KR100597127B1 - Pulse tube cryocooler - Google Patents

Pulse tube cryocooler Download PDF

Info

Publication number
KR100597127B1
KR100597127B1 KR1020050009827A KR20050009827A KR100597127B1 KR 100597127 B1 KR100597127 B1 KR 100597127B1 KR 1020050009827 A KR1020050009827 A KR 1020050009827A KR 20050009827 A KR20050009827 A KR 20050009827A KR 100597127 B1 KR100597127 B1 KR 100597127B1
Authority
KR
South Korea
Prior art keywords
stage
tube
recuperator
regenerator
cryogenic
Prior art date
Application number
KR1020050009827A
Other languages
Korean (ko)
Inventor
정상권
정제헌
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020050009827A priority Critical patent/KR100597127B1/en
Application granted granted Critical
Publication of KR100597127B1 publication Critical patent/KR100597127B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1422Pulse tubes with basic schematic including a counter flow heat exchanger instead of a regenerative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

본 발명은 극저온 냉동기에 관한 것으로서, 더욱 상세하게는 2단부에 복열기가 장착된 구조를 포함하며, 장착된 복열기는 서로 반대 위상으로 동작하는 두 개의 맥동관 냉동기에 의하여 구동되도록 이루어진 극저온 냉동기에 관한 것이다. The present invention relates to a cryogenic freezer, and more particularly includes a structure in which a recuperator is mounted at two ends, and the mounted recuperator is driven by two pulsating tube freezers operating in opposite phases. It is about.

본 발명에서는 하나의 맥동관 냉동기가 고압 상태에 있으면 다른 맥동관 냉동기는 저압 상태에 있게 되고, 하나의 맥동관 냉동기가 압력 상승 상태에 있으면 다른 맥동관 냉동기는 압력 하강 상태에 있게 된다. In the present invention, when one pulsating tube freezer is in a high pressure state, the other pulsating tube freezer is in a low pressure state, and when one pulsating tube freezer is in a pressure rising state, the other pulsating tube freezer is in a pressure lowering state.

따라서 복열기에는 서로 반대 방향의 냉매 유동이 형성되며, 두 냉매는 서로 열을 교환함으로써 재생 열교환 과정을 달성하게 된다. 전체적으로 볼 때, 복열기는 재생기와 동일한 작용을 하게 된다. Therefore, the refrigerant flows in opposite directions in the recuperator, and the two refrigerants exchange heat with each other to achieve a regenerative heat exchange process. Overall, the recuperators work the same as regenerators.

종래기술의 재생기와 본 발명의 복열기와의 차이는, 재생기는 하나의 맥동관 냉동기로도 구동이 가능하지만, 복열기는 반드시 두 개의 맥동관 냉동기로 구동되어야 한다는 점이며, 이러한 방식을 통하여 2단부에 극저온 재생기를 사용하지 않고 4 K급 극저온 냉동기를 구성하고자 하는 것이다.The difference between the regenerator of the prior art and the recuperator of the present invention is that the regenerator can be driven by one pulsation tube refrigerator, but the recuperator must be driven by two pulsation tube refrigerators. It is to construct a 4K cryogenic freezer without using a cryogenic regenerator at the end.

극저온 냉동기, 맥동관 냉동기, 재생기, 복열기, Cryogenic freezer, pulse tube freezer, regenerator, recuperator,

Description

극저온 냉동기 { PULSE TUBE CRYOCOOLER}Cryogenic Freezers {PULSE TUBE CRYOCOOLER}

도 1은 종래기술에 따른 맥동관 극저온 냉동기를 나타낸 개략도.1 is a schematic view showing a pulsating tube cryogenic freezer according to the prior art.

도 2는 본 발명에 따른 맥동관 극저온 냉동기를 나타낸 개략도.Figure 2 is a schematic view showing a pulsating tube cryogenic freezer according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1: 입력 포트 2: 1단 재생기1: input port 2: single player

3: 2단 재생기 4: 1단 맥동관3: second stage player 4: first stage pulse tube

5: 2단 맥동관 6: 1단 맥동관용 위상 조절기5: 2 stage pulse tube 6: 1 stage pulse tube phase adjuster

7: 2단 맥동관용 위상 조절기 8: 1단 재생기7: Phase adjuster for two-stage pulsating tubes 8: One-stage regenerator

9: 2단 복열기 10: 1단 맥동관9: second stage recuperator 10: first stage pulsation tube

11: 2단 맥동관 12: 1단 맥동관용 위상 조절기11: 2-stage pulsating tube 12: Phase adjuster for 1-stage pulsating tube

13: 2단 맥동관용 위상 조절기13: Phase adjuster for two-stage pulsating tubes

본 발명은 극저온 냉동기에 관한 것으로서, 더욱 상세하게는 수 kW의 전력을 소비하여 4K의 온도를 생성하는 소규모 극저온 냉동기에 관한 것으로서, 이러한 영역에서는 2단 GM(Gifford-McMahon) 극저온 냉동기 또는 2단 맥동관 냉동기가 사용 되고 있다. The present invention relates to a cryogenic freezer, and more particularly to a small cryogenic freezer that consumes several kW of power to produce a temperature of 4K, in this area a two-stage Gifford-McMahon cryogenic freezer or two-stage Mac. Copper tube refrigeration machine is used.

도 1은 종래기술에 따른 맥동관 극저온 냉동기를 나타낸 개략도로서, 이를 자세히 설명하면, 종래의 2단 맥동관 냉동기에서는 냉동기의 맥동 압력 입력 포트(1)에 맥동 압력을 주입함으로써 냉동기를 작동시키며, 주입한 맥동 압력에 의하여 냉동기 내부에서는 방향이 시간적으로 변하는 유동, 즉 냉매의 왕복 유동이 형성된다. 1 is a schematic view showing a pulsating tube cryogenic freezer according to the prior art, which will be described in detail, in the conventional two-stage pulsating tube refrigerator operates the refrigerator by injecting a pulsating pressure into the pulsating pressure input port (1) of the refrigerator, One pulsation pressure creates a flow in which the direction changes in time, ie, a reciprocating flow of the refrigerant.

냉매는 맥동 압력의 고압 주기 동안 상기 입력포트(1)를 거쳐 맥동관 냉동기에 들어가고 되고, 들어간 냉매는 1단 재생기(2)를 거쳐 일부는 1단 맥동관(4)에, 나머지는 다시 2단 재생기(3)를 거쳐 2단 맥동관(5)에 도달하게 되는 것이다.The refrigerant enters the pulsation tube refrigerator via the input port (1) during the high pressure cycle of the pulsating pressure, and the refrigerant enters through the first stage regenerator (2), partly in the first stage pulsation tube (4), and the rest in the second stage. The second stage pulsation tube 5 is reached via the regenerator 3.

맥동 압력이 고압에서 저압으로 바뀌는 순간, 1단과 2단 맥동관(4, 5)에 있는 냉매는 위상 조절기(6, 7)에 의하여 팽창을 겪게 되고, 이에 따라 냉매에서는 냉동 효과가 발생되며, 이 때 생성된 냉동 효과는 외부의 냉각 대상을 냉각하는데 사용된다. At the moment when the pulsating pressure changes from high pressure to low pressure, the refrigerant in the first and second stage pulsating pipes 4 and 5 undergoes expansion by the phase regulators 6 and 7, and thus the refrigerant generates a refrigeration effect. The refrigeration effect generated when used is to cool the external cooling object.

팽창된 냉매는 맥동 압력의 저압 주기 동안 재생기(2, 3)와 입력포트(1)를 거쳐 맥동관 냉동기를 빠져 나오게 된다. 여기서, 재생기에는 팽창된 저온의 냉매가 가지는 냉열이 저장되며, 이 냉열을 이용하여 고압 주기 동안 들어오는 냉매를 냉각하는 역할을 하는 것이다.The expanded refrigerant exits the pulsating tube freezer via the regenerators 2 and 3 and the input port 1 during the low pressure cycle of the pulsating pressure. Here, the regenerator stores the cold heat of the expanded low-temperature refrigerant, and serves to cool the refrigerant entering during the high-pressure cycle by using the cold heat.

따라서, 냉매는 팽창이 일어나기 전부터 낮은 온도를 가지게 되고, 이에 따라 팽창으로 더 낮은 온도에 도달할 수 있다. 이는 극저온 냉동기 고유의 특징이다. 종래의 2단 재생기는 저온부 4K과 고온부 40K 부근의 온도를 가진다. Thus, the refrigerant will have a lower temperature before expansion occurs, thus allowing the expansion to reach lower temperatures. This is a unique feature of cryogenic freezers. The conventional two stage regenerator has a temperature near the low temperature part 4K and the high temperature part 40K.

이 영역에서는 일반 금속 물질의 비열이 매우 작기 때문에 이로써 냉열을 저장하는 것은 거의 불가능하다. 이에 따라 2단 재생기로는 특수한 자성 물질을 이용하여야 하는 문제점을 안고 있는 것이다.Since the specific heat of ordinary metallic materials is very small in this area, it is almost impossible to store cold heat. Accordingly, there is a problem in that a special magnetic material should be used as the two-stage regenerator.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출한 것으로서, 2단부에 복열기가 장착된 구조를 포함하며, 장착된 복열기는 서로 반대 위상으로 동작하는 두 개의 맥동관 냉동기에 의하여 구동되도록 이루어짐으로 인하여 특수한 자성 물질을 이용하는 2단 재생기를 사용하지 않고 4 K 극저온 냉동기를 구성하는데 있다. The present invention has been made to solve the conventional problems as described above, and includes a structure equipped with a recuperator at the second end, the mounted recuperator to be driven by two pulsating tube refrigerators operating in opposite phases to each other Due to this, the 4K cryogenic freezer is constructed without using a two-stage regenerator using special magnetic materials.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 맥동관 극저온 냉동기를 나타낸 개략도로서, 이를 설명하면, 2단의 구조를 가지며, 맥동 압력에 따라 냉동기 내부적으로 왕복 유동이 발생한다. 냉동 효과 역시 1단과 2단 맥동관(10, 11) 내부에서의 냉매 팽창에 의하여 발생하며, 두 개의 맥동관 냉동기가 병렬로 연결되어 있는 극저온냉동기에 관한 것이다. Figure 2 is a schematic view showing a pulsating tube cryogenic refrigerator according to the present invention, when it is described, has a two-stage structure, reciprocating flow occurs inside the refrigerator according to the pulsating pressure. The refrigeration effect is also caused by refrigerant expansion inside the first and second stage pulsating tubes (10, 11), and relates to a cryogenic freezer having two pulsating tube refrigerators connected in parallel.

도 2에 따른 극저온 냉동기의 구성에 대하여 자세히 설명하면, 제1실시예로서, 우측과 좌측에 대칭적으로 동일하게 병렬적으로 1단 맥동관(10)의 일단에 1단 재생기(8)가 연결되며, 상기 1단 재생기(8)의 일단에 2단 복열기(9)가 연결되며, 상기 2단 복열기(9)의 일단에 2단 맥동관(11)가 연결되도록 이루어진 것이다. The configuration of the cryogenic refrigerator according to FIG. 2 will be described in detail. As a first embodiment, the first stage regenerator 8 is connected to one end of the first stage pulsating tube 10 in parallel and symmetrically on the right side and the left side. The second stage recuperator 9 is connected to one end of the first stage regenerator 8, and the second stage pulsation tube 11 is connected to one end of the second stage regenerator 9.

제2실시예로서, 우측과 좌측에 대칭적으로 동일하게 병렬적으로 1단 맥동관(10)의 일단에 1단재생기(8)가 연결되며, 상기 1단 맥동관(10)의 내부를 왕복운동하는 작동가스의 질량유동과 압력맥동사이에 위상차에 의해 극저온부를 갖도록 1단 맥동관용 위상조절기(12)가 상기 1단 맥동관(10)의 타단에 연결되며, 상기 1단 재생기(8)의 일단에 2단 복열기(9)가 연결되며, 상기 2단 복열기(9)의 일단에 2단 맥동관(11)이 연결되도록 이루어진 것이다. As a second embodiment, the first stage regenerator 8 is connected to one end of the first stage pulsating tube 10 in parallel and symmetrically on the right side and the left side, and reciprocates the inside of the first stage pulsating tube 10. The first stage pulsation tube phase adjuster 12 is connected to the other end of the first stage pulsation tube 10 so as to have a cryogenic portion by a phase difference between the mass flow of the working gas and the pressure pulsation, and the first stage regenerator 8 The second stage recuperator 9 is connected to one end, and the second stage pulsator 11 is connected to one end of the second stage recuperator 9.

1단 재생기(8)의 타단에는 반대 위상의 왕복질량을 제공해 주는 외부의 왕복질량 공급원이 연결된다. 외부의 왕복질량 공급원에 의하여 1단 맥동관(10)은 서로 반대 위상의 왕복질량이 발생한다. The other end of the first stage regenerator 8 is connected with an external reciprocating mass supply source providing a reciprocating mass of opposite phase. The reciprocating masses of the opposite phases generate | occur | produce in the 1st stage pulsating tube 10 by an external reciprocating mass supply source.

제3실시예로서는, 우측과 좌측에 대칭적으로 동일하게 병렬적으로 1단 맥동관(10)의 일단에 1단재생기(8)가 연결되며, 상기 1단 맥동관(10)의 내부를 왕복운동하는 작동가스의 질량유동과 압력맥동사이에 위상차에 의해 극저온부를 갖도록 1단 맥동관용 위상조절기(12)가 상기 1단 맥동관(10)의 타단에 연결되며, 상기 1단 재생기(8)의 일단에 2단 복열기(9)가 연결되며, 상기 2단 복열기(9)의 일단에 2단 맥동관(11)이 연결되며, 상기 2단 맥동관(11)의 일단에 2단 맥동관용 위상조절기(13)가 연결되도록 이루어진 것이다. In the third embodiment, the first stage regenerator 8 is connected to one end of the first stage pulsating tube 10 in parallel and symmetrically on the right side and the left side, and the inside of the first stage pulsating tube 10 is reciprocated. The first stage pulsation tube phase regulator 12 is connected to the other end of the first stage pulsation tube 10 so as to have a cryogenic portion by a phase difference between the mass flow of the working gas and the pressure pulsation, and the one end of the first stage regenerator 8. The second stage recuperator (9) is connected to the second stage pulsator (11), and the second stage pulsator (11) is connected to one end of the second stage recuperator (9). The regulator 13 is made to be connected.

외부의 왕복질량 공급원에 의하여 2단 맥동관(11)은 서로 반대 위상의 왕복질량이 발생한다.By the external reciprocating mass supply source, the two-stage pulsating pipe 11 generates reciprocating masses of opposite phases to each other.

더 나아가, 우측과 좌측에 위치한 2단 복열기(9)의 열적효과를 증기시키기 위하여 상호 열교환되도록 형성하는 것이다.Furthermore, in order to vaporize the thermal effect of the two-stage recuperator 9 located on the right and the left side, it is formed to be heat-exchanged with each other.

본 발명에 따른 극저온 냉동기는 병렬로 연결된 맥동관 냉동기는 반대 위상의 질량 공급원으로 구동되며, 이에 따른 내부에서 생성되는 맥동 압력도 반대 위상을 갖는 것이다. The cryogenic chiller according to the invention is driven in parallel with the pulsed tube chiller connected in parallel with the mass source of the opposite phase, so that the pulsating pressure generated therein also has the opposite phase.

우측 1단 재생기(8)에 상측에서 하측으로 냉매 유동이 발생하면, 좌측에 위치하는 1단 재생기(8)에는 이와는 반대로 하측에서 상측으로 냉매 유동이 발생하는 것이다. When the coolant flow occurs from the upper side to the lower side in the right first stage regenerator 8, the coolant flow is generated from the lower side to the upper side in the first stage regenerator 8 located on the left side.

이러한 유동 특성에 따라, 종래기술의 재생기는 2단 2단 복열기(9)로 전환되는 것이다. 이 경우 냉매의 냉열은 반대편 냉동기의 냉매에 저장된다. 따라서, 상기 2단 복열기(9)는 재생기와 형태가 다르지만 냉열 저장이라는 동일한 열역학 기능을 수행하게 된다. According to this flow characteristic, the regenerator of the prior art is converted to a two stage two stage recuperator 9. In this case, the cold heat of the refrigerant is stored in the refrigerant of the opposite refrigerator. Therefore, the two-stage recuperator 9 is different from the regenerator but performs the same thermodynamic function of cold heat storage.

상기 2단 복열기(9)는 재생기보다 좋지 않은 성능을 보이기 때문에, 2단 환경과 같이 극저온의 특수한 상황에서는 재생기보다 더 유리한 열역학적 성능을 보이는 것이다. Since the two-stage recuperator 9 exhibits poorer performance than the regenerator, it exhibits more favorable thermodynamic performance than the regenerator in special cryogenic conditions such as in a two-stage environment.

이상과 같은 본 발명은 2단 극저온 재생기를 사용하지 않는 4K용 극저온 냉동기에 관한 것으로서, 종래의 2단 극저온 재생기 물질은 매우 비싼 물질이기 때문에 극저온 냉동기의 가격을 높이는 주요인중 하나로 작용하고 있다. 본 발명은 재생기를 장착하지 않고도 동일한 냉동효과의 성능을 유지하면서도 저렴한 극저온 냉 동기의 구성을 제공하는데 있는 것이다. As described above, the present invention relates to a cryogenic freezer for 4K that does not use a two-stage cryogenic regenerator. Since the conventional two-stage cryogenic regenerator material is a very expensive material, it acts as one of the main factors to increase the price of the cryogenic freezer. The present invention is to provide an inexpensive cryogenic cold synchronizing structure while maintaining the performance of the same refrigeration effect without mounting a regenerator.

더 나아가, 우측과 좌측에 위치한 복열기의 열적효과를 증기시키기 위하여 상호 열교환되도록 형성하는 것이다.     Furthermore, in order to vaporize the thermal effects of the recuperators located on the right side and the left side, they are formed to be heat exchanged with each other.

Claims (6)

극저온 냉동기에 있어서,In cryogenic freezers, 우측과 좌측에 대칭적으로 동일하게 병렬적으로 1단 맥동관(10)의 일단에 1단재생기(8)가 연결되며, 상기 1단 재생기(8)에 연결되며, 상기 1단 재생기(8)의 일단에 2단 복열기(9)가 연결되며, 상기 2단 복열기(9)의 일단에 2단 맥동관(11)이 연결되도록 이루어진 것을 특징으로 하는 극저온 냉동기.The first stage regenerator 8 is connected to one end of the first stage pulsating tube 10 in parallel and symmetrically on the right side and the left side, and is connected to the first stage regenerator 8, and the first stage regenerator 8 Cryogenic freezer, characterized in that the two-stage recuperator (9) is connected to one end of the two-stage recuperator (9), the two-stage pulsating tube (11) is connected to one end of the two-stage recuperator (9). 극저온 냉동기에 있어서,In cryogenic freezers, 우측과 좌측에 대칭적으로 동일하게 병렬적으로 1단 맥동관(10)의 일단에 1단재생기(8)가 연결되며, 상기 1단 맥동관(10)의 내부를 왕복운동하는 작동가스의 질량유동과 압력맥동사이에 위상차에 의해 극저온부를 갖도록 1단 맥동관용 위상조절기(12)가 상기 1단 맥동관(10)의 타단에 연결되며, 상기 1단 재생기(8)의 일단에 2단 복열기(9)가 연결되며, 상기 2단 복열기(9)의 일단에 2단 맥동관(11)이 연결되도록 이루어진 것을 특징으로 하는 극저온 냉동기.The first stage regenerator 8 is connected to one end of the first stage pulsating tube 10 in parallel and symmetrically on the right side and the left side, and the mass of the working gas reciprocating inside the first stage pulsating tube 10. The first stage pulsation tube phase regulator 12 is connected to the other end of the first stage pulsation tube 10 so as to have a cryogenic portion by a phase difference between the flow and the pressure pulsation, and a second stage recuperator at one end of the first stage regenerator 8. (9) is connected, cryogenic freezer, characterized in that the two-stage pulsating tube (11) is connected to one end of the two-stage recuperator (9). 극저온 냉동기에 있어서,In cryogenic freezers, 우측과 좌측에 대칭적으로 동일하게 병렬적으로 1단 맥동관(10)의 일단에 1단재생기(8)가 연결되며, 상기 1단 맥동관(10)의 내부를 왕복운동하는 작동가스의 질량유동과 압력맥동사이에 위상차에 의해 극저온부를 갖도록 1단 맥동관용 위상조 절기(12)가 상기 1단 맥동관(10)의 타단에 연결되며, 상기 1단 재생기(8)의 일단에 2단 복열기(9)가 연결되며, 상기 2단 복열기(9)의 일단에 2단 맥동관(11)이 연결되며, 상기 2단 맥동관(11)의 일단에 2단 맥동관용 위상조절기(13)가 연결되도록 이루어진 것을 특징으로 하는 극저온 냉동기.The first stage regenerator 8 is connected to one end of the first stage pulsating tube 10 in parallel and symmetrically on the right side and the left side, and the mass of the working gas reciprocating inside the first stage pulsating tube 10. The first stage pulsation tube phase adjuster 12 is connected to the other end of the first stage pulsation tube 10 so as to have a cryogenic portion by a phase difference between the flow and the pressure pulsation. The heat 9 is connected, and the second stage pulsation tube 11 is connected to one end of the second stage recuperator 9, and the second stage pulsation tube 11 has a phase regulator 13 for the second stage pulsation tube. Cryogenic freezer, characterized in that made to be connected. 제1항 내지 제3항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 우측과 좌측에 위치한 2단 복열기(9)가 상호 열교환되도록 이루어진 것을 특징으로 하는 극저온 냉동기. Cryogenic freezer, characterized in that the two-stage recuperator (9) located on the right and left side are made to heat exchange with each other. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3, 상기 1단 맥동관용 위상조절기(12)는 좌우측에 병렬적으로 위치한 1단 맥동관(10)의 내부를 왕복운동하는 질량운동의 위상차가 상호 반대방향의 위상차를 갖도록 이루어진 것을 특징으로 하는 극저온 냉동기. The first stage pulsation tube phase adjuster 12 is a cryogenic freezer, characterized in that the phase difference of the mass movement reciprocating inside the first stage pulsating tube (10) located in parallel on the left and right side has a phase difference in the opposite direction to each other. 제3항에 있어서,The method of claim 3, 상기 2단 맥동관용 위상조절기(13)는 좌우측에 병렬적으로 위치한 2단 맥동관(11)의 내부를 왕복운동하는 질량운동의 위상차가 상호 반대방향의 위상차를 갖도록 이루어진 것을 특징으로 하는 극저온 냉동기. The two-stage pulsating tube phase adjuster (13) is a cryogenic freezer, characterized in that the phase difference of the mass movement reciprocating inside the two-stage pulsating tube (11) located in parallel on the left and right side has a phase difference in the opposite direction to each other.
KR1020050009827A 2005-02-03 2005-02-03 Pulse tube cryocooler KR100597127B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050009827A KR100597127B1 (en) 2005-02-03 2005-02-03 Pulse tube cryocooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050009827A KR100597127B1 (en) 2005-02-03 2005-02-03 Pulse tube cryocooler

Publications (1)

Publication Number Publication Date
KR100597127B1 true KR100597127B1 (en) 2006-07-04

Family

ID=37183666

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050009827A KR100597127B1 (en) 2005-02-03 2005-02-03 Pulse tube cryocooler

Country Status (1)

Country Link
KR (1) KR100597127B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132404A (en) 1996-10-24 1998-05-22 Suzuki Shiyoukan:Kk Pulse pipe freezer
KR20000025489A (en) * 1998-10-12 2000-05-06 구자홍 Lubricationless pulse tube refrigerator
US6629418B1 (en) 2002-01-08 2003-10-07 Shi-Apd Cryogenics, Inc. Two-stage inter-phasing pulse tube refrigerators with and without shared buffer volumes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132404A (en) 1996-10-24 1998-05-22 Suzuki Shiyoukan:Kk Pulse pipe freezer
KR20000025489A (en) * 1998-10-12 2000-05-06 구자홍 Lubricationless pulse tube refrigerator
US6629418B1 (en) 2002-01-08 2003-10-07 Shi-Apd Cryogenics, Inc. Two-stage inter-phasing pulse tube refrigerators with and without shared buffer volumes

Similar Documents

Publication Publication Date Title
Matsubara et al. Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K
Kittel Ideal orifice pulse tube refrigerator performance
MXPA04009344A (en) Thermo-siphon method for providing refrigeration.
US6263677B1 (en) Multistage low-temperature refrigeration machine
JP2006284061A (en) Pulse pipe refrigerating machine
CN114151989B (en) Superconducting magnet
JP2783112B2 (en) Cryogenic refrigerator
KR100348618B1 (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
CN109556318B (en) Thermoacoustic refrigerator
US11649989B2 (en) Heat station for cooling a circulating cryogen
JP3944854B2 (en) Thermoacoustic drive orifice type pulse tube cryogenic refrigerator
JP2015197272A (en) Cryogenic refrigeration machine
KR100597127B1 (en) Pulse tube cryocooler
CN114739031B (en) Dilution refrigeration system
JPH03117855A (en) Chiller type cryogenic refrigerator
JP2000035253A (en) Cooler
JP6087168B2 (en) Cryogenic refrigerator
JP4472572B2 (en) Cryogenic cooling device for cooling superconducting power storage device
JPH0452468A (en) Cryogenic refrigerator
JP2006234356A (en) Low temperature retaining device and its maintenance method
KR200251008Y1 (en) Refrigeration cycle device for refrigerator
Shire et al. Investigation of microscale cryocoolers
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
WO2022153713A1 (en) Pulse tube freezer and superconductive magnet apparatus
RU2053461C1 (en) Gas cooling machine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110308

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee