JP2002048425A - Pulse tube refrigerating machine - Google Patents

Pulse tube refrigerating machine

Info

Publication number
JP2002048425A
JP2002048425A JP2000238316A JP2000238316A JP2002048425A JP 2002048425 A JP2002048425 A JP 2002048425A JP 2000238316 A JP2000238316 A JP 2000238316A JP 2000238316 A JP2000238316 A JP 2000238316A JP 2002048425 A JP2002048425 A JP 2002048425A
Authority
JP
Japan
Prior art keywords
pulse tube
regenerator
cylinder
piston
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000238316A
Other languages
Japanese (ja)
Other versions
JP4374458B2 (en
Inventor
Yoichi Matsubara
洋一 松原
Hisayasu Kobayashi
久恭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2000238316A priority Critical patent/JP4374458B2/en
Publication of JP2002048425A publication Critical patent/JP2002048425A/en
Application granted granted Critical
Publication of JP4374458B2 publication Critical patent/JP4374458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Abstract

PROBLEM TO BE SOLVED: To provide a pulse tube refrigerating machine having economical predominance. SOLUTION: An upper part side of a cold storage unit 20 for constituting a compressor 30, a cylinder 31 and a second pulse tube 33 are connected in series with each other. An end of a second pulse tube 33 at the unit 20 side is cooled by a cooler 34, a piston 32 in the cylinder 31 is driven to function the overall compressor 30 as a thermal compressor. Accordingly, a load to be received at a reciprocating time of the piston 32 in the cylinder 31 can be set to only a contact resistance with the cylinder 31 receiving via a sealing member 321. Thus, a power consumption of a motor for driving the piston 32 can be extremely reduced, a wear of the component for driving the piston 32 is suppressed, and thus a labor hour for frequently conducting a maintenance can be omitted, and hence is economic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パルス管冷凍機に
係り、例えば、クライオポンプ等に利用されるパルス管
冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator, for example, a pulse tube refrigerator used for a cryopump or the like.

【0002】[0002]

【背景技術】従来より、パルス管と、このパルス管の低
温側に接続された蓄冷器と、この蓄冷器の高温側に接続
された圧縮機とを備えたパルス管冷凍機が知られてい
る。このようなパルス管冷凍機では、蓄冷器および圧縮
機間に設けられた高圧バルブおよび低圧バルブの開閉を
略交互に行うことにより、パルス管内に圧力振動を生じ
させている。そして、パルス管の高温側にオリフィスを
介してバッファ(リザーバタンク)を接続したり、加え
て、当該オリフィスおよびパルス管間の流路と蓄冷器お
よび圧縮機間の流路とを、別のオリフィスを有するバイ
パス流路を介して接続することで(ダブルインレット
型)、パルス管内の圧力振動とパルス管内でのガス柱
(パルス管内に形成される仮想のガスピストン)の変位
との位相差を良好にし、冷凍効率を向上させている。
2. Description of the Related Art Conventionally, a pulse tube refrigerator including a pulse tube, a regenerator connected to a low temperature side of the pulse tube, and a compressor connected to a high temperature side of the regenerator has been known. . In such a pulse tube refrigerator, a high-pressure valve and a low-pressure valve provided between the regenerator and the compressor are opened and closed substantially alternately to generate pressure oscillation in the pulse tube. A buffer (reservoir tank) is connected to the high-temperature side of the pulse tube via an orifice. In addition, a flow path between the orifice and the pulse pipe and a flow path between the regenerator and the compressor are connected to another orifice. By connecting via a bypass flow path having a (double inlet type), the phase difference between the pressure vibration in the pulse tube and the displacement of the gas column (virtual gas piston formed in the pulse tube) in the pulse tube is improved. To improve the refrigeration efficiency.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
パルス管冷凍機に用いられる圧縮機としては、往復動
式、スクリュー式、ロータリ式、スクロール式など、モ
ータによって駆動される駆動部を有するものが多いた
め、パルス管冷凍機の運転中にかかる駆動部への負荷に
より、モータでの消費電力が大きかったり、駆動部の摩
耗等が生じやすくなって頻繁にメンテナンスが必要にな
るなど、不経済であるという問題がある。
However, as a compressor used in a conventional pulse tube refrigerator, there is a compressor having a drive unit driven by a motor, such as a reciprocating type, a screw type, a rotary type, and a scroll type. Because of the large load on the drive unit during the operation of the pulse tube refrigerator, the power consumption of the motor is large, and the drive unit is liable to wear out, requiring frequent maintenance. There is a problem that there is.

【0004】本発明の目的は、経済的に優位なパルス管
冷凍機を提供することにある。
An object of the present invention is to provide a pulse tube refrigerator which is economically superior.

【0005】[0005]

【課題を解決するための手段】本発明のパルス管冷凍機
は、パルス管と、このパルス管の低温側に接続された蓄
冷器と、この蓄冷器の高温側(室温側)に接続された圧
縮機とを備えたパルス管冷凍機であって、前記圧縮機
は、それぞれ一端側が前記蓄冷器に対して並列に接続さ
れた別のパルス管および別の蓄冷器と、これら別のパル
ス管および別の蓄冷器の各他端側間に直列に接続された
シリンダとを備えているとともに、このシリンダ内には
機械的に駆動されるピストンが設けられ、かつ前記別の
パルス管の前記一端側は、前記シリンダの前記一端側よ
りも低温に維持されていることを特徴とする。
A pulse tube refrigerator according to the present invention has a pulse tube, a regenerator connected to a low temperature side of the pulse tube, and a regenerator connected to a high temperature side (room temperature side) of the regenerator. A pulse tube refrigerator including a compressor, wherein the compressor has another pulse tube and another regenerator each having one end connected in parallel to the regenerator, and these other pulse tubes and A cylinder connected in series between the other ends of the other regenerators, and a mechanically driven piston is provided in the cylinder, and the one end of the another pulse tube is provided. Is maintained at a lower temperature than the one end of the cylinder.

【0006】このような発明では、圧縮機を構成する別
のパルス管、別の蓄冷器、およびシリンダ同士が直列に
接続されるうえ、当該別のパルス管の前記蓄冷器側の一
端側をシリンダの一端側よりも低温にするため、この圧
縮機はシリンダ内のピストンを駆動させることでサーマ
ルコンプレッサとして機能する。従って、ピストンがシ
リンダ内での往復動時に受ける負荷は、シリンダとの接
触抵抗だけであり、このピストンを駆動する例えばモー
タ等での消費電力は極めて小さいうえ、ピストンを駆動
する部品の摩耗等も抑えられてメンテナンスを頻繁に行
う必要がなくなり、従来に比して経済的である。
According to this invention, another pulse tube, another regenerator and a cylinder constituting the compressor are connected in series, and one end of the another pulse tube on the regenerator side is connected to the cylinder. This compressor functions as a thermal compressor by driving a piston in a cylinder to make the temperature lower than one end of the compressor. Therefore, the load that the piston receives when reciprocating in the cylinder is only the contact resistance with the cylinder, and the power consumption of, for example, a motor that drives the piston is extremely small. It is suppressed and maintenance is not required frequently, so that it is more economical than before.

【0007】また、本発明のパルス管冷凍機では、前記
蓄冷器と前記圧縮機を構成する別の蓄冷器とは一体に設
けられていることが望ましい。このような構成では、各
蓄冷器を個別に配置する場合よりも配置スペースが小さ
くてすみ、パルス管冷凍機の小型化が促進される。
[0007] In the pulse tube refrigerator of the present invention, it is desirable that the regenerator and another regenerator constituting the compressor be provided integrally. In such a configuration, the arrangement space is smaller than when each regenerator is individually arranged, and the miniaturization of the pulse tube refrigerator is promoted.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1において、パルス管冷凍機1
は、第1のパルス管10と、パルス管10の低温側に接
続された蓄冷器20と、蓄冷器20の高温端(室温端)
側に一端側が接続されたシリンダ31と、シリンダ31
内に配置されたピストン32と、蓄冷器20の途中に一
端側が接続された第2のパルス管33と、パルス管33
の当該一端側を冷却する冷却装置34と、前記第1のパ
ルス管10の高温端側に接続されたバッファタンク40
とを備え、パルス管10および蓄冷器20を連通させる
流路81の部分により、極低温を発生するコールド(ヒ
ート)ステーションが形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a pulse tube refrigerator 1
Is a first pulse tube 10, a regenerator 20 connected to the low temperature side of the pulse tube 10, and a high temperature end (room temperature end) of the regenerator 20.
A cylinder 31 having one end connected to the side thereof;
A second pulse tube 33 having one end connected to the middle of the regenerator 20;
And a buffer tank 40 connected to the high-temperature end of the first pulse tube 10.
A cold (heat) station that generates an extremely low temperature is formed by the portion of the flow path 81 that connects the pulse tube 10 and the regenerator 20.

【0009】また、本実施形態では、蓄冷器20の高温
側(後述の流路82の接続部分を境にして高温側のこ
と)、シリンダ31、ピストン32、第2のパルス管3
3、および冷却装置34で本発明に係る圧縮機30が形
成されている。
In this embodiment, the high-temperature side of the regenerator 20 (high-temperature side with respect to a connecting portion of a flow path 82 described later), the cylinder 31, the piston 32, and the second pulse tube 3
3, and the cooling device 34 form the compressor 30 according to the present invention.

【0010】第1のパルス管10内にはヘリウム等の作
動ガスによって仮想的にガス柱11(ガス柱:点線で図
示)が形成されている。このガス柱11は、パルス管1
0内を図中上下に往復動する。
In the first pulse tube 10, a gas column 11 (gas column: shown by a dotted line) is virtually formed by a working gas such as helium. This gas column 11 is a pulse tube 1
It reciprocates up and down in FIG.

【0011】蓄冷器20は、例えば、銅線をメッシュ状
に編んだ網体を円板状に打ち抜き、この円板状の網体を
複数枚重ねるようにして金属製の筒体内に収容した構成
であり、必要に応じて鉛等の球体を追加充填することも
ある。この蓄冷器20において、作動ガスの流れ方向の
途中には、流路82を介して第2のパルス管33の一端
側、すなわち冷却装置34で冷却される低温端側が接続
されている。
The regenerator 20 is formed, for example, by punching a mesh made of a copper wire in a mesh shape into a disk shape and stacking a plurality of such disk-shaped nets in a metal cylinder. In some cases, spheres such as lead may be additionally filled as necessary. In the regenerator 20, one end of the second pulse tube 33, that is, the low-temperature end cooled by the cooling device 34 is connected via a flow path 82 in the middle of the flow direction of the working gas.

【0012】圧縮機30では、シリンダ31、パルス管
33、および蓄冷器20の前記高温側とが流路82,8
3,84で直列に接続されており、このうちのパルス管
33の図中の下端側および蓄冷器20の前記高温側は、
蓄冷器20の低温側(流路82の接続部分を境にして低
温側のこと)に対してそれぞれ並列に接続されている。
In the compressor 30, the cylinder 31, the pulse tube 33, and the high-temperature side of the regenerator 20 communicate with the flow paths 82, 8.
3, 84 in series, of which the lower end side of the pulse tube 33 in the figure and the high temperature side of the regenerator 20 are:
The regenerator 20 is connected in parallel to the low-temperature side (the low-temperature side with the connecting portion of the flow path 82 as a boundary).

【0013】シリンダ31内には、ピストン32を境に
して流路84側、すなわち第2のパルス管33側にパル
ス管側連通室311が形成され、流路83側、すなわち
蓄冷器20側に蓄冷器側連通室312が形成される。ま
た、シリンダ31には、図示を省略するが、ピストン3
2に接続されたロッドとの間での気密を確保するシール
部材が設けられている。
In the cylinder 31, a pulse tube side communication chamber 311 is formed on the side of the flow path 84, ie, on the side of the second pulse tube 33, with the piston 32 as a boundary, and on the side of the flow path 83, ie, on the side of the regenerator 20. A regenerator-side communication chamber 312 is formed. The cylinder 31 has a piston 3 (not shown).
There is provided a seal member for ensuring airtightness with the rod connected to 2.

【0014】ピストン32は、図示しないロッドおよび
クランク等によってモータ駆動される。ピストン32の
外周部分には、オーリング等のシール部材321が取り
付けられ、シリンダ31内の各連通室311,312間
での作動ガスの漏れを確実に遮断している。このような
ピストン32は、各連通室311,312が流路83,
84を介して他と連通していることにより、作動ガスを
各連通室311,312で圧縮せずに往復動可能であ
り、シール部材321とシリンダ31との間で生じる摩
擦抵抗を除き、往復動中に殆ど負荷を受けないディスプ
レーサとなっている。
The piston 32 is driven by a motor, such as a rod and a crank (not shown). A seal member 321 such as an O-ring is attached to an outer peripheral portion of the piston 32 to reliably block leakage of working gas between the communication chambers 311 and 312 in the cylinder 31. In such a piston 32, each of the communication chambers 311 and 312 has a flow path 83,
Since the working gas is communicated with the other through the communication valve 84, the working gas can reciprocate without being compressed in the communication chambers 311 and 312, and reciprocates except for frictional resistance generated between the seal member 321 and the cylinder 31. The displacer receives almost no load during operation.

【0015】第2のパルス管33は径寸法が第1のパル
ス管10よりも大きいが、長さ寸法がより小さくなって
いる。第2のパルス管33内にも作動ガスによって仮想
的にガス柱331(ガス柱:点線で図示)が形成されて
いる。このガス柱331は、パルス管33内を図中上下
に往復動する。パルス管33の下端側は冷却装置34で
冷却されるが、上端側は例えば室温程度に維持される。
The second pulse tube 33 has a larger diameter than the first pulse tube 10 but a smaller length. A gas column 331 (gas column: shown by a dotted line) is virtually formed in the second pulse tube 33 by the working gas. This gas column 331 reciprocates up and down in the drawing in the pulse tube 33. The lower end of the pulse tube 33 is cooled by the cooling device 34, but the upper end is maintained at, for example, about room temperature.

【0016】冷却装置34は、冷媒等が循環するチュー
ブをパルス管33の下端側に接触等させることで冷却す
るものや、その他、任意の構造のものを適用できる。
As the cooling device 34, a cooling device in which a tube in which a refrigerant or the like circulates is brought into contact with the lower end of the pulse tube 33 or the like or a cooling device having any other structure can be used.

【0017】バッファタンク40は、パルス管冷凍機に
一般に用いられるものであり、第1のパルス管10とは
流路85を介して連通され、流路85の途中にはオリフ
ィス851が設けられている。また、このオリフィス8
51のパルス管10側では、流路85と流路83とがバ
イパス流路86で連通し、流路86の途中にはオリフィ
ス861が設けられている。つまり、このバッファタン
ク40、オリフィス851,861、第1のパルス管1
0、および蓄冷器20は、従来のいわゆるダブルインレ
ット型のパルス管冷凍機の構造と略同じである。
The buffer tank 40 is generally used for a pulse tube refrigerator. The buffer tank 40 communicates with the first pulse tube 10 via a flow path 85, and an orifice 851 is provided in the flow path 85. I have. Also, this orifice 8
On the pulse tube 10 side of 51, the flow path 85 and the flow path 83 communicate with each other via a bypass flow path 86, and an orifice 861 is provided in the middle of the flow path 86. That is, the buffer tank 40, the orifices 851 and 861, the first pulse tube 1
0 and the regenerator 20 have substantially the same structure as that of a conventional so-called double inlet type pulse tube refrigerator.

【0018】このような本実施形態のパルス管冷凍機1
においては、以下のように冷凍が発生する。先ず、圧縮
機30のシリンダ31内において、ピストン32が流路
84側の端部にあるとき、第2のパルス管33内のガス
柱331は下端の冷却端側に位置し、第1のパルス管1
0内のガス柱11も下端の低温側に位置する。そして、
シリンダ31の蓄冷器側連通室312内の作動ガスは高
圧になっている。
The pulse tube refrigerator 1 according to the present embodiment as described above.
In the above, refrigeration occurs as follows. First, in the cylinder 31 of the compressor 30, when the piston 32 is at the end on the flow path 84 side, the gas column 331 in the second pulse tube 33 is located on the lower cooling end side, and the first pulse Tube 1
The gas column 11 in 0 is also located on the low temperature side at the lower end. And
The working gas in the regenerator-side communication chamber 312 of the cylinder 31 has a high pressure.

【0019】この状態からピストン32を流路83側に
移動させ、高圧の作動ガスを蓄冷器側連通室312から
送り出すと、作動ガスの大部分は蓄冷器20の上部側を
通過した後に流路82を通ってより径寸法の大きい第2
のパルス管33の下端側に入り込む。この際、作動ガス
は冷却装置34で冷却されて低圧となり、低圧となった
作動ガスでガス柱331を上方に押し上げ、このガス柱
331よりも上方にもとから存在した室温レベルの作動
ガスは流路84を介してシリンダ31内のパルス管側連
通室311に入る。
In this state, when the piston 32 is moved to the flow path 83 and the high-pressure working gas is sent out from the regenerator-side communication chamber 312, most of the working gas passes through the upper part of the regenerator 20 and then passes through the flow path. The second larger diameter through the second 82
Into the lower end of the pulse tube 33. At this time, the working gas is cooled by the cooling device 34 to a low pressure, and the gas column 331 is pushed upward by the low-pressure working gas, and the room temperature level working gas originally existing above the gas column 331 is removed. It enters the pulse tube side communication chamber 311 in the cylinder 31 via the flow path 84.

【0020】一方、蓄冷器側連通室312から送り出さ
れた残りの作動ガスは、蓄冷器20を最後まで通過した
後、流路81を通ってパルス管10の低温側に入り込
み、ガス柱11を上方に押し上げると同時に、流路86
からもオリフィス861で流量調整されてパルス管10
の高温側に流入する。これに伴い、パルス管10内にお
けるガス柱11よりも高温側にもとから存在した作動ガ
スと、オリフィス861から流入した作動ガスとは混合
され、流路85を通ってオリフィス851で流量調整さ
れてバッファタンク40に入り込む。
On the other hand, the remaining working gas sent out from the regenerator-side communication chamber 312 passes through the regenerator 20 to the end, and then enters the low-temperature side of the pulse tube 10 through the flow path 81 and passes through the gas column 11. At the same time as being pushed upward, the flow path 86
The flow rate is adjusted by the orifice 861 from the
Flows into the hot side of. Accordingly, the working gas originally present on the higher temperature side than the gas column 11 in the pulse tube 10 and the working gas flowing from the orifice 861 are mixed, and the flow rate is adjusted by the orifice 851 through the flow path 85. Into the buffer tank 40.

【0021】次に、この時点でピストン32を流路84
側に戻すと、パルス管側連通室311内の室温レベルの
作動ガスが第2のパルス管33側に戻るとともに、第2
のパルス管33内に入り込んでいた低圧でかつ低温の作
動ガスは、流路82を通って蓄冷器20の上部側で冷熱
が奪われた後、徐々に高圧となってシリンダ31内の蓄
冷器側連通室312内に戻る。つまり、シリンダ31、
ピストン32、および第2のパルス管33を含んで形成
された圧縮機30は、サーマルコンプレッサとして機能
することになる。
Next, at this time, the piston 32 is
The working gas at the room temperature level in the pulse tube side communication chamber 311 returns to the second pulse tube 33 side and returns to the second pulse tube 33 side.
The low-pressure and low-temperature working gas that has entered the pulse tube 33 through the flow path 82 is deprived of cold heat at the upper side of the regenerator 20 and then gradually increases in pressure to become a regenerator in the cylinder 31. It returns to the inside of the side communication room 312. That is, the cylinder 31,
The compressor 30 formed including the piston 32 and the second pulse tube 33 functions as a thermal compressor.

【0022】また、ピストン32が流路84側に戻る過
程で、バッファタンク40内に入り込んでいた作動ガス
が吐出され、一部は流路86を通して流路83に戻り、
残りはガス柱11の高温側ガスとしてパルス管10に戻
る。このとき、第1のパルス管10内においてガス柱1
1よりも低温側に入り込んでいた高圧の作動ガスは断熱
膨張して冷凍を発生し、流路81を冷却し、蓄冷器20
を通過することで低熱が当該蓄冷器20に蓄熱される。
そして、断熱膨張した末に低圧となった作動ガスは蓄冷
器20を過ぎて徐々に高温となり、蓄冷器側連通室31
2内に戻る。
In the process in which the piston 32 returns to the flow path 84, the working gas that has entered the buffer tank 40 is discharged, and a part of the working gas returns to the flow path 83 through the flow path 86.
The remainder returns to the pulse tube 10 as the high-temperature side gas of the gas column 11. At this time, the gas column 1 in the first pulse tube 10
The high-pressure working gas that has entered the low-temperature side than 1 adiabatically expands to generate refrigeration, cools the flow path 81, and cools the regenerator 20.
, Low heat is stored in the regenerator 20.
Then, the working gas, which has become low pressure after being adiabatically expanded, gradually rises in temperature after passing through the regenerator 20, and the regenerator-side communication chamber 31
Return to 2.

【0023】以上でパルス管冷凍機1の1サイクルが終
了する。そして、次のサイクルにおいて、蓄冷器20を
最後まで通過して第1のパルス管10に向かう高圧作動
ガスは、蓄冷器20に蓄熱された低熱を受け取ることで
より低温となってパルス管10内に入り込む。この後、
この低温の作動ガスが断熱膨張することで一層低温の冷
凍を発生し、これによって流路81の温度がさらに下げ
られる。このようなサイクルを繰り返すことで、流路8
1に形成されたコールドステーションは最終的に極低温
に達する。
Thus, one cycle of the pulse tube refrigerator 1 is completed. Then, in the next cycle, the high-pressure working gas that has passed through the regenerator 20 to the first pulse tube 10 and has received the low heat stored in the regenerator 20 has a lower temperature. Get into it. After this,
The low-temperature working gas adiabatically expands to generate lower-temperature refrigeration, thereby further lowering the temperature of the flow path 81. By repeating such a cycle, the flow path 8
The cold station formed in 1 finally reaches a very low temperature.

【0024】このような本実施形態によれば、以下のよ
うな効果がある。すなわち、圧縮機30を構成する蓄冷
器20の上部側、シリンダ31、第2パルス管33同士
が直列に接続されているうえ、第2のパルス管33の蓄
冷器20側の端部が冷却装置34で冷却されるため、シ
リンダ31内のピストン32を駆動させることで圧縮機
30全体をサーマルコンプレッサとして機能させること
ができる。従って、ピストン32がシリンダ31内での
往復動時に受ける負荷を、シール部材321を介して受
けるシリンダ31との接触抵抗だけにでき、このピスト
ン32を駆動する例えばモータ等での消費電力を極めて
小さくできるとともに、ピストン32を駆動する部品の
摩耗等も抑えてメンテナンスを頻繁に行う手間を省くこ
とができ、従来に比して経済的である。
According to this embodiment, the following effects can be obtained. That is, the upper side of the regenerator 20 constituting the compressor 30, the cylinder 31, and the second pulse tube 33 are connected in series, and the end of the second pulse tube 33 on the regenerator 20 side is a cooling device. Since the cooling is performed at 34, the entire compressor 30 can function as a thermal compressor by driving the piston 32 in the cylinder 31. Therefore, the load that the piston 32 receives when reciprocating in the cylinder 31 can be limited to the contact resistance with the cylinder 31 that is received via the seal member 321, and the power consumption of, for example, a motor that drives the piston 32 is extremely small. In addition to this, it is possible to save the trouble of frequently performing maintenance by suppressing wear of parts for driving the piston 32, and the cost is more economical than that of the related art.

【0025】また、パルス管冷凍機1では、圧縮機30
を構成する蓄冷器と冷凍を発生させるのに直接必要な蓄
冷器とが蓄冷器20によって一体に設けられているか
ら、各蓄冷器を個別に配置する場合よりも配置スペース
を小さくでき、パルス管冷凍機1を小型化できる。
In the pulse tube refrigerator 1, the compressor 30
Since the regenerator and the regenerator directly required for generating refrigeration are integrally provided by the regenerator 20, the arrangement space can be made smaller than when each regenerator is individually arranged, and the pulse tube The refrigerator 1 can be downsized.

【0026】なお、本発明は、前記実施形態に限定され
るものではなく、本発明の目的を達成できる他の構成等
を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、第2のパルス管33の下端
側が冷却装置34で冷却されていたが、第2のパルス管
33の一端側を冷却する本発明としては、流路82を冷
却する場合も含まれる。また、第2のパルス管33の端
部側を冷却する他、シリンダ31の流路83側の端部を
加熱することで第2のパルス管33との温度差を生じさ
せてもよく、このような場合でも、圧縮機30がサーマ
ルコンプレッサとして機能し、本発明の目的を達成でき
る。
It should be noted that the present invention is not limited to the above-described embodiment, but includes other configurations that can achieve the object of the present invention, and the following modifications are also included in the present invention.
For example, in the above-described embodiment, the lower end of the second pulse tube 33 is cooled by the cooling device 34. However, the present invention that cools one end of the second pulse tube 33 includes a case where the flow path 82 is cooled. Is also included. Further, in addition to cooling the end portion of the second pulse tube 33, a temperature difference from the second pulse tube 33 may be generated by heating the end portion of the cylinder 31 on the flow channel 83 side. Even in such a case, the compressor 30 functions as a thermal compressor, and the object of the present invention can be achieved.

【0027】さらに、前記実施形態では、第1のパルス
管10側の構造が従来のダブルインレット型であった
が、このような構造の他、例えば、第1のパルス管10
とバッファタンク40とを単に流路85で連通した構造
であってもよく、任意である。
Further, in the above-described embodiment, the structure on the side of the first pulse tube 10 is a conventional double-inlet type.
And the buffer tank 40 may be simply connected to each other by the flow path 85, and the structure is arbitrary.

【0028】[0028]

【発明の効果】以上に述べたように、本発明によれば、
経済的に優位なパルス管冷凍機を提供できるという効果
がある。
As described above, according to the present invention,
There is an effect that an economically advantageous pulse tube refrigerator can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るパルス管冷凍機を示
す模式図である。
FIG. 1 is a schematic diagram showing a pulse tube refrigerator according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 パルス管冷凍機 10 パルス管である第1のパルス管 20 蓄冷器 30 圧縮機 31 シリンダ 32 ピストン 33 別のパルス管である第2のパルス管 DESCRIPTION OF SYMBOLS 1 Pulse tube refrigerator 10 First pulse tube which is a pulse tube 20 Regenerator 30 Compressor 31 Cylinder 32 Piston 33 Second pulse tube which is another pulse tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パルス管と、このパルス管の低温側に接
続された蓄冷器と、この蓄冷器の高温側に接続された圧
縮機とを備えたパルス管冷凍機であって、 前記圧縮機は、それぞれ一端側が前記蓄冷器に対して並
列に接続された別のパルス管および別の蓄冷器と、これ
ら別のパルス管および別の蓄冷器の各他端側間に直列に
接続されたシリンダとを備えているとともに、このシリ
ンダ内には機械的に駆動されるピストンが設けられ、か
つ前記別のパルス管の前記一端側は、前記シリンダの前
記一端側よりも低温に維持されていることを特徴とする
パルス管冷凍機。
1. A pulse tube refrigerator comprising: a pulse tube; a regenerator connected to a low temperature side of the pulse tube; and a compressor connected to a high temperature side of the regenerator. Is a pulse tube and another regenerator with one end connected in parallel to the regenerator, and a cylinder connected in series between the other end of the other pulse tube and another regenerator. And a mechanically driven piston is provided in the cylinder, and the one end of the another pulse tube is maintained at a lower temperature than the one end of the cylinder. A pulse tube refrigerator.
【請求項2】 請求項1に記載のパルス管冷凍機におい
て、前記蓄冷器と前記圧縮機を構成する別の蓄冷器とは
一体に設けられていることを特徴とするパルス管冷凍
機。
2. The pulse tube refrigerator according to claim 1, wherein the regenerator and another regenerator constituting the compressor are provided integrally.
JP2000238316A 2000-08-07 2000-08-07 Pulse tube refrigerator Expired - Lifetime JP4374458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238316A JP4374458B2 (en) 2000-08-07 2000-08-07 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238316A JP4374458B2 (en) 2000-08-07 2000-08-07 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JP2002048425A true JP2002048425A (en) 2002-02-15
JP4374458B2 JP4374458B2 (en) 2009-12-02

Family

ID=18730033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238316A Expired - Lifetime JP4374458B2 (en) 2000-08-07 2000-08-07 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP4374458B2 (en)

Also Published As

Publication number Publication date
JP4374458B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US8783045B2 (en) Reduced input power cryogenic refrigerator
JPH10132404A (en) Pulse pipe freezer
JP4147697B2 (en) Pulse tube refrigerator
US5642623A (en) Gas cycle refrigerator
JP2783112B2 (en) Cryogenic refrigerator
JP5714461B2 (en) Cryogenic refrigerator
CN109556318B (en) Thermoacoustic refrigerator
JP2609327B2 (en) refrigerator
JP6087168B2 (en) Cryogenic refrigerator
JP2002048425A (en) Pulse tube refrigerating machine
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JP2000035253A (en) Cooler
US5575155A (en) Cooling system
JP2005283026A (en) Cold storage type refrigerating machine
JP2007093120A (en) Pulse tube refrigerating machine
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP3284484B2 (en) Refrigeration liquefaction method and apparatus by regenerative refrigerator
JPH1194382A (en) Pulse tube refrigerator
JP2013072597A (en) Cryogenic refrigerator
JP2000018742A (en) Cooling device
SU785609A1 (en) Piston-type refrigerating gas machine
JP2002286312A (en) Pulse tube refrigerating machine
KR100597127B1 (en) Pulse tube cryocooler
RU2053461C1 (en) Gas cooling machine
SU1089366A1 (en) Gaseous refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3