JP2002049165A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2002049165A
JP2002049165A JP2000236930A JP2000236930A JP2002049165A JP 2002049165 A JP2002049165 A JP 2002049165A JP 2000236930 A JP2000236930 A JP 2000236930A JP 2000236930 A JP2000236930 A JP 2000236930A JP 2002049165 A JP2002049165 A JP 2002049165A
Authority
JP
Japan
Prior art keywords
titanium oxide
fine particles
oxide fine
layer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000236930A
Other languages
Japanese (ja)
Inventor
Kazumasa Watanabe
一雅 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2000236930A priority Critical patent/JP2002049165A/en
Publication of JP2002049165A publication Critical patent/JP2002049165A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide such an electrophotographic photoreceptor that injection of positive charges from defects of an aluminum substrate can be prevented by incorporating titanium oxide fine particles subjected to the surface treatment to impart hydrophobicity into a charge generating layer, that the photoreceptor does not generate image defects in black speckles but has high sensitivity and low residual potential and that the photoreceptor is suitable for a digital copying machine and printer. SOLUTION: In the electrophotographic photoreceptor, the charge generating layer contains titanium oxide fine particles subjected to the surface treatment to impart hydrophobicity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デジタル複写機及
びプリンター等の電子写真感光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member such as a digital copying machine and a printer.

【0002】[0002]

【従来の技術】電子機器の発達に伴いプリンターの需要
は高まり、複写機もデジタル化されたものになってきて
いる。この様なデジタル複写機及びプリンターではレー
ザー光を光源として画像を書き込むため、現像方法が従
来のアナログ複写機と異なり、光照射された箇所がトナ
ー画像となる反転現像方式が好ましい。しかしながら反
転現像方式ではアルミ基体欠陥からの正電荷の注入によ
り、黒班状の画像欠陥(黒ポチ)が生じるといった問題
が発生していた。
2. Description of the Related Art With the development of electronic equipment, the demand for printers has increased, and copiers have also been digitized. In such digital copiers and printers, images are written using laser light as a light source. Therefore, the developing method is different from that of a conventional analog copier, and a reversal development method in which a portion irradiated with light becomes a toner image is preferable. However, in the reversal development method, there has been a problem that a black spot-like image defect (black spot) occurs due to the injection of positive charges from the aluminum base defect.

【0003】従来はアルミ基体をアルマイト加工した
り、アルミ基体の上に厚い中間層を設けたりしてアルミ
基体欠陥からの正電荷の注入を防止していたがコスト高
であった。又、黒班状の画像欠陥を防止しようとすると
感度が低下したり、残留電位が増大したり別の問題が生
じ、特に高温高湿(30℃、80%RH)下で他の問題
を発生させずにアルミ基体欠陥からの正電荷の注入を防
止することが出来ず問題があった。
Conventionally, the injection of positive charges from defects in the aluminum base was prevented by alumite processing the aluminum base or by providing a thick intermediate layer on the aluminum base, but this was costly. Further, when trying to prevent black-spotted image defects, the sensitivity is reduced, the residual potential is increased, and other problems occur. In particular, other problems occur under high temperature and high humidity (30 ° C., 80% RH). Without this, it was not possible to prevent the injection of positive charges from defects in the aluminum base, and there was a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
鑑み提案されたものであり、その目的とするところは、
疎水性に表面処理された酸化チタン微粒子が電荷発生層
に含有されることにより、アルミ基体欠陥からの正電荷
注入を防止し、黒班状の画像欠陥が発生せず、且つ高感
度で残留電位の小さいデジタル複写機及びプリンター用
に適した電子写真感光体を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been proposed in view of the above problems.
The inclusion of hydrophobic titanium oxide particles in the charge generation layer prevents the injection of positive charges from defects in the aluminum base, prevents black spot-like image defects from occurring, and provides high sensitivity and residual potential. It is an object of the present invention to provide an electrophotographic photoreceptor suitable for digital copiers and printers having a small size.

【0005】[0005]

【課題を解決するための手段】本発明の課題は下記構成
を採ることにより達成される。
The object of the present invention is achieved by adopting the following constitution.

【0006】(1)疎水性に表面処理された酸化チタン
微粒子が電荷発生層に含有されていることを特徴とする
電子写真感光体。
(1) An electrophotographic photoreceptor characterized in that fine particles of titanium oxide having been subjected to hydrophobic surface treatment are contained in a charge generation layer.

【0007】(2)酸化チタン微粒子がケイ素を含む化
合物で表面処理されていることを特徴とする前記1項に
記載の電子写真感光体。
(2) The electrophotographic photoreceptor as described in (1) above, wherein the titanium oxide fine particles are surface-treated with a compound containing silicon.

【0008】(3)電荷発生物質がフタロシアニン顔料
であることを特徴とする前記1又は2項に記載の電子写
真感光体。
(3) The electrophotographic photoreceptor as described in (1) or (2) above, wherein the charge generating substance is a phthalocyanine pigment.

【0009】(4)酸化チタン微粒子がアナターゼ型で
あることを特徴とする前記1〜3項のいずれか1項に記
載の電子写真感光体。
(4) The electrophotographic photoreceptor as described in any one of the above items 1 to 3, wherein the titanium oxide fine particles are of an anatase type.

【0010】即ち、本発明者は、疎水性に表面処理され
た酸化チタン微粒子が電荷発生物質を含有する層に添加
した電子写真感光体をデジタル複写機及びプリンター用
に適用した時、黒班状の画像欠陥が発生しないことを見
いだした。この理由は、表面を疎水化した酸化チタン微
粒子がアルミ基体欠陥からの正電荷注入を防止してくれ
ることによると推定している。
That is, the present inventor has found that when an electrophotographic photosensitive member in which hydrophobic surface-treated fine particles of titanium oxide are added to a layer containing a charge generating substance is applied to a digital copying machine and a printer, black spots are formed. No image defects occurred. It is presumed that the reason for this is that the titanium oxide fine particles whose surface is made hydrophobic prevent injection of positive charges from defects in the aluminum base.

【0011】以下、本発明を更に詳細に述べる。本発明
の酸化チタン微粒子は表面が疎水化処理剤により疎水性
に処理されたものである。
Hereinafter, the present invention will be described in more detail. The surface of the titanium oxide fine particles of the present invention is hydrophobically treated with a hydrophobizing agent.

【0012】疎水化処理剤としてはチタンカップリング
剤、シランカップリング剤、脂肪族及びその金属塩、シ
リコーンオイル等が挙げられるが、シロキサン樹脂或い
はシランカップリング剤等のケイ素を含むものが好まし
い。
Examples of the hydrophobizing agent include a titanium coupling agent, a silane coupling agent, an aliphatic and metal salt thereof, and a silicone oil. A siloxane resin or a silane coupling agent containing silicon is preferable.

【0013】疎水化処理剤としてはアルキル基或いはシ
ロキサン基等の疎水性を付与する部分と−Si−H基、
−Si−OH基及び加水分解して−Si−OH碁に変化
するもの等の酸化チタン微粒子表面と反応する部分を備
えたものが好ましく用いられる。具体例としては、プロ
ピルトリメトキシシラン、デシルトリメトキシシラン、
イソブチルトリメトキシシラン、ジメチルジエトキシシ
ラン及びメチルハイドロジェンポリシロキサン等を挙げ
ることができる。
As the hydrophobizing agent, a portion imparting hydrophobicity such as an alkyl group or a siloxane group and a -Si-H group,
Those having a part which reacts with the surface of the titanium oxide fine particles, such as those which are converted into -Si-OH by hydrolysis and -Si-OH groups, are preferably used. Specific examples include propyltrimethoxysilane, decyltrimethoxysilane,
Examples thereof include isobutyltrimethoxysilane, dimethyldiethoxysilane, and methyl hydrogen polysiloxane.

【0014】疎水化処理剤は酸化チタン微粒子に対して
1〜10質量%添加して被覆することが好ましく、より
好ましくは3〜7質量%である。又疎水化処理剤は組み
合わせて使用することも出来る。
It is preferable that the hydrophobic treatment agent is added by 1 to 10% by mass based on the titanium oxide fine particles for coating, and more preferably 3 to 7% by mass. Further, the hydrophobizing agents can be used in combination.

【0015】又、疎水性に表面処理される酸化チタン微
粒子は必ずしも酸化チタン微粒子単独である必要はな
く、結晶安定化のために酸化ケイ素が少量混入していた
り或いは酸化アルミや酸化ケイ素で表面が覆われている
ものも含まれる。酸化チタン微粒子の結晶形としてはル
チル型とアナターゼ型の2種類が知られているがより電
子を輸送し易い(N型半導体としての性質が強い)アナ
ターゼ型が好ましい。
The titanium oxide fine particles to be surface-treated to be hydrophobic are not necessarily titanium oxide fine particles alone, and a small amount of silicon oxide may be mixed in for stabilizing the crystal, or the surface may be coated with aluminum oxide or silicon oxide. Includes what is covered. As the crystal forms of the titanium oxide fine particles, two types of rutile type and anatase type are known, but anatase type, which easily transports electrons (has a strong property as an N-type semiconductor), is preferable.

【0016】本発明の疎水化処理された酸化チタン微粒
子は一次粒子径が100nm以下のものが好ましい。酸
化チタン微粒子の一次粒子径が100nmを越えると層
を均一に形成することが困難となり、実写で画質が悪く
且つ黒班状の画像欠陥防止効果も薄れ好ましくない。
The titanium oxide fine particles subjected to the hydrophobic treatment of the present invention preferably have a primary particle diameter of 100 nm or less. If the primary particle diameter of the titanium oxide fine particles exceeds 100 nm, it is difficult to form a uniform layer, and the actual image quality is poor, and the effect of preventing black-spotted image defects is unfavorable.

【0017】又、本発明の疎水性に表面処理された酸化
チタン微粒子を含有する感光体は、前述したように反転
現像した際に発生する黒班状の画像欠陥の改善を目的と
したものであるが、疎水性に表面処理された酸化チタン
微粒子を含有しないもの、不活性なバインダー樹脂或い
はシリカゾル等を含有するものに比して高感度で且つ残
留電位が小さいという特徴もある。
Further, the photoreceptor containing the titanium oxide fine particles subjected to hydrophobic surface treatment according to the present invention is intended to improve black spot-like image defects generated during reversal development as described above. However, it is characterized by high sensitivity and low residual potential as compared with those not containing hydrophobic surface-treated titanium oxide fine particles, or those containing an inert binder resin or silica sol.

【0018】電荷発生層に使用されるバインダー樹脂と
しては特に限定されることなく通常電荷発生層に使用さ
れているバインダー樹脂、例えばポリカーボネート樹
脂、ポリエステル樹脂、ポリスチレン樹脂、アクリル樹
脂、ポリ塩化ビニル樹脂、ポリビニルブチラール樹脂、
シリコン樹脂、セルロース樹脂及びポリアミド樹脂等か
ら任意に選ぶことができる。塗布溶媒としても特に限定
されることはなく、例えばテトラヒドロフラン及びジオ
キソラン等のエーテル類、メチルエチルケトン及びシク
ロヘキサノン等のケトン類、トルエン及びキシレン等の
芳香族化合物、酢酸エチル及び酢酸ブチル等のエステル
類、イソプロパノールおよびブタノール等のアルコール
類等のものを任意に選ぶことができる。
The binder resin used in the charge generation layer is not particularly limited, and is usually a binder resin used in the charge generation layer, for example, a polycarbonate resin, a polyester resin, a polystyrene resin, an acrylic resin, a polyvinyl chloride resin, Polyvinyl butyral resin,
It can be arbitrarily selected from a silicone resin, a cellulose resin, a polyamide resin and the like. There is no particular limitation on the coating solvent, for example, ethers such as tetrahydrofuran and dioxolan, ketones such as methyl ethyl ketone and cyclohexanone, aromatic compounds such as toluene and xylene, esters such as ethyl acetate and butyl acetate, isopropanol and Alcohols such as butanol can be arbitrarily selected.

【0019】疎水性に表面処理された酸化チタン微粒子
を含有する層に含まれる電荷発生物質(CGM)として
はフタロシアニン顔料、アゾ顔料、ペリレン顔料及びア
ズレニウム顔料等を挙げることができるが、本発明は前
述したようにレーザー露光−反転現像プロセスに於いて
特に効果を発揮することが必要なので、露光に用いる半
導体レーザーの発振波長である近赤外領域に感度を有す
るフタロシアニン顔料が好ましい。
The charge generation substance (CGM) contained in the layer containing the titanium oxide fine particles surface-treated to be hydrophobic includes phthalocyanine pigments, azo pigments, perylene pigments, and azurenium pigments. As described above, since it is necessary to particularly exert an effect in the laser exposure-reversal development process, a phthalocyanine pigment having sensitivity in the near infrared region which is the oscillation wavelength of the semiconductor laser used for exposure is preferable.

【0020】フタロシアニン顔料としてはA型、B型及
びY型のチタニルフタロシアニン、X型及びτ型の無金
属フタロシアニン、銅フタロシアニンに代表される金属
フタロシアニン類、ナフタロシアニン類、又これら2種
類のフタロシアニン混晶等が挙げられる。
The phthalocyanine pigments include A-type, B-type and Y-type titanyl phthalocyanines, X-type and τ-type metal-free phthalocyanines, metal phthalocyanines represented by copper phthalocyanines, naphthalocyanines, and mixtures of these two types of phthalocyanines. And the like.

【0021】本発明の電荷発生層中の電荷発生物質と酸
化チタン微粒子の配合割合は質量比で1:5〜5:1が
好ましく、バインダー樹脂と固形分(電荷発生物質+酸
化チタン)の配合割合は質量比で1:7〜5:1が好ま
しい。
The mixing ratio of the charge generating substance and the titanium oxide fine particles in the charge generating layer of the present invention is preferably from 1: 5 to 5: 1 by mass ratio, and the mixing of the binder resin and the solid content (charge generating substance + titanium oxide). The ratio is preferably from 1: 7 to 5: 1 by mass.

【0022】電荷発生物質を含む層の膜厚は負帯電に適
用した機能分離型の感光体及び正帯電に適用した積層構
造の感光体では5μmが好ましく、単層感光体では5〜
40μmが好ましい。
The thickness of the layer containing the charge generating substance is preferably 5 μm for a function-separated type photosensitive member applied to negative charging and a laminated structure photosensitive member applied to positive charging, and 5 to 5 μm for a single-layered photosensitive member.
40 μm is preferred.

【0023】又、正帯電感光体の電荷発生層に前述の本
発明の疎水性に表面処理された酸化チタン微粒子を含有
させると、感度の向上及び残留電位を低減させることが
出来る。
When the above-described hydrophobic surface-treated titanium oxide fine particles of the present invention are contained in the charge generation layer of the positively charged photoreceptor, the sensitivity can be improved and the residual potential can be reduced.

【0024】本発明の電荷発生層用の塗布液は電荷発生
物質と酸化チタン微粒子をバインダー樹脂溶液中で別々
にサンドグラインダー或いは超音波分散機で分散してか
ら混合して作製しても良く、又すべての素材を混合して
から分散して作製しても良い。表面処理された酸化チタ
ン微粒子の種類によってはサンドグラインダー分散では
表面処理剤が剥がれる等の現象が見られることもあり、
この場合は電荷発生物質はサンドグラインダーで予め分
散を行い、後から酸化チタン微粒子を添加して超音波分
散機で分散するか、或いは超音波分散機で分散した酸化
チタン微粒子の分散液を分散完了した電荷発生物質の分
散液に混合して塗布液を作製する。
The coating solution for the charge generation layer of the present invention may be prepared by separately dispersing the charge generation substance and the titanium oxide fine particles in a binder resin solution by using a sand grinder or an ultrasonic disperser, and then mixing them. Alternatively, all the materials may be mixed and then dispersed. Depending on the type of the surface-treated titanium oxide fine particles, a phenomenon such as peeling of the surface treatment agent may be observed in the sand grinder dispersion,
In this case, the charge generating substance is dispersed in advance by a sand grinder, and then the titanium oxide fine particles are added and dispersed by an ultrasonic disperser, or the dispersion of the titanium oxide fine particles dispersed by the ultrasonic disperser is completed. It is mixed with the dispersion liquid of the charge generation substance thus prepared to prepare a coating liquid.

【0025】本発明の感光体の層構成は特に限定される
ことはない。負帯電感光体に本発明を適用する場合は通
常の機能分離型感光体、即ちアルミニウム基体上に下引
き層(UCL)、電荷発生層(CGL)、電荷輸送層
(CTL)の順に設けた層構成をとることができる。
又、正帯電感光体に本発明を適用する場合は積層構造、
即ちアルミニウム基体上に下引き層(UCL)、電荷輸
送層(CTL)、電荷発生層(CGL)の順に設けた層
構成をとることが出来る。又、単層構造、即ち下引き層
(UCL)、感光層(電荷発生物質と電荷輸送物質を含
有)の層構成をとっても良く、電荷発生層を2層にして
一方を本発明の酸化チタン微粒子含有層、一方を通常の
顔料のみの層としても良い。又、これらの感光体には保
護層を設けても良い。
The layer constitution of the photoreceptor of the present invention is not particularly limited. When the present invention is applied to a negatively charged photoreceptor, a normal function-separated type photoreceptor, that is, a layer in which an undercoat layer (UCL), a charge generation layer (CGL), and a charge transport layer (CTL) are provided on an aluminum substrate in this order. Configuration can be taken.
In addition, when the present invention is applied to a positively charged photoreceptor, a laminated structure,
That is, a layer configuration in which an undercoat layer (UCL), a charge transport layer (CTL), and a charge generation layer (CGL) are provided in this order on an aluminum substrate can be employed. Further, it may have a single-layer structure, that is, a layer structure of an undercoat layer (UCL) and a photosensitive layer (containing a charge generating material and a charge transporting material). The containing layer, one of which may be a layer containing only ordinary pigments, may be used. Further, these photoconductors may be provided with a protective layer.

【0026】前記基体、下引き層(UCL)、電荷輸送
層(CTL)及び保護層にはいずれも公知の技術を用い
ることが出来る。
Known techniques can be used for the substrate, the undercoat layer (UCL), the charge transport layer (CTL), and the protective layer.

【0027】基体としては、アルミニウム、ニッケル等
の金属板、金属ドラム、アルミニウム、酸化錫、酸化イ
ンジウム等を蒸着したプラスチックフィルム、プラスチ
ックドラム又は導電性物質を塗布した紙、プラスチック
フィルム、プラスチックドラム等を用いることが出来る
が、好ましくはアルミニウムドラムである。
The substrate may be a metal plate such as aluminum or nickel, a metal drum, a plastic film on which aluminum, tin oxide, indium oxide, or the like is deposited, a plastic drum or paper coated with a conductive substance, a plastic film, a plastic drum, or the like. Although it can be used, an aluminum drum is preferable.

【0028】下引き層(UCL)に用いられるバインダ
ー樹脂としては、ポリカーボネート樹脂、ポリエステル
樹脂、ポリスチレン樹脂、アクリル樹脂、ポリ塩化ビニ
ル樹脂ポリビニルブチラール樹脂及びポリアミド樹脂等
が挙げられ、任意のものを選ぶことができる。又、ジル
コニア、チタン、シラン等の金属の水酸化物を縮合させ
て得られる、いわゆるセラミックを用いても良い。下引
き層の膜厚は0.1〜5μmが好ましく、0.2〜3μ
mがより好ましい。
Examples of the binder resin used for the undercoat layer (UCL) include polycarbonate resin, polyester resin, polystyrene resin, acrylic resin, polyvinyl chloride resin, polyvinyl butyral resin, and polyamide resin. Can be. Further, a so-called ceramic obtained by condensing a hydroxide of a metal such as zirconia, titanium, or silane may be used. The thickness of the undercoat layer is preferably 0.1 to 5 μm, and 0.2 to 3 μm.
m is more preferred.

【0029】電荷輸送層(CTL)に用いられる電荷輸
送物質としては、トリフェニルアミン誘導体、ヒドラゾ
ン化合物、スチリル化合物、ベンジジン化合物及びブタ
ジエン化合物等が挙げられ、任意のものを選ぶことがで
きる。代表的な電荷輸送物質を以下に挙げる。
Examples of the charge transporting material used for the charge transporting layer (CTL) include triphenylamine derivatives, hydrazone compounds, styryl compounds, benzidine compounds and butadiene compounds, and any one can be selected. Representative charge transport materials are listed below.

【0030】1、トリアリールアミン系化合物1. Triarylamine compounds

【0031】[0031]

【化1】 Embedded image

【0032】2、ヒドラゾン系化合物2. Hydrazone compounds

【0033】[0033]

【化2】 Embedded image

【0034】3、スチルベン系化合物3. Stilbene compounds

【0035】[0035]

【化3】 Embedded image

【0036】4、ベンジジン系化合物4. Benzidine compounds

【0037】[0037]

【化4】 Embedded image

【0038】5、ブタジエン系化合物5. Butadiene compounds

【0039】[0039]

【化5】 Embedded image

【0040】6、その他の化合物6. Other compounds

【0041】[0041]

【化6】 Embedded image

【0042】電荷輸送層(CTL)に用いられるバイン
ダー樹脂としては、ポリカーボネート樹脂、ポリエステ
ル樹脂、ポリスチレン樹脂、アクリル樹脂、ポリ塩化ビ
ニル樹脂、ポリブチラール樹脂及びポリアミド樹脂等を
挙げることが出来る。
Examples of the binder resin used for the charge transport layer (CTL) include a polycarbonate resin, a polyester resin, a polystyrene resin, an acrylic resin, a polyvinyl chloride resin, a polybutyral resin, and a polyamide resin.

【0043】電荷輸送層中の電荷輸送物質とバインダー
樹脂の配合割合は質量比で3:1〜1:3が好ましい。
又、電荷輸送層の膜厚は5〜50μmが好ましく、10
〜40μmがより好ましい。
The mixing ratio of the charge transporting material and the binder resin in the charge transporting layer is preferably from 3: 1 to 1: 3 by mass.
The charge transport layer preferably has a thickness of 5 to 50 μm.
-40 μm is more preferred.

【0044】保護層としては、通常のポリカーボネート
及びポリエステル等の有機ポリマーやポリシロキサン結
合を有する無機ポリマー等が使用出来る。又、保護層に
は必要に応じて微粒子を含有しても良い。保護層の膜厚
は0.1〜10μmが好ましく、0.2〜7μmがより
好ましい。
As the protective layer, ordinary organic polymers such as polycarbonate and polyester, and inorganic polymers having a polysiloxane bond can be used. Further, the protective layer may contain fine particles as necessary. The thickness of the protective layer is preferably from 0.1 to 10 μm, more preferably from 0.2 to 7 μm.

【0045】[0045]

【実施例】以下に、実施例を挙げて、本発明を具体的に
説明するが、本発明の実施態様はこれらに限定されるも
のではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but embodiments of the present invention are not limited thereto.

【0046】〈CGL用塗布液1の作製〉Y型チタニル
フタロシアニン2部、ポリビニルブチラール樹脂(エス
レックBMS、積水化学株式会社製)1部、酢酸t−ブ
チル70部、4−メトキシ−4−メチルペンタノン30
部を混合後サンドグラインダーで分散し、これに疎水性
に表面化処理された酸化チタン微粒子(アナターゼ型、
TAF1500−S33、富士チタン株式会社製、粒径
は20〜30nm、プロピルトリメトキシシラン処理2
0質量%)2部を加えて超音波分散機で分散し「CGL
用塗布液1」を作製した。
<Preparation of Coating Solution 1 for CGL> 2 parts of Y-type titanyl phthalocyanine, 1 part of polyvinyl butyral resin (Eslec BMS, manufactured by Sekisui Chemical Co., Ltd.), 70 parts of t-butyl acetate, 4-methoxy-4-methylpentane Non 30
Part was mixed and dispersed by a sand grinder, and the titanium oxide fine particles (anatase type,
TAF1500-S33, manufactured by Fuji Titanium Co., Ltd., particle size is 20 to 30 nm, propyltrimethoxysilane treatment 2
0% by mass) and dispersed by an ultrasonic dispersing machine.
Application liquid 1 "was prepared.

【0047】〈CGL用塗布液2の作製〉酸化チタン微
粒子(アナターゼ型、TAF1500−S33)に代え
て疎水性に表面化処理された酸化チタン微粒子(アナタ
ーゼ型、TAF1500−S32、富士チタン株式会社
製、粒径は20〜30nm、イソブチルトリメトキシシ
ラン処理20質量%)2部を用いた他はCGL用塗布液
1と同様にして「CGL用塗布液2」を作製した。
<Preparation of Coating Solution 2 for CGL> Instead of titanium oxide fine particles (anatase type, TAF1500-S33), hydrophobic surface-treated titanium oxide fine particles (anatase type, TAF1500-S32, manufactured by Fuji Titanium Co., Ltd.) A “CGL coating liquid 2” was prepared in the same manner as the CGL coating liquid 1 except that 2 parts of a particle diameter of 20 to 30 nm and isobutyltrimethoxysilane treatment (20% by mass) were used.

【0048】〈CGL用塗布液3の作製〉酸化チタン微
粒子(アナターゼ型、TAF1500−S33)を2部
から4部に変えた他はCGL用塗布液1と同様にして
「CGL用塗布液3」を作製した。
<Preparation of CGL coating liquid 3>"CGL coating liquid 3" was prepared in the same manner as CGL coating liquid 1 except that titanium oxide fine particles (anatase type, TAF1500-S33) were changed from 2 parts to 4 parts. Was prepared.

【0049】〈CGL用塗布液4の作製〉CGL用塗布
液1から酸化チタン微粒子(アナターゼ型、TAF15
00−S33)を除いた以外はCGL用塗布液1と同様
にして「CGL用塗布液4」を作製した。
<Preparation of Coating Solution 4 for CGL> Fine particles of titanium oxide (anatase type, TAF15
"CGL coating liquid 4" was prepared in the same manner as CGL coating liquid 1 except that 00-S33) was excluded.

【0050】〈CGL用塗布液5の作製〉酸化チタン微
粒子(TAF1500−S33)をシリカゾル(IPA
−ST、日産化学株式会社製、粒径10〜20nm、イ
ソプロパノール溶媒、固形分濃度30質量%)6.7部
(固形分換算2部)に変えた以外はCGL用塗布液1と
同様にして「CGL用塗布液5」を作製した。
<Preparation of Coating Solution 5 for CGL> Titanium oxide fine particles (TAF1500-S33) were mixed with silica sol (IPA).
-ST, manufactured by Nissan Chemical Industries, Ltd., particle size 10 to 20 nm, isopropanol solvent, solid content concentration 30% by mass) Except that it was changed to 6.7 parts (solid content conversion 2 parts), in the same manner as coating liquid 1 for CGL. "Coating solution 5 for CGL" was prepared.

【0051】〈CGL用塗布液6の作製〉酸化チタン微
粒子(TAF1500−S33)の代わりにポリビニル
ブチラール樹脂(エスレックBMS)をさらに2部増量
させた以外はCGL用塗布液1と同様にして「CGL用
塗布液6」を作製した。
<Preparation of CGL Coating Solution 6> [CGL] was prepared in the same manner as the CGL coating solution 1 except that polyvinyl butyral resin (S-lec BMS) was further increased by 2 parts in place of the titanium oxide fine particles (TAF1500-S33). Application liquid 6 "was prepared.

【0052】実施例1 アルミニウムドラム基体上にポリアミド樹脂(CM80
00、東レ株式会社製)のメタノール溶液を浸漬塗布
し、乾燥膜厚0.4μmの下引き層(UCL)を形成し
た。次いで、前記「CGL用塗布液1」を下引き層の上
に浸漬塗布し、乾燥膜厚0.8μmの電荷発生層を形成
した。次いで電荷輸送物質(S−1)を0.65部とポ
リカーボネート樹脂(ユーピロンZ−200、三菱ガス
化学株式会社製)1部をジクロロエタン7.5部に溶解
した電荷輸送用塗布液を電荷発生層の上に浸漬塗布し、
100℃で70分間乾燥して乾燥膜厚24μmの電荷輸
送層を形成し、「感光体1」を作製した。
Example 1 A polyamide resin (CM80) was placed on an aluminum drum substrate.
00, manufactured by Toray Industries, Inc.) was applied by dip coating to form an undercoat layer (UCL) having a dry film thickness of 0.4 μm. Next, the “coating liquid 1 for CGL” was dip-coated on the undercoat layer to form a charge generation layer having a dry film thickness of 0.8 μm. Next, a charge transport coating solution obtained by dissolving 0.65 part of the charge transport material (S-1) and 1 part of a polycarbonate resin (Iupilon Z-200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) in 7.5 parts of dichloroethane was used. Dip coating on
The resultant was dried at 100 ° C. for 70 minutes to form a charge transport layer having a dry film thickness of 24 μm, thereby producing “Photoconductor 1”.

【0053】実施例2 CGL用塗布液1の代わりに前記「CGL用塗布液2」
を用いた以外は実施例1と同様にして「感光体2」を作
製した。
Example 2 Instead of the CGL coating liquid 1, the above-mentioned "CGL coating liquid 2" was used.
"Photoconductor 2" was prepared in the same manner as in Example 1 except that was used.

【0054】実施例3 CGL用塗布液1の代わりに前記「CGL用塗布液3」
を用いた以外は実施例1と同様にして「感光体3」を作
製した。
Example 3 Instead of the CGL coating liquid 1, the above-mentioned "CGL coating liquid 3" was used.
"Photoreceptor 3" was prepared in the same manner as in Example 1 except that was used.

【0055】実施例4 CGL用塗布液1の代わりに前記「CGL用塗布液4」
を用いた以外は実施例1と同様にして「感光体4」を作
製した。
Example 4 Instead of the CGL coating liquid 1, the above-mentioned "CGL coating liquid 4" was used.
"Photoreceptor 4" was prepared in the same manner as in Example 1 except that was used.

【0056】実施例5 CGL用塗布液1の代わりに前記「CGL用塗布液5」
を用いた以外は実施例1と同様にして「感光体5」を作
製した。
Example 5 Instead of the CGL coating liquid 1, the above-mentioned "CGL coating liquid 5" was used.
"Photoconductor 5" was prepared in the same manner as in Example 1 except that the photoreceptor was used.

【0057】実施例6 CGL用塗布液1の代わりに前記「CGL用塗布液6」
を用いた以外は実施例1と同様にして「感光体6」を作
製した。
Example 6 Instead of the CGL coating liquid 1, the above-mentioned "CGL coating liquid 6" was used.
"Photoconductor 6" was prepared in the same manner as in Example 1 except that was used.

【0058】〈評価1〉前記「感光体1〜6」をKon
ica7150(コニカ株式会社製)改造デジタル複写
機に装着し、露光部電位の上昇が大きいと予想される高
温高湿(30℃、80%RH)環境に於いて帯電、露
光、除電を30,000回繰り返して行い、スタート時
及び30,000回繰り返し終了直前の露光部電位の差
(ΔVL)を測定した。測定結果を下記表1に示す。
<Evaluation 1> The above “Photoconductors 1 to 6” were Kon.
ika7150 (manufactured by Konica Corporation) was mounted on a remodeled digital copier, and charged, exposed, and neutralized in a high-temperature, high-humidity (30 ° C., 80% RH) environment in which an increase in the potential of the exposed portion is expected to be large. And the difference (ΔVL) in the exposed portion potential at the start and immediately before the end of 30,000 repetitions was measured. The measurement results are shown in Table 1 below.

【0059】〈評価2〉前記「感光体1〜6」をKon
ica7150(コニカ株式会社製)改造デジタル複写
機に装着し、黒班状の画像欠陥が一番激しく発生すると
予想される高温高湿(30℃、80%RH)環境で、グ
リッド電圧を−1000V、現像バイアスを−800V
に設定してプリントを行なった時の黒班状の画像欠陥発
生の有無、1,000枚連続プリントを行った時のベタ
黒濃度をマクベス反射濃度計RD−918(マクベス株
式会社製)で測定した。結果を下記表1に示す。
<Evaluation 2> The above “Photoconductors 1 to 6” were replaced with Kon.
ica7150 (manufactured by Konica Corporation) modified digital copier, and in a high-temperature and high-humidity (30 ° C., 80% RH) environment where black spot-like image defects are expected to occur most severely, a grid voltage of −1000 V and -800V for developing bias
Of black spot-like image defects when printing was set to, and the solid black density after continuous printing of 1,000 sheets were measured with a Macbeth reflection densitometer RD-918 (manufactured by Macbeth Corporation). did. The results are shown in Table 1 below.

【0060】 評価基準 ○ 黒班状の画像欠陥発生無し △ 黒班状の画像欠陥少し発生 実用上問題 × 黒班状の画像欠陥多量発生 実用上問題Evaluation criteria ○ No black-spotted image defects occurred △ Little black-spotted image defects occurred Practical problem × Many black-spotted image defects Practical problem

【0061】[0061]

【表1】 [Table 1]

【0062】上記表1に示した通り、本発明の実施例の
感光体1〜3は繰り返しでの電位上昇(ΔVL)が少な
く、且つ黒班状の画像欠陥も発生せず黒班状の画像欠陥
発生防止に有効であった。これに反し、酸化チタン微粒
子を含有しない感光体4は黒班状の画像欠陥発生が著し
かった。酸化チタンの代わりにシリカゾルを用いた感光
体5は黒班状の画像欠陥は多少改良されたがΔVLの上
昇が見られ、連続プリントで徐々にベタ黒濃度が低下し
実用上問題であった。酸化チタン微粒子を含有せずバイ
ンダー樹脂を増量した感光体6は黒班状の画像欠陥は多
少改良されたが大きなΔVL上昇が見られ、連続プリン
トで顕著にベタ黒濃度が低下し実用上問題であった。
As shown in Table 1 above, the photoreceptors 1 to 3 of the embodiment of the present invention have a small potential increase (ΔVL) due to repetition, and have no black-spotted image defects. It was effective in preventing defects. On the other hand, the photoreceptor 4 containing no titanium oxide fine particles had remarkable occurrence of black spot-like image defects. The photoreceptor 5 using silica sol instead of titanium oxide slightly improved black spot-like image defects, but showed an increase in ΔVL, and the solid black density gradually decreased in continuous printing, which was a practical problem. In the photoreceptor 6 containing no titanium oxide fine particles and increasing the amount of binder resin, black spot-like image defects were somewhat improved, but a large increase in ΔVL was observed, and the solid black density was remarkably lowered in continuous printing. there were.

【0063】実施例7 ポリビニルブチラール樹脂(エスレックBMS、積水化
学株式会社製)1.0gと電荷輸送物質(S−3)1.
0gをメチルエチルケトン85mLとシクロヘキサノン
15mLの混合液に溶解した下引き層用塗布液を、アル
ミニウム蒸着したPETベースにワイヤーバーで塗布
し、乾燥膜厚0.2μmの下引き層を形成した。
Example 7 1.0 g of polyvinyl butyral resin (Eslec BMS, manufactured by Sekisui Chemical Co., Ltd.) and charge transport material (S-3)
A coating solution for an undercoat layer in which 0 g was dissolved in a mixture of 85 mL of methyl ethyl ketone and 15 mL of cyclohexanone was applied to a PET base on which aluminum was vapor-deposited by a wire bar to form an undercoat layer having a dry film thickness of 0.2 μm.

【0064】次いで、ポリカーボネート樹脂(ビスフェ
ノールZ200、三菱瓦斯化学株式会社製)15gと電
荷輸送物質(S−3)10gを1,2−ジクロルエタン
100mLに溶解した電荷輸送層用塗布液をドクターブ
レードにて前記下引き層の上に塗布し、乾燥膜厚12μ
mの電荷輸送層を形成した。
Next, a coating solution for a charge transport layer obtained by dissolving 15 g of a polycarbonate resin (Bisphenol Z200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 10 g of a charge transport material (S-3) in 100 mL of 1,2-dichloroethane was used with a doctor blade. Coated on the undercoat layer, dry film thickness 12μ
m of the charge transport layer was formed.

【0065】次いで、ポリカーボネート樹脂(ビスフェ
ノールZ300、三菱瓦斯化学株式会社製)5gと電荷
輸送物質(S−3)8gをジオキソラン150mLに溶
解した液にB型チタニルフタロシアニン2gを加えてサ
ンドグラインダーで分散した。この分散液にポリカーボ
ネート樹脂(ビスフェノールZ300)を10gさらに
追加して溶解後、酸化チタン微粒子(アナターゼ型、T
AF1500−S22、イソブチルトリメトキシシラン
処理10質量%)を4g加え超音波分散機で分散した電
荷輸送層用塗布液をドクターブレードにて前記電荷輸送
層の上に塗布し、乾燥膜厚6μmの電荷発生層を形成
し、「感光体7」を作製した 実施例8 実施例7の電荷発生層液中の酸化チタン微粒子(アナタ
ーゼ型、TAF1500−S22)に代えて疎水性に処
理された酸化チタン微粒子(ルチル型、TTO−51、
石原産業株式会社製 粒径20〜30nm、イソブチル
トリメトキシシラン処理10質量%)を用いた他は実施
例7と同様にして「感光体8」を作製した。
Next, 2 g of B-type titanyl phthalocyanine was added to a solution obtained by dissolving 5 g of a polycarbonate resin (bisphenol Z300, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 8 g of the charge transport material (S-3) in 150 mL of dioxolane, and dispersed by a sand grinder. . 10 g of a polycarbonate resin (bisphenol Z300) was further added and dissolved in this dispersion, and then titanium oxide fine particles (anatase type, T
AF1500-S22, 4 g of isobutyltrimethoxysilane treated 4 g), and a coating liquid for a charge transport layer dispersed by an ultrasonic disperser was applied on the charge transport layer by a doctor blade, and the charge having a dry film thickness of 6 μm was applied. Example 8 A Photosensitive Body 7 was Prepared by Forming a Generating Layer Example 8 Titanium Oxide Fine Particles Treated Hydrophobicly Instead of Titanium Oxide Fine Particles (Anatase Type, TAF1500-S22) in the Charge Generating Layer Solution of Example 7 (Rutile type, TTO-51,
"Photoreceptor 8" was prepared in the same manner as in Example 7, except that a particle diameter of 20 to 30 nm, manufactured by Ishihara Sangyo Co., Ltd., and 10% by mass of isobutyltrimethoxysilane treatment were used.

【0066】実施例9 実施例7の電荷発生層液中の酸化チタン微粒子(アナタ
ーゼ型、TAF1500−S22)を除いた他は実施例
7と同様にして「感光体9」を作製した。
Example 9 A "photoreceptor 9" was prepared in the same manner as in Example 7, except that the titanium oxide fine particles (anatase type, TAF1500-S22) in the charge generation layer solution were removed.

【0067】〈評価3〉上記「感光体7〜9」をペーパ
ーアナライザーEPA8100(川口電機株式会社製)
を用いて下記の様な試験を行った。
<Evaluation 3> The above “Photoconductors 7 to 9” were analyzed using a paper analyzer EPA8100 (manufactured by Kawaguchi Electric Co., Ltd.).
The following tests were performed using

【0068】+80μAの条件で5秒間コロナ帯電を行
い、帯電直後の受容電位Va(V)及び5秒間放置後の
初期電位Vi(V)を求め、続いて表面照度2.0Lu
xで露光を10秒間行い、初期電位を1/2Viとする
露光量E1/2(Lux)、初期電位を600Vから1
00Vに低下させるに必要な露光量E600/100
(Lux)及び露光後の残留電位Vr(V)を求めた。
又、暗所での表面電荷の低下の尺度として暗減衰率DD
=(Va−Vi)Va%を求めた。測定結果を下記の表
2に示す。
Under the condition of +80 μA, corona charging was performed for 5 seconds, and the received potential Va (V) immediately after charging and the initial potential Vi (V) after standing for 5 seconds were obtained.
Exposure is performed for 10 seconds at x, the exposure amount E1 / 2 (Lux) at which the initial potential is 1/2 Vi, and the initial potential is 600 V to 1
Exposure amount E600 / 100 required to lower to 00V
(Lux) and the residual potential Vr (V) after exposure were determined.
The dark decay rate DD is a measure of the decrease in surface charge in a dark place.
= (Va-Vi) Va% was determined. The measurement results are shown in Table 2 below.

【0069】[0069]

【表2】 [Table 2]

【0070】本発明の疎水性に表面処理された酸化チタ
ン微粒子を含有する正帯電感光体は、酸化チタン微粒子
を含有しないものと比較して高感度(E600/10
0)で且つ残留電位(Vr)も小さい。これは酸化チタ
ン微粒子がN型半導体として働きをしているものと考え
られる結果が得られた。
The positively charged photoreceptor containing the titanium oxide fine particles having a hydrophobic surface treatment according to the present invention has a higher sensitivity (E600 / 10) than the photoreceptor containing no titanium oxide fine particles.
0) and the residual potential (Vr) is also small. As a result, it was found that the titanium oxide fine particles functioned as an N-type semiconductor.

【0071】[0071]

【発明の効果】実施例で実証した如く、本発明は、疎水
性に表面処理された酸化チタン微粒子が電荷発生層に含
有されることにより、アルミ基体欠陥からの正電荷注入
を防止する事が出来、黒班状の画像欠陥が発生せず、且
つ高感度で残留電位が小さいデジタル複写機及びプリン
ター用に適した電子写真感光体を提供することが出来
た。
As has been demonstrated in the examples, the present invention can prevent the injection of positive charges from defects in an aluminum base by containing hydrophobic oxide-treated titanium oxide fine particles in the charge generation layer. As a result, an electrophotographic photoreceptor suitable for digital copying machines and printers having no black spot-like image defects, high sensitivity and low residual potential could be provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 疎水性に表面処理された酸化チタン微粒
子が電荷発生層に含有されていることを特徴とする電子
写真感光体。
1. An electrophotographic photoreceptor, wherein the charge generation layer contains titanium oxide fine particles having a hydrophobic surface treatment.
【請求項2】 酸化チタン微粒子がケイ素を含む化合物
で表面処理されていることを特徴とする請求項1に記載
の電子写真感光体。
2. The electrophotographic photoreceptor according to claim 1, wherein the titanium oxide fine particles are surface-treated with a compound containing silicon.
【請求項3】 電荷発生物質がフタロシアニン顔料であ
ることを特徴とする請求項1又は2に記載の電子写真感
光体。
3. The electrophotographic photoreceptor according to claim 1, wherein the charge generating substance is a phthalocyanine pigment.
【請求項4】 酸化チタン微粒子がアナターゼ型である
ことを特徴とする請求項1〜3のいずれか1項に記載の
電子写真感光体。
4. The electrophotographic photoreceptor according to claim 1, wherein the titanium oxide fine particles are of an anatase type.
JP2000236930A 2000-08-04 2000-08-04 Electrophotographic photoreceptor Pending JP2002049165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000236930A JP2002049165A (en) 2000-08-04 2000-08-04 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000236930A JP2002049165A (en) 2000-08-04 2000-08-04 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2002049165A true JP2002049165A (en) 2002-02-15

Family

ID=18728891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000236930A Pending JP2002049165A (en) 2000-08-04 2000-08-04 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2002049165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218212A (en) * 2015-05-19 2016-12-22 三菱化学株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218212A (en) * 2015-05-19 2016-12-22 三菱化学株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus

Similar Documents

Publication Publication Date Title
EP0838729B1 (en) Electrophotographic copying method and electrophotographic copying machine used in the method
EP0609511B1 (en) Electrophotographic photosensitive member and electrophotographic apparatus employing the same
JPH06222600A (en) Electrophotogrpahic sensitive body and electrophotographic apparatus using the same
EP0982634B1 (en) Electro-photographic photoreceptor and image-forming apparatus using same
US6472113B2 (en) Electrophotoreceptor, image forming apparatus and processing cartridge
JP2526969B2 (en) Electrophotographic photoreceptor
JP2006011485A (en) Electrophotographic copying method and electrophotographic device used for the method
JP4227514B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP2002341570A (en) Electrophotographic sensitive body
JP3991929B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4035966B2 (en) Electrophotographic photosensitive member, electrophotographic image forming method and electrophotographic image forming apparatus using the same
JP2002049165A (en) Electrophotographic photoreceptor
JP3225172B2 (en) Method for producing undercoat liquid for electrophotographic photoreceptor and electrophotographic photoreceptor using the same
JP4043082B2 (en) Electrophotographic copying method and electrophotographic apparatus used in the method
JP2008146076A (en) Electrophotographic photoreceptor and electrophotographic imaging apparatus having the same
JPH06236061A (en) Electrophotoreceptor
JPH0844096A (en) Electrophotographic photoreceptor and electrophotographic device
JP2003177561A (en) Electrophotographic photoreceptor, image forming method, image forming device, and process cartridge
JP2536526B2 (en) Electrophotographic photoreceptor
JP2001215740A (en) Electrophotographic photoreceptor, electrophotographic process using same, electrophotographic image forming method and electrophotographic device
JP3691739B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JPH0727265B2 (en) Multilayer photoconductor
JP2002023395A (en) Electrophotographic photoreceptor
JP3745751B2 (en) Electrophotographic photoreceptor
JPH1090931A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217