KR100461505B1 - Method for manufacturing a nitride semiconductor substrate - Google Patents

Method for manufacturing a nitride semiconductor substrate Download PDF

Info

Publication number
KR100461505B1
KR100461505B1 KR10-2002-0011404A KR20020011404A KR100461505B1 KR 100461505 B1 KR100461505 B1 KR 100461505B1 KR 20020011404 A KR20020011404 A KR 20020011404A KR 100461505 B1 KR100461505 B1 KR 100461505B1
Authority
KR
South Korea
Prior art keywords
nitride
silicon substrate
film
aln
substrate
Prior art date
Application number
KR10-2002-0011404A
Other languages
Korean (ko)
Other versions
KR20030072528A (en
Inventor
백문철
심규환
한기평
김약연
손영준
김태엽
조경익
홍성의
윤순길
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR10-2002-0011404A priority Critical patent/KR100461505B1/en
Publication of KR20030072528A publication Critical patent/KR20030072528A/en
Application granted granted Critical
Publication of KR100461505B1 publication Critical patent/KR100461505B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 청색 및 자외선(UV) 발광 소자용 재료로 사용되는 Ⅲ족의 질화물계 단결정 반도체 기판의 제조 방법에 관한 것으로, 실리콘 기판 상에 완충층 역할을 하는 질화알루미늄(AlN)박막을 성장시킨 후 표면을 열산화시키고, 열산화막에 의해 표면이 보호된 질화알루미늄(AlN)박막 상에 할라이드 기상성장(HVPE)법으로 질화갈륨(GaN)박막을 형성하므로써 순도가 높은 질화막 단결정을 얻을 수 있다. 사파이어 기판에 비해 질화갈륨(GaN)과의 열팽창계수 차이가 적고 저가이며 특히, 대면적 기판을 얻을 수 있는 실리콘 기판 상에 질화막 단결정을 성장시키므로 산업상의 적용이 가능해져 기술적인 파급효과와 함께 경제적인 효과를 얻을 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a group III nitride single crystal semiconductor substrate used as a material for blue and ultraviolet (UV) light emitting devices, wherein a surface of a silicon nitride (AlN) thin film, which serves as a buffer layer, is grown on a silicon substrate. Thermal oxidation and a gallium nitride (GaN) thin film formed by a halide vapor deposition (HVPE) method on the aluminum nitride (AlN) thin film whose surface is protected by the thermal oxidation film can obtain a high purity nitride film single crystal. Compared to sapphire substrates, the thermal expansion coefficient difference with gallium nitride (GaN) is small and inexpensive. In particular, since the nitride film is grown on a silicon substrate that can obtain a large-area substrate, it can be applied industrially and economically. The effect can be obtained.

Description

질화물 반도체 기판의 제조 방법 {Method for manufacturing a nitride semiconductor substrate}Method for manufacturing a nitride semiconductor substrate

본 발명은 질화물 반도체 기판의 제조 방법에 관한 것으로, 보다 상세하게는 청색 및 자외선(UV) 발광 소자용 재료로 사용되는 Ⅲ족의 질화물계 단결정 반도체 기판의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nitride semiconductor substrate, and more particularly, to a method for producing a group III nitride single crystal semiconductor substrate used as a material for blue and ultraviolet (UV) light emitting devices.

Ⅲ족의 질화물계 반도체는 청색 및 자외선(UV) 발광 소자용 재료로서 1970년대 이후부터 그 응용 가능성이 기대되기 시작되었고, 이를 이용하여 청색 및 녹색빛을 발하는 광소자를 만드는 데 연구의 초점이 맞추어졌다. 그 결과 약 20년 후인 1994년부터는 나카무라(Nakamura) 등에 의해 질화갈륨(GaN)계의 질화물 반도체를 사용한 발광소자(LED)들이 개발되어 상용화되기에 이르렀다.Nitride-based semiconductors of group III are materials for blue and ultraviolet (UV) light emitting devices, and their applicability has been expected since the 1970s, and research has been focused on making optical devices emitting blue and green light using them. . As a result, from 1994, about 20 years later, light emitting devices (LEDs) using gallium nitride (GaN) -based nitride semiconductors were developed and commercialized by Nakamura et al.

갈륨비소(GaAs)를 이용한 적색 레이저 다이오드(LD)보다 파장이 짧은 청색 또는 자외선(UV) 레이저 다이오드(LD)가 개발되어 상용화되면 현재 사용되고 있는 컴펙트 디스크(CD) 등과 같은 광 디스크보다 4배 이상의 많은 정보를 집적시킬 수 있게 된다. 더 나아가 질화갈륨(GaN)계의 질화물 반도체를 이용하면 극한 환경에서도 안정되게 동작할 수 있는 전자소자와 기가헤르츠(GHz) 주파수 대역에서도 안정되게 동작할 수 있는 통신소자의 구현이 가능해진다. 그러나 현재까지는 질화갈륨(GaN)계의 질화물 반도체를 성장시키기 위한 적당한 기판이 없고, 격자불일치에 기인하는 변형에 의해 결함농도가 증가되기 때문에 질화갈륨(GaN)계의 질화물 반도체를 이용하여 우수한 특성을 갖는 광소자와 전자소자를 구현하기 어려운 실정이다. 따라서 격자불일치가 적은 실리콘탄소(SiC) 기판 등을 사용하여 결함밀도를 감소시키려는 노력이 이루어지고 있으나, 아직까지는 큰 효과를 나타내지 못하고 있다.When blue and ultraviolet (UV) laser diodes (LDs), which have shorter wavelengths than red laser diodes (GaAs) with gallium arsenide (GaAs), are developed and commercialized, they are four times more than optical disks, such as compact discs (CDs). Information can be aggregated. Furthermore, the use of gallium nitride (GaN) -based nitride semiconductors enables the implementation of electronic devices that can operate stably in extreme environments and communication devices that can operate stably in the gigahertz (GHz) frequency band. However, until now, there is no suitable substrate for growing a gallium nitride (GaN) nitride semiconductor, and the defect concentration is increased by deformation due to lattice mismatch. Therefore, excellent properties are obtained by using a gallium nitride (GaN) nitride semiconductor. It is difficult to implement an optical device and an electronic device having. Therefore, efforts have been made to reduce the defect density by using a silicon carbon (SiC) substrate having a small lattice mismatch, but have not yet shown a great effect.

최근에는 기판 상에 할라이드 기상성장(Hydride Vapor Phase Epitaxy; HVPE)법으로 질화갈륨(GaN)을 빠른 속도로 성장시켜 결정결함이 적은 두께로 만든 다음, 기계적 연마 방법으로 기판을 제거하여 일정한 두께를 갖는 질화갈륨(GaN) 단결정을 제조하므로써 질화갈륨(GaN)계의 질화물 반도체 기판으로 대용하는 연구가 진행되고 있으나, 현재에는 고온에서 안정된 사파이어 기판을 사용하고 있다. 그러나 사파이어 기판은 질화갈륨(GaN)과의 열팽창계수의 차이가 크고 고가이며 대면적 기판을 만들 수 없다는 단점을 가지고 있기 때문에 사파이어 기판을 이용하면 질화갈륨(GaN) 단결정 기판을 제작하는 데 많은 비용이 소요된다.Recently, gallium nitride (GaN) is rapidly grown on a substrate by a method of halide vapor phase epitaxy (HVPE) to produce a low crystal defect thickness, and then the substrate is removed by mechanical polishing to have a constant thickness. Although research has been conducted to replace gallium nitride (GaN) based nitride semiconductor substrates by producing gallium nitride (GaN) single crystals, sapphire substrates stable at high temperatures are currently used. However, the sapphire substrate has a large difference in the coefficient of thermal expansion from gallium nitride (GaN), which is expensive and cannot produce a large-area substrate. Therefore, the sapphire substrate is expensive to produce a gallium nitride (GaN) single crystal substrate. It takes

따라서 본 발명은 사파이어 기판이 갖는 단점으로 야기되는 문제점을 해결하기 위한 것으로, 저가격으로 대면적의 질화막 단결정 기판을 제작할 수 있도록 한 질화물 반도체 기판의 제조 방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a nitride semiconductor substrate, which is capable of producing a large-area nitride film single crystal substrate at a low cost and to solve the problems caused by the disadvantages of the sapphire substrate.

도 1a 내지 도 1d는 본 발명의 일실시예에 따른 질화물 반도체 기판의 제조 방법을 설명하기 위한 소자의 단면도.1A to 1D are cross-sectional views of devices for explaining a method of manufacturing a nitride semiconductor substrate according to one embodiment of the present invention.

도 2a 및 도 2b는 실리콘 기판 상에 질화알루미늄(AlN) 박막을 성장시킨 후 원자간력현미경과 투과전자현미경으로 박막을 분석한 사진을 도시한 결과도.2A and 2B are graphs showing photographs of an aluminum nitride (AlN) thin film grown on a silicon substrate, followed by atomic force microscope and transmission electron microscope.

도 3a는 실리콘 기판 상에 성장된 질화알루미늄(AlN) 박막의 특성을 X-선으로 분석한 그래프도.Figure 3a is a graph of the analysis of the characteristics of the aluminum nitride (AlN) thin film grown on a silicon substrate by X-ray.

도 3b는 실리콘 기판과 질화알루미늄 박막, 그리고 질화갈륨 박막의 단면을 투과전자현미경으로 관찰한 결과를 도시한 부분 단면도.3B is a partial cross-sectional view showing the results of observing a cross section of a silicon substrate, an aluminum nitride thin film, and a gallium nitride thin film with a transmission electron microscope;

도 3c는 질화갈륨(GaN) 결정의 투과전자회절 패턴을 도시한 결과도.3C is a diagram showing a transmission electron diffraction pattern of gallium nitride (GaN) crystals.

도 3d는 질화알루미늄(AlN)과 실리곤 기판의 계면의 투과전자회절 패턴을 도시한 결과도.FIG. 3D is a diagram showing a transmission electron diffraction pattern of an interface between aluminum nitride (AlN) and a silicon substrate. FIG.

도 4는 실리콘 기판 상에 질화갈륨(GaN)을 성장시킨 경우 막질 분석결과를 도시한 그래프도.4 is a graph showing the results of film quality analysis when gallium nitride (GaN) is grown on a silicon substrate.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 실리콘 기판 10a: 실리콘산화막10: silicon substrate 10a: silicon oxide film

11: 질화알루미늄(AlN)박막 11a: 질화알루미늄(AlN) 산화막11: aluminum nitride (AlN) thin film 11a: aluminum nitride (AlN) oxide film

12: 질화막12: nitride film

상기한 목적을 달성하기 위한 본 발명은 실리콘 기판 상에 기판과의 격자불일치를 완충시키기 위한 완충층을 형성하는 단계와, 열산화 공정을 진행하여 상기완충층의 표면에 산화막을 성장시키는 단계와, 상기 산화막 상에 질화막을 형성하는 단계와, 상기 실리콘 기판을 제거하는 단계를 포함하여 이루어진다.The present invention for achieving the above object is to form a buffer layer for buffering the lattice mismatch with the substrate on the silicon substrate, the step of thermal oxidation process to grow an oxide film on the surface of the buffer layer, the oxide film Forming a nitride film on the substrate; and removing the silicon substrate.

상기 완충층은 질화알루미늄(AlN)박막이며, 분자선 에피텍시 방법으로 성장되고, 상기 질화막은 GaN, InN, AlN, AlGaN 또는 InGaN으로 이루어진다.The buffer layer is an aluminum nitride (AlN) thin film, is grown by a molecular beam epitaxy method, the nitride film is made of GaN, InN, AlN, AlGaN or InGaN.

실리콘 기판은 사파이어 기판에 비해 질화막과의 열팽창계수 차이가 적고 저가이며 특히, 대면적의 기판을 얻을 수 있다는 장점을 가진다. 따라서 실리콘 기판 상에 질화막 단결정을 성장시킨다면 산업적으로 많은 효과를 얻을 수 있으리라 기대된다. 그렇지만 실리콘 기판 상에 직접 질화막을 성장시키면 첫째, 약 17%(Si(111)기판) 및 약 33%(Si(100)기판) 정도의 표면 격자불일치를 가지며, 둘째, 고온에서 불안정해진다.The silicon substrate has a merit that the difference in coefficient of thermal expansion with the nitride film is smaller than that of the sapphire substrate, which is inexpensive, and in particular, a substrate having a large area can be obtained. Therefore, if the nitride film single crystal is grown on a silicon substrate, it is expected that industrially many effects can be obtained. However, when the nitride film is grown directly on the silicon substrate, first, the surface lattice mismatch is about 17% (Si (111) substrate) and about 33% (Si (100) substrate), and second, it becomes unstable at high temperature.

격자불일치의 문제점을 해결하기 위한 방법으로 실리콘 기판 상에 완충층 역할을 하는 질화알루미늄(AlN)박막을 형성하는 방법이 제시되었다. 그러나 실리콘 기판 상에 할라이드 기상성장(HVPE)법으로 질화알루미늄(AlN)박막을 형성하는 경우 실리콘(Si) 자체의 안정성이 문제된다는 실험결과가 보고된 바 있다. 즉, 질화막을 성장시킬 때 고온에서 염소 가스를 사용하게 되는데, 실리콘 기판이 염소 가스와 반응하여 분해되고, 분해된 실리콘이 질화막 성장시 불순물로 첨가된다.As a method for solving the problem of lattice mismatch, a method of forming an aluminum nitride (AlN) thin film serving as a buffer layer on a silicon substrate has been proposed. However, an experimental result has been reported that the stability of silicon (Si) itself is a problem when forming an aluminum nitride (AlN) thin film on a silicon substrate by a halide vapor deposition (HVPE) method. That is, chlorine gas is used at a high temperature when growing the nitride film. The silicon substrate is decomposed by reacting with the chlorine gas, and the decomposed silicon is added as an impurity during the nitride film growth.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위하여 다음과 같은 방법을 제안한다. 본 발명은 먼저, 고품질의 질화알루미늄(AlN)박막을 성장시키기 위해 분자선 에피탁시 공정을 이용하며, 질화갈륨(GaN)막 성장시 실리콘 기판이 고온에서 염소 기체와 반응하여 분해되는 것을 방지하기 위해 사전 산화처리를 시행한다.최종적으로 할라이드 기상성장(HVPE)법으로 질화갈륨(GaN)막을 성장하여 단결정 기판을 얻어낸다.Therefore, the present invention proposes the following method to solve the above problems. The present invention first uses a molecular beam epitaxy process to grow a high quality aluminum nitride (AlN) thin film, and to prevent the silicon substrate from reacting with chlorine gas at high temperature to decompose during gallium nitride (GaN) film growth. A pre-oxidation process is performed. Finally, a gallium nitride (GaN) film is grown by a halide vapor phase growth (HVPE) method to obtain a single crystal substrate.

그러면 첨부된 도면을 참조하여 본 발명을 더욱 상세히 설명하기로 한다.Next, the present invention will be described in more detail with reference to the accompanying drawings.

도 1a 내지 도 1d는 본 발명에 따른 질화물 반도체 기판 제조 방법을 설명하기 위한 소자의 단면도이다.1A to 1D are cross-sectional views of devices for describing a method of manufacturing a nitride semiconductor substrate according to the present invention.

도 1a를 참조하면, 저온에서 실리콘 기판(10) 상에 물리적 증착법 또는 화학적 증착법으로 질화알루미늄(AlN)박막(11)을 수십 내지 수백 nm의 두께로 성장시킨다. 실리콘 기판(10)을 챔버에 장입하기 전에 4:1로 혼합된 H2SO4/H2O 용액 및 100:1로 혼합된 H2O/HF 용액에서 연속적으로 세척하여 표면에 존재하는 자연산화막과 불순물을 제거한다. 실리콘 기판(10)을 챔버에 장입한 후에는 짧은 시간 내에 매우 얇게 표면에 흡착된 자연산화막을 제거하기 위해 열처리한다. 그리고 알루미늄(Al)과 질소(N2) 플라즈마를 이용하여 실리콘 기판(10) 상에 질화알루미늄(AlN)박막(11)을 성장시킨다. 성장된 질화알루미늄(AlN)박막(11)이 실리콘 기판(10)과의 격자불일치를 완충시키는 완충층 역할을 하며 실리콘(Si)과 알루미늄(Al)의 혼합물이 형성되지 않도록 하기 위해서는 표면의 거칠기가 수 nm 이하로 낮고 결정성이 우수해야 한다.Referring to FIG. 1A, the aluminum nitride (AlN) thin film 11 is grown to a thickness of several tens to several hundred nm on the silicon substrate 10 at a low temperature by physical vapor deposition or chemical vapor deposition. Natural oxide film present on the surface of the silicon substrate 10 by continuously washing in a 4: 1 mixed H 2 SO 4 / H 2 O solution and 100: 1 mixed H 2 O / HF solution before charging the chamber 10 And impurities. After the silicon substrate 10 is charged into the chamber, it is heat-treated to remove the natural oxide film adsorbed on the surface very thinly within a short time. The aluminum nitride (AlN) thin film 11 is grown on the silicon substrate 10 using aluminum (Al) and nitrogen (N 2 ) plasma. The grown aluminum nitride (AlN) thin film 11 serves as a buffer layer for buffering lattice mismatch with the silicon substrate 10, and the surface roughness may be changed to prevent the mixture of silicon (Si) and aluminum (Al) from forming. It should be low below nm and have good crystallinity

도 1b를 참조하면, 800 내지 1100℃의 온도에서 열산화 공정을 진행하여 실리콘 기판(10)의 저면에는 실리콘산화막(10a)이 성장되고, 질화알루미늄(AlN)박막(11)의 표면에는 질화알루미늄(AlN) 산화막(11a)이 성장되도록 한다. 고온에서의 안정화를 위한 표면 산화는 습식과 건식 산화 방법을 모두 사용할 수 있으며, 이때 실리콘산화막(10a)만 성장될 수도 있다. 표면에 산화막(11a)을 형성시키는 것은 물론이고, 질화알루미늄(AlN)박막(11)에 존재하는 마이크로 튜브와 같은 미세결함을 통한 산소의 침투에 의해 치밀한 열산화막이 형성된다. 질화알루미늄(AlN)박막(11)의 경우 Al2O3/AlON와 같이 복잡한 상(Phase)이 열산화 온도와 시간에 따라 제어된다. 동시에 실리콘 기판(10)의 배면에는 더욱 빠르게 산화막(10a)이 성장되므로 후속 GaN, InN, AlGaN, InGaN과 같은 질화물 반도체 박막 성장시 Ga, In, Al과 같은 III족 금속과 실리콘(Si)의 반응이 방지된다.Referring to FIG. 1B, a thermal oxidation process is performed at a temperature of 800 to 1100 ° C., and a silicon oxide film 10a is grown on the bottom surface of the silicon substrate 10, and aluminum nitride (AlN) thin film 11 is formed on the surface of aluminum nitride. The (AlN) oxide film 11a is allowed to grow. Surface oxidation for stabilization at high temperature may use both wet and dry oxidation methods, in which only the silicon oxide film 10a may be grown. As well as forming the oxide film 11a on the surface, a dense thermal oxide film is formed by the penetration of oxygen through microdefects such as microtubes present in the aluminum nitride (AlN) thin film 11. In the case of the aluminum nitride (AlN) thin film 11, complex phases such as Al 2 O 3 / AlON are controlled according to thermal oxidation temperature and time. At the same time, since the oxide film 10a grows faster on the back surface of the silicon substrate 10, the reaction of group III metals such as Ga, In, Al, and silicon (Si) during subsequent growth of nitride semiconductor thin films such as GaN, InN, AlGaN, InGaN This is avoided.

도 1c를 참조하면, 질화알루미늄(AlN)박막(11) 표면에 성장된 산화막(11a) 상에 물리적 증착법 또는 화학적 증착법으로 질화막(12)을 형성한다. 산화막(11a)으로 표면이 보호된 질화알루미늄(AlN)박막(11) 상에 고온에서 물리적 증착법이나 화학적 증착법으로 질화막(12)을 증착하는데, 물리적 증착법으로는 분자선증착, 스퍼터(Sputter), 전자선증착 등이 이용되며, 화학적 증착법으로는 유기금속화학증착, 할라이드 기상성장(HVPE) 등이 이용된다.Referring to FIG. 1C, the nitride film 12 is formed on the oxide film 11a grown on the surface of the aluminum nitride (AlN) thin film 11 by physical vapor deposition or chemical vapor deposition. The nitride film 12 is deposited on the aluminum nitride (AlN) thin film 11 whose surface is protected by the oxide film 11a at a high temperature by physical vapor deposition or chemical vapor deposition, and the physical vapor deposition, molecular beam deposition, sputtering, and electron beam deposition are performed. Etc. are used, and chemical vapor deposition includes organometallic chemical vapor deposition, halide vapor phase growth (HVPE), and the like.

이때, 질화막(12)으로는 GaN, InN, AlN, AlGaN, InGaN이 적용되는데, 고온에서 이와 같은 질화물을 실리콘 기판(10) 상에 성장시킬 경우 실리콘(Si) 원자들이 Ga, Al, In과 같은 금속류와 반응하여 고품질의 질화물 반도체가 형성되기 어렵기 때문에 질화막(12)을 성장시키기 전에 산소 분위기에서 열처리하여 실리콘 기판(10)의 표면에 산화막(10a)이 형성되도록 해야 한다. 실제로 실리콘 기판 상에질화막을 성장시킨 경우 SIMS(Secondary Ion-Mass Spectrometer)를 통해 분석한 결과 질화막에 실리콘(Si)이 다량으로 함유되어 있는 것을 확인할 수 있다.At this time, GaN, InN, AlN, AlGaN, InGaN are applied to the nitride film 12. When the nitride is grown on the silicon substrate 10 at a high temperature, silicon (Si) atoms are formed such as Ga, Al, In, or the like. Since it is difficult to form a high quality nitride semiconductor by reacting with metals, the oxide film 10a must be formed on the surface of the silicon substrate 10 by heat treatment in an oxygen atmosphere before the nitride film 12 is grown. In fact, when the nitride film is grown on the silicon substrate, the result of analysis through the Secondary Ion-Mass Spectrometer (SIMS) shows that the silicon film contains a large amount of silicon (Si).

도 1d를 참조하면, 실리콘산화막(10a)과 실리콘 기판(10)을 제거하므로써 질화막(12)과 산화막(11a)으로 이루어진 질화물 반도체 기판이 얻어진다. 실리콘산화막(10a)과 실리콘 기판(10)은 기계적인 방법 또는 화학적인 방법으로 제거할 수 있는데, 이때, 질화막(12)에 응력이 가해지지 않도록 하는 것이 중요하다. 따라서 화학적 방법 중의 하나인 습식식각으로 실리콘 기판(10)을 제거하는 것이 기계적인 연마(Chemical Mechanical Polishing; CMP) 방법으로 제거하는 것보다 질화막(12)에 응력이 가해지지 않는다. 이러한 제거 방법은 사파이어 기판에서는 적용할 수 없는 것이며, 실리콘 기판인 경우에만 적용이 가능하다.Referring to FIG. 1D, by removing the silicon oxide film 10a and the silicon substrate 10, a nitride semiconductor substrate composed of the nitride film 12 and the oxide film 11a is obtained. The silicon oxide film 10a and the silicon substrate 10 may be removed by a mechanical method or a chemical method. In this case, it is important to prevent stress from being applied to the nitride film 12. Therefore, the removal of the silicon substrate 10 by wet etching, which is one of chemical methods, does not apply stress to the nitride film 12 than the removal by the chemical mechanical polishing (CMP) method. This removal method is not applicable to the sapphire substrate, and is applicable only to the silicon substrate.

도 2a 및 도 2b는 실시예로서, 분자선 에피텍시(Molecular Beam Epitaxy; MBE) 방법으로 실리콘 기판(10) 상에 질화알루미늄(AlN)박막(11)을 성장시킨 경우 원자간력 현미경으로 관찰한 부분 단면도(도 2a)와 투과전자회절 현미경으로 관찰한 부분 단면도(도 2b)이다. 질화알루미늄(AlN)박막(11) 표면의 거칠기가 1.8nm로 매우 치밀하고 매끄러운 상태이다. AlN[1-100]//Si[112], AlN[0001]//Si[111]의 에피텍셜한 관계를 갖고 있음으로 우수한 특성을 갖는 질화알루미늄(AlN)과 실리콘(Si)으로 이루어진 기판이 제조되었음을 알 수 있다.2A and 2B illustrate, as an example, an atomic force microscope when the aluminum nitride (AlN) thin film 11 is grown on a silicon substrate 10 by a molecular beam epitaxy (MBE) method. It is a partial sectional view (FIG. 2A) and a partial sectional view (FIG. 2B) observed with the transmission electron diffraction microscope. The surface roughness of the aluminum nitride (AlN) thin film 11 is 1.8 nm, which is very dense and smooth. The epitaxial relationship of AlN [1-100] // Si [112] and AlN [0001] // Si [111] provides a substrate made of aluminum nitride (AlN) and silicon (Si) having excellent characteristics. It can be seen that manufactured.

도 3a 내지 도 3d는 실시예로서, 질화알루미늄(AlN)박막(11) 표면에 성장된 산화막(11a) 상에 할라이드 기상성장(HVPE)법으로 질화갈륨(GaN)박막을 형성한 경우 이중결정 X-선 회절 로킹커브(도 3a) 및 투과전자회절 현미경으로 관찰한 부분단면도(도 3b 내지 도 3d)이다. 질화갈륨(GaN)(0002) 피크의 반치폭(Full Width Half Maximum; FWHM) 값이 389 areseconds로써 우수한 결정성을 보였다. GaN[1-100]//AlN[1-100]//Si[112]의 에피텍셜한 관계를 갖으며, 완충층 역할을 하는 질화알루미늄(AlN)박막 내의 결함에 비해 질화갈륨(GaN)의 결함이 적음을 나타내고 있다. 결과적으로 결정성 면에서는 우수한 특성을 갖는 질화갈륨(GaN)막이 성장되었음을 알 수 있다.3A to 3D illustrate, as an example, a double crystal X when a gallium nitride (GaN) thin film is formed by a halide vapor deposition (HVPE) method on an oxide film 11a grown on an aluminum nitride (AlN) thin film 11 surface. Partial cross-sectional view (FIGS. 3B-3D) observed with a -ray diffraction rocking curve (FIG. 3A) and a transmission electron diffraction microscope. The full width half maximum (FWHM) value of the gallium nitride (GaN) (0002) peak was 389 areseconds, indicating excellent crystallinity. GaN [1-100] // AlN [1-100] // Si [112] has an epitaxial relationship and is a defect of gallium nitride (GaN) compared to a defect in an aluminum nitride (AlN) thin film serving as a buffer layer. This is shown to be small. As a result, it can be seen that a gallium nitride (GaN) film having excellent characteristics in terms of crystallinity was grown.

도 4는 질화알루미늄(AlN)박막(11) 상에 할라이드 기상성장(HVPE)법으로 질화갈륨(GaN)박막을 성장시킨 경우 SIMS 분석 결과를 도시한 그래프도인데, 표면에서 실리콘(Si)과 갈륨(Ga)의 반응이 매우 심각하게 발생하여 질화갈륨(GaN)박막 내에서 많은 양의 실리콘(Si)이 검출되었다. 따라서 이 경우 유용한 질화막을 얻을 수 없었다. 반면, 본 발명에서는 질화알루미늄(AlN)박막(11) 표면에 산화막(11a)을 성장시켜 표면을 완벽하게 보호한 후 질화갈륨(GaN)을 성장시키므로써 순도가 높은 질화막을 얻을 수 있다.FIG. 4 is a graph showing the results of SIMS analysis when a gallium nitride (GaN) thin film is grown on an aluminum nitride (AlN) thin film 11 by a halide vapor deposition (HVPE) method. The reaction of (Ga) occurred very seriously, and a large amount of silicon (Si) was detected in the gallium nitride (GaN) thin film. Therefore, in this case, a useful nitride film could not be obtained. On the other hand, in the present invention, a nitride film having high purity can be obtained by growing an oxide film 11a on the surface of the aluminum nitride (AlN) thin film 11 to completely protect the surface and then growing gallium nitride (GaN).

상술한 바와 같이 본 발명은 실리콘 기판 상에 완충층 역할을 하는 질화알루미늄(AlN)박막을 성장시킨 후 표면을 열산화시키고, 열산화막에 의해 표면이 보호된 질화알루미늄(AlN)박막 상에 할라이드 기상성장(HVPE)법으로 질화갈륨(GaN)박막을 형성하므로써 순도가 높은 질화막을 얻을 수 있다.As described above, the present invention grows an aluminum nitride (AlN) thin film serving as a buffer layer on a silicon substrate, and thermally oxidizes the surface, and halide vapor phase growth on an aluminum nitride (AlN) thin film whose surface is protected by a thermal oxide film. By forming a gallium nitride (GaN) thin film by the (HVPE) method, a nitride film having high purity can be obtained.

본 발명은 사파이어 기판에 비해 질화갈륨(GaN)과의 열팽창계수 차이가 적고 저가이며 특히, 대면적 기판을 얻을 수 있는 실리콘 기판을 사용한다. 따라서 이러한 장점을 갖는 실리콘 기판 상에 질화막 단결정을 성장시키므로써 산업상의 적용이 가능해져 기술적인 파급효과와 함께 경제적으로도 큰 시장을 창출할 수 있다. 예를들어, 청색, 자외선(UV) 등의 단파장 레이저 다이오드(LD), 초고주파 대역에 적용 가능한 전자소자 등을 저가격으로 제작할 수 있다.The present invention uses a silicon substrate having a low thermal expansion coefficient difference from gallium nitride (GaN) compared to a sapphire substrate and having a low cost, in particular, a large area substrate. Therefore, by growing the nitride film single crystal on the silicon substrate having such an advantage, it is possible to apply industrially to create a large market economically with the technical ripple effect. For example, short wavelength laser diodes (LDs) such as blue and ultraviolet (UV), electronic devices applicable to the ultra high frequency band, and the like can be manufactured at low cost.

Claims (7)

실리콘 기판 상에 기판과의 격자불일치를 완충시키기 위한 완충층을 형성하는 단계;Forming a buffer layer on the silicon substrate to buffer lattice mismatch with the substrate; 열산화 공정을 진행하여 상기 실리콘 기판 및 상기 완충층의 표면에 각각 산화막을 성장시키는 단계;Performing a thermal oxidation process to grow an oxide film on the surface of the silicon substrate and the buffer layer, respectively; 상기 완충층의 표면에 성장된 산화막 상에 질화막을 형성하는 단계; 및Forming a nitride film on the oxide film grown on the surface of the buffer layer; And 상기 실리콘 기판 및 그 표면에 성장된 산화막을 제거하는 단계를 포함하는 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.Removing the silicon substrate and the oxide film grown on the surface thereof. 제 1 항에 있어서, 상기 완충층은 질화알루미늄(AlN)박막이며, 분자선 에피텍시 방법으로 성장된 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.The method of manufacturing a nitride semiconductor substrate according to claim 1, wherein the buffer layer is an aluminum nitride (AlN) thin film and grown by molecular beam epitaxy. 제 1 항에 있어서, 상기 완충층을 형성하기 전에 4:1로 혼합된 H2SO4/H2O 용액 및 100:1로 혼합된 H2O/HF 용액으로 상기 실리콘 기판을 세척하는 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.The silicon substrate of claim 1, wherein the silicon substrate is washed with H 2 SO 4 / H 2 O solution mixed at 4: 1 and H 2 O / HF solution mixed at 100: 1 before forming the buffer layer. The manufacturing method of the nitride semiconductor substrate. 제 1 항에 있어서, 상기 열산화 공정은 800 내지 1100℃의 온도에서 실시하는 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.The method of claim 1, wherein the thermal oxidation step is performed at a temperature of 800 to 1100 ℃. 제 1 항에 있어서, 상기 질화막은 분자선증착, 스퍼터, 전자선증착, 유기금속 화학증착 및 할라이드 기상성장(HVPE) 중 어느 하나의 방법으로 형성되는 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.The method of claim 1, wherein the nitride film is formed by any one of molecular beam deposition, sputtering, electron beam deposition, organometallic chemical vapor deposition, and halide vapor phase growth (HVPE). 제 1 항에 있어서, 상기 질화막은 GaN, InN, AlN, AlGaN 및 InGaN 중 어느 하나인 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.The method of claim 1, wherein the nitride film is one of GaN, InN, AlN, AlGaN, and InGaN. 제 1 항에 있어서, 상기 실리콘 기판은 습식식각으로 제거하는 것을 특징으로 하는 질화물 반도체 기판의 제조 방법.The method of claim 1, wherein the silicon substrate is removed by wet etching.
KR10-2002-0011404A 2002-03-04 2002-03-04 Method for manufacturing a nitride semiconductor substrate KR100461505B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0011404A KR100461505B1 (en) 2002-03-04 2002-03-04 Method for manufacturing a nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0011404A KR100461505B1 (en) 2002-03-04 2002-03-04 Method for manufacturing a nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
KR20030072528A KR20030072528A (en) 2003-09-15
KR100461505B1 true KR100461505B1 (en) 2004-12-14

Family

ID=32223339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0011404A KR100461505B1 (en) 2002-03-04 2002-03-04 Method for manufacturing a nitride semiconductor substrate

Country Status (1)

Country Link
KR (1) KR100461505B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170141308A (en) * 2016-06-14 2017-12-26 삼성전자주식회사 Method for manufacturing nitride semiconductor substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779847B1 (en) * 2006-05-24 2007-11-28 고려대학교 산학협력단 Gallium nitride semiconductor and method for manufacturing the same
KR20130062736A (en) 2011-12-05 2013-06-13 삼성전자주식회사 Silicon substrate, epitaxial structure having the same and manufacturing of silicon substrate
KR102556549B1 (en) * 2022-07-29 2023-07-18 김남수 GaN SYSTEM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990062035A (en) * 1997-12-31 1999-07-26 조장연 Gallium Substrate Manufacturing Method Using Silicon Substrate
KR20000021336A (en) * 1998-09-28 2000-04-25 유지범 Gallium nitride substrate and manufacturing method thereof
JP2000281499A (en) * 1999-03-30 2000-10-10 Furukawa Electric Co Ltd:The Preparation of gallium nitride single crystal
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
JP2001176804A (en) * 1999-12-14 2001-06-29 Inst Of Physical & Chemical Res Method for forming semiconductor layer
KR100358428B1 (en) * 1999-02-22 2002-10-25 주식회사 옵토웨이퍼테크 A method for fabricating n itride compound semiconductor substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990062035A (en) * 1997-12-31 1999-07-26 조장연 Gallium Substrate Manufacturing Method Using Silicon Substrate
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
KR20000021336A (en) * 1998-09-28 2000-04-25 유지범 Gallium nitride substrate and manufacturing method thereof
KR100358428B1 (en) * 1999-02-22 2002-10-25 주식회사 옵토웨이퍼테크 A method for fabricating n itride compound semiconductor substrate
JP2000281499A (en) * 1999-03-30 2000-10-10 Furukawa Electric Co Ltd:The Preparation of gallium nitride single crystal
JP2001176804A (en) * 1999-12-14 2001-06-29 Inst Of Physical & Chemical Res Method for forming semiconductor layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170141308A (en) * 2016-06-14 2017-12-26 삼성전자주식회사 Method for manufacturing nitride semiconductor substrate
US9947530B2 (en) 2016-06-14 2018-04-17 Samsung Electronics Co., Ltd. Method of manufacturing nitride semiconductor substrate
KR102608902B1 (en) 2016-06-14 2023-12-04 삼성전자주식회사 Method for manufacturing nitride semiconductor substrate

Also Published As

Publication number Publication date
KR20030072528A (en) 2003-09-15

Similar Documents

Publication Publication Date Title
TWI445054B (en) Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP5638198B2 (en) Laser diode orientation on miscut substrates
JP4231189B2 (en) Method for producing group III nitride compound semiconductor substrate
EP0720240A2 (en) Epitaxial wafer and method of preparing the same
JP2002284600A (en) Method for manufacturing gallium nitride crystal substrate and the same
JP2006523033A (en) Method for growing single crystal GaN on silicon
WO2005088687A1 (en) Method for manufacturing gallium nitride semiconductor substrate
KR20080010261A (en) Method of growing a nitride single crystal on silicon wafer, nitride semiconductor light emitting diode manufactured using the same and the manufacturing method
KR101178505B1 (en) Substrate for semiconductor device and method for manufacturing the same
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JPH11243253A (en) Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
KR20010006551A (en) Recovery of surface-ready silicon carbide substrates
JP4301592B2 (en) Manufacturing method of substrate with nitride semiconductor layer
JP4449357B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
US6906351B2 (en) Group III-nitride growth on Si substrate using oxynitride interlayer
CN110828291A (en) GaN/AlGaN heterojunction material based on single crystal diamond substrate and preparation method thereof
KR100461505B1 (en) Method for manufacturing a nitride semiconductor substrate
KR100959290B1 (en) Gallium nitride semiconductor and method for manufacturing the same
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JP3671215B2 (en) Lamination method of indium nitride on sapphire substrate
JP5430467B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor free-standing substrate, group III nitride semiconductor device, and methods of manufacturing the same
JP2004051446A (en) Oxide single crystal thin film formation method and semiconductor thin film forming method
JPH11238683A (en) Manufacture of compound semiconductor film
JP2023539399A (en) Manufacturing method for semiconductor devices
JP2004099405A (en) Nitride semiconductor multilayer material and method of growing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131128

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151201

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 16