JP2002050586A - Method for manufacturing semiconductor crystal - Google Patents

Method for manufacturing semiconductor crystal

Info

Publication number
JP2002050586A
JP2002050586A JP2000240385A JP2000240385A JP2002050586A JP 2002050586 A JP2002050586 A JP 2002050586A JP 2000240385 A JP2000240385 A JP 2000240385A JP 2000240385 A JP2000240385 A JP 2000240385A JP 2002050586 A JP2002050586 A JP 2002050586A
Authority
JP
Japan
Prior art keywords
substrate
layer
gan
porous
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000240385A
Other languages
Japanese (ja)
Other versions
JP3780832B2 (en
Inventor
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000240385A priority Critical patent/JP3780832B2/en
Publication of JP2002050586A publication Critical patent/JP2002050586A/en
Application granted granted Critical
Publication of JP3780832B2 publication Critical patent/JP3780832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing semiconductor crystal, which can grow GaN crystal of high quality on various substrates. SOLUTION: The surface of the substrate 1 is once worked in a porous shape and nitride crystal 3 is grown on a porous layer 2. Thus, the GaN layer of high quality can be grown, even if there is no low-temperature buffer layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体結晶の製造
方法に関する。
[0001] The present invention relates to a method for manufacturing a semiconductor crystal.

【0002】[0002]

【従来の技術】窒化ガリウム(GaN)、窒化インジウ
ムガリウム(InGaN)、窒化ガリウムアルミニウム
(GaAlN)等のIII 族窒化物半導体は、青色発光ダ
イオード(LED)やレーザダイオード(LD)用材料
として脚光を浴びている。また、III 族窒化物半導体
は、光素子以外にも耐熱性や耐環境性がよいという特徴
を活かした電子デバイス用素子の開発も行われている。
2. Description of the Related Art Group III nitride semiconductors such as gallium nitride (GaN), indium gallium nitride (InGaN), and gallium aluminum nitride (GaAlN) have been spotlighted as materials for blue light emitting diodes (LEDs) and laser diodes (LDs). I'm taking a bath. In addition to group III nitride semiconductors, elements for electronic devices have been developed in addition to optical elements, making use of the characteristics of good heat resistance and environmental resistance.

【0003】III 族窒化物半導体は、バルク結晶成長が
難しいので実用に耐えるIII 族窒化物の単結晶基板は未
だ得られていない。現在実用化されているGaN成長用
の基板はサファイアであり、単結晶サファイア基板の上
に有機金属気相成長法(MOVPE法)でGaNをエピ
タキシャル成長させる方法が一般に用いられている。
[0003] Since a group III nitride semiconductor is difficult to grow in bulk crystal, a group III nitride single crystal substrate that can be used practically has not yet been obtained. A GaN growth substrate currently in practical use is sapphire, and a method of epitaxially growing GaN on a single crystal sapphire substrate by metal organic chemical vapor deposition (MOVPE) is generally used.

【0004】サファイア基板は、GaNと格子定数が異
なるため、サファイア基板上に直接GaNを成長させた
のでは単結晶膜を成長させることができない。このた
め、サファイア基板上に一旦低温でAlNやGaNのバ
ッファ層(低温成長バッファ層)を成長させ、このバッ
ファ層で格子の歪を緩和させてからそのバッファ層の上
にGaNを成長させる方法が開示されている(特開昭6
3−188983号公報参照)。
Since a sapphire substrate has a different lattice constant from that of GaN, a single crystal film cannot be grown by directly growing GaN on the sapphire substrate. Therefore, a method of temporarily growing a buffer layer of AlN or GaN (low-temperature growth buffer layer) on a sapphire substrate at a low temperature, relaxing lattice distortion in the buffer layer, and then growing GaN on the buffer layer is proposed. Is disclosed (Japanese Unexamined Patent Publication No.
3-188983).

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した従
来の低温成長バッファ層は、最適な成長条件の設定幅が
非常に狭く、成長温度のわずかなゆらぎや膜厚のずれに
より、そのバッファ層の上に成長するGaN膜の結晶性
や表面状態が大きく変化してしまい、GaN成長の成長
再現性が悪いという問題がある。また、低温成長バッフ
ァ層を用いたGaNの成長においても基板と結晶の格子
とのずれが発生するので、GaNは無数の欠陥を有して
いる。この欠陥は、GaN系LDを製造する上で障害と
なることが予想される。また、サファイア基板とGaN
との線膨張係数差からエピタキシャル成長後の基板に反
りが発生し、最悪の場合には割れに至るという問題があ
る。このため、GaNエピタキシャルウェハは大口径化
が難しく、現状では直径50mm以上のものは実用化さ
れていない。
However, the conventional low-temperature growth buffer layer described above has a very narrow setting range for the optimum growth conditions, and the fluctuation of the growth temperature and the deviation of the film thickness cause the buffer layer to have a small thickness. There is a problem that the crystallinity and the surface state of the GaN film grown thereon change greatly, and the growth reproducibility of GaN growth is poor. Also, in the growth of GaN using the low-temperature growth buffer layer, a shift between the substrate and the crystal lattice occurs, so GaN has countless defects. This defect is expected to be a hindrance in manufacturing a GaN-based LD. In addition, sapphire substrate and GaN
There is a problem that the substrate after the epitaxial growth is warped due to the difference in linear expansion coefficient from the above, and in the worst case, the substrate is cracked. For this reason, it is difficult to increase the diameter of the GaN epitaxial wafer, and a wafer having a diameter of 50 mm or more has not been put to practical use at present.

【0006】これらの問題を解決するために、サファイ
ア以外の基板、例えば砒化ガリウム(GaAs)、シリ
コン(Si)、NGO(NdGaO3 )等を用いた成長
が検討されている。これらの基板を用いる場合もこれま
ではサファイア基板の使用時と同様に、まず基板の上に
低温でバッファ層を成長し、そのバッファ層の上にGa
Nを成長させる方法が用いられているが、依然として格
子定数差の問題や成長するGaNの結晶形制御の問題が
解決しておらず、実用化されるには至っていないという
問題があった。
In order to solve these problems, growth using a substrate other than sapphire, for example, gallium arsenide (GaAs), silicon (Si), NGO (NdGaO 3 ) or the like has been studied. In the case of using these substrates, a buffer layer is first grown on the substrate at a low temperature, and a Ga layer is formed on the buffer layer, as in the case of using a sapphire substrate.
Although a method of growing N has been used, there has been a problem that the problem of lattice constant difference and the problem of controlling the crystal form of GaN to be grown have not been solved yet, so that it has not been put to practical use.

【0007】そこで、本発明の目的は、上記課題を解決
し、種々の基板の上に高品質なGaN系結晶を成長させ
ることができる半導体結晶の製造方法を提供することに
ある。
It is an object of the present invention to solve the above-mentioned problems and to provide a method of manufacturing a semiconductor crystal capable of growing a high-quality GaN-based crystal on various substrates.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の半導体結晶の製造方法は、III 族窒化物以外
の基板の表面に多孔質層を形成し、その多孔質層の上に
III 族窒化物単結晶層を成長させるものである。
In order to achieve the above object, a method of manufacturing a semiconductor crystal according to the present invention comprises forming a porous layer on the surface of a substrate other than a group III nitride, and forming a porous layer on the porous layer.
This is for growing a group III nitride single crystal layer.

【0009】上記構成に加え本発明の半導体結晶の製造
方法は、基板としてSi、Ge又はGaAsを用いると
共に、その(111)面を用いてもよい。
In addition to the above structure, the method of manufacturing a semiconductor crystal of the present invention may use Si, Ge or GaAs as a substrate and also use its (111) plane.

【0010】上記構成に加え本発明の半導体結晶の製造
方法は、基板としてサファイア又はSiCを用いると共
に、その(0001)面を用いてもよい。
[0010] In addition to the above structure, the method for manufacturing a semiconductor crystal of the present invention may use sapphire or SiC as a substrate and use the (0001) plane.

【0011】上記構成に加え本発明の半導体結晶の製造
方法は、基板の表面に陽極酸化法によって多孔質層を形
成してもよい。
In addition to the above structure, in the method of manufacturing a semiconductor crystal according to the present invention, a porous layer may be formed on the surface of the substrate by anodic oxidation.

【0012】また、本発明の半導体結晶の製造方法は、
基板の表面に金属膜を形成し、金属膜を陽極酸化法で多
孔質膜とした後、多孔質膜をマスクとして、基板にエッ
チングを施し、多孔質膜だけを除去して表面に多孔質層
を有する基板を形成し、この基板上にIII 族窒化物単結
晶を成長させるものである。
Further, the method for producing a semiconductor crystal according to the present invention comprises:
After forming a metal film on the surface of the substrate and turning the metal film into a porous film by anodizing, the substrate is etched using the porous film as a mask, and only the porous film is removed to form a porous layer on the surface. Is formed, and a group III nitride single crystal is grown on the substrate.

【0013】上記構成に加え本発明の半導体結晶の製造
方法は、金属膜としてアルミニウムを用いてもよい。
In addition to the above configuration, in the method of manufacturing a semiconductor crystal according to the present invention, aluminum may be used as the metal film.

【0014】上記構成に加え本発明の半導体結晶の製造
方法は、多孔質層上にストライプ状又は点状の窓を有す
るマスクを設け、そのマスクの上にIII 族窒化物単結晶
層を成長させてもよい。
In addition to the above structure, the method of manufacturing a semiconductor crystal according to the present invention provides a mask having stripe-shaped or dot-shaped windows on a porous layer, and grows a group III nitride single crystal layer on the mask. You may.

【0015】上記構成に加え本発明の半導体結晶の製造
方法は、上記製造方法により得られた半導体単結晶から
III 族窒化物単結晶層だけを多孔質層で剥離させてもよ
い。
In addition to the above configuration, the method of manufacturing a semiconductor crystal of the present invention comprises the steps of:
Only the group III nitride single crystal layer may be separated from the porous layer.

【0016】本発明の半導体結晶の製造方法は、基板表
面を一旦多孔質状に加工した後、その多孔質層の上に窒
化物結晶を成長させるものである。基板表面を多孔質と
し、その表面でGaNを成長させることにより、低温成
長バッファ層が無くても高品質なGaN層を成長させる
ことができる。
In the method of manufacturing a semiconductor crystal according to the present invention, a substrate surface is once worked into a porous shape, and then a nitride crystal is grown on the porous layer. By making the substrate surface porous and growing GaN on the surface, a high-quality GaN layer can be grown without a low-temperature growth buffer layer.

【0017】ここで、Si等、GaNとは格子定数や線
膨張係数が大きく異なる基板上にGaNをエピタキシャ
ル成長させると、通常は成長結晶が多結晶化したり、熱
歪による基板の反りや割れが生じてしまう。しかし、本
発明によれば、GaNが多孔質層上に成長することによ
り、多孔質が基板とGaNとの格子歪や熱歪を緩和する
ように機能するため、高品質なGaNエピタキシャル層
が得られ、また基板に反りや割れが発生することもな
い。従って、従来不可能であった100mm以上の大口
径GaNエピタキシャル成長も可能となる。
Here, when GaN is epitaxially grown on a substrate, such as Si, having a lattice constant and a coefficient of linear expansion that are significantly different from those of GaN, the grown crystal usually becomes polycrystalline or the substrate is warped or cracked due to thermal strain. Would. However, according to the present invention, a high-quality GaN epitaxial layer can be obtained because GaN grows on the porous layer, and the porosity functions to reduce lattice distortion and thermal distortion between the substrate and GaN. In addition, the substrate does not warp or crack. Therefore, it is possible to perform a large-diameter GaN epitaxial growth of 100 mm or more, which was impossible in the past.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0019】図1は本発明の半導体結晶の製造方法を適
用したGaNエピタキシャル基板の一実施の形態を示す
断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a GaN epitaxial substrate to which a method for manufacturing a semiconductor crystal according to the present invention is applied.

【0020】このGaNエピタキシャル基板は、III 族
窒化物以外の基板の上に、多孔質層及びIII 族窒化物単
結晶層を順次形成したものである。このように基板表面
を多孔質とし、その表面でGaNを成長させることによ
り、低温成長バッファ層が無くても高品質なGaN層を
成長させることができる。
This GaN epitaxial substrate is obtained by sequentially forming a porous layer and a group III nitride single crystal layer on a substrate other than a group III nitride. By making the substrate surface porous and growing GaN on the surface, a high-quality GaN layer can be grown without a low-temperature growth buffer layer.

【0021】[0021]

【実施例】次に具体的な数値を挙げて説明するが、本発
明はこれに限定されるものではない。
Next, the present invention will be described with reference to specific numerical values, but the present invention is not limited thereto.

【0022】(実施例1)直径100mm、厚さ300
μmのSi(111)基板に、フッ酸とエタノールとの
混合液中、20〜2.5Vの電界電圧で30分間の陽極
酸化処理を行った。その結果、Si基板表面に、数十〜
数百nm程度の孔を無数に有する多孔質Si層が形成さ
れた。次に、多孔質層を形成した基板をMOCVD炉に
収納し、アンモニアガスとトリメチルガリウムとを原料
として基板上に常圧、1100℃でGaN層を2μm成
長させた。得られたGaNは平坦な鏡面を呈していた。
得られたGaNエピタキシャル基板は図1に示すような
断面構造を有していた。このGaNエピタキシャル基板
の表面を原子間力顕微鏡(AFM)で観察し、表面に現
れるピットの密度を計数したところ、8×106 個/c
3 であった。
(Example 1) Diameter 100 mm, thickness 300
An anodizing treatment was performed on a Si (111) substrate of μm in a mixed solution of hydrofluoric acid and ethanol at an electric field voltage of 20 to 2.5 V for 30 minutes. As a result, several tens to
A porous Si layer having innumerable pores of several hundred nm was formed. Next, the substrate on which the porous layer was formed was housed in an MOCVD furnace, and a GaN layer was grown on the substrate at a normal pressure of 1100 ° C. and a thickness of 2 μm using ammonia gas and trimethylgallium as raw materials. The obtained GaN had a flat mirror surface.
The obtained GaN epitaxial wafer had a sectional structure as shown in FIG. To observe the surface of the GaN epitaxial substrate by atomic force microscope (AFM), it was counted the density of pits appearing on the surface, 8 × 10 6 cells / c
m 3 .

【0023】従来法でサファイア基板上に成長したGa
N層の表面には109 〜1010個/cm3 のピットが観
察されることから、非常に少ない欠陥密度のGaNエピ
タキシャル層が得られていると言える。成長したGaN
層のX線回折法によるロッキングカーブの半値幅は24
0secであった。
Ga grown on a sapphire substrate by a conventional method
Since the pits 109 10 10 pieces / cm 3 is observed on the surface of the N layer, it can be said that the GaN epitaxial layer of very low defect density are obtained. Grown GaN
The half width of the rocking curve of the layer by X-ray diffraction was 24.
It was 0 sec.

【0024】従来法で得られたエピタキシャル基板では
通常300sec程度の値が得られているので、この数
値と比較して十分に結晶性の高いエピタキシャル層が得
られているものと言える。また、基板の中央と周縁部と
の高さの差を測り、反りの評価を行ったところ、2μm
であった。従来法で得られたエピタキシャル基板では、
通常50μmもの反りが観察されるので、本発明に係る
エピタキシャル基板の反りは格段に少ないと言える。
Since a value of about 300 sec is generally obtained in the epitaxial substrate obtained by the conventional method, it can be said that an epitaxial layer having sufficiently high crystallinity is obtained as compared with this value. Also, the difference in height between the center and the periphery of the substrate was measured and the warpage was evaluated.
Met. In the epitaxial substrate obtained by the conventional method,
Usually, as much as 50 μm of warpage is observed, and it can be said that the warp of the epitaxial substrate according to the present invention is extremely small.

【0025】(実施例2)直径100mm、厚さ350
μmのGaAs(111)基板上に、金属アルミニウム
を1μmスパッタで積層し、その表面を3%の蓚酸水溶
液中で電界電圧12Vの陽極酸化処理を行った。その結
果、金属アルミニウムが酸化され、多孔質アルミナ層が
形成された。この基板の表面を形成した多孔質アルミナ
層をマスクとして、さらに硫酸と過酸化水素水と水との
混合液中でエッチングし、GaAs基板の表面にGaA
sの多孔質層を形成した。この基板からアルミナ層だけ
をフッ酸エッチングで除去し、多孔質層を表面に有する
GaAs基板を作製した。
(Embodiment 2) Diameter 100 mm, thickness 350
Metal aluminum was laminated on a GaAs (111) substrate having a thickness of 1 μm by 1 μm sputtering, and the surface thereof was subjected to anodization treatment in a 3% aqueous oxalic acid solution at an electric field voltage of 12 V. As a result, metallic aluminum was oxidized, and a porous alumina layer was formed. Using the porous alumina layer formed on the surface of the substrate as a mask, the substrate was further etched in a mixed solution of sulfuric acid, hydrogen peroxide and water, and GaAs was added to the surface of the GaAs substrate.
s porous layer was formed. From this substrate, only the alumina layer was removed by hydrofluoric acid etching to produce a GaAs substrate having a porous layer on the surface.

【0026】このようにして得られたGaAs基板上
に、MBE法を用い、成長温度750℃でGaNを1μ
m成長させた。この基板の表面を原子間力顕微鏡で観察
し、表面に現れたピットの密度を計数したところ4×1
6 個/cm3 であった。
On the GaAs substrate thus obtained, GaN was grown at a growth temperature of 750.degree.
m. The surface of this substrate was observed with an atomic force microscope, and the density of pits appearing on the surface was counted.
0 was 6 / cm 3.

【0027】(実施例3)直径50mm、厚さ330μ
mのサファイア(0001)基板上に、SiO2マスク
をかけ、フォトリソグラフィにより、マスク全面に直径
1μmの窓を約1μmの間隔を隔てて形成した。この基
板をRIEを用いてエッチングし、サファイア基板表面
に多孔質層を設け、その後マスクを除去した。このサフ
ァイア基板上に、実施例1の方法を用いてGaNエピタ
キシャル層を2μm成長させた。
Example 3 50 mm in diameter and 330 μ in thickness
An SiO 2 mask was applied to the m sapphire (0001) substrate, and windows having a diameter of 1 μm were formed on the entire surface of the mask at an interval of about 1 μm by photolithography. This substrate was etched using RIE to provide a porous layer on the sapphire substrate surface, and then the mask was removed. On this sapphire substrate, a GaN epitaxial layer was grown by 2 μm using the method of the first embodiment.

【0028】このようにして得られたGaNエピタキシ
ャル層の表面を原子間力顕微鏡で観察し、表面に現れる
ピットの密度を計数したところ、1×106 個/cm3
であった。
[0028] Thus the surface of the obtained GaN epitaxial layer was observed with an atomic force microscope, was counted the density of pits appearing on the surface, 1 × 10 6 cells / cm 3
Met.

【0029】(実施例4)実施例1に示した方法により
得られた多孔質層を有するSi基板上にSiO2膜をプ
ラズマCVD法で400nm積層し、さらにフォトリソ
グラフィにより、SiO2 膜に直径1μm、ピッチ5μ
mの窓を形成した。マスクをかけた基板をMOCVD炉
に収納し、常圧、1050℃でGaN層を2μm成長さ
せた。得られたGaN層は平坦な鏡面を呈していた。こ
のGaN層の表面を原子間力顕微鏡で観察し、表面に現
れるピットの密度を計数したところ、2×105 個/c
3であった。
(Example 4) An SiO 2 film having a thickness of 400 nm was laminated on a Si substrate having a porous layer obtained by the method shown in Example 1 by a plasma CVD method, and the diameter of the SiO 2 film was reduced by photolithography. 1μm, pitch 5μ
m windows were formed. The masked substrate was housed in a MOCVD furnace, and a GaN layer was grown at a normal pressure of 1050 ° C. to a thickness of 2 μm. The obtained GaN layer had a flat mirror surface. The surface of the GaN layer was observed by an atomic force microscope, it was counted the density of pits appearing on the surface, 2 × 10 5 cells / c
m 3 .

【0030】(実施例5)実施例3で得られたGaNの
成長したサファイア基板をHVPE炉に収納し、塩化ガ
リウムとアンモニアとを原料として、減圧、1100℃
でさらに200μmのGaN層を積層した。次に厚膜G
aN層の形成されたサファイア基板に、室温〜600℃
の急熱、急冷サイクルを10回施したところ、基板とG
aNとの線膨張係数差により、サファイアの多孔質部分
が破壊され、GaN層だけを剥離することができた。G
aN層には、多孔質サファイアが付着していたので、こ
の多孔質サファイアを研磨により除去した。このように
してGaNの自立基板を得ることができた。
(Example 5) The sapphire substrate on which GaN obtained in Example 3 was grown was housed in an HVPE furnace, and decompressed at 1100 ° C using gallium chloride and ammonia as raw materials.
Then, a 200 μm GaN layer was further laminated. Next, thick film G
room temperature to 600 ° C. on the sapphire substrate on which the aN layer is formed
When the rapid heating and quenching cycles of
Due to the difference in linear expansion coefficient from aN, the porous portion of sapphire was broken, and only the GaN layer could be peeled off. G
Since porous sapphire had adhered to the aN layer, this porous sapphire was removed by polishing. In this way, a GaN free-standing substrate was obtained.

【0031】ここで、多孔質層の多効率や孔の大きさ、
深さ、形状、ピッチは、基板の材質や基板上に成長する
窒化物結晶の成長条件に依存して最適値が存在するた
め、一義的に規定できる性格のものではない。
Here, the efficiency of the porous layer, the size of the pores,
The depth, the shape, and the pitch do not have a characteristic that can be uniquely defined because there are optimum values depending on the material of the substrate and the growth conditions of the nitride crystal grown on the substrate.

【0032】[0032]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0033】種々の基板の上に高品質なGaN系結晶を
成長させることができる半導体結晶の製造方法の提供を
実現することができる。
It is possible to provide a method of manufacturing a semiconductor crystal capable of growing a high-quality GaN-based crystal on various substrates.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体結晶の製造方法を適用したGa
Nエピタキシャル基板の一実施の形態を示す断面図であ
る。
FIG. 1 shows a Ga to which a method of manufacturing a semiconductor crystal according to the present invention is applied.
FIG. 3 is a cross-sectional view showing one embodiment of an N epitaxial substrate.

【符号の説明】[Explanation of symbols]

1 基板 2 多孔質層 3 III 族窒化物単結晶層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Porous layer 3 Group III nitride single crystal layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA40 CA33 CA40 CA46 CA77 5F045 AA03 AA04 AB14 AC02 AC07 AC12 AD14 AD15 AE29 AF02 AF04 AF09 AF12 AF13 BB12 CA11 CA12 DA53 DB02 HA01 HA02 HA03 HA11 5F073 CA01 CB02 CB04 CB05 DA28 EA29  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 5F041 AA40 CA33 CA40 CA46 CA77 5F045 AA03 AA04 AB14 AC02 AC07 AC12 AD14 AD15 AE29 AF02 AF04 AF09 AF12 AF13 BB12 CA11 CA12 DA53 DB02 HA01 HA02 HA03 HA11 5F073 CA01 CB02 CB04 CB05 DA05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 III 族窒化物以外の基板の表面に多孔質
層を形成し、その多孔質層の上にIII 族窒化物単結晶層
を成長させることを特徴とする半導体結晶の製造方法。
1. A method of manufacturing a semiconductor crystal, comprising: forming a porous layer on the surface of a substrate other than a group III nitride; and growing a group III nitride single crystal layer on the porous layer.
【請求項2】 上記基板としてSi、Ge又はGaAs
を用いると共に、その(111)面を用いる請求項1に
記載の半導体結晶の製造方法。
2. The method according to claim 1, wherein the substrate is Si, Ge or GaAs.
2. The method of manufacturing a semiconductor crystal according to claim 1, wherein (111) plane is used.
【請求項3】 上記基板としてサファイア又はSiCを
用いると共に、その(0001)面を用いる請求項1に
記載の半導体結晶の製造方法。
3. The method of manufacturing a semiconductor crystal according to claim 1, wherein sapphire or SiC is used as the substrate and its (0001) plane is used.
【請求項4】 上記基板の表面に陽極酸化法によって多
孔質層を形成する請求項1に記載の半導体結晶の製造方
法。
4. The method according to claim 1, wherein a porous layer is formed on the surface of the substrate by an anodic oxidation method.
【請求項5】 基板の表面に金属膜を形成し、該金属膜
を陽極酸化法で多孔質膜とした後、上記多孔質膜をマス
クとして、上記基板にエッチングを施し、上記多孔質膜
だけを除去して表面に多孔質層を有する基板を形成し、
この基板上にIII 族窒化物単結晶を成長させる請求項1
に記載の半導体結晶の製造方法。
5. A method for forming a metal film on a surface of a substrate, forming the metal film into a porous film by anodizing, etching the substrate using the porous film as a mask, and etching only the porous film. To form a substrate having a porous layer on the surface,
2. A group III nitride single crystal is grown on the substrate.
3. The method for producing a semiconductor crystal according to item 1.
【請求項6】 上記金属膜としてアルミニウムを用いる
請求項5に記載の半導体結晶の製造方法。
6. The method according to claim 5, wherein aluminum is used as the metal film.
【請求項7】 多孔質層上にストライプ状又は点状の窓
を有するマスクを設け、そのマスクの上にIII 族窒化物
単結晶層を成長させる請求項1に記載の半導体結晶の製
造方法。
7. The method of manufacturing a semiconductor crystal according to claim 1, wherein a mask having stripe-shaped or dot-shaped windows is provided on the porous layer, and a group III nitride single crystal layer is grown on the mask.
【請求項8】 請求項1〜7に記載の製造方法により得
られた半導体単結晶からIII 族窒化物単結晶層だけを多
孔質層で剥離させることを特徴とする半導体結晶の製造
方法。
8. A method of manufacturing a semiconductor crystal, comprising separating only a group III nitride single crystal layer from a semiconductor single crystal obtained by the method according to claim 1 with a porous layer.
JP2000240385A 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal Expired - Fee Related JP3780832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240385A JP3780832B2 (en) 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240385A JP3780832B2 (en) 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2002050586A true JP2002050586A (en) 2002-02-15
JP3780832B2 JP3780832B2 (en) 2006-05-31

Family

ID=18731755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240385A Expired - Fee Related JP3780832B2 (en) 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal

Country Status (1)

Country Link
JP (1) JP3780832B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343728A (en) * 2001-05-21 2002-11-29 Nec Corp Gallium nitride crystalline substrate and method for manufacturing the same
JP2003178984A (en) * 2001-03-27 2003-06-27 Nec Corp Iii group nitride semiconductor substrate, and method for manufacturing it
JP2005005723A (en) * 2004-06-25 2005-01-06 Hitachi Cable Ltd Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2005104742A (en) * 2003-09-26 2005-04-21 Kyocera Corp Substrate for growing single crystal and semiconductor device
JP2005210097A (en) * 2003-12-22 2005-08-04 Interuniv Micro Electronica Centrum Vzw Method and device for depositing group-iii nitride material on silicon substrate
US7189588B2 (en) 2002-07-02 2007-03-13 Nec Corporation Group III nitride semiconductor substrate and its manufacturing method
WO2009038324A2 (en) * 2007-09-18 2009-03-26 Chungbuk National University Industry-Academic Cooperation Foundation Porous pattern semiconductor structure and semiconductor device and manufacturing method thereof
KR100946213B1 (en) * 2007-09-18 2010-03-08 충북대학교 산학협력단 Porous semiconductor structure and semiconductor device and manufacturing method thereof
WO2011046292A2 (en) * 2009-10-16 2011-04-21 서울옵토디바이스주식회사 High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
JP2013201455A (en) * 2006-03-28 2013-10-03 Seoul Opto Devices Co Ltd Light-emitting device
WO2020006772A1 (en) * 2018-07-03 2020-01-09 中国科学院福建物质结构研究所 Gallium nitride single crystal material and preparation method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178984A (en) * 2001-03-27 2003-06-27 Nec Corp Iii group nitride semiconductor substrate, and method for manufacturing it
KR100518353B1 (en) * 2001-03-27 2005-10-12 히다찌 케이블 리미티드 Semiconductor substrate made of group III nitride, and process for manufacture thereof
US7196399B2 (en) 2001-05-21 2007-03-27 Nec Corporation Epitaxially grown nitride-based compound semiconductor crystal substrate structure with low dislocation density
JP2002343728A (en) * 2001-05-21 2002-11-29 Nec Corp Gallium nitride crystalline substrate and method for manufacturing the same
US7189588B2 (en) 2002-07-02 2007-03-13 Nec Corporation Group III nitride semiconductor substrate and its manufacturing method
JP2005104742A (en) * 2003-09-26 2005-04-21 Kyocera Corp Substrate for growing single crystal and semiconductor device
JP2012182475A (en) * 2003-12-22 2012-09-20 Imec Method for depositing group-iii nitride material on silicon substrate, and device therefor
JP2005210097A (en) * 2003-12-22 2005-08-04 Interuniv Micro Electronica Centrum Vzw Method and device for depositing group-iii nitride material on silicon substrate
JP2005005723A (en) * 2004-06-25 2005-01-06 Hitachi Cable Ltd Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2013201455A (en) * 2006-03-28 2013-10-03 Seoul Opto Devices Co Ltd Light-emitting device
WO2009038324A2 (en) * 2007-09-18 2009-03-26 Chungbuk National University Industry-Academic Cooperation Foundation Porous pattern semiconductor structure and semiconductor device and manufacturing method thereof
KR100946213B1 (en) * 2007-09-18 2010-03-08 충북대학교 산학협력단 Porous semiconductor structure and semiconductor device and manufacturing method thereof
WO2009038324A3 (en) * 2007-09-18 2009-05-14 Nat Univ Chungbuk Ind Acad Porous pattern semiconductor structure and semiconductor device and manufacturing method thereof
WO2011046292A2 (en) * 2009-10-16 2011-04-21 서울옵토디바이스주식회사 High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
WO2011046292A3 (en) * 2009-10-16 2011-06-30 서울옵토디바이스주식회사 High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
US9153737B2 (en) 2009-10-16 2015-10-06 Seoul Viosys Co., Ltd. High-quality non-polar/semi-polar semiconductor device on porous nitride semiconductor and manufacturing method thereof
WO2020006772A1 (en) * 2018-07-03 2020-01-09 中国科学院福建物质结构研究所 Gallium nitride single crystal material and preparation method therefor

Also Published As

Publication number Publication date
JP3780832B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
KR100682879B1 (en) Epitaxial growth method
KR100838433B1 (en) Process for producing gallium nitride crystal substrate, and gallium nitride crystal substrate
KR100682880B1 (en) Epitaxial growth method
TW464953B (en) Method of manufacturing III nitride base compound semiconductor substrate
JP3821232B2 (en) Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
KR100359435B1 (en) Substrate containing compound semiconductor layer and manufacturing method thereof and semiconductor apparatus using the same
JP2006523033A (en) Method for growing single crystal GaN on silicon
CN100505164C (en) Fabrication process of nitride semiconductor substrate and composite material substrate
CN101599466B (en) Graphic substrate for epitaxial growth and production method thereof
JP2009023909A (en) Method for manufacturing nitride single crystal substrate and method for manufacturing nitride semiconductor light emitting element using the same
CN105489714A (en) Porous aluminum nitride composite substrate and application thereof in epitaxial growth of high-quality gallium nitride thin film
JP2005314121A (en) Single crystal sapphire substrate, its producing method, and semiconductor light-emitting element
JP4206629B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JP3780832B2 (en) Manufacturing method of semiconductor crystal
JP4396010B2 (en) Semiconductor crystal growth method
JPH11274082A (en) Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device
KR100450781B1 (en) Method for manufacturing GaN single crystal
JP2001200366A (en) Method for producing crack-free gallium nitride thick film by hydride vapor phase epitaxial growth method
JP5430467B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor free-standing substrate, group III nitride semiconductor device, and methods of manufacturing the same
JP2003332237A (en) Method of manufacturing semiconductor thin film
JP2000106348A (en) Substrate containing compound semiconductor layer, its manufacture, and semiconductor device using the same
CN111554570A (en) Growth method of GaN thick film
KR100461505B1 (en) Method for manufacturing a nitride semiconductor substrate
JP3743013B2 (en) Epitaxial wafer manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3780832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees