JP4206629B2 - Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method - Google Patents

Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method Download PDF

Info

Publication number
JP4206629B2
JP4206629B2 JP2000304570A JP2000304570A JP4206629B2 JP 4206629 B2 JP4206629 B2 JP 4206629B2 JP 2000304570 A JP2000304570 A JP 2000304570A JP 2000304570 A JP2000304570 A JP 2000304570A JP 4206629 B2 JP4206629 B2 JP 4206629B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
film
manufacturing
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000304570A
Other languages
Japanese (ja)
Other versions
JP2002110569A (en
Inventor
正也 萬濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000304570A priority Critical patent/JP4206629B2/en
Publication of JP2002110569A publication Critical patent/JP2002110569A/en
Application granted granted Critical
Publication of JP4206629B2 publication Critical patent/JP4206629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体膜や窒化物半導体基板を異種材料基板上に形成する方法およびそれにより得られる窒化物半導体膜や窒化物半導体基板等の半導体装置に関する。
【0002】
【従来の技術】
GaN、InN、AlN等、一般式がBxAlyGa1-x-y-zInzN(0≦x≦1、0≦y≦1、0≦z≦1)で表される窒化物半導体は、直接遷移型の化合物半導体であり、かつ広いエネルギーギャップを持つために、短波長光源や耐環境デバイスとして脚光を浴びている。例えば、窒化ガリウム(以下、GaN)は約3.4eVの広いエネルギーギャップを持っているために、青色から紫外領域にわたる光を発する発光素子として有望な材料である。
【0003】
窒化物半導体の単結晶膜は、サファイアやSiCなどの異種材料の基板を用い、その上にMOVPE(有機金属気相成長)法、MBE(分子線結晶成長)法やHVPE(ハイドライド気相成長)法などのエピタキシャル法により得ることができる。なかでも、HVPE法は、成長速度が大きいという特徴を持つため、GaN単結晶基板を作製するための厚膜成長法として注目されている。
【0004】
ところで、サファイアを基板としてGaN厚膜を成長した場合、サファイアはGaNとの格子定数差が13.8%、熱膨張係数差が25.5%もあることから、基板との界面で1010cm-2と高密度の転位が発生し、また、生じる結晶欠陥あるいは熱歪により亀裂や基板の反りが発生する。
【0005】
近年、選択成長とマスク上への横方向成長(ELOG)法を利用してマスクの埋め込み構造を作製する方法(特公平6−105797号公報)により、転位密度が106/cm3程度のGaN単結晶膜を作製できるまでに至っている。
【0006】
また近年、GaN膜に溝を形成し、溝の内部に窒化シリコンよりなるマスクを形成し、さらにそのGaN膜の上にGaN層を結晶成長させる方法すなわちABLEG法が提案されている(Isao Kidoguchi 他、ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス第39巻第L453ページ〜L456ページ(2000年)、Isao Kidoguchi et. Al., Japanese Journal of Applied Physics Volume 39 (2000) pp. L453-L456)。その結晶成長方法を図4に示し、以下に説明する。
【0007】
まず、図4(a)に示すように、MOVPE法によりサファイア基板31上にAlNまたはGaNよりなる緩衝層32を介してGaN層33を形成する。次に、GaN層33表面にストライプ状のレジストマスク34を形成し、これをマスクとして台形溝を形成した後、シリコン酸化膜35を全面に堆積する(図4(b))。その後、リフトオフにより台形溝部にのみシリコン酸化膜35が残留するようにする(図4(c))。次に、再びMOVPE法により台形溝部を覆うようにGaN層36を堆積して表面平坦な層を形成するものである(図4(d))。
【0008】
【発明が解決しようとする課題】
サファイア基板等の異種材料基板上に窒化物半導体膜を形成する場合、特に数10μm以上の厚膜を形成する場合に、亀裂と反りが問題となる。亀裂や反りが生じるのは、基板と窒化物半導体膜との間に格子不整合がある場合、基板と窒化物半導体膜との間に熱膨張係数の不整合がある場合やドーピングレベルを大きくしたときに窒化物半導体膜の格子定数が変化する場合である。中でも基板と窒化物半導体膜との間の熱膨張係数の不整合は、温度変化に応じた窒化物半導体膜の格子定数の増大または減少に関して生じるものであり、とりわけ成長後の基板温度降下中に生じた場合に窒化物半導体膜にクラックが生じやすくなる。
【0009】
ELOG法を用いると、基板と窒化物半導体膜との界面に発生する転位の低減が可能であり、また基板と窒化物半導体膜との接触面積が小さいため亀裂や反りがある程度抑制される。しかし、マスク上への横方向成長の際に、マスク材が障害となってマスク上で結晶軸が傾斜する領域が形成されるという問題が生じ、高品質なGaN単結晶膜を作製することが困難である。
【0010】
一方、ABLEG法を用いた場合、GaN層36が横方向に成長していく際、結晶成長方向に障害物がないような理想的な場合にはGaN層36の結晶軸の方向が乱れるのを防止できる。しかしながら図4に示す方法では、レジストをリフトオフにより除去する際に例えば図5に示すようにリフトオフ部での凹凸が発生しやすくなって高精度かつ平坦なシリコン酸化膜35の形成が困難となる。その結果、GaN層36を結晶成長させた場合にGaN層36の結晶軸の傾斜が生じてGaN層36の結晶性を著しく悪化させてしまう。また、サファイア基板は化学的に安定で硬度が高く加工性に乏しいので、直接台形溝を形成できず一旦GaN層36を形成した後に形成することとなるため製造工程が複雑となるだけでなく、GaN層36を堆積した後にサファイア基板を研磨やエッチングして除去することが困難である。
【0011】
上記課題に鑑み、本発明は窒化物半導体膜の形成時に発生する歪や欠陥や結晶軸の傾斜に係わる課題を解決し、また厚膜を成長しても亀裂や反りの問題を克服する高品質の窒化物半導体膜や窒化物単結晶基板、及び簡便かつ安価に達成できる窒化物半導体膜や窒化物単結晶基板の製造方法を提供するものである。
【0012】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、基板上の一部分にマスク材を形成する工程と、前記基板の前記マスク材のない部分に凹部を形成する工程と、前記基板を窒化させて前記凹部上に保護膜を形成する工程と、前記マスク材を除去する工程と、前記基板の前記マスク材が除去された領域上に選択的に窒化物半導体膜を形成する工程とを有するものである。
【0013】
この構成により、基板の凹部周辺に凹凸がほとんど生じないので、凹凸などの障害物の存在にともない生じる窒化物半導体膜の結晶軸の傾斜を防止することができる。
【0015】
本発明の半導体装置の製造方法は、主面が(111)面である基板上の一部分にマスク材を形成する工程と、前記基板の前記マスク材のない部分にストライプの方向が<11−2>であるストライプ状の凹部を形成する工程と、前記基板を酸化させて前記凹部上に保護膜を形成する工程と、前記マスク材を除去する工程と、前記基板の前記マスク材が除去された領域上に選択的に半導体膜を形成する工程とを有するものである。この構成により、窒化物半導体膜結晶の格子配列を基板の格子配列に近づけることができる。
【0019】
本発明の半導体装置は、主面に凸部と凹部とが形成されかつ前記凹部の表面が酸化または窒化された基板と、前記基板の前記主面上に半導体膜が形成され、かつ前記基板の凸部上に窒化アルミニウム膜が形成され、かつ前記窒化アルミニウム膜の上に前記半導体膜が形成されたものである。
【0020】
この構成により、凹部の表面が酸化または窒化された基板を用いているので、結晶軸の傾斜がほとんどない窒化物半導体膜を得ることができる。
【0021】
【発明の実施の形態】
本発明の実施の形態について、図面を用いて以下に説明する。
【0022】
(実施の形態1)
図1は本発明の実施の形態1に係わる窒化物半導体膜及びその製造方法について示したものである。
【0023】
まず、図1(a)に示すように、(111)面を主面とする直径2インチのシリコン基板11上に、SiN膜を堆積し、フォトリソグラフィ法とウエットエッチングで成長領域となる部分だけに200nm厚のSiNマスク12を形成する。SiNマスク12は、6μm間隔に形成した2μmの幅のストライプ状である。ストライプ方向は<11−2>方向とした。なお、ここで<11−2>方向とは、
【0024】
【外1】

Figure 0004206629
【0025】
を表す。
【0026】
続いて、SiNマスク12を用いてシリコン基板11をウエットエッチングし、深さ0.5μm、の台形溝を形成する(図1(b))。
【0027】
次に、1000℃程度に加熱された酸化炉にシリコン基板11を配置し、酸素などの酸化媒体を含んだガスを導入し、エッチング保護膜としての厚さ2000nmのシリコン酸化膜(SiO2膜)13を台形溝の表面に形成する(図1(c))。ここで、熱酸化によりシリコン基板円周側面にもシリコン酸化膜13が十分に被覆される。
【0028】
その後、SiNマスク12を熱燐酸でウエットエッチングして除去する(図1(d))。この段階においてシリコン基板を拡大率10000倍の電子顕微鏡で観察したところ、シリコン基板11の台形溝周辺に凹凸はほとんど観察されなかった。これは熱酸化により高精度に台形溝部にシリコン酸化膜13を形成できるからである。
【0029】
その後、シリコン基板11を減圧MOVPE装置内のサセプター上に配置し、N2ガスを10slm(1slmとは標準状態の気体が1分間に1l流れる流量のことである)の流量で供給しながら、基板温度を1100℃まで上昇させて10分間保持し、シリコン基板11表面のサーマルクリーニングを行う。減圧MOVPE装置内の圧力を6.67×103Paとした。続いて、基板温度を950℃まで降下させて、N2ガスに加え、流量が1slmのアンモニアガスと流量が30μmol/min(1mol/minとは気体等が1分間に1molだけ流れる流量のことである)のトリメチルアルミニウムを添加して、シリコン基板11上に20nm厚のAlN緩衝層14を形成する。その後、トリメチルアルミニウムの供給を停止する。AlN緩衝層14はシリコン酸化膜13を形成した台形溝部には形成されず、選択的に成長領域のみに形成される(図2(a))。これは、台形溝部上に形成されたシリコン酸化膜13にAlN成長抑制効果があるためである。ここで、AlNである必要は必ずしもなく、GaNなど他の材料でも同様の効果が期待できる。
【0030】
続いて、基板温度を1050℃まで上昇させて、流量が50μmol/minのトリメチルガリウムを添加して、図2(b)、(c)、(d)に示すように、GaN層15をAlN緩衝層14上に積層する。GaN層15は次第に台形溝上に広がって行く。成長につれて隣接する成長領域から広がってきた結晶と接して台形溝部を覆い尽くすと、今度は、上方へGaN層15が堆積される。成長速度は5μm/hであり、2時間で約10μm厚みのGaN層15が形成される。その後、トリメチルガリウムの供給を停止し、基板温度を室温まで降下させてシリコン基板11上に堆積した10μm厚のGaN層15を得る。
【0031】
上記本発明の半導体装置の製造方法によれば、独立した成長領域から核を発生させて結晶成長させるので、GaN層15の中の内部応力を大幅に低減することができるとともに、シリコン基板11の台形溝周辺に凹凸がほとんど生じないので、従来の技術において示したようなリフトオフ部でのシリコン酸化膜の凹凸などの障害物の存在にともない発生する結晶軸の傾斜を防止することができる。さらにシリコン基板は安価かつ入手が容易であり、ウエットエッチングやシリコン熱酸化膜の形成等の加工が容易であるので半導体装置の製造コスト低減に有効である。
【0032】
とりわけシリコン基板を(111)面を主面とし、SiNマスクのストライプ方向を<11−2>方向としているので、GaN層15の格子配列をシリコン基板の格子配列に近づけることができる。その結果、より良好な結晶性を有する半導体装置を得ることができる。
【0033】
上記本発明の半導体装置の製造方法により形成されたGaN層15は、10μmの厚みにもかかわらず、クラックは発生せず、転位密度は106cm-2と良好なものであった。また、結晶軸の傾斜は面内で0.1°以下と良好であり、それに起因した新たな欠陥も認められなかった。
【0034】
(実施の形態2)
図3は本発明の実施の形態2に係る窒化物半導体基板の製造方法について示したものである。
【0035】
まず、(111)面が主面である直径2インチのシリコン基板11上にSiN膜を堆積し、フォトリソグラフィ法とウエットエッチングで成長領域となる部分だけに200nm厚のSiNマスク12を形成する工程からSiNマスク12を熱燐酸でウエットエッチング除去する工程まで、およびシリコン基板11表面のサーマルクリーニングを行う工程からシリコン基板11上に20μm厚のAlN緩衝層14を形成する工程までは実施の形態1と同じである。
【0036】
次に、シリコン基板11をハイドライドVPE装置内に配置する。反応室を真空に引いて約1000℃に加熱する。石英のGa溜めを850℃に加熱しGa融液とする。原料ガス導入口から水素ガスと塩化水素ガスの混合ガスをGa溜めに導き、塩化ガリウムを合成する。別の原料ガス導入口から水素とアンモニアの混合ガスを導入し、1000℃に加熱された基板付近で反応を起こさせシリコン基板11上にGaN層16を堆積させる。図3(a)、(b)、(c)に示すように、GaN層16はAlN緩衝層14上に堆積される。GaN層16は次第に台形溝上に広がって行く。成長につれて隣接する成長領域から広がってきた結晶と接して台形溝部を覆い尽くすと、今度は、上方へGaN層16が堆積される。成長速度は100μm/hであり、1時間で100μm厚みのGaN層16が形成される。このように独立した成長領域から核を発生させて結晶成長させるので、GaN層16の中の内部応力を大幅に低減することができる。
【0037】
最後に、HF:HNO3系のエッチャントを用いて、シリコン基板11をエッチング除去してGaN層16だけの結晶とし、両面を研磨してGaN単結晶基板を得る(図3(d))。
【0038】
上記本発明の半導体基板の製造方法によれば、実施の形態1と同様にGaN層16の中の内部応力を大幅に低減することができるとともに、リフトオフ部でのシリコン酸化膜の凹凸などの障害物の存在にともない発生する結晶軸の傾斜を防止することができる。さらにシリコン基板は安価かつ入手が容易であり、ウエットエッチングやシリコン熱酸化膜の形成等の加工が容易であるので半導体基板の製造コスト低減に有効である。
【0039】
上記本発明の半導体基板の製造方法により形成されたGaN基板16は、100μmの厚みにもかかわらず、クラックは発生せず、転位密度は106cm-2と良好なものであった。また、結晶軸の傾斜は面内で0.1°以下と良好であり、それに起因した新たな欠陥も認められなかった。
【0040】
なお、上記実施の形態において、エッチングを成長後に基板温度を下げることなく、高温で基板裏面に塩化水素などのエッチングガスを吹き付けて行うこともでき、この場合、熱膨張係数差にともなう反りや亀裂を無視できるようになるのでより好ましい。
【0041】
また、HVPE法を用いた成長方法では、成長中にシリコン基板が塩素系ガスにより腐食されるという問題があったが、熱酸化によりシリコン基板円周側面まで十分被覆されるので腐食されることがほとんどない。
【0042】
さらに、シリコン酸化膜13の代わりにSiN膜、とりわけシリコン基板11を窒化させてできるSiN膜を用いても同様の効果が得られる。この場合、SiNマスクの代わりにSiO2マスクを用い、エッチング液としてフッ酸を用いるとよい。
【0043】
なお、実施の形態1および2においては、GaN膜を形成したが、InGaN膜、AlGaN膜等、BxAlyGa1-x-y-zInzN(0≦x≦1、0≦y≦1、0≦z≦1)で表される窒化物半導体よりなる膜としても差し支えない。さらに窒化物半導体膜にドーピングしても同様の効果が得られる。
【0044】
また、実施の形態1および2においてGaN膜を形成する代わりに、シリコン酸化膜を覆って結晶成長する半導体膜(窒化物半導体よりなる膜に限らない)を形成してもよい。
【0045】
また、上記実施の形態では成長領域として<11−2>方向のストライプとしたが、これに限定されるものでなく、ドット状でもよい。また、基板にはシリコンを用いたが、必ずしもこれに限定されるものでなく、GaAs基板やInP基板などでもよい。
【0046】
【発明の効果】
以上説明したように、本発明の半導体基板の製造方法、半導体装置の製造方法および半導体装置によれば、異種材料基板を用いる場合に熱膨張係数差によって生じる亀裂や反りを抑制できて、高品質な窒化物半導体膜を有する半導体装置や半導体基板を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る半導体装置の製造方法の各工程を示す断面図
【図2】本発明の実施の形態1に係る半導体装置の製造方法の各工程を示す断面図
【図3】本発明の実施の形態2に係る半導体装置の製造方法の各工程を示す断面図
【図4】従来の半導体装置の製造方法を示す断面図
【図5】従来の半導体装置の製造方法におけるリフトオフ部のシリコン酸化膜形状を示す見取り図
【符号の説明】
11 シリコン基板
12 SiNマスク
13 シリコン酸化膜
14 緩衝層
15,16 GaN層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of forming a nitride semiconductor film or a nitride semiconductor substrate on a dissimilar material substrate, and a semiconductor device such as a nitride semiconductor film or a nitride semiconductor substrate obtained by the method.
[0002]
[Prior art]
GaN, InN, AlN or the like, the general formula is a nitride semiconductor represented by B x Al y Ga 1-xyz In z N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1) is a direct Since it is a transition type compound semiconductor and has a wide energy gap, it is attracting attention as a short wavelength light source and an environmental resistant device. For example, gallium nitride (hereinafter referred to as GaN) has a wide energy gap of about 3.4 eV, and thus is a promising material as a light-emitting element that emits light ranging from blue to ultraviolet.
[0003]
A single crystal film of nitride semiconductor uses a substrate made of a different material such as sapphire or SiC, on which a MOVPE (metal organic chemical vapor deposition) method, MBE (molecular beam crystal growth) method or HVPE (hydride vapor phase growth). It can be obtained by an epitaxial method such as a method. Among these, the HVPE method has a feature of a high growth rate, and thus has attracted attention as a thick film growth method for producing a GaN single crystal substrate.
[0004]
Incidentally, when the growth of the GaN thick film sapphire substrate, a sapphire lattice constant difference 13.8% with GaN, since the difference of thermal expansion coefficient is also 25.5%, 10 10 cm at the interface with the substrate -2 causes high density dislocations, and cracks and warpage of the substrate occur due to crystal defects or thermal strain.
[0005]
In recent years, GaN having a dislocation density of about 10 6 / cm 3 by a method of fabricating a buried structure of a mask using selective growth and lateral growth on a mask (ELOG) method (Japanese Patent Publication No. 6-105797). A single crystal film has been produced.
[0006]
In recent years, a method has been proposed in which a groove is formed in a GaN film, a mask made of silicon nitride is formed inside the groove, and a GaN layer is crystal-grown on the GaN film, that is, the ABLEG method (Isao Kidoguchi et al. Japanese Journal of Applied Physics, Vol. 39, pages L453-L456 (2000), Isao Kidoguchi et. Al., Japanese Journal of Applied Physics Volume 39 (2000) pp. L453-L456). The crystal growth method is shown in FIG. 4 and will be described below.
[0007]
First, as shown in FIG. 4A, the GaN layer 33 is formed on the sapphire substrate 31 via the buffer layer 32 made of AlN or GaN by the MOVPE method. Next, a striped resist mask 34 is formed on the surface of the GaN layer 33, and a trapezoidal groove is formed using the resist mask 34 as a mask, and then a silicon oxide film 35 is deposited on the entire surface (FIG. 4B). Thereafter, the silicon oxide film 35 is left only in the trapezoidal groove by lift-off (FIG. 4C). Next, the GaN layer 36 is deposited again so as to cover the trapezoidal groove by the MOVPE method to form a flat surface layer (FIG. 4D).
[0008]
[Problems to be solved by the invention]
When a nitride semiconductor film is formed on a dissimilar material substrate such as a sapphire substrate, cracks and warpage become a problem particularly when a thick film of several tens of μm or more is formed. Cracks and warpage occur when there is a lattice mismatch between the substrate and the nitride semiconductor film, when there is a mismatch in thermal expansion coefficient between the substrate and the nitride semiconductor film, or when the doping level is increased. This is sometimes the case when the lattice constant of the nitride semiconductor film changes. In particular, the thermal expansion coefficient mismatch between the substrate and the nitride semiconductor film is caused by an increase or decrease in the lattice constant of the nitride semiconductor film in response to a temperature change, particularly during the substrate temperature drop after growth. If it occurs, cracks are likely to occur in the nitride semiconductor film.
[0009]
When the ELOG method is used, dislocations generated at the interface between the substrate and the nitride semiconductor film can be reduced, and cracks and warpage can be suppressed to some extent because the contact area between the substrate and the nitride semiconductor film is small. However, during lateral growth on the mask, there is a problem that the mask material becomes an obstacle and a region in which the crystal axis is inclined is formed on the mask, which makes it possible to produce a high-quality GaN single crystal film. Have difficulty.
[0010]
On the other hand, when the ABLEG method is used, when the GaN layer 36 grows in the lateral direction, the crystal axis direction of the GaN layer 36 is disturbed in an ideal case where there is no obstacle in the crystal growth direction. Can be prevented. However, in the method shown in FIG. 4, when the resist is removed by lift-off, for example, as shown in FIG. 5, unevenness at the lift-off portion is likely to occur, and it becomes difficult to form the silicon oxide film 35 with high accuracy and flatness. As a result, when the GaN layer 36 is crystal-grown, the crystal axis of the GaN layer 36 is inclined and the crystallinity of the GaN layer 36 is significantly deteriorated. In addition, since the sapphire substrate is chemically stable and has high hardness and poor workability, the trapezoidal groove cannot be formed directly, and the GaN layer 36 is formed once, so that the manufacturing process is complicated. It is difficult to remove the sapphire substrate by polishing or etching after the GaN layer 36 is deposited.
[0011]
In view of the above problems, the present invention solves the problems related to strain and defects generated during the formation of nitride semiconductor films and the tilt of the crystal axis, and overcomes the problems of cracks and warpage even when a thick film is grown. The present invention provides a nitride semiconductor film and a nitride single crystal substrate, and a method for manufacturing a nitride semiconductor film and a nitride single crystal substrate that can be achieved easily and inexpensively.
[0012]
[Means for Solving the Problems]
The method for manufacturing a semiconductor device according to the present invention includes a step of forming a mask material on a portion of a substrate, a step of forming a recess in a portion of the substrate without the mask material, and nitriding the substrate on the recess. The method includes a step of forming a protective film, a step of removing the mask material, and a step of selectively forming a nitride semiconductor film on a region of the substrate where the mask material is removed.
[0013]
With this configuration, there is almost no unevenness around the concave portion of the substrate, so that it is possible to prevent the tilt of the crystal axis of the nitride semiconductor film caused by the presence of an obstacle such as the unevenness.
[0015]
In the method of manufacturing a semiconductor device according to the present invention, a step of forming a mask material on a part of a substrate whose main surface is a (111) surface, and a direction of a stripe on the part of the substrate without the mask material is <11-2. > A step of forming a stripe-shaped recess, a step of oxidizing the substrate to form a protective film on the recess, a step of removing the mask material, and the mask material of the substrate being removed And a step of selectively forming a semiconductor film over the region. With this configuration, the lattice arrangement of the nitride semiconductor film crystal can be brought close to the lattice arrangement of the substrate.
[0019]
According to another aspect of the present invention, there is provided a semiconductor device in which a convex portion and a concave portion are formed on a main surface and a surface of the concave portion is oxidized or nitrided, a semiconductor film is formed on the main surface of the substrate, and the substrate An aluminum nitride film is formed on the convex portion, and the semiconductor film is formed on the aluminum nitride film .
[0020]
With this configuration, since the substrate with the surface of the recesses oxidized or nitrided is used, a nitride semiconductor film having almost no tilt of the crystal axis can be obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
(Embodiment 1)
FIG. 1 shows a nitride semiconductor film and a manufacturing method thereof according to Embodiment 1 of the present invention.
[0023]
First, as shown in FIG. 1A, a SiN film is deposited on a silicon substrate 11 having a diameter of 2 inches having a (111) plane as a main surface, and only a portion that becomes a growth region by photolithography and wet etching. A SiN mask 12 having a thickness of 200 nm is formed. The SiN mask 12 has a stripe shape with a width of 2 μm formed at intervals of 6 μm. The stripe direction was the <11-2> direction. Here, the <11-2> direction is
[0024]
[Outside 1]
Figure 0004206629
[0025]
Represents.
[0026]
Subsequently, the silicon substrate 11 is wet etched using the SiN mask 12 to form a trapezoidal groove having a depth of 0.5 μm (FIG. 1B).
[0027]
Next, the silicon substrate 11 is placed in an oxidation furnace heated to about 1000 ° C., a gas containing an oxidizing medium such as oxygen is introduced, and a silicon oxide film (SiO 2 film) having a thickness of 2000 nm as an etching protective film is formed. 13 is formed on the surface of the trapezoidal groove (FIG. 1C). Here, the silicon oxide film 13 is sufficiently covered also on the circumferential side surface of the silicon substrate by thermal oxidation.
[0028]
Thereafter, the SiN mask 12 is removed by wet etching with hot phosphoric acid (FIG. 1D). At this stage, when the silicon substrate was observed with an electron microscope with a magnification of 10,000 times, almost no irregularities were observed around the trapezoidal groove of the silicon substrate 11. This is because the silicon oxide film 13 can be formed in the trapezoidal groove with high accuracy by thermal oxidation.
[0029]
Thereafter, the silicon substrate 11 is placed on the susceptor in the reduced pressure MOVPE apparatus, and N 2 gas is supplied at a flow rate of 10 slm (1 slm is a flow rate of 1 l of gas in a standard state per minute) The temperature is raised to 1100 ° C. and held for 10 minutes, and the surface of the silicon substrate 11 is thermally cleaned. The pressure in the reduced pressure MOVPE apparatus was 6.67 × 10 3 Pa. Subsequently, the substrate temperature is lowered to 950 ° C., in addition to N 2 gas, ammonia gas with a flow rate of 1 slm and a flow rate of 30 μmol / min (1 mol / min is a flow rate of 1 mol of gas etc. per minute. A) trimethylaluminum is added to form an AlN buffer layer 14 having a thickness of 20 nm on the silicon substrate 11. Thereafter, the supply of trimethylaluminum is stopped. The AlN buffer layer 14 is not formed in the trapezoidal groove where the silicon oxide film 13 is formed, but is selectively formed only in the growth region (FIG. 2A). This is because the silicon oxide film 13 formed on the trapezoidal groove has an AlN growth suppressing effect. Here, AlN is not necessarily required, and the same effect can be expected with other materials such as GaN.
[0030]
Subsequently, the substrate temperature is raised to 1050 ° C., trimethyl gallium having a flow rate of 50 μmol / min is added, and the GaN layer 15 is buffered with AlN as shown in FIGS. 2B, 2 C, and 2 D. Laminate on layer 14. The GaN layer 15 gradually spreads over the trapezoidal groove. When the trapezoidal groove is covered with the crystal that has spread from the adjacent growth region as it grows, the GaN layer 15 is now deposited upward. The growth rate is 5 μm / h, and the GaN layer 15 having a thickness of about 10 μm is formed in 2 hours. Thereafter, the supply of trimethylgallium is stopped, the substrate temperature is lowered to room temperature, and a 10 μm thick GaN layer 15 deposited on the silicon substrate 11 is obtained.
[0031]
According to the semiconductor device manufacturing method of the present invention, since nuclei are generated from an independent growth region and crystal growth is performed, internal stress in the GaN layer 15 can be greatly reduced, and the silicon substrate 11 Since there is almost no unevenness around the trapezoidal groove, it is possible to prevent the tilt of the crystal axis that occurs due to the presence of obstacles such as the unevenness of the silicon oxide film at the lift-off portion as shown in the prior art. Furthermore, since the silicon substrate is inexpensive and easily available, and processing such as wet etching and formation of a silicon thermal oxide film is easy, it is effective in reducing the manufacturing cost of the semiconductor device.
[0032]
In particular, since the silicon substrate has the (111) plane as the main surface and the stripe direction of the SiN mask is the <11-2> direction, the lattice arrangement of the GaN layer 15 can be brought close to the lattice arrangement of the silicon substrate. As a result, a semiconductor device having better crystallinity can be obtained.
[0033]
The GaN layer 15 formed by the method for manufacturing a semiconductor device of the present invention had no cracks despite the thickness of 10 μm, and had a good dislocation density of 10 6 cm −2 . In addition, the inclination of the crystal axis was as good as 0.1 ° or less in the plane, and no new defects due to it were observed.
[0034]
(Embodiment 2)
FIG. 3 shows a method for manufacturing a nitride semiconductor substrate according to the second embodiment of the present invention.
[0035]
First, a process of depositing a SiN film on a silicon substrate 11 having a diameter of 2 inches whose (111) plane is a main surface, and forming a 200 nm thick SiN mask 12 only in a portion to be a growth region by photolithography and wet etching. To the step of performing wet etching removal of the SiN mask 12 with hot phosphoric acid, and the step of performing the thermal cleaning of the surface of the silicon substrate 11 to the step of forming the AlN buffer layer 14 having a thickness of 20 μm on the silicon substrate 11. The same.
[0036]
Next, the silicon substrate 11 is placed in the hydride VPE apparatus. The reaction chamber is evacuated and heated to about 1000 ° C. The quartz Ga reservoir is heated to 850 ° C. to obtain a Ga melt. A mixed gas of hydrogen gas and hydrogen chloride gas is introduced into the Ga reservoir from the source gas inlet, and gallium chloride is synthesized. A mixed gas of hydrogen and ammonia is introduced from another source gas inlet, and a reaction is caused in the vicinity of the substrate heated to 1000 ° C. to deposit the GaN layer 16 on the silicon substrate 11. As shown in FIGS. 3A, 3B, and 3C, the GaN layer 16 is deposited on the AlN buffer layer. The GaN layer 16 gradually spreads over the trapezoidal groove. When the trapezoidal groove is covered with the crystal that has spread from the adjacent growth region as it grows, the GaN layer 16 is now deposited upward. The growth rate is 100 μm / h, and the GaN layer 16 having a thickness of 100 μm is formed in one hour. As described above, since nuclei are generated from independent growth regions to grow crystals, the internal stress in the GaN layer 16 can be greatly reduced.
[0037]
Finally, using a HF: HNO 3 -based etchant, the silicon substrate 11 is removed by etching to form a crystal of only the GaN layer 16, and both surfaces are polished to obtain a GaN single crystal substrate (FIG. 3 (d)).
[0038]
According to the method for manufacturing a semiconductor substrate of the present invention, the internal stress in the GaN layer 16 can be significantly reduced as in the first embodiment, and the irregularities of the silicon oxide film at the lift-off portion can be prevented. It is possible to prevent the tilt of the crystal axis that occurs due to the presence of an object. Furthermore, since the silicon substrate is inexpensive and easily available, and processing such as wet etching and formation of a silicon thermal oxide film is easy, it is effective in reducing the manufacturing cost of the semiconductor substrate.
[0039]
The GaN substrate 16 formed by the method for manufacturing a semiconductor substrate of the present invention had no cracks and a good dislocation density of 10 6 cm −2 despite the thickness of 100 μm. In addition, the inclination of the crystal axis was as good as 0.1 ° or less in the plane, and no new defects due to it were observed.
[0040]
In the above embodiment, etching can be performed by blowing an etching gas such as hydrogen chloride on the back surface of the substrate at a high temperature without lowering the substrate temperature after growth. In this case, warping or cracking due to a difference in thermal expansion coefficient is possible. Is more preferable because it can be ignored.
[0041]
Further, the growth method using the HVPE method has a problem that the silicon substrate is corroded by the chlorine-based gas during the growth. However, the silicon substrate is sufficiently corroded by the thermal oxidation to be corroded. rare.
[0042]
Further, the same effect can be obtained by using a SiN film, in particular, a SiN film formed by nitriding the silicon substrate 11 in place of the silicon oxide film 13. In this case, a SiO 2 mask may be used instead of the SiN mask, and hydrofluoric acid may be used as an etching solution.
[0043]
In the first and second embodiments has formed the GaN layer, InGaN film, AlGaN film and the like, B x Al y Ga 1- xyz In z N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 It may be a film made of a nitride semiconductor represented by ≦ z ≦ 1). Further, the same effect can be obtained by doping the nitride semiconductor film.
[0044]
Further, instead of forming the GaN film in the first and second embodiments, a semiconductor film (not limited to a film made of a nitride semiconductor) that covers the silicon oxide film and grows crystals may be formed.
[0045]
In the above embodiment, the growth region is a stripe in the <11-2> direction. However, the present invention is not limited to this and may be a dot shape. Further, although silicon is used for the substrate, it is not necessarily limited to this, and it may be a GaAs substrate, an InP substrate, or the like.
[0046]
【The invention's effect】
As described above, according to the method for manufacturing a semiconductor substrate, the method for manufacturing a semiconductor device, and the semiconductor device according to the present invention, it is possible to suppress cracks and warpage caused by a difference in thermal expansion coefficient when using a dissimilar material substrate. A semiconductor device or semiconductor substrate having a nitride semiconductor film can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing each step of a semiconductor device manufacturing method according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing each step of a semiconductor device manufacturing method according to a first embodiment of the present invention. 3 is a cross-sectional view showing each step of a semiconductor device manufacturing method according to a second embodiment of the present invention. FIG. 4 is a cross-sectional view showing a conventional semiconductor device manufacturing method. FIG. Diagram showing the shape of the silicon oxide film at the lift-off part in the method
11 Silicon substrate 12 SiN mask 13 Silicon oxide film 14 Buffer layer 15, 16 GaN layer

Claims (8)

基板上の一部分にマスク材を形成する工程と、前記基板の前記マスク材のない部分に凹部を形成する工程と、前記基板を窒化させて前記凹部上に保護膜を形成する工程と、前記マスク材を除去する工程と、前記基板の前記マスク材が除去された領域上に選択的に半導体膜を形成する工程とを有する半導体装置の製造方法。Forming a mask material on a portion of the substrate; forming a recess in a portion of the substrate without the mask material; nitriding the substrate to form a protective film on the recess; and the mask A method for manufacturing a semiconductor device, comprising: a step of removing a material; and a step of selectively forming a semiconductor film on a region of the substrate where the mask material is removed. 前記基板の主面が(111)面であり、前記凹部はストライプ状であり、そのストライプの方向が<11−2>方向である請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the main surface of the substrate is a (111) plane, the recesses are striped, and the direction of the stripe is a <11-2> direction. 主面が(111)面である基板上の一部分にマスク材を形成する工程と、前記基板の前記マスク材のない部分にストライプの方向が<11−2>であるストライプ状の凹部を形成する工程と、前記基板を酸化させて前記凹部上に保護膜を形成する工程と、前記マスク材を除去する工程と、前記基板の前記マスク材が除去された領域上に選択的に半導体膜を形成する工程とを有する半導体装置の製造方法。 A step of forming a mask material on a part of the substrate whose main surface is the (111) surface, and a stripe-shaped recess having a stripe direction of <11-2> in a portion of the substrate where the mask material is not present A step of oxidizing the substrate to form a protective film on the recess, a step of removing the mask material, and selectively forming a semiconductor film on a region of the substrate from which the mask material has been removed A method for manufacturing a semiconductor device. 前記凹部として溝または穴を形成した請求項1または3記載の半導体装置の製造方法。  4. The method of manufacturing a semiconductor device according to claim 1, wherein a groove or a hole is formed as the recess. 前記基板としてシリコンを用い、前記マスクとして窒化シリコンを用い、前記保護膜として酸化シリコンを用いる請求項1または3記載の半導体装置の製造方法。  4. The method of manufacturing a semiconductor device according to claim 1, wherein silicon is used as the substrate, silicon nitride is used as the mask, and silicon oxide is used as the protective film. 主面に凸部と凹部とが形成されかつ前記凹部の表面が酸化または窒化された基板と、前記基板の前記主面上に半導体膜が形成され、かつ前記基板の凸部上に窒化アルミニウム膜が形成され、かつ前記窒化アルミニウム膜の上に前記半導体膜が形成された半導体装置。  A substrate on which a convex portion and a concave portion are formed on the main surface and the surface of the concave portion is oxidized or nitrided, a semiconductor film is formed on the main surface of the substrate, and an aluminum nitride film on the convex portion of the substrate A semiconductor device in which the semiconductor film is formed on the aluminum nitride film. 前記基板がシリコン基板である請求項記載の半導体装置。The semiconductor device according to claim 6 , wherein the substrate is a silicon substrate. 前記凹部が溝または穴である請求項記載の半導体装置。The semiconductor device according to claim 6 , wherein the recess is a groove or a hole.
JP2000304570A 2000-10-04 2000-10-04 Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method Expired - Fee Related JP4206629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304570A JP4206629B2 (en) 2000-10-04 2000-10-04 Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000304570A JP4206629B2 (en) 2000-10-04 2000-10-04 Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2002110569A JP2002110569A (en) 2002-04-12
JP4206629B2 true JP4206629B2 (en) 2009-01-14

Family

ID=18785596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304570A Expired - Fee Related JP4206629B2 (en) 2000-10-04 2000-10-04 Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4206629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843154B1 (en) * 2011-10-17 2018-03-29 서울바이오시스 주식회사 Method for separating epitaxial growth layer from growth substrate

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241198A (en) * 2001-02-13 2002-08-28 Hitachi Cable Ltd GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP4284188B2 (en) 2001-12-20 2009-06-24 パナソニック株式会社 Nitride semiconductor substrate manufacturing method and nitride semiconductor device manufacturing method
CN100362710C (en) * 2003-01-14 2008-01-16 松下电器产业株式会社 Nitride semiconductor device and fabrication method thereof, and method for forming nitride semiconductor substrate
JP4451846B2 (en) 2003-01-14 2010-04-14 パナソニック株式会社 Method of manufacturing nitride semiconductor device
KR20050077902A (en) 2004-01-29 2005-08-04 엘지전자 주식회사 Method of growing nitride semiconductor thin film
JP4447344B2 (en) * 2004-02-19 2010-04-07 富士通株式会社 Semiconductor device, ultraviolet light emitting element using semiconductor structure in semiconductor device, and manufacturing method thereof
JP4452167B2 (en) * 2004-12-06 2010-04-21 株式会社豊田中央研究所 Method of manufacturing structure having semiconductor layer of III-V compound
JP4363415B2 (en) * 2006-06-08 2009-11-11 ソニー株式会社 Crystal film, crystal substrate and semiconductor device
KR101364168B1 (en) * 2007-03-20 2014-02-18 서울바이오시스 주식회사 Method of fabricating substrates for light emitting device
TWI407491B (en) * 2008-05-09 2013-09-01 Advanced Optoelectronic Tech Method for separating semiconductor and substrate
KR101142082B1 (en) * 2009-03-12 2012-05-03 주식회사 엘지실트론 Nitride semiconductor substrate and manufacturing method thereof, and nitride semiconductor device using it
US9705028B2 (en) 2010-02-26 2017-07-11 Micron Technology, Inc. Light emitting diodes with N-polarity and associated methods of manufacturing
JP5512877B2 (en) 2010-03-31 2014-06-04 シーエスソリューション・カンパニー・リミッテド Semiconductor template substrate, light emitting device using semiconductor template substrate, and method for manufacturing the same
KR101134130B1 (en) 2010-06-23 2012-04-09 시스솔루션 주식회사 Method for manufacturing nitride semiconductor light emitting devices
JP5585268B2 (en) * 2010-07-22 2014-09-10 セイコーエプソン株式会社 SUBSTRATE WITH SINGLE CRYSTAL SILICON CARBIDE FILM, METHOD FOR PRODUCING SINGLE CRYSTAL SILICON CARBIDE CARBON FILM, AND METHOD FOR MANUFACTURING SUBSTRATE WITH SINGLE CRYSTAL SILICON CARBIDE CARBIDE FILM
JP5857573B2 (en) 2011-09-16 2016-02-10 富士通株式会社 Method for manufacturing compound semiconductor device
CN107346797A (en) * 2016-05-06 2017-11-14 中国科学院苏州纳米技术与纳米仿生研究所 Sapphire Substrate nano-pore preparation method
TWI728364B (en) * 2019-05-21 2021-05-21 國立陽明交通大學 SEMICONDUCTOR STRUCTURE OF GaN EPITAXY IN HETEROINTEGRATION WITH Si SUBSTRATE AND METHOD OF MANUFACTURING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843154B1 (en) * 2011-10-17 2018-03-29 서울바이오시스 주식회사 Method for separating epitaxial growth layer from growth substrate

Also Published As

Publication number Publication date
JP2002110569A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP4206629B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method
JP3721674B2 (en) Method for producing nitride III-V compound semiconductor substrate
JP3139445B2 (en) GaN-based semiconductor growth method and GaN-based semiconductor film
JP5276852B2 (en) Method for manufacturing group III nitride semiconductor epitaxial substrate
JP4005701B2 (en) Method of forming nitrogen compound semiconductor film and nitrogen compound semiconductor element
JP3620269B2 (en) GaN-based semiconductor device manufacturing method
JP3988018B2 (en) Crystal film, crystal substrate and semiconductor device
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
US6608327B1 (en) Gallium nitride semiconductor structure including laterally offset patterned layers
JP4651207B2 (en) Semiconductor substrate and manufacturing method thereof
JP2006523033A (en) Method for growing single crystal GaN on silicon
JP2001168045A (en) Method of manufacturing nitride-based iii-v compound layer and method of manufacturing substrate using it
JP4996448B2 (en) Method for creating a semiconductor substrate
JP2017522721A (en) Method of manufacturing a semiconductor material including a semipolar group III nitride layer
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP4214859B2 (en) Method for manufacturing gallium nitride (GaN) substrate
JP5238924B2 (en) Single crystal substrate and method for producing nitride semiconductor single crystal
JP2000228539A (en) Manufacture of nitrogen compound semiconductor
JP3934320B2 (en) GaN-based semiconductor device and manufacturing method thereof
JP4211358B2 (en) Nitride semiconductor, nitride semiconductor device and manufacturing method thereof
US20050186757A1 (en) Method for lift off GaN pseudomask epitaxy layer using wafer bonding way
JP5015480B2 (en) Manufacturing method of semiconductor single crystal substrate
JP2001057463A (en) Film structure and element of nitrogen compound semiconductor element, and manufacture of them
JP2000022283A (en) Semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2004115371A (en) Group iii-v nitride-based compound layer and substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees