a fluidized bed type, or a rotary kiln type firing furnace can be considered.
  • a rotary kiln type baking furnace, a roller hearth type baking furnace, or a mesh belt type baking furnace is preferable.
  • rotary kiln-type firing furnaces do not require containers for raw materials, can be fired by continuously charging raw materials, and in addition, the heat history of the fired product is uniform, so a homogeneous product can be obtained. I can do it.
  • the rotary kiln of the type provided with a stirring blade in the rotating cylinder is characterized in that the stirring blade rotates by rotating the rotating cylinder, and the raw material is scraped, fluidized, and floated. It is particularly preferable for synthesizing lithium titanate.
  • raw materials mixed in a dry process can be used as raw materials.
  • the atmosphere during firing is not particularly limited as long as the desorbed moisture and carbon dioxide gas can be removed.
  • the lithium titanate particles of the present invention can be synthesized by using compressed air, but oxygen, nitrogen, hydrogen or the like may be used. Next, firing using a rotating cylinder will be described in more detail.
  • the stirring blade has a plurality of blade pieces radially at equal intervals, and at least one tip of the blade pieces is the inner surface of the cylinder. It is preferable that the stirring blades are also rotated by the rotation of the cylindrical body. By rotating the stirring blade, the mixture in the cylindrical body is stirred and lifted by the blades of the stirring blade, the adhesion growth of the mixture on the inner surface of the cylindrical body is suppressed, and the contact between the mixture and the gas in the rotating cylindrical body and Heat transfer is kept good.
  • the rotating cylinder is preferably inclined with respect to the horizontal plane.
  • the mixture in the cylindrical body is sequentially sent from the raw material supply side to the recovery side, and during that time, drying and baking are performed.
  • the “raw material supply side” and the “recovery side” refer to the upper side and the lower side in the axial direction of the inclined rotating cylindrical body, respectively.
  • the inclination angle with respect to the horizontal plane is preferably 1 to 10 degrees. When the tilt angle is equal to or greater than the lower limit, the product can be easily discharged and can be recovered constantly. When the tilt angle is less than or equal to the upper limit value, the residence time of the raw materials in the rotating cylinder is prevented from becoming too short, and the mixture is sufficiently dried and fired.
  • the inclination angle is more preferably 1 to 5 degrees.
  • the rotation speed of the rotating cylinder is preferably 5 to 40 rpm. When it is at least the lower limit value, the residence time of the mixture is prevented from becoming too short, drying becomes sufficient, and adhesion of the mixture to the inner surface of the rotating cylinder is prevented or suppressed. If it is less than or equal to the upper limit value, the rotational speed becomes too fast and the stirring effect is prevented from being reduced, and the stirring effect becomes sufficient. From this viewpoint, the rotation speed is more preferably 5 to 20 rpm, and further preferably 5 to 15 rpm.
  • the material of the blades of the stirring blade and the rotating cylinder is not particularly limited, but it is preferable to use austenitic heat resistant steel.
  • the rotating cylinder is preferably one that can control the internal temperature to a predetermined temperature.
  • the heating method either an external heating source or an internal heating source of the rotating cylindrical body may be used, but an external heating source is preferable from the viewpoint of controlling the firing atmosphere.
  • the mixture is supplied to the raw material supply side of the rotating cylinder.
  • the mixture may be supplied in either a slurry state or a dry state, but is preferably supplied directly in a slurry state.
  • a raw material supply means for quantitatively supplying the mixture to the rotating cylindrical body may be used.
  • the fluidity of the mixture is low, it may be supplied using a screw.
  • the supplied mixture is in a slurry state, this mixture is swept into droplets by a stirring blade in a heated rotating cylinder, and rapidly dried and solidified on the surface of the rotating cylinder and gas while flowing and floating. And dehydrated.
  • This dried and solidified mixture is heated in a rotating cylinder, stirred and baked while being swirled.
  • the mixture supplied in the rotating cylinder in a dry state is also heated in the rotating cylinder, stirred, and baked while being swirled.
  • the fired product thus obtained is recovered from the recovery side of the rotating cylinder.
  • the use of a stirring blade prevents or suppresses the mixture from adhering to the inner surface of the rotating cylindrical body, uniformly mixes the mixture, and shortens the heating time. Is played.
  • the heating temperature in the rotating cylinder is the same as that when a furnace other than the rotating cylinder is used.
  • the firing time in the case of using the rotating cylinder can be shortened compared to the case of using a furnace other than the rotating cylinder, and is preferably 10 to 90 minutes.
  • the firing time is more preferably 15 to 60 minutes, further preferably 20 to 40 minutes, and still more preferably 20 to 30 minutes.
  • the above-mentioned lithium titanate particles can be obtained by subjecting the lump of the particles after firing to treatments such as crushing, classification, and magnetic separation by a conventional method.
  • the active material of the present invention contains the lithium titanate particles.
  • One or more substances other than the lithium titanate particles may be included. Examples of other substances include carbon materials (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers), tin and tin compounds, silicon and silicon compounds. Is used.
  • An electricity storage device such as a lithium secondary battery includes a positive electrode, a negative electrode, an electrolyte, and the like.
  • the above active material can be suitably used as an active material for these positive electrode and negative electrode.
  • an electrolyte, a negative electrode active material when the active material is used as a positive electrode active material, and a positive electrode active when the active material is used as a negative electrode active material Material materials will be described in this order.
  • Electrolyte solution As the form of the electrolyte, there are a gel electrolyte and a solid electrolyte in addition to the electrolyte solution. These will be described in order.
  • the electrolyte solution is obtained by dissolving a solute that exhibits ionic conductivity in a solvent.
  • the solute is not particularly limited as long as it exhibits ionic conductivity, and LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like. Is mentioned.
  • the solvent is not particularly limited as long as it dissolves and retains a solute and does not decompose during charge / discharge or storage of the battery, and an organic solvent is preferably used.
  • organic solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC); chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).
  • Cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF); chain ethers such as dimethoxyethane (DME); ⁇ -butyrolactone (BL); acetonitrile (AN); sulfolane (SL); 1,3-propane And sultone such as sultone and 1,3-propene sultone.
  • THF tetrahydrofuran
  • 2MeTHF 2-methyltetrahydrofuran
  • chain ethers such as dimethoxyethane (DME); ⁇ -butyrolactone (BL); acetonitrile (AN); sulfolane (SL); 1,3-propane And sultone such as sultone and 1,3-propene sultone.
  • organic solvents can be used alone or in a mixture of two or more.
  • gel electrolyte and solid electrolyte As the gel electrolyte, a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution can be preferably used.
  • a polymer electrolyte such as polyethylene oxide or polyacrylonitrile
  • an electrolytic solution As the solid electrolyte, an inorganic solid electrolyte such as LiI can be suitably used.
  • a Li metal such as Li metal, Li / Al alloy, Li / In alloy, Li / Al / Mn alloy, or the like is preferably used as the negative electrode active material. be able to.
  • examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , LiCo 0.9 Ti 0.1 O 2 , LiCo 0.5 Ni 0.4 Zr 0.1 O 2 , LiFePO 4 , LiFe 1-x Co x PO 4 , LiMnPO 4 , Lithium-containing transition metal composite oxides such as LiVPO 4 ; carbon materials such as graphite, coke, and activated carbon can be used.
  • a lithium-containing transition metal composite oxide is used as the positive electrode active material
  • a lithium ion secondary battery that requires high load characteristics is used.
  • a carbon material is used, an electrochemical that requires high load characteristics is used. It can be suitably used for a capacitor.
  • the structure of the electricity storage device is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery and a square battery having a positive electrode, a negative electrode, and a roll separator, etc.
  • a separator a known polyolefin microporous film, woven fabric, non-woven fabric, glass filter, paper (cellulose) or the like is used.
  • the separator may have any structure of a single layer porous film and a laminated porous film.
  • the air permeability is preferably 50 to 1000 seconds / 100 cc, more preferably 100 to 800 seconds / 100 cc, and even more preferably 300 to 500 seconds / 100 cc.
  • the porosity of the separator is preferably 30 to 60%, more preferably 35 to 55%, and still more preferably 40 to 50%.
  • the thickness of the separator is preferably as thin as possible because the energy density can be increased. However, it is preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, and still more preferably 15 to 25 ⁇ m from both aspects of mechanical strength and performance.
  • the present invention will be described more specifically with reference to examples and comparative examples.
  • the present invention is not limited to the following examples, and includes various combinations that can be easily inferred from the gist of the invention. In particular, it is not limited to the solvent combinations of the examples. [Various measurement methods]
  • the general formula (1) of the metal-substituted lithium titanate represented by the time of the main peak intensity is 100, the above-mentioned rutile titanium dioxide, anatase titanium dioxide, and the main peak intensity of the metal-substituted Li 2 TiO 3
  • the relative value of was calculated.
  • a laser diffraction / scattering particle size distribution measuring machine (Nikkiso Co., Ltd., Microtrack MT3300EXII) was used.
  • BET specific surface area (m 3 / g) The BET specific surface area was measured by a one-point method using liquid nitrogen using a fully automatic BET specific surface area measuring device manufactured by Mountec Co., Ltd., trade name “Macsorb HM model-1208”.
  • Ti-3 Anatase type titanium dioxide (manufactured by Sakai Chemical Co., Ltd.
  • Li-1 “Product name: Anhydrous lithium carbonate 4N” manufactured by Kojundo Chemical Laboratory (Al) Al-1: “Purchased product: ⁇ -alumina 4N” manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • Cr Cr-1: “Product name: Chromium (III) oxide 3N” manufactured by High Purity Chemical Research Co., Ltd.
  • Fe Fe-1: “Product name: Ferric oxide 4N” manufactured by High Purity Chemical Research Co., Ltd.
  • Ni-1 “Product name: Nickel monoxide 3N” manufactured by High Purity Chemical Laboratory Co., Ltd.
  • Zr Zr) Zr-1: “Product name: Zirconium oxide 98%” manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • Example 1 ⁇ Production and measurement of lithium titanate particles> The raw materials and water in the blending amounts shown in Table 1 were put in a mortar and mixed and refined with a pestle to obtain a slurry. This slurry was dehydrated with a rotary evaporator and then dried with a dryer at 105 ° C. for 12 hours. This dry powder was put into an electric furnace and fired at a firing temperature of 900 ° C. and a firing time of 120 minutes. Thereafter, the fired product was collected and crushed with a mortar and pestle, and then sieved (mesh roughness: 25 ⁇ m), and the particles passed through the sieve were collected to obtain lithium titanate particles.
  • the lithium titanate particles were measured for XRD, D50 ( ⁇ m), BET specific surface area (m 3 / g), bulk density (g / ml), tap density (g / ml), and pH. The results are shown in Table 1. Moreover, the value of x and y in General formula (1) was computed from content of a raw material supposing that all the raw materials became a metal substituted lithium titanate represented by General formula (1). The results are also shown in Table 1.
  • a positive electrode plate was produced using the obtained lithium titanate particles as a positive electrode active material. That is, this positive electrode active material, acetylene black (“trade name: DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) and polyvinylidene fluoride (PVDF) (“trade name: KF polymer” manufactured by Kureha Co., Ltd.) 90: 5: These were weighed to a mass ratio of 5, and kneaded with a kneader using N-methylpyrrolidone as a solvent to prepare an electrode slurry.
  • acetylene black trade name: DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • PVDF polyvinylidene fluoride
  • the electrode slurry was applied to an aluminum substrate and dried, then punched out to 14 mm ⁇ , further pressed, and then vacuum dried at 120 ° C. to prepare a positive electrode plate.
  • An electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent having a ratio of ethylene carbonate (EC) to dimethyl carbonate (DMC) of 1: 2.
  • the positive electrode plate and the negative electrode plate made of Li metal were laminated through a separator made of a glass filter (two laminates of Whatman GA-100 and GF / C), and the laminate was impregnated with the electrolytic solution. Thereafter, a coin-type battery (diameter 20 mm, thickness 3.2 mm) was produced by sealing with a stainless steel exterior material.
  • Example 1 The same operation as in Example 1 was performed except that the raw materials and the blending ratio thereof were as shown in Table 1. The results are shown in Table 1, Table 2, Table 3, and FIGS.
  • Examples 2 to 3 The same operation as in Example 1 was performed except that the raw materials and the blending ratio thereof were as shown in Table 1. The results are shown in Table 1, Table 2, Table 3, and FIGS.
  • Example 4 The raw materials and water in the blending amounts shown in Table 1 were pulverized and mixed using a bead mill to prepare a mixture as a raw material. About the mixture, a rotating cylinder (furnace core tube length: 4 m, furnace core tube diameter: 30 cm, stirring blade: 14 cm from the center, 10 sheets, external heating type) with a tilt angle of 2 degrees and a rotation speed of 10 rpm was used. Drying and calcination were performed while flowing the minute from the collection side. The heating temperature of the cylindrical rotating body was 700 ° C. on the raw material supply side, 900 ° C. at the center, and 900 ° C. on the recovery side, and the residence time of the heated portion was 26 minutes.
  • Example 1 Thereafter, the fired product was collected and crushed with a mortar and pestle, and then sieved (mesh roughness: 25 ⁇ m), and the particles passed through the sieve were collected to obtain lithium titanate particles.
  • the obtained powder was analyzed in the same manner as in Example 1. The results are shown in Table 1, Table 2, Table 3, and FIGS.

Abstract

Provided are: lithium titanate particles having high rate characteristics; an active material; and a method for producing lithium titanate particles. The lithium titanate particles contain a metal-substituted lithium titanate which is doped with Cr, Fe and Ni. The lithium titanate particles has a main peak intensity of anatase titanium dioxide of 5 or less, a main peak intensity of rutile titanium dioxide of 5 or less and a peak intensity corresponding to the main peak of Li2TiO3 of 3 or less when the peak intensity corresponding to the main peak of Li4Ti5O12 is taken as 100 among the peaks as determined by an x-ray diffraction method. The lithium titanate particles has a volume-based median diameter (D50) of 0.1-1 μm.

Description

チタン酸リチウム粒子、活物質材料、及びチタン酸リチウム粒子の製造方法Lithium titanate particles, active material, and method for producing lithium titanate particles
 本発明は、蓄電デバイスの電極材料等として好適なチタン酸リチウム粒子及びその製造方法と、このチタン酸リチウム粒子を用いた活物質材料とに関するものである。 The present invention relates to a lithium titanate particle suitable as an electrode material of an electricity storage device, a method for producing the same, and an active material using the lithium titanate particle.
 近年、リチウム二次電池の電極材料として種々の材料が研究されている。その中でもチタン酸リチウムは、容量の理論量が大きい等の点から注目されている。チタン酸リチウムとしては、Li4Ti512、LiTi24、Li2TiO3等が知られている。これらの中でLi4Ti512は、特に容量(理論値:175mAh/g)が大きいことから注目されている。
 特許文献1には、Li4/3Ti5/34(Li4Ti512)を主成分とし、X線回折法によるLi4/3Ti5/34のメインピーク強度を100としたとき、アナターゼ型二酸化チタン、ルチル型二酸化チタン、及びLi2TiO3のメインピーク強度がいずれも5以下であるチタン酸リチウムであって、かつ、その結晶子径が700Å~800Åである高結晶性チタン酸リチウムが開示されている。特許文献1によると、このチタン酸リチウムは、Li4Ti512以外の成分が微量であるため、初期充・放電容量を165mAh/g以上とすることができるとされている。
 特許文献2には、Li4/3Ti5/34(Li4Ti512)のTiのサイトにMg、Nb、Al、Zr、NiおよびCoよりなる群から選ばれる少なくとも1種を含むチタン酸リチウムが開示されている。特許文献2によると、高率充放電において高容量が得られるとされている。
 特許文献3には、Li4/3Ti5/34(Li4Ti512)のTiのサイトに、Be、B、C、Mg、Al、Si、P、Ca、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Sr、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、Te、Ba、La、Ta、W、Au、Hg、Pb等を置換したチタン酸リチウムが開示されている。チタンの一部を異種元素で置換することにより、この嵩高さを抑えることができ、粒子間のイオンや電子の授受をスムーズにする働きがあり、それにより電極性能が向上するとされている。
 特許文献4には、一般式LiX MY TiZ O4で表されるチタン酸リチウムのLiのサイトを、2以上の原子価を有するコバルト、ニッケル、マンガン、バナジウム、鉄、ホウ素、アルミニウム、珪素、ジルコニウム、ストロンチウム、マグネシウム及び錫からなる群より選ばれる少なくとも1種の金属で置換されたチタン酸リチウムが開示されている。Liの一部を置換することにより、リチウムイオンのドープ、脱ドープが容易となり、リチウム電池用電極として用いた場合に電池容量等の特性を改善することができるとされている。しかしながら、Liサイトを他の元素で置換すると容量の低下が起こると考えられる。
In recent years, various materials have been studied as electrode materials for lithium secondary batteries. Among them, lithium titanate is attracting attention because it has a large theoretical capacity. As lithium titanate, Li 4 Ti 5 O 12 , LiTi 2 O 4 , Li 2 TiO 3 and the like are known. Among these, Li 4 Ti 5 O 12 is attracting attention because of its particularly large capacity (theoretical value: 175 mAh / g).
In Patent Document 1, Li 4/3 Ti 5/3 O 4 (Li 4 Ti 5 O 12 ) is the main component, and the main peak intensity of Li 4/3 Ti 5/3 O 4 by the X-ray diffraction method is 100. The main peak intensity of anatase-type titanium dioxide, rutile-type titanium dioxide, and Li 2 TiO 3 is all lithium titanate of 5 or less, and the crystallite diameter is 700 to 800 mm. Crystalline lithium titanate is disclosed. According to Patent Document 1, since this lithium titanate has a small amount of components other than Li 4 Ti 5 O 12 , the initial charge / discharge capacity can be set to 165 mAh / g or more.
Patent Document 2 discloses at least one selected from the group consisting of Mg, Nb, Al, Zr, Ni and Co at the Ti site of Li 4/3 Ti 5/3 O 4 (Li 4 Ti 5 O 12 ). Including lithium titanate is disclosed. According to Patent Document 2, it is said that a high capacity can be obtained in high rate charge / discharge.
Patent Document 3 discloses that Be, B, C, Mg, Al, Si, P, Ca, Sc, V, and Ti at a Ti site of Li 4/3 Ti 5/3 O 4 (Li 4 Ti 5 O 12 ). Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, A lithium titanate substituted with Ta, W, Au, Hg, Pb or the like is disclosed. By replacing a part of titanium with a different element, this bulkiness can be suppressed, and there is a function of smoothly transferring ions and electrons between particles, thereby improving electrode performance.
In Patent Document 4, Li sites of lithium titanate represented by the general formula Li X MY Ti Z O 4 are represented by cobalt, nickel, manganese, vanadium, iron, boron, aluminum having a valence of 2 or more. Lithium titanate substituted with at least one metal selected from the group consisting of silicon, zirconium, strontium, magnesium and tin is disclosed. By substituting a part of Li, doping and undoping of lithium ions are facilitated, and characteristics such as battery capacity can be improved when used as an electrode for a lithium battery. However, if the Li site is replaced with another element, it is considered that the capacity decreases.
特開2001-240498号公報Japanese Patent Laid-Open No. 2001-240498 特開2010-135237号公報JP 2010-135237 A 特開2001-196061号公報Japanese Patent Laid-Open No. 2001-196061 特開平10-251020号公報JP-A-10-251020
 特許文献1~4のようなLi4Ti512を主成分とするチタン酸リチウムは、容量の理論値が高いと共にレート特性も優れているが、レート特性の更なる向上が望まれる。
 ここで、レート特性とは、充・放電電流と動的容量との関係をいう。大きな電流で充・放電しても容量の低下が少ないとレート特性が高いとされる。レート特性が高いと、出力密度(電池から取り出すことのできるパワー(電流×電圧)を電池の総重量あるいは総体積で除したもの。)が大きくなり、電極用材料として優れている。
 本発明者らは、レート特性の高いチタン酸リチウム粒子、活物質材料、及びチタン酸リチウム粒子の製造方法を提供することを目的とする。
Lithium titanate mainly composed of Li 4 Ti 5 O 12 as in Patent Documents 1 to 4 has a high capacity value and excellent rate characteristics, but further improvement of the rate characteristics is desired.
Here, the rate characteristics refer to the relationship between charge / discharge current and dynamic capacity. It is said that the rate characteristic is high when the capacity decreases little even when charging / discharging with a large current. When the rate characteristic is high, the output density (the power (current × voltage) that can be taken out from the battery divided by the total weight or the total volume of the battery) increases, and it is excellent as an electrode material.
An object of the present invention is to provide a lithium titanate particle, an active material, and a method for producing a lithium titanate particle having high rate characteristics.
 本発明者は、上記の目的を達成すべく種々検討した結果、Cr、Fe、及びNiを含有させた金属置換チタン酸リチウムとすることにより、レート特性が向上することを見出して本発明を完成した。
 すなわち、本発明は以下の(1)~(3)を提供するものである。
As a result of various studies to achieve the above-mentioned object, the present inventor has found that rate characteristics can be improved by using a metal-substituted lithium titanate containing Cr, Fe, and Ni, thereby completing the present invention. did.
That is, the present invention provides the following (1) to (3).
(1) Cr、Fe、及びNiがドープされた金属置換チタン酸リチウムを含有するチタン酸リチウム粒子。
(2) 上記チタン酸リチウム粒子を含む活物質材料。
(3) Cr、Fe、及びNiと、チタン化合物と、リチウム化合物とを含む混合物を、焼成温度600~1000℃、焼成時間10~120分間にて加熱する焼成工程を含む上記チタン酸リチウム粒子の製造方法。
(1) Lithium titanate particles containing metal-substituted lithium titanate doped with Cr, Fe, and Ni.
(2) An active material containing the lithium titanate particles.
(3) The lithium titanate particles including a firing step of heating a mixture containing Cr, Fe, and Ni, a titanium compound, and a lithium compound at a firing temperature of 600 to 1000 ° C. for a firing time of 10 to 120 minutes. Production method.
 本発明によると、レート特性が高く、蓄電デバイスの電極材料として好適なチタン酸リチウム粒子及びその製造方法並びに活物質材料を提供することができる。 According to the present invention, it is possible to provide lithium titanate particles having high rate characteristics and suitable as an electrode material for an electricity storage device, a method for producing the same, and an active material.
実施例及び比較例の充電レート特性を示すグラフである。It is a graph which shows the charge rate characteristic of an Example and a comparative example. 実施例及び比較例の充電容量維持率を示すグラフである。It is a graph which shows the charge capacity maintenance factor of an Example and a comparative example.
[チタン酸リチウム粒子]
 本発明のチタン酸リチウム粒子は、Cr、Fe、及びNiがドープされた金属置換チタン酸リチウムを含有するものである。このようにCr、Fe、及びNiがドープされた金属置換チタン酸リチウムは、レート特性が高くなる。
[Lithium titanate particles]
The lithium titanate particles of the present invention contain metal-substituted lithium titanate doped with Cr, Fe, and Ni. Thus, the metal-substituted lithium titanate doped with Cr, Fe, and Ni has high rate characteristics.
<金属置換チタン酸リチウム>
 本発明の金属置換チタン酸リチウムは、Li4Ti512にCr、Fe、及びNiがドープされたものである。この金属置換チタン酸リチウムは、以下の一般式(1)で表されるものが好ましい。
   Li4+xTi5-yy12   (1)
 ただし、Mは、少なくともCr、Fe、及びNiを必須とし、更に任意成分としてZr及びAlの1種又は2種を含んでいてもよい。
 この一般式(1)で表される金属置換チタン酸リチウムは、Li4Ti512と同様にスピネル構造を有しており、充電容量及び放電容量が大きい。また、一般式(1)で表される金属置換チタン酸リチウムは、後述するとおり、金属置換されていないLi4Ti512と比べてレート特性に優れている。
<Metal-substituted lithium titanate>
Metal-substituted lithium titanate of the present invention is Cr, Fe, and Ni doped into Li 4 Ti 5 O 12. The metal-substituted lithium titanate is preferably represented by the following general formula (1).
Li 4 + x Ti 5- y My O 12 (1)
However, M must contain at least Cr, Fe, and Ni, and may further contain one or two of Zr and Al as optional components.
The metal-substituted lithium titanate represented by the general formula (1) has a spinel structure like Li 4 Ti 5 O 12 and has a large charge capacity and discharge capacity. In addition, the metal-substituted lithium titanate represented by the general formula (1) is excellent in rate characteristics as compared with Li 4 Ti 5 O 12 that is not metal-substituted as described later.
 上記一般式(1)中において、x及びyの値は、好ましくは-0.05≦x≦0.25かつ0<y≦0.2である。この範囲内であると、レート特性、充電容量及び放電容量が良好なものとなる。これらの観点から、xの範囲は、より好ましくは0≦x≦0.25、更に好ましくは0≦x≦0.2であり、またyの範囲は、より好ましくは0.01≦y≦0.2、更に好ましくは0.05≦y≦0.2であり、より更に好ましくは0.08~0.15である。 In the above general formula (1), the values of x and y are preferably −0.05 ≦ x ≦ 0.25 and 0 <y ≦ 0.2. Within this range, the rate characteristics, charge capacity, and discharge capacity are good. From these viewpoints, the range of x is more preferably 0 ≦ x ≦ 0.25, still more preferably 0 ≦ x ≦ 0.2, and the range of y is more preferably 0.01 ≦ y ≦ 0. .2, more preferably 0.05 ≦ y ≦ 0.2, and still more preferably 0.08 to 0.15.
<その他の相>
 チタン酸リチウム粒子には、上記金属置換チタン酸リチウムの他に、アナターゼ型二酸化チタン、ルチル型二酸化チタン、及びLi2TiO3が存在してもよい。ただし、これらの相が存在すると相対的に金属置換チタン酸リチウムの含有量が低下してレート特性、充電容量及び放電容量が低下するため、これらの相は少ないことが好ましい。
 この観点から、X線回折法によって測定されるピークのうちLi4Ti512のメインピークに相当するピーク強度を100としたときに、アナターゼ型ニ酸化チタンのメインピーク強度は、好ましくは5以下であり、より好ましくは3以下であり、更に好ましくは1未満であり、より更に好ましくは0である。
 ここで、「Li4Ti512のメインピークに相当するピーク強度」とは、上記金属置換チタン酸リチウムのうち、Li4Ti512のメインピークに近似する位置に存在するメインピークのピーク強度を意味する。
<Other phases>
In addition to the metal-substituted lithium titanate, anatase-type titanium dioxide, rutile-type titanium dioxide, and Li 2 TiO 3 may be present in the lithium titanate particles. However, if these phases are present, the content of the metal-substituted lithium titanate is relatively lowered and the rate characteristics, charge capacity, and discharge capacity are lowered. Therefore, it is preferable that these phases be small.
From this viewpoint, when the peak intensity corresponding to the main peak of Li 4 Ti 5 O 12 among the peaks measured by the X-ray diffraction method is 100, the main peak intensity of the anatase-type titanium dioxide is preferably 5 Or less, more preferably 3 or less, still more preferably less than 1, and still more preferably 0.
Here, “the peak intensity corresponding to the main peak of Li 4 Ti 5 O 12 ” means the main peak existing at a position that approximates the main peak of Li 4 Ti 5 O 12 in the metal-substituted lithium titanate. It means peak intensity.
 また、X線回折法によって測定されるピークのうちLi4Ti512のメインピークに相当するピーク強度を100としたときに、ルチル型二酸化チタンのメインピーク強度は、好ましくは5以下であり、より好ましくは3以下であり、より更に好ましくは2以下であり、より更に好ましくは1以下であり、より更に好ましくは0である。
 X線回折法によって測定されるピークのうちLi4Ti512のメインピークに相当するピーク強度を100としたときに、Li2TiO3に相当するピークのメインピーク強度は、好ましくは3以下であり、より好ましくは2以下であり、更に好ましくは1以下であり、より更に好ましくは0である。
 ここで、「Li2TiO3のメインピークに相当するピーク強度」とは、Li2TiO3に対して上記金属Mをドープしてなる化合物のピークのうち、Li2TiO3のメインピークと近似する位置に存在するメインピークのピーク強度を意味する。また、ピーク強度とは、ベースラインからピークトップまでの高さのことをいう。
Moreover, when the peak intensity corresponding to the main peak of Li 4 Ti 5 O 12 among the peaks measured by the X-ray diffraction method is 100, the main peak intensity of rutile titanium dioxide is preferably 5 or less. , More preferably 3 or less, even more preferably 2 or less, still more preferably 1 or less, and even more preferably 0.
Of the peaks measured by the X-ray diffraction method, when the peak intensity corresponding to the main peak of Li 4 Ti 5 O 12 is 100, the main peak intensity of the peak corresponding to Li 2 TiO 3 is preferably 3 or less. More preferably, it is 2 or less, More preferably, it is 1 or less, More preferably, it is 0.
Here, the "peak intensity corresponding to the main peak of Li 2 TiO 3", among the peaks of the compound obtained by doping the metal M with respect to Li 2 TiO 3, a main peak of Li 2 TiO 3 approximation It means the peak intensity of the main peak existing at the position. The peak intensity refers to the height from the baseline to the peak top.
<Cr、Fe、及びNi>
 チタン酸リチウム粒子全体に対するFeの含有量は、5~300質量ppmであることが好ましい。5質量ppm以上であると、レート特性が良好になる。300質量ppm以下であると、充電容量及び放電容量の低下が抑制される。これらの観点から、Feの含有量は、より好ましくは10~250質量ppmであり、更に好ましくは50~200質量ppmであり、より更に好ましくは100~200質量ppmである。
 チタン酸リチウム粒子全体に対するCrの含有量は、5~200質量ppmであることが好ましい。5質量ppm以上であると、レート特性が良好になる。200質量ppm以下であると、充電容量及び放電容量の低下が抑制される。これらの観点から、Crの含有量は、より好ましくは10~150質量ppmであり、更に好ましくは10~120質量ppmであり、より更に好ましくは10~100質量ppmである。
 チタン酸リチウム粒子全体に対するNiの含有量は、5~200質量ppmであることが好ましい。5質量ppm以上であると、レート特性が良好になる。200質量ppm以下であると、充電容量及び放電容量の低下が抑制される。これらの観点から、Niの含有量は、より好ましくは5~150質量ppmであり、更に好ましくは5~120質量ppmであり、より更に好ましくは5~100質量ppmである。
<Cr, Fe, and Ni>
The Fe content relative to the entire lithium titanate particles is preferably 5 to 300 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is suppressed as it is 300 mass ppm or less. From these viewpoints, the Fe content is more preferably 10 to 250 ppm by mass, still more preferably 50 to 200 ppm by mass, and still more preferably 100 to 200 ppm by mass.
The content of Cr with respect to the entire lithium titanate particles is preferably 5 to 200 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is controlled as it is 200 mass ppm or less. From these viewpoints, the Cr content is more preferably 10 to 150 ppm by mass, still more preferably 10 to 120 ppm by mass, and still more preferably 10 to 100 ppm by mass.
The content of Ni with respect to the entire lithium titanate particles is preferably 5 to 200 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is controlled as it is 200 mass ppm or less. From these viewpoints, the Ni content is more preferably 5 to 150 ppm by mass, still more preferably 5 to 120 ppm by mass, and still more preferably 5 to 100 ppm by mass.
<Li及びTi>
 チタン酸リチウム粒子において、Tiに対するLiの原子比Li/Tiは、0.79~0.87であることが好ましい。この範囲内であると、チタン酸リチウム粒子中におけるスピネル構造の金属置換チタン酸リチウムLi4Ti512の割合が多くなり、充電容量及び放電容量が大きくなる。この観点から、原子比Li/Tiは、より好ましくは0.79~0.85であり、更に好ましくは0.80~0.85であり、より更に好ましくは0.81~0.85であり、より更に好ましくは0.82~0.85である。
<Li and Ti>
In the lithium titanate particles, the atomic ratio Li / Ti of Li to Ti is preferably 0.79 to 0.87. Within this range, the proportion of spinel-structured metal-substituted lithium titanate Li 4 Ti 5 O 12 in the lithium titanate particles increases, and the charge capacity and discharge capacity increase. In this respect, the atomic ratio Li / Ti is more preferably 0.79 to 0.85, further preferably 0.80 to 0.85, and still more preferably 0.81 to 0.85. More preferably, it is 0.82 to 0.85.
<Zr>
 チタン酸リチウム粒子には、更にZrが含まれていてもよい。チタン酸リチウム粒子全体に対するZrの含有量は、5~1000質量ppmであることが好ましい。5質量ppm以上であると、レート特性が良好になる。1000質量ppm以下であると、充電容量及び放電容量の低下が抑制される。これらの観点から、Zrの含有量は、より好ましくは5~800質量ppmであり、更に好ましくは5~600質量ppmであり、より更に好ましくは50~150質量ppmであり、より更に好ましくは80~120ppmである。
<Zr>
The lithium titanate particles may further contain Zr. The content of Zr with respect to the entire lithium titanate particles is preferably 5 to 1000 ppm by mass. If it is 5 ppm by mass or more, the rate characteristics will be good. The fall of charge capacity and discharge capacity is controlled as it is 1000 mass ppm or less. From these viewpoints, the Zr content is more preferably 5 to 800 ppm by mass, further preferably 5 to 600 ppm by mass, still more preferably 50 to 150 ppm by mass, and still more preferably 80 ppm. ~ 120 ppm.
<Al>
 チタン酸リチウム粒子には、更にAlが含まれていてもよい。チタン酸リチウム粒子全体に対するAlの含有量は、0.03~5質量%であることが好ましい。0.03質量%以上であると、レート特性が良好になる。5質量%以下であると、充電容量及び放電容量の低下が抑制される。これらの観点から、Alの含有量は、より好ましくは0.1~5質量%であり、更に好ましくは1~5質量%であり、より更に好ましくは1~3質量%であり、より更に好ましくは1~2質量%である。
<Al>
The lithium titanate particles may further contain Al. The content of Al with respect to the entire lithium titanate particles is preferably 0.03 to 5% by mass. A rate characteristic becomes it favorable that it is 0.03 mass% or more. When the content is 5% by mass or less, a decrease in charge capacity and discharge capacity is suppressed. From these viewpoints, the Al content is more preferably 0.1 to 5% by mass, still more preferably 1 to 5% by mass, still more preferably 1 to 3% by mass, and still more preferably. Is 1 to 2% by mass.
<粒径>
 チタン酸リチウム粒子の体積中位粒径(D50)は、好ましくは0.1~1μmである。0.1μm以上であると、このチタン酸リチウム粒子を用いて電極を作成する際に凝集すること等が抑制され、取扱性に優れる。1μm以下であると、充・放電特性が良好になる。これらの観点から、D50は、より好ましくは0.2~0.9μmであり、更に好ましくは0.4~0.8μmであり、より更に好ましくは0.5~0.7μmであり、より更に好ましくは0.6~0.7μmである。
 ここで「体積中位粒径(D50)」とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。その測定方法は後述のとおりである。
<Particle size>
The volume median particle size (D50) of the lithium titanate particles is preferably 0.1 to 1 μm. When it is 0.1 μm or more, aggregation and the like are suppressed when an electrode is prepared using the lithium titanate particles, and the handleability is excellent. When it is 1 μm or less, charge / discharge characteristics are improved. From these viewpoints, D50 is more preferably 0.2 to 0.9 μm, still more preferably 0.4 to 0.8 μm, still more preferably 0.5 to 0.7 μm, and still more. Preferably, it is 0.6 to 0.7 μm.
Here, “volume median particle size (D50)” means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% when calculated from the smaller particle size. The measuring method is as described later.
<BET比表面積>
 チタン酸リチウム粒子の窒素吸着法によるBET比表面積(以下、単に「比表面積」ともいう)は、レート特性を良くする観点から、好ましくは3m2/g以上であり、より好ましくは5m2/g以上であり、更に好ましくは7m2/g以上である。また、電極を製造する過程でチタン酸リチウム粒子を溶媒に分散させてスラリーとするときの溶媒量を少なくする観点から、好ましくは100m2/g以下であり、より好ましくは20m2/g以下であり、更に好ましくは10m2/g以下である。したがって、BRT比表面積の数値範囲は、好ましくは3~100m2/gであり、より好ましくは5~20m2/gであり、更に好ましくは7~10m2/gである。
<BET specific surface area>
The BET specific surface area (hereinafter also simply referred to as “specific surface area”) of lithium titanate particles by the nitrogen adsorption method is preferably 3 m 2 / g or more, more preferably 5 m 2 / g, from the viewpoint of improving rate characteristics. Or more, more preferably 7 m 2 / g or more. Also, from the viewpoint of reducing the amount of solvent when the lithium titanate particles are dispersed in a solvent in the process of producing an electrode to make a slurry, it is preferably 100 m 2 / g or less, more preferably 20 m 2 / g or less. More preferably, it is 10 m 2 / g or less. Therefore, the numerical range of the BRT specific surface area is preferably 3 to 100 m 2 / g, more preferably 5 to 20 m 2 / g, and further preferably 7 to 10 m 2 / g.
<嵩密度及びタップ密度>
 容量を大きくする観点から、チタン酸リチウム粒子の嵩密度及びタップ密度は大きいことが好ましい。
 嵩密度は、好ましくは0.1g/ml以上であり、より好ましくは0.2g/ml以上であり、更に好ましくは0.3g/ml以上であり、より更に好ましくは0.4g/ml以上である。
 タップ密度は、好ましくは0.5g/ml以上であり、より好ましくは0.6g/ml以上であり、より更に好ましくは0.7g/ml以上であり、より更に好ましくは0.8g/ml以上であり、より更に好ましくは1g/ml以上である。
<Bulk density and tap density>
From the viewpoint of increasing the capacity, the bulk density and tap density of the lithium titanate particles are preferably large.
The bulk density is preferably 0.1 g / ml or more, more preferably 0.2 g / ml or more, still more preferably 0.3 g / ml or more, still more preferably 0.4 g / ml or more. is there.
The tap density is preferably 0.5 g / ml or more, more preferably 0.6 g / ml or more, still more preferably 0.7 g / ml or more, and even more preferably 0.8 g / ml or more. And more preferably 1 g / ml or more.
<pH>
 上記チタン酸リチウム粒子のpHは、好ましくは10~12である。10以上であると分散性が良いという利点があり、12以下であると電極スラリーを作製する際にスラリーがゲル化を起こしスラリー化できないという問題が発生しないという利点がある。この観点から、より好ましくは10.5~12であり、更に好ましくは10.5~11.8であり、より更に好ましくは11~11.8である。
 ここで、チタン酸リチウム粒子のpHとは、チタン酸リチウム粒子10gを90gの水に分散した時の分散液のpHを意味する。
<PH>
The pH of the lithium titanate particles is preferably 10-12. When it is 10 or more, there is an advantage that the dispersibility is good, and when it is 12 or less, there is an advantage that when the electrode slurry is produced, the slurry is gelled and cannot be slurried. From this viewpoint, it is more preferably 10.5 to 12, still more preferably 10.5 to 11.8, and still more preferably 11 to 11.8.
Here, the pH of the lithium titanate particles means the pH of the dispersion when 10 g of lithium titanate particles are dispersed in 90 g of water.
[チタン酸リチウム粒子の製造方法]
 上記チタン酸リチウム粒子は、原料を混合・微細化し、焼成した後、解砕等の後処理を行うことにより得ることができる。
<原料>
 Ti成分としては、アナターゼ型二酸化チタン、ルチル型二酸化チタン等のチタン化合物の1種又は2種以上が用いられる。このTi成分の体積中位粒径(D50)は、好ましくは0.2~5μmである。0.2μm以上であると、凝集することが抑制され、焼成後のチタン酸リチウム粒子の粒径が小さいものとなる。5μm以下であると、Ti成分の粒径が小さいため、焼成後のチタン酸リチウム粒子の粒径も小さいものとなる。
 Li成分としては、水酸化リチウム一水和物、酸化リチウム、炭酸水素リチウム、炭酸リチウム等のリチウム化合物が用いられる。このLi成分は、焼成時に融解する。
 Al、Cr、Fe、Ni、及びZrとしては、これらの金属や合金の他、酸化物、水酸化物、炭酸塩等の金属塩が用いられる。
[Method for producing lithium titanate particles]
The lithium titanate particles can be obtained by mixing and refining the raw materials, firing, and then performing post-treatment such as crushing.
<Raw material>
As the Ti component, one or more of titanium compounds such as anatase type titanium dioxide and rutile type titanium dioxide are used. The volume median particle size (D50) of this Ti component is preferably 0.2 to 5 μm. When it is 0.2 μm or more, aggregation is suppressed, and the particle diameter of the lithium titanate particles after firing becomes small. If the particle size is 5 μm or less, the particle size of the Ti titanate particles after firing is small because the particle size of the Ti component is small.
As the Li component, lithium compounds such as lithium hydroxide monohydrate, lithium oxide, lithium hydrogen carbonate, and lithium carbonate are used. This Li component melts during firing.
As Al, Cr, Fe, Ni, and Zr, in addition to these metals and alloys, metal salts such as oxides, hydroxides, and carbonates are used.
<混合・微細化>
 混合・微細化は常法により行うことができ、湿式及び乾式のいずれを行ってもよい。混合を効率よく得る為の装置としては、特に限定されないが、例えば、撹拌羽を有する撹拌装置、超音波分散装置、ホモミキサー、乳鉢、ボールミル、遠心式ボールミル、遊星ボールミル、振動ボールミル、アトライター式の高速ボールミル、ビーズミル、ロールミル等のせん断力、衝撃力を発生させる装置を用いることが出来る。例えば、上記原料の所定量を水と混合させたスラリーを混合層内で撹拌混合した後、ボールミルやビーズミルで混合・微細化することができる。ミルに充填するボールの材質に特に制限はなく、例えば、鉄、ステンレス、ジルコニア、チタニア、炭化ケイ素等が挙げられる。
 また、得られる混合物は、その固形分濃度が10質量%以上であることが好ましい。固形分濃度が10質量%以上であると、乾燥する際の負荷が小さくなり、チタン酸リチウムの生産効率が向上する。
 このようにして混合・微細化した後、必要に応じて乾燥してから、次の焼成を実施する。
<Mixing / miniaturization>
Mixing / miniaturization can be performed by a conventional method, and either wet or dry process may be performed. The device for efficiently obtaining the mixing is not particularly limited, but for example, a stirring device having stirring blades, an ultrasonic dispersion device, a homomixer, a mortar, a ball mill, a centrifugal ball mill, a planetary ball mill, a vibrating ball mill, an attritor type A high-speed ball mill, bead mill, roll mill, or other device that generates shearing force or impact force can be used. For example, a slurry in which a predetermined amount of the above raw material is mixed with water is stirred and mixed in a mixed layer, and then mixed and refined by a ball mill or a bead mill. There is no restriction | limiting in particular in the material of the ball | bowl with which a mill is filled, For example, iron, stainless steel, zirconia, titania, silicon carbide etc. are mentioned.
Moreover, it is preferable that the solid content concentration of the obtained mixture is 10 mass% or more. When the solid content concentration is 10% by mass or more, the load during drying is reduced, and the production efficiency of lithium titanate is improved.
After mixing and miniaturization in this way, the next firing is performed after drying as necessary.
<焼成>
 次いで、上記混合物を焼成する。焼成により得られる粒子の粒径を小さくする観点からは、低温かつ短時間で焼成することが好ましい。一方、上記一般式(1)で表される化合物をより多く生成する観点からは、高温かつ長時間で焼成することが好ましい。これらの観点から、焼成温度は、好ましくは600~1000℃であり、より好ましくは650~900℃であり、更に好ましくは700~900℃である。同様に上記観点から、焼成時間は、好ましくは10~120分であり、より好ましくは15~120分であり、更に好ましくは20~120分であり、より更に好ましくは30~120分である。
 上記のような条件で焼成できれば、焼成法は特に限定されるものではない。利用できる焼成方法としては、固定床式焼成炉、ローラーハース式焼成炉、メッシュベルト式焼成炉、流動床式、ロータリーキルン式焼成炉が考えられる。ただし、短時間で効率的な焼成をする場合は、ロータリーキルン式焼成炉、ローラーハース式焼成炉、メッシュベルト式焼成炉が好ましい。特に、ロータリーキルン式焼成炉は、原料を入れる容器が不要で、連続的に原料を投入することで焼成が出来、加えて、焼成物への熱履歴が均一であるので、均質の製品を得ることが出来る。その中でも、回転円筒内に撹拌翼を供えたタイプのロータリーキルンは、回転円筒体が回転することにより撹拌翼が回転し、原料を掻き上げ、流動、浮遊させることを特徴としているので、本発明のチタン酸リチウムを合成するには特に好ましい。また、原料として、乾式で混合した原料も利用できるが、原料粉末を所定量の水と混合し、ビーズミルなどのメディアを用いて微細化しながら混合する湿式法で調製されたスラリーをそのまま投入することも可能であることから考えると、ロータリーキルン式焼成法は、本発明のチタン酸リチウムを製造するのに特に好ましい。
 焼成時の雰囲気は、脱離した水分や炭酸ガスが排除できれば、特に限定するものではない。通常は、圧縮空気を用いることで本発明のチタン酸リチウム粒子は合成できるが、酸素、窒素、水素などを用いても構わない。
 次に、回転円筒体を用いた焼成について、より詳細に説明する。
<Baking>
Next, the mixture is fired. From the viewpoint of reducing the particle size of the particles obtained by firing, firing at a low temperature and in a short time is preferable. On the other hand, from the viewpoint of generating a larger amount of the compound represented by the general formula (1), it is preferable to perform baking at a high temperature for a long time. From these viewpoints, the firing temperature is preferably 600 to 1000 ° C., more preferably 650 to 900 ° C., and further preferably 700 to 900 ° C. Similarly, from the above viewpoint, the firing time is preferably 10 to 120 minutes, more preferably 15 to 120 minutes, still more preferably 20 to 120 minutes, and still more preferably 30 to 120 minutes.
The firing method is not particularly limited as long as it can be fired under the above conditions. As a firing method that can be used, a fixed bed type firing furnace, a roller hearth type firing furnace, a mesh belt type firing furnace, a fluidized bed type, or a rotary kiln type firing furnace can be considered. However, when efficient baking is performed in a short time, a rotary kiln type baking furnace, a roller hearth type baking furnace, or a mesh belt type baking furnace is preferable. In particular, rotary kiln-type firing furnaces do not require containers for raw materials, can be fired by continuously charging raw materials, and in addition, the heat history of the fired product is uniform, so a homogeneous product can be obtained. I can do it. Among them, the rotary kiln of the type provided with a stirring blade in the rotating cylinder is characterized in that the stirring blade rotates by rotating the rotating cylinder, and the raw material is scraped, fluidized, and floated. It is particularly preferable for synthesizing lithium titanate. In addition, raw materials mixed in a dry process can be used as raw materials. However, slurry prepared by a wet method in which raw material powder is mixed with a predetermined amount of water and mixed while being refined using a media such as a bead mill, is added as it is. Therefore, the rotary kiln-type firing method is particularly preferable for producing the lithium titanate of the present invention.
The atmosphere during firing is not particularly limited as long as the desorbed moisture and carbon dioxide gas can be removed. Usually, the lithium titanate particles of the present invention can be synthesized by using compressed air, but oxygen, nitrogen, hydrogen or the like may be used.
Next, firing using a rotating cylinder will be described in more detail.
(回転円筒体を用いた焼成)
〔回転円筒体の詳細〕
 上記の回転円筒体内に撹拌翼を供えたタイプのロータリーキルンを用いる場合、撹拌翼は、複数個の翼片を放射状に等間隔に有し、当該翼片のうち少なくとも1個の先端が円筒体内面に接触しており、円筒体の回転によって撹拌翼も回転することが好ましい。撹拌翼が回転することにより、円筒体内の混合物は上記撹拌翼の翼片により撹拌及び掻き揚げられ、混合物の円筒体内面への付着成長が抑制され、混合物と回転円筒体内のガスとの接触及び加熱伝達が良好に保たれる。
(Baking using a rotating cylinder)
[Details of rotating cylinder]
In the case of using a rotary kiln of the type provided with a stirring blade in the rotating cylinder, the stirring blade has a plurality of blade pieces radially at equal intervals, and at least one tip of the blade pieces is the inner surface of the cylinder. It is preferable that the stirring blades are also rotated by the rotation of the cylindrical body. By rotating the stirring blade, the mixture in the cylindrical body is stirred and lifted by the blades of the stirring blade, the adhesion growth of the mixture on the inner surface of the cylindrical body is suppressed, and the contact between the mixture and the gas in the rotating cylindrical body and Heat transfer is kept good.
 回転円筒体は、水平面に対して傾斜していることが好ましい。これにより、円筒体内の混合物は、原料供給側から回収側へ順次送られ、その間に乾燥及び焼成が行われる。ここで、「原料供給側」及び「回収側」とは、それぞれ、傾斜した回転円筒体の軸方向における上位側及び下位側をいう。
 水平面に対する傾斜角度は、1~10度であることが好ましい。傾斜角度が下限値以上であると、生成物の排出が容易となり、定常的な回収ができる。傾斜角度が上限値以下であると、回転円筒体内における原料等の滞留時間が短くなり過ぎることが防止され、混合物の乾燥、焼成が十分に行われる。この観点から、傾斜角度は、より好ましくは1~5度である。
 回転円筒体の回転速度は、5~40rpmが好ましい。下限値以上であると、混合物の滞留時間が短くなり過ぎることが防止され、乾燥が十分となると共に、回転円筒体内面への混合物の付着が防止又は抑制される。上限値以下であると、回転速度が速くなり過ぎて撹拌効果が低減することが防止され、撹拌効果が十分なものとなる。この観点から、回転速度は、より好ましくは5~20rpmであり、更に好ましくは5~15rpmである。
The rotating cylinder is preferably inclined with respect to the horizontal plane. Thereby, the mixture in the cylindrical body is sequentially sent from the raw material supply side to the recovery side, and during that time, drying and baking are performed. Here, the “raw material supply side” and the “recovery side” refer to the upper side and the lower side in the axial direction of the inclined rotating cylindrical body, respectively.
The inclination angle with respect to the horizontal plane is preferably 1 to 10 degrees. When the tilt angle is equal to or greater than the lower limit, the product can be easily discharged and can be recovered constantly. When the tilt angle is less than or equal to the upper limit value, the residence time of the raw materials in the rotating cylinder is prevented from becoming too short, and the mixture is sufficiently dried and fired. From this viewpoint, the inclination angle is more preferably 1 to 5 degrees.
The rotation speed of the rotating cylinder is preferably 5 to 40 rpm. When it is at least the lower limit value, the residence time of the mixture is prevented from becoming too short, drying becomes sufficient, and adhesion of the mixture to the inner surface of the rotating cylinder is prevented or suppressed. If it is less than or equal to the upper limit value, the rotational speed becomes too fast and the stirring effect is prevented from being reduced, and the stirring effect becomes sufficient. From this viewpoint, the rotation speed is more preferably 5 to 20 rpm, and further preferably 5 to 15 rpm.
 撹拌翼の翼片及び回転円筒体の材質は、特に限定されないが、オーステナイト系耐熱鋼を用いることが好ましい。
 この回転円筒体は、内部の温度を所定の温度に制御できるものであることが好ましい。加熱方法は、回転円筒体の外部の加熱源及び内部の加熱源いずれを用いてもよいが、焼成雰囲気を制御する観点から、外部の加熱源が好ましい。
The material of the blades of the stirring blade and the rotating cylinder is not particularly limited, but it is preferable to use austenitic heat resistant steel.
The rotating cylinder is preferably one that can control the internal temperature to a predetermined temperature. As the heating method, either an external heating source or an internal heating source of the rotating cylindrical body may be used, but an external heating source is preferable from the viewpoint of controlling the firing atmosphere.
〔焼成〕
 この回転円筒体を用いて上記混合物を焼成する場合、先ず、当該混合物を回転円筒体の原料供給側に供給する。混合物は、スラリー状態及び乾燥状態のいずれの状態で供給してもよいが、スラリー状態で直接供給することが好ましい。供給に際して、混合物を回転円筒体に定量的に供給する原料供給手段を用いてもよい。混合物の流動性が低い場合、スクリューを用いて供給してもよい。
 供給された混合物がスラリー状態である場合、この混合物は加熱された回転円筒体内の撹拌翼によって液滴状に掻き揚げられ、流動、浮遊しながら、回転円筒体表面及びガス中で急速に乾燥固化及び脱水分解される。
[Baking]
When the mixture is fired using the rotating cylinder, first, the mixture is supplied to the raw material supply side of the rotating cylinder. The mixture may be supplied in either a slurry state or a dry state, but is preferably supplied directly in a slurry state. When supplying, a raw material supply means for quantitatively supplying the mixture to the rotating cylindrical body may be used. When the fluidity of the mixture is low, it may be supplied using a screw.
When the supplied mixture is in a slurry state, this mixture is swept into droplets by a stirring blade in a heated rotating cylinder, and rapidly dried and solidified on the surface of the rotating cylinder and gas while flowing and floating. And dehydrated.
 この乾燥固化された混合物は、回転円筒内で加熱され、撹拌され、掻き揚げられながら、焼成される。同様に、乾燥状態で回転円筒内に供給された混合物も、回転円筒内で加熱され、撹拌され、掻き揚げられながら、焼成される。このようにして得られた焼成物は、回転円筒の回収側から回収される。
 この混合物を乾燥及び焼成する工程において、撹拌翼を用いることにより、回転円筒体内面への混合物の付着が防止又は抑制され、混合物が均一に複合化され、加熱時間が短縮化される等の効果が奏される。
This dried and solidified mixture is heated in a rotating cylinder, stirred and baked while being swirled. Similarly, the mixture supplied in the rotating cylinder in a dry state is also heated in the rotating cylinder, stirred, and baked while being swirled. The fired product thus obtained is recovered from the recovery side of the rotating cylinder.
In the process of drying and firing the mixture, the use of a stirring blade prevents or suppresses the mixture from adhering to the inner surface of the rotating cylindrical body, uniformly mixes the mixture, and shortens the heating time. Is played.
 回転円筒体内の加熱温度は、回転円筒体以外の炉を用いた場合と同様である。
 一方、回転円筒体を用いた場合の焼成時間は、回転円筒体以外の炉を用いた場合よりも短縮することができ、好ましくは10~90分である。下限値以上であると、混合物の焼成を十分に行うことができ、上限値以下であると運転コストを低減することができる。この観点から、焼成時間は、より好ましくは15~60分であり、更に好ましくは20~40分であり、より更に好ましくは20~30分である。
The heating temperature in the rotating cylinder is the same as that when a furnace other than the rotating cylinder is used.
On the other hand, the firing time in the case of using the rotating cylinder can be shortened compared to the case of using a furnace other than the rotating cylinder, and is preferably 10 to 90 minutes. When it is at least the lower limit, the mixture can be sufficiently fired, and when it is at most the upper limit, the operating cost can be reduced. From this viewpoint, the firing time is more preferably 15 to 60 minutes, further preferably 20 to 40 minutes, and still more preferably 20 to 30 minutes.
<後処理>
 焼成後の粒子の塊状物に対して、常法により解砕、分級、磁選等の処理を施すことにより、上記のチタン酸リチウム粒子を得ることができる。
<Post-processing>
The above-mentioned lithium titanate particles can be obtained by subjecting the lump of the particles after firing to treatments such as crushing, classification, and magnetic separation by a conventional method.
[活物質材料]
 本発明の活物質材料は、上記チタン酸リチウム粒子を含むものである。上記チタン酸リチウム粒子以外の物質を1種又は2種以上含んでいてもよい。他の物質としては、例えば、炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛等)、有機高分子化合物燃焼体、炭素繊維〕、スズやスズ化合物、ケイ素やケイ素化合物が使用される。
[Active material]
The active material of the present invention contains the lithium titanate particles. One or more substances other than the lithium titanate particles may be included. Examples of other substances include carbon materials (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers), tin and tin compounds, silicon and silicon compounds. Is used.
[蓄電デバイス]
 リチウム二次電池等の蓄電デバイスは、正極、負極、電解質等により構成されている。上記活物質材料は、これら正極や負極の活物質材料として好適に用いることができる。
 次に、これら蓄電デバイスの構成要素について、電解質、上記活物質材料を正極活物質材料として用いた場合の負極活物質材料、及び、上記活物質材料を負極活物質材料として用いた場合の正極活物質材料、の順に説明する。
[Power storage device]
An electricity storage device such as a lithium secondary battery includes a positive electrode, a negative electrode, an electrolyte, and the like. The above active material can be suitably used as an active material for these positive electrode and negative electrode.
Next, regarding the constituent elements of these power storage devices, an electrolyte, a negative electrode active material when the active material is used as a positive electrode active material, and a positive electrode active when the active material is used as a negative electrode active material. Material materials will be described in this order.
<電解質>
 上記電解質の形態としては、電解質溶液の形態の他に、ゲル状電解質及び固体電解質の形態がある。これらについて順に説明する。
(電解質溶液)
 電解質溶液は、イオン導電性を発現する溶質を溶媒に溶解してなるものである。
〔溶質〕
 溶質は、イオン導電性を発現させるものであれば特に制限はなく、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23等が挙げられる。
〔溶媒〕
 溶媒は、溶質を溶解、保持し、かつ電池の充放電時又は保存時において分解しないものであれば特に制限はなく、有機溶媒が好適に用いられる。有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の環状カーボネート;ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)等の環状エーテル;ジメトキシエタン(DME)等の鎖状エーテル;γ―ブチロラクトン(BL);アセトニトリル(AN);スルホラン(SL);1,3-プロパンスルトン、1,3-プロペンスルトン等のスルトン類が挙げられる。これらの有機溶媒は、単独で又は2種以上の混合物で用いることができる。
(ゲル状電解質及び固体電解質)
 ゲル状電解質としては、ポリエチレンオキシド、ポリアクリロニトリル等のポリマー電解質に電解液を含浸したゲル状ポリマー電解質を好適に用いることができる。
 固体電解質としては、LiI等の無機固体電解質を好適に用いることができる。
<Electrolyte>
As the form of the electrolyte, there are a gel electrolyte and a solid electrolyte in addition to the electrolyte solution. These will be described in order.
(Electrolyte solution)
The electrolyte solution is obtained by dissolving a solute that exhibits ionic conductivity in a solvent.
[Solute]
The solute is not particularly limited as long as it exhibits ionic conductivity, and LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like. Is mentioned.
〔solvent〕
The solvent is not particularly limited as long as it dissolves and retains a solute and does not decompose during charge / discharge or storage of the battery, and an organic solvent is preferably used. Examples of organic solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC); chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC). Cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF); chain ethers such as dimethoxyethane (DME); γ-butyrolactone (BL); acetonitrile (AN); sulfolane (SL); 1,3-propane And sultone such as sultone and 1,3-propene sultone. These organic solvents can be used alone or in a mixture of two or more.
(Gel electrolyte and solid electrolyte)
As the gel electrolyte, a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution can be preferably used.
As the solid electrolyte, an inorganic solid electrolyte such as LiI can be suitably used.
<上記活物質材料を正極活物質材料として用いた場合の負極活物質材料>
 本発明の活物質材料を正極活物質材料として用いる場合、負極活物質材料としては、Li金属、Li/Al合金、Li/In合金、Li/Al/Mn合金等のLi合金などを好適に用いることができる。
<Negative electrode active material when the above active material is used as a positive electrode active material>
When the active material of the present invention is used as a positive electrode active material, a Li metal such as Li metal, Li / Al alloy, Li / In alloy, Li / Al / Mn alloy, or the like is preferably used as the negative electrode active material. be able to.
<上記活物質材料を負極活物質材料として用いた場合の正極活物質材料>
 一方、本発明の活物質材料を負極活物質材料として用いる場合、正極活物質材料としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiCo0.5Ni0.52、LiCo1/3Ni1/3Mn1/32、LiNi0.7Co0.2Mn0.12、LiCo0.9Ti0.12、LiCo0.5Ni0.4Zr0.12、LiFePO4、LiFe1-xCoxPO4、LiMnPO4、LiVPO4等のリチウム含有遷移金属複合酸化物;黒鉛、コークス、活性炭等の炭素材料を用いることができる。尚、正極活物質材料としてリチウム含有遷移金属複合酸化物を用いた場合は、高負荷特性が要求されるリチウムイオン二次電池に、炭素材料を用いた場合は高負荷特性が要求される電気化学キャパシタに好適に用いることができる。
<Positive electrode active material when the above active material is used as a negative electrode active material>
On the other hand, when the active material of the present invention is used as the negative electrode active material, examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , LiCo 0.9 Ti 0.1 O 2 , LiCo 0.5 Ni 0.4 Zr 0.1 O 2 , LiFePO 4 , LiFe 1-x Co x PO 4 , LiMnPO 4 , Lithium-containing transition metal composite oxides such as LiVPO 4 ; carbon materials such as graphite, coke, and activated carbon can be used. When a lithium-containing transition metal composite oxide is used as the positive electrode active material, a lithium ion secondary battery that requires high load characteristics is used. When a carbon material is used, an electrochemical that requires high load characteristics is used. It can be suitably used for a capacitor.
<蓄電デバイスの構造>
 蓄電デバイスの構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池等が一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布、グラスフィルター、紙(セルロース)等が使用される。
<Structure of power storage device>
The structure of the electricity storage device is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery and a square battery having a positive electrode, a negative electrode, and a roll separator, etc. Is given as an example. As the separator, a known polyolefin microporous film, woven fabric, non-woven fabric, glass filter, paper (cellulose) or the like is used.
 また、セパレータは単層多孔質フィルム及び積層多孔質フィルムのいずれの構成であってもよい。セパレータは、製造条件によっても異なるが、透気度が50~1000秒/100ccが好ましく、100~800秒/100ccがより好ましく、300~500秒/100ccがより更に好ましい。透気度が上限値以下であると、イオン伝導性が高いためにセパレータとしての機能が十分に発揮され、下限値以上であると機械的強度が向上する。
 また、セパレータの空孔率は30~60%が好ましく、35~55%がより好ましく、40~50%がより更に好ましい。特に空孔率をこの範囲とすると、電池の容量特性が向上するので好ましい。
 さらに、セパレータの厚みはできるだけ薄い方がエネルギー密度を高くできるため好ましいが、機械的強度、性能等の両面から5~50μmが好ましく、10~40μmがより好ましく、15~25μmがより更に好ましい。
Further, the separator may have any structure of a single layer porous film and a laminated porous film. Although the separator varies depending on the production conditions, the air permeability is preferably 50 to 1000 seconds / 100 cc, more preferably 100 to 800 seconds / 100 cc, and even more preferably 300 to 500 seconds / 100 cc. When the air permeability is less than or equal to the upper limit, the function as a separator is sufficiently exhibited because of high ionic conductivity, and when the air permeability is greater than or equal to the lower limit, the mechanical strength is improved.
Further, the porosity of the separator is preferably 30 to 60%, more preferably 35 to 55%, and still more preferably 40 to 50%. In particular, it is preferable to set the porosity within this range because the capacity characteristics of the battery are improved.
Furthermore, the thickness of the separator is preferably as thin as possible because the energy density can be increased. However, it is preferably 5 to 50 μm, more preferably 10 to 40 μm, and still more preferably 15 to 25 μm from both aspects of mechanical strength and performance.
 次に、実施例および比較例を挙げてより具体的に説明するが、本発明は以下の実施例に限定されるものではなく、発明の趣旨から容易に類推可能な様々な組み合わせを包含する。特に、実施例の溶媒の組み合わせに限定されるものではない。
[各種測定方法]
Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples, and includes various combinations that can be easily inferred from the gist of the invention. In particular, it is not limited to the solvent combinations of the examples.
[Various measurement methods]
(1)XRD
 CuKα線を用いたX線回折法により、一般式(1)で表される金属置換チタン酸リチウムのメインピーク強度(回折角2θ=18.1~18.5°の範囲内のピーク強度)、ルチル型二酸化チタンのメインピーク強度(回折角2θ=27.2~27.6°の範囲内のピーク強度)、アナターゼ型二酸化チタンのメインピーク強度(回折角2θ=24.7~25.7°の範囲内のピーク強度)、及び金属置換Li2TiO3(Tiサイトに他の金属Mが置換)のメインピーク強度(回折角2θ=18.2~18.7°の範囲内のピーク強度)を測定した。
 そして、一般式(1)で表される金属置換チタン酸リチウムのメインピーク強度を100としたときの、上記のルチル型二酸化チタン、アナターゼ型二酸化チタン、及び金属置換Li2TiO3のメインピーク強度の相対値を算出した。
(2)体積中位粒径(D50)
 測定装置としてレーザ回折・散乱型粒度分布測定機(日機装株式会社、マイクロトラックMT3300EXII)を用いた。50mlのイオン交換水に、約50mgの試料を入れ、更に界面活性剤である0.2%ヘキサメタリン酸ナトリウム水溶液をスポイドで3滴入れ、これを超音波分散機で処理した。得られた溶液を測定セルに入れ、蒸留水を加え、装置の透過率が適正範囲になったところで体積中位粒径(D50)を測定した。
(3)BET比表面積(m3/g)
 株式会社マウンテック製、全自動BET比表面積測定装置、商品名「Macsorb HM model-1208」を使用し、液体窒素を用いて一点法でBET比表面積を測定した。
(1) XRD
The main peak intensity of the metal-substituted lithium titanate represented by the general formula (1) (diffraction angle 2θ = 18.1 to 18.5 ° in the range of peak intensity) by X-ray diffraction using CuKα rays, Main peak intensity of rutile titanium dioxide (diffraction angle 2θ = 27.0 to 27.6 °), main peak intensity of anatase titanium dioxide (diffraction angle 2θ = 24.7 to 25.7 °) And the main peak intensity of the metal-substituted Li 2 TiO 3 (with other metal M substituted at the Ti site) (peak intensity within the range of diffraction angle 2θ = 18.2 to 18.7 °) Was measured.
Then, the general formula (1) of the metal-substituted lithium titanate represented by the time of the main peak intensity is 100, the above-mentioned rutile titanium dioxide, anatase titanium dioxide, and the main peak intensity of the metal-substituted Li 2 TiO 3 The relative value of was calculated.
(2) Volume-median particle size (D50)
As a measuring device, a laser diffraction / scattering particle size distribution measuring machine (Nikkiso Co., Ltd., Microtrack MT3300EXII) was used. About 50 mg of a sample was placed in 50 ml of ion-exchanged water, and 3 drops of 0.2% sodium hexametaphosphate aqueous solution as a surfactant was added with a dropper, and this was treated with an ultrasonic disperser. The obtained solution was put into a measurement cell, distilled water was added, and the volume median particle diameter (D50) was measured when the transmittance of the apparatus was within an appropriate range.
(3) BET specific surface area (m 3 / g)
The BET specific surface area was measured by a one-point method using liquid nitrogen using a fully automatic BET specific surface area measuring device manufactured by Mountec Co., Ltd., trade name “Macsorb HM model-1208”.
(4)嵩密度(g/ml)
 10mlのメスシリンダーに、10mlのメモリまで試料を入れ、その時の試料重量を測定し、メスシリンダーの容積で除した値を嵩密度とした。
(5)タップ密度(g/ml)
 嵩密度測定を行った10mlのメスシリンダーを、粉体密度測定器(ホソカワミクロン株式会社製パウダーテスター PT-E)を用いて300回タッピングして、その時の体積と試料の重量から密度を算出した。
(6)pH
 チタン酸リチウム粒子10gを90gの水に分散した時の分散液のpHを測定した。
(4) Bulk density (g / ml)
A sample was placed in a 10 ml graduated cylinder up to a 10 ml memory, the sample weight at that time was measured, and the value divided by the volume of the graduated cylinder was taken as the bulk density.
(5) Tap density (g / ml)
A 10-ml graduated cylinder subjected to bulk density measurement was tapped 300 times using a powder density measuring device (Powder Tester PT-E manufactured by Hosokawa Micron Corporation), and the density was calculated from the volume at that time and the weight of the sample.
(6) pH
The pH of the dispersion when 10 g of lithium titanate particles were dispersed in 90 g of water was measured.
(7)充電レート特性
 室温(25℃)において、コイン電池に対して、1.0V、及び所定のCレート(充電レート)Yにて所定時間の定電流充電を行い、充電容量BYを測定した。
(8)充電容量維持率
 各CレートYにおける充電容量維持率CYを、以下の計算式により算出した。
   充電容量維持率CY=BY/B0.1
(7) Charging rate characteristics At room temperature (25 ° C.), the coin battery is subjected to constant current charging for a predetermined time at 1.0 V and a predetermined C rate (charging rate) Y, and the charging capacity BY is measured. did.
(8) the charging capacity retention ratio C Y at each C-rate Y charge capacity maintenance rate was calculated by the following equation.
Charging capacity maintenance rate C Y = B Y / B 0.1
[原料]
 チタン酸リチウム粒子の原料として、以下を用いた。
(二酸化チタン)
 Ti-1:アナターゼ型二酸化チタン(株式会社高純度化学研究所製 2N、D50=0.5μm)
 Ti-2:ルチル型二酸化チタン(株式会社高純度化学研究所製 4N、D50=0.5μm、Al23含有量1.7wt%)
 Ti-3:アナターゼ型二酸化チタン(堺化学株式会社製 グレード名:SA-1、D50=0.46μm)
(炭酸リチウム)
 Li-1:株式会社高純度化学研究所製「商品名:無水炭酸リチウム 4N」
(Al)
 Al-1:株式会社高純度化学研究所製「商品名:α―アルミナ 4N」
(Cr)
 Cr-1:株式会社高純度化学研究所製「商品名:酸化クロム(III) 3N」
(Fe)
 Fe-1:株式会社高純度化学研究所製「商品名:酸化第二鉄 4N」
(Ni)
 Ni-1:株式会社高純度化学研究所製「商品名:一酸化ニッケル 3N」
(Zr)
 Zr-1:株式会社高純度化学研究所製「商品名:酸化ジルコニウム 98%」
[material]
The following were used as raw materials for the lithium titanate particles.
(titanium dioxide)
Ti-1: anatase type titanium dioxide (manufactured by Kojundo Chemical Laboratory Co., Ltd. 2N, D50 = 0.5 μm)
Ti-2: Rutile type titanium dioxide (4N, D50 = 0.5 μm, Al 2 O 3 content 1.7 wt%, manufactured by Kojundo Chemical Laboratory Co., Ltd.)
Ti-3: Anatase type titanium dioxide (manufactured by Sakai Chemical Co., Ltd. Grade name: SA-1, D50 = 0.46 μm)
(Lithium carbonate)
Li-1: “Product name: Anhydrous lithium carbonate 4N” manufactured by Kojundo Chemical Laboratory
(Al)
Al-1: “Purchased product: α-alumina 4N” manufactured by Kojundo Chemical Laboratory Co., Ltd.
(Cr)
Cr-1: “Product name: Chromium (III) oxide 3N” manufactured by High Purity Chemical Research Co., Ltd.
(Fe)
Fe-1: “Product name: Ferric oxide 4N” manufactured by High Purity Chemical Research Co., Ltd.
(Ni)
Ni-1: “Product name: Nickel monoxide 3N” manufactured by High Purity Chemical Laboratory Co., Ltd.
(Zr)
Zr-1: “Product name: Zirconium oxide 98%” manufactured by Kojundo Chemical Laboratory Co., Ltd.
[実施例1]
<チタン酸リチウム粒子の製造・測定>
 第1表に示す配合量の原料及び水を乳鉢に入れ、乳棒にて混合・微細化してスラリーとした。このスラリーをロータリーエバポレーターで脱水し、その後乾燥器で105℃-12時間乾燥した。この乾燥粉末を電気炉に入れ、焼成温度900℃、焼成時間120分にて焼成した。その後、焼成物を回収し、乳鉢及び乳棒で解砕した後、篩(目の粗さ:25μm)分けし、篩を通過したものを収集してチタン酸リチウム粒子を得た。このチタン酸リチウム粒子について、XRD、D50(μm)、BET比表面積(m3/g)、嵩密度(g/ml)、タップ密度(g/ml)及びpHを測定した。その結果を第1表に示す。
 また、原料の総てが一般式(1)で表される金属置換チタン酸リチウムになるものとして、原料の含有量から一般式(1)中のx及びyの値を算出した。その結果も第1表に示す。
[Example 1]
<Production and measurement of lithium titanate particles>
The raw materials and water in the blending amounts shown in Table 1 were put in a mortar and mixed and refined with a pestle to obtain a slurry. This slurry was dehydrated with a rotary evaporator and then dried with a dryer at 105 ° C. for 12 hours. This dry powder was put into an electric furnace and fired at a firing temperature of 900 ° C. and a firing time of 120 minutes. Thereafter, the fired product was collected and crushed with a mortar and pestle, and then sieved (mesh roughness: 25 μm), and the particles passed through the sieve were collected to obtain lithium titanate particles. The lithium titanate particles were measured for XRD, D50 (μm), BET specific surface area (m 3 / g), bulk density (g / ml), tap density (g / ml), and pH. The results are shown in Table 1.
Moreover, the value of x and y in General formula (1) was computed from content of a raw material supposing that all the raw materials became a metal substituted lithium titanate represented by General formula (1). The results are also shown in Table 1.
<電池の製造・測定>
 得られたチタン酸リチウム粒子を正極活物質材料として用いて、正極板を作製した。すなわち、この正極活物質材料、アセチレンブラック(電気化学工業株式会社製「商品名:デンカブラック」)及びポリフッ化ビニリデン(PVDF)(クレハ株式会社製「商品名:KFポリマー」)を90:5:5の質量比となるように秤量し、これらをN-メチルピロリドンを溶媒としてニーダーで混練し、電極スラリーを作製した。アルミ基材にこの電極スラリーを塗布乾燥後、14mmΦに打ち抜き、さらにプレス処理した後120℃で真空乾燥を行って、正極板を作製した。
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)の比が1:2の溶媒に、LiPF6を1mol/Lの濃度で溶解して、電解液を調製した。
 グラスフィルター(ワットマン製 GA-100とGF/Cの2枚重ね)からなるセパレーターを介して、上記正極板とLi金属からなる負極板とを積層し、この積層体に上記電解液を含浸させた後、ステンレス製の外装材で封止することによって、コイン型電池(直径20mm,厚さ3.2mm)を作製した。
<Manufacture and measurement of batteries>
A positive electrode plate was produced using the obtained lithium titanate particles as a positive electrode active material. That is, this positive electrode active material, acetylene black (“trade name: DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) and polyvinylidene fluoride (PVDF) (“trade name: KF polymer” manufactured by Kureha Co., Ltd.) 90: 5: These were weighed to a mass ratio of 5, and kneaded with a kneader using N-methylpyrrolidone as a solvent to prepare an electrode slurry. The electrode slurry was applied to an aluminum substrate and dried, then punched out to 14 mmφ, further pressed, and then vacuum dried at 120 ° C. to prepare a positive electrode plate.
An electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent having a ratio of ethylene carbonate (EC) to dimethyl carbonate (DMC) of 1: 2.
The positive electrode plate and the negative electrode plate made of Li metal were laminated through a separator made of a glass filter (two laminates of Whatman GA-100 and GF / C), and the laminate was impregnated with the electrolytic solution. Thereafter, a coin-type battery (diameter 20 mm, thickness 3.2 mm) was produced by sealing with a stainless steel exterior material.
 測定
 この電池を用いて、電池特性(充電レート特性、充電容量維持率)を測定した。その結果を第2表、第3表、及び図1~図2に示す。
Measurement Using this battery, battery characteristics (charge rate characteristics, charge capacity retention rate) were measured. The results are shown in Tables 2 and 3, and FIGS.
[比較例1]
 原料及びその配合割合を第1表に示すとおりとすること以外は実施例1と同様の操作を行った。その結果を第1表、第2表、第3表、及び図1~図2に示す。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the raw materials and the blending ratio thereof were as shown in Table 1. The results are shown in Table 1, Table 2, Table 3, and FIGS.
[実施例2~3]
 原料及びその配合割合を第1表に示すとおりとすること以外は実施例1と同様の操作を行った。その結果を第1表、第2表、第3表、及び図1~図2に示す。
[Examples 2 to 3]
The same operation as in Example 1 was performed except that the raw materials and the blending ratio thereof were as shown in Table 1. The results are shown in Table 1, Table 2, Table 3, and FIGS.
[実施例4]
 第1表に示す配合量の原料及び水を、ビーズミルを用いて粉砕、混合して、原料となる混合物を調製した。該混合物について、傾斜角度2度、回転速度10rpmの回転円筒(炉芯管長さ:4m、炉芯管直径:30cm、撹拌翼:中心から14cm、10枚、外部加熱式)を用いて窒素20L/分を回収側から流しながら、乾燥、焼成処理を行った。円筒回転体の加熱温度は、原料供給側700℃、中央部:900℃、回収側:900℃であり、加熱部分の滞留時間は、26分であった。その後、焼成物を回収し、乳鉢及び乳棒で解砕した後、篩(目の粗さ:25μm)分けし、篩を通過したものを収集してチタン酸リチウム粒子を得た。得られた粉末の分析は、実施例1と同様の分析を行った。結果を第1表、第2表、第3表、及び図1~図2に示す。
[Example 4]
The raw materials and water in the blending amounts shown in Table 1 were pulverized and mixed using a bead mill to prepare a mixture as a raw material. About the mixture, a rotating cylinder (furnace core tube length: 4 m, furnace core tube diameter: 30 cm, stirring blade: 14 cm from the center, 10 sheets, external heating type) with a tilt angle of 2 degrees and a rotation speed of 10 rpm was used. Drying and calcination were performed while flowing the minute from the collection side. The heating temperature of the cylindrical rotating body was 700 ° C. on the raw material supply side, 900 ° C. at the center, and 900 ° C. on the recovery side, and the residence time of the heated portion was 26 minutes. Thereafter, the fired product was collected and crushed with a mortar and pestle, and then sieved (mesh roughness: 25 μm), and the particles passed through the sieve were collected to obtain lithium titanate particles. The obtained powder was analyzed in the same manner as in Example 1. The results are shown in Table 1, Table 2, Table 3, and FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[結果]
 図1~図2、第1表、第2表、及び第3表に示すとおり、Cr、Fe、及びNiがドープされた金属置換チタン酸リチウムを含有するチタン酸リチウム粒子(実施例1~4)は、これら金属を含まないチタン酸リチウム粒子(比較例1)と比べて、レート特性に優れていた。
 また、原料中にα-アルミナを含有する実施例2,3は、α-アルミナを含有しない実施例1と比べて、得られたチタン酸リチウム粒子の体積中位粒径(D50)が小さく、レート特性が更に優れていた。
[result]
As shown in FIGS. 1 to 2, Tables 1, 2 and 3, lithium titanate particles containing metal-substituted lithium titanate doped with Cr, Fe and Ni (Examples 1 to 4). ) Was excellent in rate characteristics as compared with lithium titanate particles not containing these metals (Comparative Example 1).
Further, in Examples 2 and 3 containing α-alumina in the raw material, the volume median particle size (D50) of the obtained lithium titanate particles was smaller than that in Example 1 not containing α-alumina, The rate characteristics were even better.

Claims (9)

  1.  Cr、Fe、及びNiがドープされた金属置換チタン酸リチウムを含有するチタン酸リチウム粒子。 Lithium titanate particles containing metal-substituted lithium titanate doped with Cr, Fe, and Ni.
  2.  X線回折法によって測定されるピークのうちLi4Ti512のメインピークに相当するピーク強度を100としたときに、アナターゼ型二酸化チタンのメインピーク強度が5以下であり、ルチル型二酸化チタンのメインピーク強度が5以下であり、Li2TiO3のメインピークに相当するピーク強度が3以下であり、
     体積中位粒径(D50)が0.1~1μmである請求項1に記載のチタン酸リチウム粒子。
    Of the peaks measured by the X-ray diffraction method, when the peak intensity corresponding to the main peak of Li 4 Ti 5 O 12 is 100, the main peak intensity of anatase-type titanium dioxide is 5 or less, and rutile-type titanium dioxide. And the peak intensity corresponding to the main peak of Li 2 TiO 3 is 3 or less,
    The lithium titanate particles according to claim 1, having a volume median particle size (D50) of 0.1 to 1 µm.
  3.  Tiに対するLiの原子比Li/Tiが0.79~0.87、前記Feの含有量が5~300質量ppm、前記Crの含有量が5~200質量ppm、前記Niの含有量が5~200質量ppmである請求項1又は2に記載のチタン酸リチウム粒子。 The atomic ratio Li / Ti to Ti is 0.79 to 0.87, the Fe content is 5 to 300 ppm by mass, the Cr content is 5 to 200 ppm by mass, and the Ni content is 5 to 300 ppm. The lithium titanate particles according to claim 1 or 2, wherein the content is 200 ppm by mass.
  4.  更にZrを含有する請求項1~3のいずれか1項に記載のチタン酸リチウム粒子。 The lithium titanate particles according to any one of claims 1 to 3, further comprising Zr.
  5.  更にAlを含有する請求項1~4のいずれか1項に記載のチタン酸リチウム粒子。 The lithium titanate particles according to any one of claims 1 to 4, further comprising Al.
  6.  前記金属置換チタン酸リチウムが、一般式Li4+xTi5-yy12(ただし、Mは、Al、Cr、Fe、Ni、及びZrよりなる群から選択される3種又は4種以上の金属でありかつ少なくともCr、Fe、及びNiを必須とする金属であり、-0.05≦x≦0.25、0<y≦0.2である。)で表されるものである請求項1~5のいずれか1項に記載のチタン酸リチウム粒子。 The metal-substituted lithium titanate has the general formula Li 4 + x Ti 5-y M y O 12 ( although, M is, Al, Cr, Fe, 3 or four selected Ni, and from the group consisting of Zr It is a metal that is at least Cr, Fe, and Ni, and is represented by −0.05 ≦ x ≦ 0.25 and 0 <y ≦ 0.2. The lithium titanate particles according to any one of claims 1 to 5.
  7.  原料としてアナターゼ型二酸化チタン及び/又はルチル型二酸化チタンを用いて製造された請求項1~6のいずれか1項に記載のチタン酸リチウム粒子。 The lithium titanate particles according to any one of claims 1 to 6, produced using anatase-type titanium dioxide and / or rutile-type titanium dioxide as a raw material.
  8.  請求項1~7のいずれか1項に記載のチタン酸リチウム粒子を含む活物質材料。 An active material containing the lithium titanate particles according to any one of claims 1 to 7.
  9.  Cr、Fe、及びNiと、チタン化合物と、リチウム化合物とを含む混合物を、焼成温度600~1000℃、焼成時間10~120分間にて加熱する焼成工程を含む請求項1~7のいずれか1項に記載のチタン酸リチウム粒子の製造方法。 8. The firing process according to claim 1, further comprising a firing step of heating a mixture containing Cr, Fe, and Ni, a titanium compound, and a lithium compound at a firing temperature of 600 to 1000 ° C. and a firing time of 10 to 120 minutes. The method for producing lithium titanate particles according to Item.
PCT/JP2012/054798 2011-05-12 2012-02-27 Lithium titanate particles, active material, and method for producing lithium titanate particles WO2012153561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513953A JP5892161B2 (en) 2011-05-12 2012-02-27 Lithium titanate particles, active material, and method for producing lithium titanate particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107170 2011-05-12
JP2011-107170 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153561A1 true WO2012153561A1 (en) 2012-11-15

Family

ID=47139047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054798 WO2012153561A1 (en) 2011-05-12 2012-02-27 Lithium titanate particles, active material, and method for producing lithium titanate particles

Country Status (3)

Country Link
JP (1) JP5892161B2 (en)
TW (1) TW201300323A (en)
WO (1) WO2012153561A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080515A1 (en) * 2011-11-29 2013-06-06 パナソニック株式会社 Negative electrode active material, electrical storage device, and method for producing negative electrode active material
CN104037415A (en) * 2014-06-23 2014-09-10 上海应用技术学院 Preparation method for lithium-ion battery cathode material Ni/Li3Ti4NiCrO12
CN104282883A (en) * 2014-10-14 2015-01-14 秦皇岛中科远达电池材料有限公司 Composite anode material for lithium ion battery, negative plate of lithium ion battery and lithium ion battery
CN104505489A (en) * 2014-12-29 2015-04-08 上海应用技术学院 Lithium ion battery negative electrode material Li3Ti4CoCrO12 and synthetic method thereof
JP2016216339A (en) * 2015-05-20 2016-12-22 丸祥電器株式会社 Continuous production device of raw material powder for transparent conductive film target
JP2018525787A (en) * 2015-11-30 2018-09-06 エルジー・ケム・リミテッド Negative electrode active material including titanium-based composite, manufacturing method thereof, and lithium secondary battery including the same
JP2019079773A (en) * 2017-10-27 2019-05-23 株式会社東芝 Non-aqueous electrolyte battery and battery system
WO2022211106A1 (en) * 2021-03-31 2022-10-06 宇部興産株式会社 Titanium-containing oxide powder, negative electrode active material composition using same, and all-solid-state secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196061A (en) * 2000-01-11 2001-07-19 Yuasa Corp Nonaqueous electrolyte lithium secondary battery
JP2001240498A (en) * 2000-02-25 2001-09-04 Titan Kogyo Kk High crystalline lithium titanate
JP2008243674A (en) * 2007-03-28 2008-10-09 Toshiba Corp Active material, nonaqueous electrolyte battery, battery pack, and automobile
WO2009146904A1 (en) * 2008-06-03 2009-12-10 Süd-Chemie AG Process for producing lithium titanium spinel and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196061A (en) * 2000-01-11 2001-07-19 Yuasa Corp Nonaqueous electrolyte lithium secondary battery
JP2001240498A (en) * 2000-02-25 2001-09-04 Titan Kogyo Kk High crystalline lithium titanate
JP2008243674A (en) * 2007-03-28 2008-10-09 Toshiba Corp Active material, nonaqueous electrolyte battery, battery pack, and automobile
WO2009146904A1 (en) * 2008-06-03 2009-12-10 Süd-Chemie AG Process for producing lithium titanium spinel and use thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080515A1 (en) * 2011-11-29 2013-06-06 パナソニック株式会社 Negative electrode active material, electrical storage device, and method for producing negative electrode active material
JPWO2013080515A1 (en) * 2011-11-29 2015-04-27 パナソニックIpマネジメント株式会社 Negative electrode active material, power storage device, and method of manufacturing negative electrode active material
US9287562B2 (en) 2011-11-29 2016-03-15 Panasonic Intellectual Property Management Corporation Co., Ltd. Negative electrode active material comprising spinel lithium titanate, electrical storage device, and method for producing negative electrode active material
CN104037415B (en) * 2014-06-23 2016-03-23 上海应用技术学院 A kind of preparation method of chromium nickel lithium titanate of lithium ion battery negative material nickel coated
CN104037415A (en) * 2014-06-23 2014-09-10 上海应用技术学院 Preparation method for lithium-ion battery cathode material Ni/Li3Ti4NiCrO12
CN104282883A (en) * 2014-10-14 2015-01-14 秦皇岛中科远达电池材料有限公司 Composite anode material for lithium ion battery, negative plate of lithium ion battery and lithium ion battery
CN104505489A (en) * 2014-12-29 2015-04-08 上海应用技术学院 Lithium ion battery negative electrode material Li3Ti4CoCrO12 and synthetic method thereof
JP2016216339A (en) * 2015-05-20 2016-12-22 丸祥電器株式会社 Continuous production device of raw material powder for transparent conductive film target
JP2018525787A (en) * 2015-11-30 2018-09-06 エルジー・ケム・リミテッド Negative electrode active material including titanium-based composite, manufacturing method thereof, and lithium secondary battery including the same
US10516186B2 (en) 2015-11-30 2019-12-24 Lg Chem, Ltd. Negative electrode active material including titanium-based composite, method of preparing the same and lithium secondary battery including the same
JP2019079773A (en) * 2017-10-27 2019-05-23 株式会社東芝 Non-aqueous electrolyte battery and battery system
JP7282482B2 (en) 2017-10-27 2023-05-29 株式会社東芝 battery system
WO2022211106A1 (en) * 2021-03-31 2022-10-06 宇部興産株式会社 Titanium-containing oxide powder, negative electrode active material composition using same, and all-solid-state secondary battery

Also Published As

Publication number Publication date
JP5892161B2 (en) 2016-03-23
TW201300323A (en) 2013-01-01
JPWO2012153561A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5892161B2 (en) Lithium titanate particles, active material, and method for producing lithium titanate particles
JP6994690B2 (en) Negative electrode material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
US8535829B2 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP5903956B2 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5268315B2 (en) Non-aqueous electrolyte battery active material and non-aqueous electrolyte battery
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP5569258B2 (en) Continuous production method of electrode material
WO2012017811A1 (en) Precursor, process for production of precursor, process for production of active material, and lithium ion secondary battery
US11239463B2 (en) Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
JP6408097B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
CA2913121A1 (en) Manufacturing method of lithium-titanium composite doped with different metal, and lithium-titanium composite doped with different metal made by same
JP2010123401A (en) Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP2003068306A (en) Lithium nickel manganese layered composite oxide
JP4797332B2 (en) Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2017002933A1 (en) Lithium titanate powder for power storage device electrode, active material, and electrode sheet and power storage device using same
JP7249600B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
JP7420133B2 (en) Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP2002068747A (en) Lithium manganese complex oxide, positive electrode material for lithium secondary battery, positive electrode, and lithium secondary battery
JP2003002663A (en) Layered lithium nickel manganese composite oxide
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
WO2023175731A1 (en) Electrode, battery, and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12783010

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013513953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12783010

Country of ref document: EP

Kind code of ref document: A1