JP2002051268A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JP2002051268A
JP2002051268A JP2000232729A JP2000232729A JP2002051268A JP 2002051268 A JP2002051268 A JP 2002051268A JP 2000232729 A JP2000232729 A JP 2000232729A JP 2000232729 A JP2000232729 A JP 2000232729A JP 2002051268 A JP2002051268 A JP 2002051268A
Authority
JP
Japan
Prior art keywords
support member
imaging device
substrate
error
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000232729A
Other languages
Japanese (ja)
Other versions
JP4034031B2 (en
Inventor
Tetsuya Kuno
徹也 久野
Hiroaki Sugiura
博明 杉浦
Takayuki Yamazaki
貴之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECHO KK
Mitsubishi Electric Corp
Original Assignee
ECHO KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECHO KK, Mitsubishi Electric Corp filed Critical ECHO KK
Priority to JP2000232729A priority Critical patent/JP4034031B2/en
Publication of JP2002051268A publication Critical patent/JP2002051268A/en
Application granted granted Critical
Publication of JP4034031B2 publication Critical patent/JP4034031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image pickup device, with which focusing can be easily attained into no control by decreasing the number of components and reducing errors in production. SOLUTION: In the image pickup device provided with an image pickup element 1 for converting a formed optical image to an electric signal, a substrate 3A where the image pickup element 1 is flip chip mounted onto the lower surface and an optical image pickup system 2 for forming the optical image on the image pickup element 1, the optical image pickup system 2 is provided by integrally molding a lens 2a formed from a transparent member and a supporting means 2b formed from a member, which holds the lens 2, not to transmit light. In this case, integral molding is based on insert molding. Thus, the number of components can be decreased. Further, an error to affect the focusing performance of the image pickup device can be reduced by integral molding. Besides, by applying an adhesive agent 4 around the bonding part of the optical image pickup system 2 and the substrate 3A, the optical image pickup system 2 can be adhered to the substrate 3A while eliminating the thickness error of the adhesive agent 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、CCD(Charge
Coupled Device)センサ等の撮像素子を備える撮像装
置に関し、より詳しくは、撮像光学系と撮像素子とが一
体化した小型の撮像装置に関する。
The present invention relates to a CCD (Charge)
More particularly, the present invention relates to a small-sized image pickup apparatus in which an image pickup optical system and an image pickup element are integrated.

【0002】[0002]

【従来の技術】図16は、撮像光学系と撮像素子とが一
体化した撮像装置の従来の構成を示した断面図である。
図16において、符号20はレンズ、符号21はレンズ
20を保持するレンズバレル、符号21aはレンズバレ
ル21のネジ部、符号22はレンズ20後面の絞り手
段、符号23はレンズバレル21を保持するレンズホル
ダ、符号23aはレンズホルダ23のネジ部、符号24
は赤外線カットフィルタ、符号25は撮像素子、符号2
5aは撮像素子25において入射光を感知可能な領域で
ある有効画素領域、符号25bはボンディングワイヤ、
符号25cはリード、符号26は基板、をそれぞれ示し
ている。
2. Description of the Related Art FIG. 16 is a sectional view showing a conventional structure of an image pickup apparatus in which an image pickup optical system and an image pickup device are integrated.
In FIG. 16, reference numeral 20 denotes a lens, reference numeral 21 denotes a lens barrel holding the lens 20, reference numeral 21a denotes a threaded portion of the lens barrel 21, reference numeral 22 denotes a diaphragm on the rear surface of the lens 20, and reference numeral 23 denotes a lens that holds the lens barrel 21. Reference numeral 23a denotes a screw portion of the lens holder 23 and reference numeral 24a.
Is an infrared cut filter, 25 is an image sensor, 2
5a is an effective pixel area which is an area where incident light can be sensed in the image sensor 25, 25b is a bonding wire,
Reference numeral 25c indicates a lead, and reference numeral 26 indicates a substrate.

【0003】このような撮像装置の製造時には、さまざ
まなばらつきが生じやすい。製造時に生じるばらつきと
して、以下のものが挙げられる。レンズ20とレンズバ
レル21との取り付けばらつき、レンズ20の形状ばら
つきによるバックフォーカスのばらつき、レンズバレル
21の形状ばらつき、赤外線カットフィルタ24の厚み
ばらつき、レンズホルダ23の形状ばらつき、撮像素子
25内における有効画素領域25aの光軸方向の位置の
ばらつき、撮像素子25と基板26との取り付けばらつ
きなどである。
[0003] When manufacturing such an imaging device, various variations are likely to occur. Variations that occur during manufacturing include the following. Variation in mounting of the lens 20 and the lens barrel 21, variation in back focus due to variation in the shape of the lens 20, variation in the shape of the lens barrel 21, variation in the thickness of the infrared cut filter 24, variation in the shape of the lens holder 23, effective in the image sensor 25. This includes variations in the position of the pixel region 25a in the optical axis direction, variations in the attachment of the imaging element 25 to the substrate 26, and the like.

【0004】これらのばらつきが存在するために、レン
ズ20と撮像素子25との間の距離に誤差が生じ、製造
した撮像装置の合焦性能が製品ごとに異なって合焦性能
が安定化しない。そのため、図16に示した従来の撮像
装置では、レンズバレル21のネジ部21aとレンズホ
ルダ23のネジ部23aとを嵌合し、ネジ部21aを回
転させてレンズバレル21を上下させることにより、光
学系が合焦するように調整を行っていた。
[0004] Because of these variations, an error occurs in the distance between the lens 20 and the imaging device 25, and the focusing performance of the manufactured imaging device differs for each product, and the focusing performance is not stabilized. Therefore, in the conventional imaging device shown in FIG. 16, the screw portion 21 a of the lens barrel 21 and the screw portion 23 a of the lens holder 23 are fitted, and the screw portion 21 a is rotated to move the lens barrel 21 up and down. The adjustment was performed so that the optical system was focused.

【0005】しかしながら、このような従来の撮像装置
では、部品点数が多い上、量産時には一台一台、レンズ
バレル21をレンズホルダ23に取り付けて合焦度を調
整(以後、ピント調整と称する)しなければならないと
いう問題があった。
However, in such a conventional imaging apparatus, the number of parts is large, and at the time of mass production, one lens barrel 21 is mounted on the lens holder 23 to adjust the degree of focusing (hereinafter referred to as focus adjustment). There was a problem that had to be done.

【0006】図17に、各構成部品の取り付け精度を上
げることでピント調整の省略が可能な撮像装置の一例を
示す。なお、図17の撮像装置は、特開平9−2325
48号公報に記載の技術である。
FIG. 17 shows an example of an imaging apparatus in which focus adjustment can be omitted by increasing the mounting accuracy of each component. Note that the imaging apparatus shown in FIG.
This is a technique described in JP-A-48-48.

【0007】図17において、符号30は絞り板、符号
30aは入射孔(絞り孔)、符号31はフィルタ、符号
32は支持部材、符号32aは絞り板用の位置決め部、
符号32bはレンズ用の位置決め部、符号32cは撮像
素子用の位置決め部、符号32dは凹み部、符号33は
レンズ、符号34は赤外線カットフィルタ、符号35は
撮像素子、符号35aは撮像素子35の有効画素領域、
符号35bはボンディングワイヤ、符号36はリード、
符号37は接着剤である。なお、特開平9−23254
8号公報の記載ではフィルタ31を赤外線カットフィル
タとしているが、小型の撮像装置では赤外線カットフィ
ルタをレンズ33の前に置くことはフレアの要因となり
やすい。そのため、図17ではあえてレンズ33の後に
赤外線カットフィルタ34として配置している。
In FIG. 17, reference numeral 30 denotes an aperture plate, reference numeral 30a denotes an incident hole (aperture hole), reference numeral 31 denotes a filter, reference numeral 32 denotes a support member, reference numeral 32a denotes a positioning portion for the aperture plate,
Reference numeral 32b is a positioning portion for a lens, reference numeral 32c is a positioning portion for an imaging device, reference numeral 32d is a concave portion, reference numeral 33 is a lens, reference numeral 34 is an infrared cut filter, reference numeral 35 is an imaging device, and reference numeral 35a is an imaging device 35. Effective pixel area,
Reference numeral 35b is a bonding wire, reference numeral 36 is a lead,
Reference numeral 37 denotes an adhesive. Note that Japanese Patent Application Laid-Open No. 9-23254
Although the filter 31 is an infrared cut filter in the description of Japanese Patent Publication No. 8, placing an infrared cut filter in front of the lens 33 in a small-sized imaging device is likely to cause flare. Therefore, in FIG. 17, the infrared cut filter 34 is disposed after the lens 33.

【0008】この技術によれば、各構成部品の取り付け
精度を上げるために、レンズ33に対して位置決め部3
2bを支持部材32に設け、レンズ33の取り付け精度
を高めている。また、撮像素子35に対しても位置決め
部32cを設け、撮像素子35の取り付け精度を高めて
いる。また、接着剤37を注入する部分を、凹部32d
のようにへこませることで、接着剤37により撮像素子
35が持ち上げられるのを防いでいる。また、各構成部
品の取り付け精度を高めることでレンズ33のピント調
整機構を省略しており、図16のレンズバレル21およ
びレンズホルダ23を支持部材32として一体化し、構
成部品数の低減をも図っている。
According to this technique, in order to increase the mounting accuracy of each component, the positioning portion 3
2b is provided on the support member 32 to enhance the mounting accuracy of the lens 33. In addition, a positioning portion 32c is provided for the image sensor 35 to enhance the mounting accuracy of the image sensor 35. Further, the portion into which the adhesive 37 is injected is formed as a recess 32d.
In this way, the image pickup device 35 is prevented from being lifted by the adhesive 37. In addition, the focus adjustment mechanism of the lens 33 is omitted by increasing the mounting accuracy of each component, and the lens barrel 21 and the lens holder 23 of FIG. 16 are integrated as a support member 32 to reduce the number of components. ing.

【0009】[0009]

【発明が解決しようとする課題】この特開平9−232
548号公報に記載の撮像装置において合焦性能に影響
を及ぼすと考えられる誤差を、図18に示す。まず、レ
ンズ33の形状誤差によるバックフォーカス誤差があ
り、この誤差をΔGにて表す。次に、赤外線カットフィ
ルタ34の厚み誤差による空気換算時の距離誤差をΔB
とする。また、撮像素子35は、撮像装置の小型化を図
る場合、セラミックパーケージなどに入れず半導体ウェ
ハから切り出したチップ自体を用いるため、ウェハの厚
み誤差がある。よって、撮像素子35のウェハの厚み誤
差をΔCとする。そして、レンズ33と支持部材32と
の接着層40の厚み誤差をΔHにて、支持部材32の形
状誤差をΔJにて表す。
The problem to be solved by the present invention is disclosed in Japanese Patent Application Laid-Open No. Hei 9-232.
FIG. 18 shows an error considered to affect the focusing performance in the imaging device described in Japanese Patent Application Publication No. 548. First, there is a back focus error due to a shape error of the lens 33, and this error is represented by ΔG. Next, the distance error in air conversion due to the thickness error of the infrared cut filter 34 is ΔB
And Further, in order to reduce the size of the imaging device, the chip itself which is cut out of a semiconductor wafer without using a ceramic package or the like is used for the imaging device 35, and therefore, there is a thickness error of the wafer. Therefore, the thickness error of the wafer of the imaging device 35 is set to ΔC. The thickness error of the adhesive layer 40 between the lens 33 and the support member 32 is represented by ΔH, and the shape error of the support member 32 is represented by ΔJ.

【0010】これらの誤差はすべて合焦性能に影響を及
ぼすため、上記構成によりつつピント調整をなくした撮
像装置を実現するためには、以下の条件を満たす必要が
ある。すなわち、いま合焦性能として許容される焦点深
度の誤差をΔδとした場合、先の誤差の合計(ΔG+Δ
B+ΔC+ΔH+ΔJ)の値が、誤差Δδの値よりも小
さい必要がある。もし、誤差の合計(ΔG+ΔB+ΔC
+ΔH+ΔJ)が誤差Δδより小さくなければ、撮像対
象の被写体が合焦せず、ピントがボケた状態(ピンボ
ケ)となってしまうからである。
Since all of these errors affect the focusing performance, the following conditions must be satisfied in order to realize an image pickup apparatus with the above-described configuration and without focus adjustment. That is, assuming that the error of the depth of focus allowed as the focusing performance is Δδ, the sum of the previous errors (ΔG + Δ
B + ΔC + ΔH + ΔJ) must be smaller than the value of the error Δδ. If the sum of the errors (ΔG + ΔB + ΔC
If (+ ΔH + ΔJ) is not smaller than the error Δδ, the object to be imaged will not be in focus and the image will be out of focus (out of focus).

【0011】そのため、上記ばらつきを正確に管理する
必要があり、各部材の管理、組み立てに高い精度を要す
る問題があった。
[0011] Therefore, there is a problem that it is necessary to accurately manage the above-mentioned variation, and high accuracy is required for management and assembly of each member.

【0012】また、特開平9−232548号公報に
は、光学部材の支持部材32とリード36とが一体成形
されるとの記述がある。通常、支持部材32は、アクリ
ル、PC(ポリカーボネイト)、ABS(アクリロニト
リル・ブタジエン・スチレン共重合体)、PBT(ポリ
ブチレンテレフタレート)、等の合成樹脂で形成される
ことが多く、一方、リード36は導電性の高い金属で形
成されるのが一般的である。よって、支持部材32とリ
ード36との両部材は、熱膨張率等の特性が著しく異な
っていることが多い。
Japanese Patent Application Laid-Open No. 9-232548 describes that the support member 32 of the optical member and the lead 36 are integrally formed. Usually, the support member 32 is often formed of a synthetic resin such as acrylic, PC (polycarbonate), ABS (acrylonitrile-butadiene-styrene copolymer), PBT (polybutylene terephthalate), and the like, while the lead 36 is It is generally formed of a highly conductive metal. Therefore, the members such as the support member 32 and the lead 36 often have significantly different characteristics such as the coefficient of thermal expansion.

【0013】特性が著しく異なる両部材を一体成形する
ことは技術的に難しく、通常は、支持部材32のうちリ
ード36より下の部分と上の部分とを分けて成形するこ
とが多い。そして、そのように分けて成形した上下の支
持部材32を後で接着することになる。その場合、上下
の支持部材間の接着層39の厚み誤差ΔKも生じ、それ
がまた、合焦性能を劣化させる原因となるため、更なる
高い精度が要請されるという問題があった。
It is technically difficult to integrally mold both members having significantly different characteristics. Usually, the portion of the support member 32 below and above the lead 36 is often formed separately. Then, the upper and lower support members 32 formed in such a manner will be bonded later. In this case, a thickness error ΔK of the adhesive layer 39 between the upper and lower support members also occurs, which also causes deterioration of the focusing performance, and therefore, there has been a problem that higher accuracy is required.

【0014】すなわち、以上の問題点をまとめると、従
来の撮像装置においては、撮像装置の量産時に製品毎に
ピント調整を行う必要があり、量産効率が低くなるとい
う問題があった。さらに、ピント調整を行うため撮像装
置の構成部品が多くなるという問題もあった。
That is, the above problems can be summarized as follows. In the conventional imaging apparatus, it is necessary to perform focus adjustment for each product at the time of mass production of the imaging apparatus. Further, there is a problem that the number of components of the imaging apparatus increases because the focus adjustment is performed.

【0015】また、ピントの無調整化を図るためには、
構成部品の成形精度を上げ、各部材の組み立てに高い精
度を要するという問題があった。
In order to eliminate the need for focus adjustment,
There is a problem that the molding accuracy of the component parts is increased, and that high accuracy is required for assembling each member.

【0016】そこで、この発明の課題は、構成部品の点
数を減らし、かつ、製造時の誤差を低減してピントの無
調整化を図りやすくした撮像装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an image pickup apparatus in which the number of constituent parts is reduced, and an error at the time of manufacturing is reduced so that focus adjustment can be easily performed.

【0017】[0017]

【課題を解決するための手段】請求項1に記載の発明
は、結像した光学像を電気信号に変換する撮像素子と、
前記撮像素子を保持する基板と、前記基板に保持され、
前記撮像素子へと前記光学像を結像させる撮像光学系と
を備え、前記撮像光学系は、透明材料にて形成されたレ
ンズ部と、前記レンズ部を保持し、且つ遮光性の材料に
て形成された支持部材とを含み、前記レンズ部および前
記支持部材が一体成形された撮像装置である。
According to the first aspect of the present invention, there is provided an image pickup device for converting a formed optical image into an electric signal,
A substrate that holds the image sensor, held by the substrate,
An imaging optical system that forms the optical image on the imaging element, wherein the imaging optical system holds a lens portion formed of a transparent material and the lens portion, and is formed of a light-shielding material. An imaging device comprising a support member formed, wherein the lens unit and the support member are integrally formed.

【0018】請求項2に記載の発明は、請求項1に記載
の撮像装置であって、前記遮光性の材料を第1の金型に
射出することにより前記支持部材を成形し、前記第1の
金型により成形された前記支持部材を第2の金型へ挿入
して、その後、前記透明材料を第2の金型へ射出するこ
とでレンズ部を成形するインサート成形によって前記レ
ンズ部および前記支持部材が一体成形された撮像装置で
ある。
According to a second aspect of the present invention, in the imaging apparatus according to the first aspect, the support member is formed by injecting the light-shielding material into a first mold, and The support member formed by the mold is inserted into a second mold, and thereafter, the lens portion and the lens portion are formed by insert molding in which the transparent material is injected into the second mold to form a lens portion. This is an imaging device in which a support member is integrally formed.

【0019】請求項3に記載の発明は、請求項1に記載
の撮像装置であって、前記撮像素子は、前記光学像の入
射光を感知可能な領域である有効画素領域をその主表面
に有し、前記基板は開口部、第1の主表面、および前記
第1の主表面と反対側の第2の主表面を有し、前記開口
部を介して前記撮像素子の前記有効画素領域に前記入射
光が届き、前記撮像素子の前記主表面は、前記開口部に
前記有効画素領域を露出させつつ前記第2の主表面に接
着され、前記撮像光学系の前記支持部材は、前記第1の
主表面に保持される撮像装置である。
According to a third aspect of the present invention, in the imaging device according to the first aspect, the imaging element includes an effective pixel area, which is an area capable of sensing incident light of the optical image, on a main surface thereof. The substrate has an opening, a first main surface, and a second main surface opposite to the first main surface, and the substrate is provided in the effective pixel region of the imaging device through the opening. The incident light arrives, the main surface of the imaging device is adhered to the second main surface while exposing the effective pixel region to the opening, and the support member of the imaging optical system is configured to be the first member. Is an imaging device held on the main surface of the camera.

【0020】請求項4に記載の発明は、請求項1に記載
の撮像装置であって、前記基板は主表面を有し、前記撮
像光学系の前記支持部材は底面および側面を有し、前記
支持部材の前記底面は前記基板の前記主表面にあてがわ
れ、前記支持部材の前記側面と前記基板の前記主表面の
うち前記支持部材の前記底面に覆われていない部分とが
接着剤により接着される撮像装置である。
The invention according to claim 4 is the imaging device according to claim 1, wherein the substrate has a main surface, the support member of the imaging optical system has a bottom surface and side surfaces, The bottom surface of the support member is applied to the main surface of the substrate, and the side surface of the support member and a portion of the main surface of the substrate not covered by the bottom surface of the support member are bonded by an adhesive. Is an imaging device to be used.

【0021】請求項5に記載の発明は、請求項4に記載
の撮像装置であって、前記接着剤は遮光性を有する撮像
装置である。
According to a fifth aspect of the present invention, there is provided the imaging apparatus according to the fourth aspect, wherein the adhesive has a light shielding property.

【0022】請求項6に記載の発明は、請求項4に記載
の撮像装置であって、前記接着剤はUV硬化剤である撮
像装置である。
The invention according to claim 6 is the imaging device according to claim 4, wherein the adhesive is a UV curing agent.

【0023】請求項7に記載の発明は、請求項1に記載
の撮像装置であって、赤外線カットフィルタをさらに備
え、前記赤外線カットフィルタは、前記撮像光学系の外
部である、前記レンズ部の入射側に配置された撮像装置
である。
According to a seventh aspect of the present invention, there is provided the imaging apparatus according to the first aspect, further comprising an infrared cut filter, wherein the infrared cut filter is provided outside the imaging optical system. This is an imaging device arranged on the incident side.

【0024】[0024]

【発明の実施の形態】<実施の形態1>本実施の形態
は、撮像光学系中のレンズと支持部材とを一体成型する
ことにより、構成部品の点数が少なく、かつピントの無
調整化を図りやすくした撮像装置を実現するものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS <Embodiment 1> In this embodiment, a lens in an image pickup optical system and a supporting member are integrally molded to reduce the number of components and to achieve non-adjustment of focus. This realizes an imaging device that is easy to plan.

【0025】図1は、本実施の形態に係る撮像装置を示
す断面図である。図1に示すように、本実施の形態に係
る撮像装置は、CCDセンサやCMOS(Complementar
y Metal Oxide Semiconductor)センサなどの撮像素子
1と、撮像素子1の上面の一部が接着層6を介して接着
された基板3Aと、基板3A上に接着剤等により接着さ
れた赤外線カットフィルタ5と、基板3A上に接着剤4
により保持された撮像光学系2とを備えている。
FIG. 1 is a sectional view showing an imaging apparatus according to the present embodiment. As shown in FIG. 1, the imaging device according to the present embodiment includes a CCD sensor and a CMOS (Complementarity).
an image sensor 1 such as a sensor, a substrate 3A having a part of the upper surface of the image sensor 1 bonded via an adhesive layer 6, and an infrared cut filter 5 bonded to the substrate 3A with an adhesive or the like. And the adhesive 4 on the substrate 3A.
And an imaging optical system 2 held by the camera.

【0026】図2に、撮像素子1と基板3Aとの接合部
を拡大した図を示す。撮像素子1は例えば、パッケージ
封入せず半導体ウェハから切り出したチップをそのまま
用いたものである。図2において、その上面には、撮像
光学系2によって結像した被写体の光像を電気信号に変
換する有効画素領域1aと、有効画素領域1aから信号
を取り出すための電極1bとが形成されている。
FIG. 2 is an enlarged view of a joint between the image pickup device 1 and the substrate 3A. The imaging device 1 uses, for example, a chip cut out of a semiconductor wafer without encapsulation in a package. In FIG. 2, an effective pixel region 1a for converting a light image of a subject formed by the imaging optical system 2 into an electric signal and an electrode 1b for extracting a signal from the effective pixel region 1a are formed on an upper surface thereof. I have.

【0027】一方、基板3Aには例えば、薄型基板を実
現できるフレキシブル基板が用いられる。フレキシブル
基板とは、基板の厚みが薄く薄膜状となっており、曲げ
ることが可能であって、基板薄膜内に配線パターンが形
成された、2層ポリイミド基板などのことを指す。この
ようなフレキシブル基板は、小型・薄型の撮像装置を製
造する場合によく用いられる。
On the other hand, as the substrate 3A, for example, a flexible substrate capable of realizing a thin substrate is used. The flexible substrate refers to a two-layer polyimide substrate or the like in which the thickness of the substrate is thin and thin and can be bent, and a wiring pattern is formed in the substrate thin film. Such a flexible substrate is often used when manufacturing a small and thin imaging device.

【0028】図3は基板3Aの下面図である。基板3A
の下面(撮像素子1が接着される側)には、電気信号が
流れる回路パターン3cが設けられており、回路パター
ン3cの一端には、撮像素子1の電極1bと接続される
電極3bが設けられている。また、回路パターン3cの
他端には、撮像素子1からの電気信号を外部に出力する
ための電極3aが設けられている。電極3aに他の機器
を接続することで、撮像装置と他の機器との間の信号の
やり取りを行うことができる。なお、基板3Aの中央部
には開口部3dが設けられており、この開口部3dを介
して撮像素子1の有効画素領域1aに入射光が届く。
FIG. 3 is a bottom view of the substrate 3A. Substrate 3A
A circuit pattern 3c through which an electric signal flows is provided on the lower surface (on the side where the image sensor 1 is adhered), and an electrode 3b connected to the electrode 1b of the image sensor 1 is provided at one end of the circuit pattern 3c. Have been. The other end of the circuit pattern 3c is provided with an electrode 3a for outputting an electric signal from the image sensor 1 to the outside. By connecting another device to the electrode 3a, signals can be exchanged between the imaging device and the other device. Note that an opening 3d is provided in the center of the substrate 3A, and incident light reaches the effective pixel area 1a of the imaging device 1 through the opening 3d.

【0029】そして、撮像素子1の電極1bと基板3A
の電極3bとが、ハンダバンプ等の導電性の接着層6に
よって接着されることにより、撮像素子1の上面が基板
3Aの下面に接着される。これは、いわゆるフリップチ
ップ実装である。
Then, the electrode 1b of the image sensor 1 and the substrate 3A
Is bonded by a conductive bonding layer 6 such as a solder bump, so that the upper surface of the imaging device 1 is bonded to the lower surface of the substrate 3A. This is a so-called flip-chip mounting.

【0030】次に、撮像光学系2について説明する。撮
像光学系2は、光を通過させる材料で形成され、かつ被
写体像を撮像素子1の有効画素領域1aへと結像させる
レンズ部2aと、光を通過させない材料で形成され、か
つレンズ部2aを保持する支持部材2bとが一体成形さ
れた構成となっている。
Next, the imaging optical system 2 will be described. The imaging optical system 2 is formed of a material that allows light to pass through, and a lens unit 2a that forms a subject image on the effective pixel area 1a of the imaging device 1; a lens unit 2a that is formed of a material that does not allow light to pass therethrough; And a supporting member 2b for holding the same.

【0031】以下に、撮像光学系2の成形方法について
述べる。本発明では、支持部材2bとレンズ部2aとを
一体成形するために、まず支持部材2bを射出成形した
後、インサート成形によりレンズ部2aを形成する。
Hereinafter, a method of forming the imaging optical system 2 will be described. In the present invention, in order to integrally mold the support member 2b and the lens portion 2a, first, the support member 2b is injection-molded, and then the lens portion 2a is formed by insert molding.

【0032】撮像光学系2のうちレンズ部2a以外の支
持部材2bを射出成形するための第1の金型7を、図4
〜図6に示す。図4および図5は第1の金型7の側面図
であり、図6は第1の金型7の斜視図である。なお、図
4と図5とでは見る方向が90度異なっている。
A first mold 7 for injection-molding a support member 2b other than the lens portion 2a of the image pickup optical system 2 is mounted on the first mold 7 in FIG.
6 to FIG. 4 and 5 are side views of the first mold 7, and FIG. 6 is a perspective view of the first mold 7. Note that the viewing direction differs between FIG. 4 and FIG. 5 by 90 degrees.

【0033】図4および図5に示すように、第1の金型
7は上下2つの金型7a,7bに割られている。なお、
上下に割る位置は一例であり、図4および図5に示した
位置に限定されるわけではない。
As shown in FIGS. 4 and 5, the first mold 7 is divided into upper and lower molds 7a and 7b. In addition,
The position where the upper and lower parts are split is an example, and is not limited to the positions shown in FIGS. 4 and 5.

【0034】また、第1の金型7はさらに、射出成形を
する際に支持部材2bにインジェクト部2cを形成する
ための金型部材7cをも備えている。なお、下の金型7
bには、金型部材7cをはめ込むための凹部7dと、支
持部材2bの材料を注入するためのゲート部7eとが設
けられている。なお、図4〜図6においては、金型部材
7cを円柱状に示し、ゲート部7eを角柱状に示してい
るが、これらの形状は一例であり、上記形状に制約され
るものではない。
The first mold 7 further includes a mold member 7c for forming an injection portion 2c on the support member 2b during injection molding. The lower mold 7
b has a concave portion 7d for fitting the mold member 7c and a gate portion 7e for injecting the material of the support member 2b. 4 to 6, the mold member 7c is shown in a columnar shape, and the gate portion 7e is shown in a prismatic shape. However, these shapes are merely examples, and are not limited to the above shapes.

【0035】支持部材2bの形成は次のように行う。ま
ず、凹部7dに金型部材7cをはめ込んだ状態で上下の
金型7a,7bを合わせる。次に、ゲート部7eから支
持部材2bの材料を注入し、射出成形を行う。ここで、
支持部材2bの材料には、例えばPC(ポリカーボネイ
ト)やABS(アクリロニトリル・ブタジエン・スチレ
ン共重合体)、PBT(ポリブチレンテレフタレート)
などの合成樹脂を採用すればよい。なお、それら合成樹
脂には黒色のものを用い、レンズ部2a以外からの入射
光が有効画素領域1aに到達しないよう遮光しておけば
よい。
The support member 2b is formed as follows. First, the upper and lower molds 7a and 7b are fitted together with the mold member 7c fitted in the recess 7d. Next, the material of the support member 2b is injected from the gate portion 7e, and injection molding is performed. here,
Examples of the material of the support member 2b include PC (polycarbonate), ABS (acrylonitrile-butadiene-styrene copolymer), and PBT (polybutylene terephthalate).
What is necessary is just to employ | adopt synthetic resins, such as. It is to be noted that a black synthetic resin may be used, and light may be shielded so that incident light from portions other than the lens portion 2a does not reach the effective pixel region 1a.

【0036】そして、射出成形後に金型部材7cを引き
抜くことで、インジェクト部2cを備える支持部材2b
が成形される。図7に射出成形された支持部材2bを示
す。支持部材2bにはインジェクト部2cが形成されて
いることが図7から分かる。このインジェクト部2cに
おいては、支持部材2bの外面から内面にかけて穴が貫
通した状態となっている。
Then, by pulling out the mold member 7c after the injection molding, the support member 2b having the injection portion 2c is provided.
Is molded. FIG. 7 shows the support member 2b formed by injection molding. It can be seen from FIG. 7 that an injection portion 2c is formed on the support member 2b. In this injection part 2c, a hole is penetrated from the outer surface to the inner surface of the support member 2b.

【0037】次に、レンズ部2aを支持部材2bととも
に一体成形するための第2の金型8を図8および図9に
示す。図8および図9は第2の金型8の側面図である。
なお、図8と図9とでは見る方向が90度異なってい
る。
Next, FIGS. 8 and 9 show a second mold 8 for integrally molding the lens portion 2a with the support member 2b. 8 and 9 are side views of the second mold 8.
Note that the viewing direction differs between FIG. 8 and FIG. 9 by 90 degrees.

【0038】図8および図9に示すように、第2の金型
8も上下2つの金型8a,8bに割られている。なお、
上下に割る位置は一例であり、図8および図9に示した
位置に限定されるわけではない。また、下の金型8bに
は、インサート成形をする際にレンズ部2aの材料を注
入するためのゲート部8cが設けられている。
As shown in FIGS. 8 and 9, the second mold 8 is also divided into two upper and lower molds 8a and 8b. In addition,
The position of dividing vertically is only an example, and is not limited to the positions shown in FIGS. 8 and 9. The lower mold 8b is provided with a gate portion 8c for injecting the material of the lens portion 2a when performing insert molding.

【0039】レンズ部2aの形成は次のように行う。ま
ず、図10に示すように、図7の支持部材2bを下の金
型8bにはめ込み、上下の金型8a,8bを合わせる。
このとき、支持部材2bのインジェクト部2cと下の金
型8bのゲート部8cとが導通するように両者の位置を
調整しておく。なお、ゲート部8cとインジェクト部2
cとが導通するように、予め第1および第2の金型7,
8が設計されていることが前提である。
The formation of the lens portion 2a is performed as follows. First, as shown in FIG. 10, the support member 2b of FIG. 7 is fitted into the lower mold 8b, and the upper and lower molds 8a and 8b are fitted.
At this time, the positions of the injection portion 2c of the support member 2b and the gate portion 8c of the lower mold 8b are adjusted so as to conduct. In addition, the gate unit 8c and the injection unit 2
c and the first and second molds 7,
8 is designed.

【0040】次に、第2の金型8のゲート部8cに対し
て、外部より射出成形用のバルブ9をはめ込み、レンズ
部2aの材料をバルブ9を介して注入し、インサート成
形を行う。ここで、レンズ部2aの材料には、例えばP
MMA(ポリメチルメタクリレート)などのアクリル樹
脂等の透明材料を採用すればよい。また、その他にもP
C(ポリカーボネイト)などを用いてもよい。このよう
な透明材料の具体的商品名としては「アートン」や「ゼ
オネックス」などがある。
Next, a valve 9 for injection molding is inserted into the gate portion 8c of the second mold 8 from the outside, and the material of the lens portion 2a is injected through the valve 9 to perform insert molding. Here, the material of the lens portion 2a is, for example, P
A transparent material such as an acrylic resin such as MMA (polymethyl methacrylate) may be used. In addition, P
C (polycarbonate) or the like may be used. Specific product names of such transparent materials include "ARTON" and "ZEONEX".

【0041】注入された透明材料は、ゲート部8cを通
り、インジェクト部2cを介して第2の金型8内の支持
部材2bの占有部分以外の空間に流れ込み、レンズ部2
aを形成する。
The injected transparent material passes through the gate portion 8c, flows into the space other than the portion occupied by the support member 2b in the second mold 8 via the injection portion 2c, and the lens portion 2c.
a is formed.

【0042】このようなインサート成形により、遮光材
料にて形成された支持部材2bと透明材料にて形成され
たレンズ部2aとを一体成形することができる。一体成
形を行うことにより、後述するようにレンズ部2aと支
持部材2bとの接着の誤差の生じない撮像光学系2を形
成することが可能となる。
By such insert molding, the support member 2b formed of a light shielding material and the lens portion 2a formed of a transparent material can be integrally formed. By performing the integral molding, it is possible to form the imaging optical system 2 that does not cause an error in adhesion between the lens portion 2a and the support member 2b, as described later.

【0043】なお、レンズ部2aのような光学部材を成
形するときは、透明材料が流れていく跡(フローマー
ク)や、焼け(ジェッティング)をさけるために、低速
射出にて成形を行うことが一般的である。一方、その他
の部材については、量産効率をあげるために、比較的短
時間ですむ高速射出成形がよく行われる。本発明におい
ても、レンズ部2aは低速射出にて成形を行い、支持部
材2bは高速射出にて成形を行えばよい。上記のような
インサート成形を用いれば、射出速度条件の異なる2つ
の部材を一体成形することができる。また、インサート
成形を用いれば、レンズ部2aおよび支持部材2bのよ
うに色が異なる部材や、熱膨張率等の特性が異なる部材
を組み合わせた撮像光学系を一体成形することも可能で
ある。
When molding an optical member such as the lens portion 2a, the molding should be performed by low-speed injection in order to avoid traces of flowing transparent material (flow marks) and burning (jetting). Is common. On the other hand, for other members, high-speed injection molding, which requires a relatively short time, is often performed in order to increase mass production efficiency. Also in the present invention, the lens portion 2a may be formed by low-speed injection, and the support member 2b may be formed by high-speed injection. By using the insert molding as described above, two members having different injection speed conditions can be integrally molded. If insert molding is used, it is also possible to integrally mold an imaging optical system in which members having different colors, such as the lens portion 2a and the support member 2b, and members having different characteristics such as the coefficient of thermal expansion are combined.

【0044】なお、本実施の形態ではレンズ部2aの形
状を、入射側を凹部にし、出射側を凸部にしているが、
入射側、出射側いずれも凸部にした凸レンズにて構成し
てもよいことはいうまでもない。
In this embodiment, the shape of the lens portion 2a is a concave portion on the incident side and a convex portion on the exit side.
It goes without saying that both the entrance side and the exit side may be constituted by convex lenses having convex portions.

【0045】さて、このように一体成形された撮像光学
系2は、撮像光学系2により生成される光学像が撮像素
子1の有効画素領域1a上に結像するように、基板3A
上に配置される。具体的には、支持部材2bの底面が基
板3Aの上面にあてがわれ、支持部材2bの側面と基板
3Aの上面のうち支持部材2bの底面に覆われていない
部分とが接着剤4により接着されることにより、撮像光
学系2が基板3Aに固定される。これにより、支持部材
2bと基板3Aとの間に接着層が生じず、図18のΔK
に示したような接着層の厚み誤差は排除できる。
Now, the imaging optical system 2 integrally formed as described above is mounted on the substrate 3A so that the optical image generated by the imaging optical system 2 is formed on the effective pixel area 1a of the imaging device 1.
Placed on top. Specifically, the bottom surface of the support member 2b is applied to the top surface of the substrate 3A, and the side surface of the support member 2b and the portion of the top surface of the substrate 3A that are not covered by the bottom surface of the support member 2B are bonded by the adhesive 4. As a result, the imaging optical system 2 is fixed to the substrate 3A. As a result, no adhesive layer is formed between the support member 2b and the substrate 3A, and ΔK in FIG.
Can eliminate the thickness error of the adhesive layer.

【0046】なお、接着剤4には、例えば黒色などの、
遮光性を有する接着剤を採用すればよい。そうすれば、
支持部材2bと基板3Aとの間に仮にわずかな隙間があ
ったとしても、そこから光が撮像光学系2の内部に侵入
することはない。
The adhesive 4 is made of, for example, black.
An adhesive having a light-shielding property may be used. that way,
Even if there is a slight gap between the support member 2b and the substrate 3A, light does not enter the imaging optical system 2 from there.

【0047】また、接着剤4には、紫外線によって硬化
するUV(Ultra Violet ray)硬化剤を用いてもよい。
樹脂などを用いて接着する場合には、樹脂を溶かして撮
像光学系2と基板3Aとの接合部周辺へ塗布するため、
高温樹脂が撮像光学系2に接着することとなる。そのた
め、熱によって、撮像光学系2が変形することがある。
UV硬化剤を用いれば低温にて接着が可能であり、変形
の問題は生じない。また、硬化時の材料自体の収縮が小
さいため、撮像光学系2と基板3Aとの間で位置ずれが
生じにくい。また、UV硬化剤は硬化後も熱収縮が小さ
く、熱耐性に優れるため、接着剤4にUV硬化剤を用い
れば、熱に対する影響が非常に小さい撮像装置を得るこ
とができる。
As the adhesive 4, a UV (Ultra Violet ray) curing agent which is cured by ultraviolet rays may be used.
In the case of bonding using a resin or the like, since the resin is melted and applied around the joint between the imaging optical system 2 and the substrate 3A,
The high-temperature resin adheres to the imaging optical system 2. Therefore, the imaging optical system 2 may be deformed by heat.
If a UV curing agent is used, bonding can be performed at a low temperature, and the problem of deformation does not occur. Further, since the shrinkage of the material itself during curing is small, displacement between the imaging optical system 2 and the substrate 3A hardly occurs. Further, since the UV curing agent has a small heat shrinkage after curing and is excellent in heat resistance, if an UV curing agent is used for the adhesive 4, it is possible to obtain an imaging device having a very small effect on heat.

【0048】また、赤外線カットフィルタ5は、レンズ
部2aと撮像素子1との間に設けられる。しかし、レン
ズ部2aから撮像素子1までの間のうちどの位置に置い
ても結像条件は変わらないので、赤外線カットフィルタ
5の固定位置および固定方法は本実施の形態では特定は
しない。例えば、図1に示すように基板3Aの上に接着
してもよいし、支持部材2bの内壁の一部に取り付けの
ための凸部を設けてその凸部に接着して固定してもよ
い。
The infrared cut filter 5 is provided between the lens unit 2a and the image pickup device 1. However, since the imaging condition does not change regardless of the position between the lens unit 2a and the imaging device 1, the fixing position and fixing method of the infrared cut filter 5 are not specified in the present embodiment. For example, as shown in FIG. 1, it may be adhered on the substrate 3A, or a protrusion may be provided on a part of the inner wall of the support member 2b for attachment, and may be adhered and fixed to the protrusion. .

【0049】上記のように撮像装置を構成することによ
って、構成部品の点数を少なくすることができる。
By configuring the imaging device as described above, the number of components can be reduced.

【0050】さて、本実施の形態に係る撮像装置におい
て、合焦性能に影響を及ぼす誤差について図11に示
す。
FIG. 11 shows an error affecting the focusing performance in the image pickup apparatus according to the present embodiment.

【0051】まず、成形時に生じる撮像光学系2の形状
誤差が起因となるバックフォーカス誤差をΔAとする。
撮像光学系2では、その支持部材2bを第2の金型8に
入れてレンズ部2aと一体成形する際に、支持部材2a
が熱せられてなまし直される。そのため、支持部材2b
の形状誤差は、一体成形された撮像光学系2のバックフ
ォーカス誤差に吸収され、支持部材2bおよびレンズ部
2aをともに単体として製造した場合に生じる支持部材
2bの形状誤差とレンズ部2aの形状誤差とを加算した
値よりも、一体成形された撮像光学系2のバックフォー
カス誤差ΔAの値の方が小さくなる。また、一体成形の
ため、図18の厚み誤差ΔHのような、レンズ部2aと
支持部材2bとの取り付け部の接着層の誤差は生じな
い。
First, it is assumed that a back focus error caused by a shape error of the imaging optical system 2 at the time of molding is ΔA.
In the imaging optical system 2, when the support member 2b is put into the second mold 8 and integrally formed with the lens portion 2a, the support member 2a
Is heated and re-annealed. Therefore, the support member 2b
Is absorbed by the back focus error of the integrally formed imaging optical system 2, and the shape error of the support member 2b and the shape error of the lens portion 2a that occur when both the support member 2b and the lens portion 2a are manufactured as a single unit. The value of the back focus error ΔA of the integrally formed imaging optical system 2 is smaller than the value obtained by adding. Also, because of the integral molding, there is no error in the adhesive layer of the attachment portion between the lens portion 2a and the support member 2b, such as the thickness error ΔH in FIG.

【0052】次に、赤外線カットフィルタ5の誤差につ
いて考えると、上述のようにレンズ部2aから撮像素子
1までの間のうちどの位置に置いても結像条件は変わら
ないので、接着による位置誤差があったとしても合焦性
能に影響を与えることはない。よって、赤外線カットフ
ィルタ5の厚みのばらつきのみが合焦性能に影響を及ぼ
すことになり、その誤差を、屈折率を考慮して空気換算
したときの値ΔBとする。
Next, considering the error of the infrared cut filter 5, since the imaging condition does not change regardless of the position between the lens unit 2a and the image pickup device 1 as described above, the position error due to adhesion Even if there is, there is no effect on the focusing performance. Therefore, only the variation in the thickness of the infrared cut filter 5 affects the focusing performance, and the error is defined as a value ΔB when converted into air in consideration of the refractive index.

【0053】次に、撮像光学系2の支持部材2bと基板
3Aとの接合部であるが、支持部材2bの底面を基板3
Aに直接あてがい、支持部材2bの側面と基板3Aとを
接着剤4にて接着しているため、支持部材2bと基板3
Aとの間に接着層の厚み誤差は生じない。そのためレン
ズ部2aの合焦性能に影響を与える誤差は生じない。
Next, regarding the joint between the support member 2b of the imaging optical system 2 and the substrate 3A, the bottom surface of the support member 2b is
A, and the side surface of the support member 2b and the substrate 3A are bonded to each other with the adhesive 4, so that the support member 2b and the substrate 3
No error occurs in the thickness of the adhesive layer between A and A. Therefore, there is no error that affects the focusing performance of the lens unit 2a.

【0054】次に、基板3Aの厚みの誤差をΔF、撮像
素子1の厚みの誤差(底面から有効画素領域1a表面ま
での距離の誤差)をΔC、撮像素子1と基板3Aとの間
の接着層6の厚み誤差をΔDとする。
Next, the thickness error of the substrate 3A is ΔF, the thickness error of the imaging device 1 (error of the distance from the bottom surface to the surface of the effective pixel area 1a) is ΔC, and the adhesion between the imaging device 1 and the substrate 3A is Let ΔD be the thickness error of layer 6.

【0055】なお、本発明の構成では、バックフォーカ
スはレンズ部2aから有効画素領域1aまでの距離で決
まるため、撮像素子1の厚み誤差ΔCは誤差要因にはな
らない。よって、合焦性能に影響を及ぼす誤差の要因を
少なくすることができる。
In the structure of the present invention, since the back focus is determined by the distance from the lens section 2a to the effective pixel area 1a, the thickness error ΔC of the image sensor 1 does not become an error factor. Therefore, it is possible to reduce a factor of an error affecting the focusing performance.

【0056】上記をまとめると、合焦性能に影響を与え
る誤差の合計値は(ΔA+ΔB+ΔF+ΔD)となり、
この合計値が撮像光学系2の焦点深度の誤差Δδより小
さければピント調整する必要がない。
To summarize the above, the total value of the errors affecting the focusing performance is (ΔA + ΔB + ΔF + ΔD).
If this total value is smaller than the error Δδ of the depth of focus of the imaging optical system 2, it is not necessary to adjust the focus.

【0057】ここで、上述した個々の誤差について具体
的な数値例に基づいて検討する。小型で且つ薄型の撮像
装置を構成するため、例えば撮像光学系2の画角を標準
的な画角55度とし、撮像素子2の有効画素領域1aの
大きさを1/4インチ光学系サイズとし、支持部材2b
の形状の高さを5〜10mm程度とした場合、まずバッ
クフォーカス誤差ΔAは±30μm程度が想定される。
Here, the above-mentioned individual errors will be examined based on specific numerical examples. In order to configure a small and thin imaging device, for example, the angle of view of the imaging optical system 2 is set to a standard angle of view of 55 degrees, and the size of the effective pixel area 1a of the imaging element 2 is set to 1/4 inch optical system size , Support member 2b
Is about 5 to 10 mm, the back focus error ΔA is assumed to be about ± 30 μm.

【0058】次に、赤外線カットフィルタ5による厚み
誤差ΔBは以下のようになる。赤外線カットフィルタ5
はガラスで作成されることが多い。ガラスの屈折率はn
=1.5である。また、赤外線カットフィルタ5の厚み
を0.55mmとして厚みばらつきを±50μmと想定
する。
Next, the thickness error ΔB caused by the infrared cut filter 5 is as follows. Infrared cut filter 5
Is often made of glass. The refractive index of glass is n
= 1.5. It is assumed that the thickness of the infrared cut filter 5 is 0.55 mm and the thickness variation is ± 50 μm.

【0059】屈折率の定義n12=v1/v2(n12は媒体
2の媒体1に対する屈折率、v1は媒体1中を光が進む
速度、v2は媒体2中を光が進む速度)より、空気(n
=1.0)中を光が単位時間に進む距離をAとすれば、
ガラス中を光が単位時間に進む距離はA/1.5とな
る。よって、ガラス中の光の移動距離を空気換算すれ
ば、誤差ΔBは、ΔB=±50μm×(1−1/1.
5)=±16.6μmとなる。
Definition of refractive index n 12 = v 1 / v 2 (n 12 is the refractive index of medium 2 with respect to medium 1, v 1 is the speed at which light travels through medium 1, and v 2 is the speed at which light travels through medium 2 Speed) than air (n
= 1.0) If the distance that light travels in unit time in A is A,
The distance that light travels in the glass per unit time is A / 1.5. Therefore, if the moving distance of the light in the glass is converted into air, the error ΔB is ΔB = ± 50 μm × (1-1 / 1.
5) = ± 16.6 μm

【0060】次に、基板3Aの厚み誤差ΔFは以下のよ
うになる。薄型の撮像装置を構成する場合、基板3Aに
はフレキシブル基板が多く用いられる。薄型のフレキシ
ブル基板は50μm以下の膜厚が実現されており、その
ばらつき誤差ΔFは±3〜4μm程度である(ここでは
例えば±3.5μmとする、なお膜厚28μmのフレキ
シブル基板も実在しており、その場合は厚みのばらつき
誤差はさらに小さい)。
Next, the thickness error ΔF of the substrate 3A is as follows. When configuring a thin imaging device, a flexible substrate is often used as the substrate 3A. A thin flexible substrate has a film thickness of 50 μm or less, and its variation error ΔF is about ± 3 to 4 μm (here, for example, ± 3.5 μm, and a flexible substrate having a film thickness of 28 μm actually exists. In this case, the thickness variation error is even smaller).

【0061】また、接着層6の厚み誤差ΔDは以下のよ
うになる。撮像素子1と基板3Aとの接着をする際に、
撮像素子1の電極1bを直接、基板3Aの電極3bに接
続するフリップチップ実装を採用して、ハンダバンプに
よる接続方法を用いると、その厚み誤差ΔDは数μmの
範囲内に抑えることができる(ここでは例えば±4μm
とする)。
The thickness error ΔD of the adhesive layer 6 is as follows. When bonding the imaging device 1 and the substrate 3A,
If flip-chip mounting in which the electrode 1b of the imaging element 1 is directly connected to the electrode 3b of the substrate 3A is employed, and a connection method using solder bumps is used, the thickness error ΔD can be suppressed within a range of several μm (here. For example, ± 4μm
And).

【0062】よって、以上より本実施の形態にかかる撮
像装置の合焦性能に影響を与える誤差の合計値の一例を
挙げれば、(ΔA+ΔB+ΔF+ΔD)=±30±1
6.6±3.5±4=±54.1μmとなる。
Accordingly, as an example of the total value of the errors affecting the focusing performance of the imaging apparatus according to the present embodiment, (ΔA + ΔB + ΔF + ΔD) = ± 30 ± 1
6.6 ± 3.5 ± 4 = ± 54.1 μm.

【0063】本実施の形態に係る撮像装置の各誤差を図
18に示した従来の撮像装置の各誤差と個別に比較する
と、まず、図18のレンズ33の形状誤差によるバック
フォーカス誤差ΔGと支持部材32の形状誤差ΔJを加
算したものよりも、図11の撮像光学系2の形状誤差に
よるバックフォーカス誤差ΔAの方が、一体成形を行っ
ているため小さくなる。さらに、本実施の形態に係る撮
像装置では支持部材2bとレンズ部2aとが接着層によ
り接合されているのではないので、図18の接着層40
の厚み誤差ΔHが生じない。
When each error of the image pickup apparatus according to the present embodiment is individually compared with each error of the conventional image pickup apparatus shown in FIG. 18, first, the back focus error ΔG due to the shape error of the lens 33 in FIG. The back focus error ΔA due to the shape error of the imaging optical system 2 in FIG. 11 is smaller than the sum of the shape error ΔJ of the member 32 due to the integral molding. Furthermore, in the imaging device according to the present embodiment, since the support member 2b and the lens portion 2a are not joined by the adhesive layer, the adhesive layer 40 shown in FIG.
Does not occur.

【0064】さらに、本実施の形態に係る撮像装置で
は、基板3Aの下面に撮像素子1の上面をフリップチッ
プ実装により接着しているため、撮像素子35の厚み誤
差ΔCは合焦性能に影響を与える誤差要因には加算され
ない。
Further, in the imaging device according to the present embodiment, since the upper surface of the imaging device 1 is bonded to the lower surface of the substrate 3A by flip-chip mounting, the thickness error ΔC of the imaging device 35 affects the focusing performance. It is not added to the given error factor.

【0065】また、従来の撮像装置においては、リード
36と支持部材32との一体成形が困難である場合に
は、接着層39の採用が考えられ、その厚み誤差ΔKが
さらに誤差要因に加わる。一方、本実施の形態によれ
ば、支持部材2bを基板3Aに直接あてがい、外部を接
着剤4にて包囲しているため、支持部材2bと基板3A
との間に接着層の厚み誤差は生じない。
In the conventional imaging apparatus, when it is difficult to integrally form the lead 36 and the support member 32, the use of the adhesive layer 39 can be considered, and the thickness error ΔK is further added to the error factor. On the other hand, according to the present embodiment, since the support member 2b is directly applied to the substrate 3A and the outside is surrounded by the adhesive 4, the support member 2b and the substrate 3A
No error occurs in the thickness of the adhesive layer.

【0066】なお、本実施の形態では、従来の撮像装置
の構成に比べ、基板3Aの厚み誤差ΔFおよび接着層6
の厚み誤差ΔDが加わるが、それらの誤差の値は上記の
数値例で見たように他の誤差の値に比べ大幅に小さい。
In this embodiment, the thickness error ΔF of the substrate 3A and the adhesive layer 6
Are added, but the values of those errors are significantly smaller than the values of other errors as seen in the above numerical examples.

【0067】ここで、従来の撮像装置の個々の誤差につ
いても具体的な数値例に基づいて検討する。
Here, individual errors of the conventional imaging apparatus will be examined based on specific numerical examples.

【0068】例えば、図18のレンズ33のバックフォ
ーカス誤差ΔGを±10μm、支持部材32の形状誤差
ΔJを±30μmとする。また、撮像素子35の厚みを
例えば400μmとすれば、その厚み誤差はΔC=±4
0μm程度が生じる。また、赤外線カットフィルタ34
の誤差ΔBは本実施の形態に係る撮像装置の場合と同様
であるので、上記の数値例に基づきΔB=±16.6μ
mとする。また、レンズ33と支持部材32との接着層
40の厚み誤差ΔHは数μm以下である(例えば4μm
とする)。
For example, the back focus error ΔG of the lens 33 in FIG. 18 is ± 10 μm, and the shape error ΔJ of the support member 32 is ± 30 μm. If the thickness of the image sensor 35 is, for example, 400 μm, the thickness error is ΔC = ± 4.
About 0 μm occurs. In addition, the infrared cut filter 34
Is the same as that in the case of the imaging apparatus according to the present embodiment, so that ΔB = ± 16.6 μm based on the above numerical example.
m. The thickness error ΔH of the adhesive layer 40 between the lens 33 and the support member 32 is several μm or less (for example, 4 μm
And).

【0069】よって、従来の撮像装置の場合、その誤差
(ΔG+ΔJ+ΔC+ΔB+ΔH)の値は、(±10±
30±40±16.6±4)=100.6μmとなる。
この値と上記の(ΔA+ΔB+ΔF+ΔD)=±54.
1μmとを比較すればわかるように、本実施の形態に係
る撮像装置の構成では、合焦性能に影響を与える誤差の
値が大幅に小さくなり、構成部品の組み立て時の精度を
向上させることができる。よって、ピントの無調整化が
図りやすくなる。
Therefore, in the case of the conventional imaging apparatus, the value of the error (ΔG + ΔJ + ΔC + ΔB + ΔH) is (± 10 ±
30 ± 40 ± 16.6 ± 4) = 100.6 μm.
This value and the above (ΔA + ΔB + ΔF + ΔD) = ± 54.
As can be seen from a comparison with 1 μm, in the configuration of the imaging apparatus according to the present embodiment, the value of the error affecting the focusing performance is significantly reduced, and the accuracy in assembling the components can be improved. it can. Therefore, it is easy to achieve no focus adjustment.

【0070】本実施の形態にかかる撮像装置を用いれ
ば、撮像光学系2は、透明材料にて形成されたレンズ部
2aと、レンズ部2aを保持し、且つ光を通過させない
材料にて形成された支持部材2bとを含み、レンズ部2
aおよび支持部材2bが一体成形されているので、構成
部品の点数が少なくてすむ。また、各構成部品を組み立
てて撮像装置を製造する際に生じる、合焦性能に影響を
与える誤差を低減することができる。よって、ピントの
無調整化が図りやすい。
When the image pickup apparatus according to the present embodiment is used, the image pickup optical system 2 is formed of a lens 2a formed of a transparent material and a material that holds the lens 2a and does not transmit light. Lens member 2
Since a and the support member 2b are integrally formed, the number of component parts can be reduced. Further, it is possible to reduce an error that occurs when assembling the components and manufacturing the imaging device and affects the focusing performance. Therefore, it is easy to achieve no focus adjustment.

【0071】また、第1の金型7により成形された支持
部材2bを第2の金型8へ挿入して、その後、透明材料
を第2の金型8へ射出することでレンズ部2aを成形す
るインサート成形によってレンズ部2aおよび支持部材
2bが一体成形されるので、射出速度条件の異なる2つ
の部材を一体成形することができる。また、色が異なる
部材や、熱膨張率等の特性が異なる部材を組み合わせた
撮像光学系を一体成形することも可能である。
Further, the supporting member 2b formed by the first mold 7 is inserted into the second mold 8, and thereafter, the transparent material is injected into the second mold 8, whereby the lens portion 2a is formed. Since the lens portion 2a and the support member 2b are integrally molded by insert molding, two members having different injection speed conditions can be integrally molded. Further, it is also possible to integrally mold an imaging optical system in which members having different colors and members having different characteristics such as a coefficient of thermal expansion are combined.

【0072】<実施の形態2>本実施の形態にかかる撮
像装置は、実施の形態1にかかる撮像装置の変形例であ
る。
<Embodiment 2> The imaging apparatus according to the present embodiment is a modification of the imaging apparatus according to Embodiment 1.

【0073】本実施の形態においては、図12に示すよ
うに赤外線カットフィルタ5を、撮像光学系2の外部で
ある、レンズ部2aの入射側に配置している。このよう
に配置した場合には、赤外線カットフィルタ5による厚
み誤差ΔBを誤差要因から排除することができる。その
場合は先に示した数値例で示すと、(ΔA+ΔF+Δ
D)=±30±3.5±4=±37.5μmとなる。
In the present embodiment, as shown in FIG. 12, the infrared cut filter 5 is arranged outside the imaging optical system 2 on the incident side of the lens unit 2a. In such an arrangement, the thickness error ΔB caused by the infrared cut filter 5 can be eliminated from the error factors. In that case, in the numerical example shown above, (ΔA + ΔF + Δ
D) = ± 30 ± 3.5 ± 4 = ± 37.5 μm.

【0074】よって、本実施の形態に係る撮像装置の構
成では、合焦性能に影響を与える誤差の値がさらに小さ
くなり、ピントの無調整化がより図りやすくなる。
Therefore, in the configuration of the imaging apparatus according to the present embodiment, the value of the error that affects the focusing performance is further reduced, and it is easier to adjust the focus.

【0075】<実施の形態3>本実施の形態にかかる撮
像装置も、実施の形態1にかかる撮像装置の変形例であ
る。
<Third Embodiment> An imaging device according to the present embodiment is also a modification of the imaging device according to the first embodiment.

【0076】本実施の形態においては、図13に示すよ
うに撮像素子1が基板3B上に配置されている。すなわ
ち、撮像素子1の下面が基板3Bの上面に接着層10を
介して接着されている。
In the present embodiment, as shown in FIG. 13, the image pickup device 1 is arranged on a substrate 3B. That is, the lower surface of the image sensor 1 is bonded to the upper surface of the substrate 3B via the bonding layer 10.

【0077】図14に基板3Bと撮像素子1とを上側か
ら見た図を示す。撮像素子1上の電極1bと基板3Bの
電極3bとはボンディングワイヤ1cによって接続され
る。基板3B上には電極3bから他の機器に接続するた
めの回路パターン3cが形成されている。
FIG. 14 is a view of the substrate 3B and the image pickup device 1 as viewed from above. The electrode 1b on the image sensor 1 and the electrode 3b on the substrate 3B are connected by a bonding wire 1c. A circuit pattern 3c for connecting the electrode 3b to another device is formed on the substrate 3B.

【0078】本実施の形態の撮像装置の構成において、
合焦性能に影響を与える誤差を図15に示す。この場合
には、撮像光学系2の形状誤差に起因するバックフォー
カスの誤差ΔA、赤外線カットフィルタ5の厚み誤差か
ら生じる誤差ΔB、撮像素子1の厚み誤差ΔC、基板3
と撮像素子1との接着層10の厚み誤差ΔEが合焦性能
に影響を与える誤差要因として挙げられる。
In the configuration of the imaging apparatus of the present embodiment,
FIG. 15 shows an error affecting the focusing performance. In this case, the back focus error ΔA caused by the shape error of the imaging optical system 2, the error ΔB caused by the thickness error of the infrared cut filter 5, the thickness error ΔC of the image sensor 1, the substrate 3
The thickness error ΔE of the adhesive layer 10 between the camera and the imaging device 1 is an error factor that affects the focusing performance.

【0079】ΔA,ΔB,ΔCの各誤差の具体的な数値
例は先に示したとおりである。また、接着層10の厚み
誤差ΔEの値は、接着層10の厚さを30〜50μm程
度と考えると数μmの誤差となる。ここで、バックフォ
ーカス誤差ΔGと形状誤差ΔJとの加算値よりもバック
フォーカス誤差ΔAの方が小さいこと、および誤差ΔE
と誤差ΔHの値は同程度であることを考えると、従来の
撮像装置の構成にて生じる誤差の合計値(ΔG+ΔJ+
ΔC+ΔB+ΔH)より、本実施の形態に係る撮像装置
の構成にて生じる誤差の合計値(ΔA+ΔE+ΔC+Δ
B)の方が小さいため、本実施の形態にかかる撮像装置
の構成によっても、ばらつき誤差を低減することが可能
である。
Specific numerical examples of the errors ΔA, ΔB, and ΔC are as described above. In addition, the value of the thickness error ΔE of the adhesive layer 10 is an error of several μm when the thickness of the adhesive layer 10 is considered to be about 30 to 50 μm. Here, the back focus error ΔA is smaller than the sum of the back focus error ΔG and the shape error ΔJ, and the error ΔE
And the value of the error ΔH are substantially the same, the total value of the errors (ΔG + ΔJ +
From ΔC + ΔB + ΔH), the total value of errors (ΔA + ΔE + ΔC + Δ) generated in the configuration of the imaging apparatus according to the present embodiment is obtained.
Since B) is smaller, the variation error can be reduced even by the configuration of the imaging apparatus according to the present embodiment.

【0080】[0080]

【発明の効果】請求項1に記載の発明によれば、撮像光
学系は、透明材料にて形成されたレンズ部と、レンズ部
を保持し、且つ遮光性の材料にて形成された支持部材と
を含み、レンズ部および支持部材が一体成形されている
ので、構成部品の点数が少なくてすむ。また、支持部材
の形状誤差は、一体成形された撮像光学系のバックフォ
ーカス誤差に吸収され、支持部材およびレンズ部をとも
に単体として製造した場合に生じる支持部材の形状誤差
とレンズ部の形状誤差とを加算した値よりも、一体成形
された撮像光学系のバックフォーカス誤差の値の方が小
さくなる。各構成部品を組み立てて撮像装置を製造する
際に生じる、合焦性能に影響を与える誤差を低減するこ
とができる。よって、ピントの無調整化が図りやすい。
According to the first aspect of the present invention, the imaging optical system has a lens portion formed of a transparent material, and a support member holding the lens portion and formed of a light-shielding material. Since the lens portion and the support member are integrally formed, the number of component parts can be reduced. In addition, the shape error of the support member is absorbed by the back focus error of the imaging optical system that is integrally formed, and the shape error of the support member and the shape error of the lens portion that occur when both the support member and the lens unit are manufactured as a single unit. The value of the back focus error of the integrally formed imaging optical system is smaller than the value obtained by adding. It is possible to reduce errors that affect focusing performance and occur when an imaging device is manufactured by assembling the components. Therefore, it is easy to achieve no focus adjustment.

【0081】請求項2に記載の発明によれば、第1の金
型により成形された支持部材を第2の金型へ挿入して、
その後、透明材料を第2の金型へ射出することでレンズ
部を成形するインサート成形によってレンズ部および支
持部材が一体成形されるので、射出速度条件の異なる2
つの部材を一体成形することができる。また、色が異な
る部材や、熱膨張率等の特性が異なる部材を組み合わせ
た撮像光学系を一体成形することも可能である。
According to the second aspect of the present invention, the support member formed by the first mold is inserted into the second mold,
Thereafter, the lens portion and the support member are integrally formed by insert molding in which the transparent material is injected into the second mold to form the lens portion.
The two members can be integrally formed. Further, it is also possible to integrally mold an imaging optical system in which members having different colors and members having different characteristics such as a coefficient of thermal expansion are combined.

【0082】請求項3に記載の発明によれば、撮像素子
の主表面は、開口部に有効画素領域を露出させつつ第2
の主表面に接着され、撮像光学系の支持部材は、第1の
主表面に保持されるので、撮像素子の厚み誤差は誤差要
因にならず、合焦性能に影響を及ぼす誤差の要因を少な
くすることができる。
According to the third aspect of the present invention, the main surface of the image pickup device has the second surface while exposing the effective pixel region to the opening.
And the supporting member of the imaging optical system is held on the first main surface. Therefore, the thickness error of the imaging device does not become an error factor, and the error factor affecting the focusing performance is reduced. can do.

【0083】請求項4に記載の発明によれば、支持部材
の側面と基板の主表面のうち支持部材の底面に覆われて
いない部分とが接着剤により接着されるので、支持部材
と基板との間に接着層が生じず、接着層の厚み誤差を排
除できる。よって、合焦性能に影響を及ぼす誤差の要因
を少なくすることができる。
According to the fourth aspect of the present invention, since the side surface of the support member and the portion of the main surface of the substrate which are not covered by the bottom surface of the support member are bonded by the adhesive, the support member and the substrate are bonded together. No adhesive layer is formed between the layers, and an error in the thickness of the adhesive layer can be eliminated. Therefore, it is possible to reduce a factor of an error affecting the focusing performance.

【0084】請求項5に記載の発明によれば、接着剤が
遮光性を有するので、支持部材と基板との間に仮にわず
かな隙間があったとしても、そこから光が撮像光学系の
内部に侵入することはない。
According to the fifth aspect of the present invention, since the adhesive has a light-shielding property, even if there is a slight gap between the support member and the substrate, light is transmitted therefrom to the inside of the imaging optical system. Do not invade.

【0085】請求項6に記載の発明によれば、接着剤が
UV硬化剤であるので、低温にて接着が可能であり、接
着時に撮像光学系が変形する問題は生じない。また、硬
化時の材料自体の収縮が小さいため、撮像光学系と基板
との間で位置ずれが生じにくい。また、熱に対する影響
が非常に小さい撮像装置を得ることができる。
According to the sixth aspect of the present invention, since the adhesive is a UV curing agent, bonding can be performed at a low temperature, and there is no problem that the imaging optical system is deformed at the time of bonding. In addition, since the material itself shrinks little during curing, misalignment is unlikely to occur between the imaging optical system and the substrate. Further, it is possible to obtain an imaging device having an extremely small effect on heat.

【0086】請求項7に記載の発明によれば、赤外線カ
ットフィルタが撮像光学系の外部である、レンズ部の入
射側に配置されているので、赤外線カットフィルタによ
る厚み誤差を誤差要因から排除することができる。よっ
て、合焦性能に影響を及ぼす誤差の要因を少なくするこ
とができる。
According to the seventh aspect of the present invention, since the infrared cut filter is disposed outside the imaging optical system and on the incident side of the lens unit, the thickness error caused by the infrared cut filter is excluded from the error factors. be able to. Therefore, it is possible to reduce a factor of an error affecting the focusing performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1に係る撮像装置を示す図であ
る。
FIG. 1 is a diagram showing an imaging device according to a first embodiment.

【図2】 実施の形態1に係る撮像装置の撮像素子1と
基板3Aとの接合部を拡大して示した図である。
FIG. 2 is an enlarged view showing a joint between an image sensor 1 and a substrate 3A of the image pickup apparatus according to Embodiment 1.

【図3】 実施の形態1に係る撮像装置の基板3Aの下
面図である。
FIG. 3 is a bottom view of the substrate 3A of the imaging device according to the first embodiment;

【図4】 実施の形態1に係る撮像装置の支持部材2b
を射出成形するための第1の金型7を示す側面図であ
る。
FIG. 4 is a support member 2b of the imaging device according to the first embodiment;
FIG. 6 is a side view showing a first mold 7 for injection-molding a mold.

【図5】 実施の形態1に係る撮像装置の支持部材2b
を射出成形するための第1の金型7を示す側面図であ
る。
FIG. 5 is a support member 2b of the imaging device according to the first embodiment;
FIG. 6 is a side view showing a first mold 7 for injection-molding a mold.

【図6】 実施の形態1に係る撮像装置の支持部材2b
を射出成形するための第1の金型7を示す斜視図であ
る。
FIG. 6 is a support member 2b of the imaging device according to the first embodiment.
FIG. 3 is a perspective view showing a first mold 7 for injection-molding a mold.

【図7】 射出成形された支持部材2bを示す斜視図で
ある。
FIG. 7 is a perspective view showing a support member 2b formed by injection molding.

【図8】 実施の形態1に係る撮像装置のレンズ部2a
および支持部材2bを一体成形するための第2の金型8
を示す側面図である。
FIG. 8 illustrates a lens unit 2a of the imaging device according to the first embodiment.
Mold 8 for integrally molding the support member 2b and the support member 2b
FIG.

【図9】 実施の形態1に係る撮像装置のレンズ部2a
および支持部材2bを一体成形するための第2の金型8
を示す側面図である。
FIG. 9 illustrates a lens unit 2a of the imaging device according to the first embodiment.
Mold 8 for integrally molding the support member 2b and the support member 2b
FIG.

【図10】 実施の形態1に係る撮像装置のレンズ部2
aおよび支持部材2bを一体成形するための第2の金型
8の上下を合わせた状態を示す側面図である。
FIG. 10 illustrates a lens unit 2 of the imaging device according to the first embodiment.
FIG. 7 is a side view showing a state in which a second mold 8 for integrally molding the supporting member 2a and the support member 2b is vertically aligned.

【図11】 実施の形態1に係る撮像装置の合焦性能に
影響を及ぼす誤差を示す図である。
FIG. 11 is a diagram illustrating an error affecting the focusing performance of the imaging device according to the first embodiment;

【図12】 実施の形態2に係る撮像装置を示す図であ
る。
FIG. 12 is a diagram showing an imaging device according to a second embodiment.

【図13】 実施の形態3に係る撮像装置を示す図であ
る。
FIG. 13 is a diagram showing an imaging device according to a third embodiment.

【図14】 実施の形態3に係る撮像装置の基板3Bと
撮像素子1とを示す上面図である。
FIG. 14 is a top view showing a substrate 3B and an image sensor 1 of the image pickup apparatus according to Embodiment 3.

【図15】 実施の形態3に係る撮像装置の合焦性能に
影響を及ぼす誤差を示す図である。
FIG. 15 is a diagram illustrating an error affecting the focusing performance of the imaging device according to the third embodiment;

【図16】 従来の撮像装置を示す図である。FIG. 16 is a diagram illustrating a conventional imaging device.

【図17】 従来の撮像装置を示す図である。FIG. 17 is a diagram illustrating a conventional imaging device.

【図18】 従来の撮像装置の合焦性能に影響を及ぼす
誤差を示す図である。
FIG. 18 is a diagram illustrating an error affecting a focusing performance of a conventional imaging device.

【符号の説明】[Explanation of symbols]

1 撮像素子、2 撮像光学系、2a レンズ部、2b
支持部材、3A,3B 基板、4 接着剤、5 赤外
線カットフィルタ、6 接着層、7 第1の金型、8
第2の金型、9 バルブ、10 接着層。
1 imaging device, 2 imaging optical system, 2a lens unit, 2b
Support member, 3A, 3B substrate, 4 adhesive, 5 infrared cut filter, 6 adhesive layer, 7 first die, 8
Second mold, 9 valves, 10 adhesive layers.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年11月22日(2000.11.
22)
[Submission date] November 22, 2000 (200.11.
22)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0043[Correction target item name] 0043

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0043】なお、レンズ部2aのような光学部材を成
形するときは、透明材料が流れていく跡(フローマー
ク)や、焼け、ジェッティングをさけるために、低速射
出にて成形を行うことが一般的である。一方、その他の
部材については、量産効率をあげるために、比較的短時
間ですむ高速射出成形がよく行われる。本発明において
も、レンズ部2aは低速射出にて成形を行い、支持部材
2bは高速射出にて成形を行えばよい。上記のようなイ
ンサート成形を用いれば、射出速度条件の異なる2つの
部材を一体成形することができる。また、インサート成
形を用いれば、レンズ部2aおよび支持部材2bのよう
に色が異なる部材や、熱膨張率等の特性が異なる部材を
組み合わせた撮像光学系を一体成形することも可能であ
る。
When molding an optical member such as the lens portion 2a, the molding may be performed by low-speed injection in order to avoid traces of flowing transparent material (flow marks), burning and jetting. General. On the other hand, for other members, high-speed injection molding, which requires a relatively short time, is often performed in order to increase mass production efficiency. Also in the present invention, the lens portion 2a may be formed by low-speed injection, and the support member 2b may be formed by high-speed injection. By using the insert molding as described above, two members having different injection speed conditions can be integrally molded. If insert molding is used, it is also possible to integrally mold an imaging optical system in which members having different colors, such as the lens portion 2a and the support member 2b, and members having different characteristics such as the coefficient of thermal expansion are combined.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of sign

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【符号の説明】 1 撮像素子、2 撮像光学系、2a レンズ部、2b
支持部材、3A,3B 基板、4 接着剤、5 赤外
線カットフィルタ、6 接着層、7 第1の金型、8
第2の金型、9 バルブ、10 接着層、2c インジ
ェクト部
[Description of Signs] 1 imaging device, 2 imaging optical system, 2a lens unit, 2b
Support member, 3A, 3B substrate, 4 adhesive, 5 infrared cut filter, 6 adhesive layer, 7 first die, 8
Second mold, 9 valves, 10 adhesive layers , 2c ink
Project department .

フロントページの続き (72)発明者 杉浦 博明 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山崎 貴之 神奈川県厚木市三田3000番地 株式会社エ コー内 Fターム(参考) 2H044 AB19 4M118 AA10 AB01 BA10 BA14 GC11 HA02 HA11 HA23 HA30 HA31 HA33 5C022 AB13 AC42 AC54 AC55 AC70 AC78 5C024 CY47 CY48 CY49 EX21 EX42 EX51 GY01 GY31 Continuing from the front page (72) Inventor Hiroaki Sugiura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Takayuki Yamazaki 3000 Mita, Atsugi-shi, Kanagawa Prefecture Reference) 2H044 AB19 4M118 AA10 AB01 BA10 BA14 GC11 HA02 HA11 HA23 HA30 HA31 HA33 5C022 AB13 AC42 AC54 AC55 AC70 AC78 5C024 CY47 CY48 CY49 EX21 EX42 EX51 GY01 GY31

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 結像した光学像を電気信号に変換する撮
像素子と、 前記撮像素子を保持する基板と、 前記基板に保持され、前記撮像素子へと前記光学像を結
像させる撮像光学系とを備え、 前記撮像光学系は、透明材料にて形成されたレンズ部
と、前記レンズ部を保持し、且つ遮光性の材料にて形成
された支持部材とを含み、前記レンズ部および前記支持
部材が一体成形された撮像装置。
An imaging device that converts an optical image formed into an electric signal; a substrate that holds the imaging device; and an imaging optical system that is held by the substrate and forms the optical image on the imaging device. The imaging optical system includes: a lens unit formed of a transparent material; and a support member holding the lens unit and formed of a light-shielding material. An imaging device in which members are integrally formed.
【請求項2】 請求項1に記載の撮像装置であって、 前記遮光性の材料を第1の金型に射出することにより前
記支持部材を成形し、前記第1の金型により成形された
前記支持部材を第2の金型へ挿入して、その後、前記透
明材料を第2の金型へ射出することでレンズ部を成形す
るインサート成形によって前記レンズ部および前記支持
部材が一体成形された撮像装置。
2. The imaging device according to claim 1, wherein the light-shielding material is injected into a first mold to form the support member, and the light-shielding material is molded by the first mold. The lens part and the support member were integrally formed by insert molding in which the support member was inserted into a second mold, and then the transparent material was injected into the second mold to form a lens part. Imaging device.
【請求項3】 請求項1に記載の撮像装置であって、 前記撮像素子は、前記光学像の入射光を感知可能な領域
である有効画素領域をその主表面に有し、 前記基板は開口部、第1の主表面、および前記第1の主
表面と反対側の第2の主表面を有し、 前記開口部を介して前記撮像素子の前記有効画素領域に
前記入射光が届き、 前記撮像素子の前記主表面は、前記開口部に前記有効画
素領域を露出させつつ前記第2の主表面に接着され、 前記撮像光学系の前記支持部材は、前記第1の主表面に
保持される撮像装置。
3. The imaging device according to claim 1, wherein the imaging element has an effective pixel area on a main surface thereof, which is an area where incident light of the optical image can be sensed, and the substrate has an opening. A portion, a first main surface, and a second main surface opposite to the first main surface, wherein the incident light reaches the effective pixel region of the imaging device through the opening, The main surface of the imaging device is adhered to the second main surface while exposing the effective pixel region to the opening, and the support member of the imaging optical system is held on the first main surface. Imaging device.
【請求項4】 請求項1に記載の撮像装置であって、 前記基板は主表面を有し、 前記撮像光学系の前記支持部材は底面および側面を有
し、 前記支持部材の前記底面は前記基板の前記主表面にあて
がわれ、 前記支持部材の前記側面と前記基板の前記主表面のうち
前記支持部材の前記底面に覆われていない部分とが接着
剤により接着される撮像装置。
4. The imaging device according to claim 1, wherein the substrate has a main surface, the support member of the imaging optical system has a bottom surface and a side surface, and the bottom surface of the support member is the bottom surface. An imaging device which is applied to the main surface of a substrate, wherein the side surface of the support member and a part of the main surface of the substrate which is not covered by the bottom surface of the support member are bonded with an adhesive.
【請求項5】 請求項4に記載の撮像装置であって、 前記接着剤は遮光性を有する撮像装置。5. The imaging device according to claim 4, wherein the adhesive has a light shielding property. 【請求項6】 請求項4に記載の撮像装置であって、 前記接着剤はUV硬化剤である撮像装置。6. The imaging device according to claim 4, wherein the adhesive is a UV curing agent. 【請求項7】 請求項1に記載の撮像装置であって、 赤外線カットフィルタをさらに備え、 前記赤外線カットフィルタは、前記撮像光学系の外部で
ある、前記レンズ部の入射側に配置された撮像装置。
7. The imaging apparatus according to claim 1, further comprising an infrared cut filter, wherein the infrared cut filter is provided outside of the imaging optical system and arranged on an incident side of the lens unit. apparatus.
JP2000232729A 2000-08-01 2000-08-01 Imaging device Expired - Fee Related JP4034031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000232729A JP4034031B2 (en) 2000-08-01 2000-08-01 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232729A JP4034031B2 (en) 2000-08-01 2000-08-01 Imaging device

Publications (2)

Publication Number Publication Date
JP2002051268A true JP2002051268A (en) 2002-02-15
JP4034031B2 JP4034031B2 (en) 2008-01-16

Family

ID=18725363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232729A Expired - Fee Related JP4034031B2 (en) 2000-08-01 2000-08-01 Imaging device

Country Status (1)

Country Link
JP (1) JP4034031B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007499A (en) * 2002-04-26 2004-01-08 Fuji Photo Film Co Ltd Imaging device chip module and mounting method for imaging device chip
JP2004029590A (en) * 2002-06-28 2004-01-29 Kyocera Corp Small-sized module camera
JP2004177863A (en) * 2002-11-29 2004-06-24 Akutowan:Kk Lens with lens barrel and its manufacturing method
JP2005234008A (en) * 2004-02-17 2005-09-02 Olympus Corp Optical component holding mechanism
JP2006332894A (en) * 2005-05-24 2006-12-07 Olympus Imaging Corp Imaging device
JP2007097159A (en) * 2005-09-27 2007-04-12 Samsung Electro Mech Co Ltd Image sensor module, camera module using the same and manufacturing method of camera module
JP2007288755A (en) * 2006-04-14 2007-11-01 Optopac Co Ltd Camera module
CN100451813C (en) * 2005-01-28 2009-01-14 三星电机株式会社 Camera module with minimized defects caused by dirt particles on optical filter
US7583309B2 (en) 2002-06-28 2009-09-01 Kyocera Coproration Imaging device package camera module and camera module producing method
KR100918140B1 (en) 2002-03-22 2009-09-17 코니카 미놀타 홀딩스 가부시키가이샤 Image Pickup Device
JP2009210996A (en) * 2008-03-06 2009-09-17 Olympus Medical Systems Corp Imaging module, manufacturing method of imaging module, assembling method of imaging module, endoscope using imaging module, and capsule type endoscope using imaging module
CN101277388B (en) * 2007-03-28 2010-06-09 夏普株式会社 Solid-state imaging device and electronic device including same
KR100991063B1 (en) 2002-09-27 2010-10-29 코니카 미놀타 홀딩스 가부시키가이샤 Image pickup device and portable terminal equipped therewith
US7829833B2 (en) 2005-05-24 2010-11-09 Olympus Imaging Corp. Arranging and/or supporting an image pickup device in an image pickup apparatus
WO2014156710A1 (en) * 2013-03-27 2014-10-02 株式会社村田製作所 Camera module
JP2016522447A (en) * 2013-05-27 2016-07-28 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Optical structure provided with bridging member and method for manufacturing the same
CN107211083A (en) * 2015-02-10 2017-09-26 罗伯特·博世有限公司 Image capturing apparatus and motor vehicle
WO2019123614A1 (en) * 2017-12-21 2019-06-27 オリンパス株式会社 Imaging device and endoscope
WO2021025190A1 (en) * 2019-08-05 2021-02-11 엘지전자 주식회사 Electronic device and method for manufacturing same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918140B1 (en) 2002-03-22 2009-09-17 코니카 미놀타 홀딩스 가부시키가이샤 Image Pickup Device
JP2004007499A (en) * 2002-04-26 2004-01-08 Fuji Photo Film Co Ltd Imaging device chip module and mounting method for imaging device chip
US7583309B2 (en) 2002-06-28 2009-09-01 Kyocera Coproration Imaging device package camera module and camera module producing method
JP2004029590A (en) * 2002-06-28 2004-01-29 Kyocera Corp Small-sized module camera
KR100991063B1 (en) 2002-09-27 2010-10-29 코니카 미놀타 홀딩스 가부시키가이샤 Image pickup device and portable terminal equipped therewith
JP2004177863A (en) * 2002-11-29 2004-06-24 Akutowan:Kk Lens with lens barrel and its manufacturing method
JP2005234008A (en) * 2004-02-17 2005-09-02 Olympus Corp Optical component holding mechanism
JP4508673B2 (en) * 2004-02-17 2010-07-21 オリンパス株式会社 Optical component holding mechanism
CN100451813C (en) * 2005-01-28 2009-01-14 三星电机株式会社 Camera module with minimized defects caused by dirt particles on optical filter
JP4555732B2 (en) * 2005-05-24 2010-10-06 オリンパスイメージング株式会社 Imaging device
JP2006332894A (en) * 2005-05-24 2006-12-07 Olympus Imaging Corp Imaging device
US7829833B2 (en) 2005-05-24 2010-11-09 Olympus Imaging Corp. Arranging and/or supporting an image pickup device in an image pickup apparatus
JP2007097159A (en) * 2005-09-27 2007-04-12 Samsung Electro Mech Co Ltd Image sensor module, camera module using the same and manufacturing method of camera module
JP4584214B2 (en) * 2005-09-27 2010-11-17 三星電機株式会社 Image sensor module, camera module using the same, and camera module manufacturing method
JP2007288755A (en) * 2006-04-14 2007-11-01 Optopac Co Ltd Camera module
CN101277388B (en) * 2007-03-28 2010-06-09 夏普株式会社 Solid-state imaging device and electronic device including same
JP2009210996A (en) * 2008-03-06 2009-09-17 Olympus Medical Systems Corp Imaging module, manufacturing method of imaging module, assembling method of imaging module, endoscope using imaging module, and capsule type endoscope using imaging module
JP4659848B2 (en) * 2008-03-06 2011-03-30 オリンパスメディカルシステムズ株式会社 Imaging module
US8300094B2 (en) 2008-03-06 2012-10-30 Olympus Medical Systems Corp. Image pickup module, manufacturing and assembling methods of the same, endoscope and capsule type endoscope using the same
WO2014156710A1 (en) * 2013-03-27 2014-10-02 株式会社村田製作所 Camera module
JP5652577B1 (en) * 2013-03-27 2015-01-14 株式会社村田製作所 The camera module
US9565346B2 (en) 2013-03-27 2017-02-07 Murata Manufacturing Co., Ltd. Camera module
JP2016522447A (en) * 2013-05-27 2016-07-28 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Optical structure provided with bridging member and method for manufacturing the same
US10451832B2 (en) 2013-05-27 2019-10-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical structure with ridges arranged at the same and method for producing the same
US11209607B2 (en) 2013-05-27 2021-12-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Optical structure with ridges arranged at the same and method for producing the same
CN107211083A (en) * 2015-02-10 2017-09-26 罗伯特·博世有限公司 Image capturing apparatus and motor vehicle
JP2018511069A (en) * 2015-02-10 2018-04-19 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Image recording system and automobile
US10321034B2 (en) 2015-02-10 2019-06-11 Robert Bosch Gmbh Image recording system and a motor vehicle
CN107211083B (en) * 2015-02-10 2021-02-26 罗伯特·博世有限公司 Image capturing system and motor vehicle
WO2019123614A1 (en) * 2017-12-21 2019-06-27 オリンパス株式会社 Imaging device and endoscope
WO2021025190A1 (en) * 2019-08-05 2021-02-11 엘지전자 주식회사 Electronic device and method for manufacturing same

Also Published As

Publication number Publication date
JP4034031B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP2002051268A (en) Image pickup device
JP3821652B2 (en) Imaging device
WO2018023887A1 (en) Photographing module, molded circuit board assembly and molded photosensitive assembly thereof and manufacturing methods
TWI685065B (en) Camera module and its molded circuit board components and manufacturing method
KR101087695B1 (en) Lens unit composed of different materials and camera module having the same
JP5601000B2 (en) Imaging device
US7988371B2 (en) Camera module
CN113485054B (en) Camera module for reducing stray light and photosensitive assembly thereof
JP2007006475A (en) Camera module for mobile communication device
JP2009157279A (en) Lens unit, imaging apparatus, electronic equipment, and assembly method of lens unit
JP2009229749A (en) Wafer-like optical device, its method for manufacturing, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information apparatus
TW201346372A (en) Camera module
CN101924115A (en) Solid-state image pickup device
TW202131079A (en) Imaging lens assembly, camera module and electronic device
TWM557833U (en) Camera module, molded photosensitive element, molding die, and its electronic equipment
JP2008250285A (en) Optical member and imaging device having the same
WO2019062609A1 (en) Camera module, photosensitive component, photosensitive-component joined panel, and forming die thereof and manufacturing method thereof
JP4248586B2 (en) IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND PORTABLE INFORMATION TERMINAL AND IMAGING DEVICE WITH THE IMAGING DEVICE
WO2021143410A1 (en) Split-type zoom lens, camera module and corresponding assembly method
TW495934B (en) Solid image pickup device
TWI308663B (en) Lens module and fabricating method thereof
TW201518777A (en) Lens array, lens array stack, and method for fabrication thereof
JP3742412B2 (en) Optical unit manufacturing method and optical unit obtained by the manufacturing method
WO2019228348A1 (en) Optical lens, and camera module and assembly method thereof
JP2007086598A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees