JP4374458B2 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
JP4374458B2
JP4374458B2 JP2000238316A JP2000238316A JP4374458B2 JP 4374458 B2 JP4374458 B2 JP 4374458B2 JP 2000238316 A JP2000238316 A JP 2000238316A JP 2000238316 A JP2000238316 A JP 2000238316A JP 4374458 B2 JP4374458 B2 JP 4374458B2
Authority
JP
Japan
Prior art keywords
pulse tube
regenerator
cylinder
flow path
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000238316A
Other languages
Japanese (ja)
Other versions
JP2002048425A (en
Inventor
洋一 松原
久恭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2000238316A priority Critical patent/JP4374458B2/en
Publication of JP2002048425A publication Critical patent/JP2002048425A/en
Application granted granted Critical
Publication of JP4374458B2 publication Critical patent/JP4374458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス管冷凍機に係り、例えば、クライオポンプ等に利用されるパルス管冷凍機に関する。
【0002】
【背景技術】
従来より、パルス管と、このパルス管の低温側に接続された蓄冷器と、この蓄冷器の高温側に接続された圧縮機とを備えたパルス管冷凍機が知られている。
このようなパルス管冷凍機では、蓄冷器および圧縮機間に設けられた高圧バルブおよび低圧バルブの開閉を略交互に行うことにより、パルス管内に圧力振動を生じさせている。そして、パルス管の高温側にオリフィスを介してバッファ(リザーバタンク)を接続したり、加えて、当該オリフィスおよびパルス管間の流路と蓄冷器および圧縮機間の流路とを、別のオリフィスを有するバイパス流路を介して接続することで(ダブルインレット型)、パルス管内の圧力振動とパルス管内でのガス柱(パルス管内に形成される仮想のガスピストン)の変位との位相差を良好にし、冷凍効率を向上させている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のパルス管冷凍機に用いられる圧縮機としては、往復動式、スクリュー式、ロータリ式、スクロール式など、モータによって駆動される駆動部を有するものが多いため、パルス管冷凍機の運転中にかかる駆動部への負荷により、モータでの消費電力が大きかったり、駆動部の摩耗等が生じやすくなって頻繁にメンテナンスが必要になるなど、不経済であるという問題がある。
【0004】
本発明の目的は、経済的に優位なパルス管冷凍機を提供することにある。
【0005】
【課題を解決するための手段】
本発明のパルス管冷凍機は、パルス管と、このパルス管の低温側に接続された蓄冷器と、この蓄冷器の高温側(室温側)に接続された圧縮機とを備えたパルス管冷凍機であって、前記圧縮機は、それぞれ一端側が前記蓄冷器に対して並列に接続された別のパルス管および別の蓄冷器と、これら別のパルス管および別の蓄冷器の各他端側間に直列に接続され、かつ両端側を略同温度に維持させるシリンダと、このシリンダ内に設けられて機械的に駆動されるディスプレーサピストンと、前記別のパルス管の前記一端側前記シリンダの前記一端側よりも低温に維持する冷却装置とを備えることを特徴とする。
【0006】
このような発明では、圧縮機を構成する別のパルス管、別の蓄冷器、およびシリンダ同士が直列に接続されるうえ、当該別のパルス管の前記蓄冷器側の一端側をシリンダの一端側よりも低温にするため、この圧縮機はシリンダ内のピストンを駆動させることでサーマルコンプレッサとして機能する。従って、ピストンがシリンダ内での往復動時に受ける負荷は、シリンダとの接触抵抗だけであり、このピストンを駆動する例えばモータ等での消費電力は極めて小さいうえ、ピストンを駆動する部品の摩耗等も抑えられてメンテナンスを頻繁に行う必要がなくなり、従来に比して経済的である。
【0007】
また、本発明のパルス管冷凍機では、前記蓄冷器と前記圧縮機を構成する別の蓄冷器とは一体に設けられていることが望ましい。
このような構成では、各蓄冷器を個別に配置する場合よりも配置スペースが小さくてすみ、パルス管冷凍機の小型化が促進される。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
図1において、パルス管冷凍機1は、第1のパルス管10と、パルス管10の低温側に接続された蓄冷器20と、蓄冷器20の高温端(室温端)側に一端側が接続されたシリンダ31と、シリンダ31内に配置されたピストン32と、蓄冷器20の途中に一端側が接続された第2のパルス管33と、パルス管33の当該一端側を冷却する冷却装置34と、前記第1のパルス管10の高温端側に接続されたバッファタンク40とを備え、パルス管10および蓄冷器20を連通させる流路81の部分により、極低温を発生するコールド(ヒート)ステーションが形成されている。
【0009】
また、本実施形態では、蓄冷器20の高温側(後述の流路82の接続部分を境にして高温側のこと)、シリンダ31、ピストン32、第2のパルス管33、および冷却装置34で本発明に係る圧縮機30が形成されている。
【0010】
第1のパルス管10内にはヘリウム等の作動ガスによって仮想的にガス柱11(ガス柱:点線で図示)が形成されている。このガス柱11は、パルス管10内を図中上下に往復動する。
【0011】
蓄冷器20は、例えば、銅線をメッシュ状に編んだ網体を円板状に打ち抜き、この円板状の網体を複数枚重ねるようにして金属製の筒体内に収容した構成であり、必要に応じて鉛等の球体を追加充填することもある。この蓄冷器20において、作動ガスの流れ方向の途中には、流路82を介して第2のパルス管33の一端側、すなわち冷却装置34で冷却される低温端側が接続されている。
【0012】
圧縮機30では、シリンダ31、パルス管33、および蓄冷器20の前記高温側とが流路82,83,84で直列に接続されており、このうちのパルス管33の図中の下端側および蓄冷器20の前記高温側は、蓄冷器20の低温側(流路82の接続部分を境にして低温側のこと)に対してそれぞれ並列に接続されている。
【0013】
シリンダ31内には、ピストン32を境にして流路84側、すなわち第2のパルス管33側にパルス管側連通室311が形成され、流路83側、すなわち蓄冷器20側に蓄冷器側連通室312が形成される。また、シリンダ31には、図示を省略するが、ピストン32に接続されたロッドとの間での気密を確保するシール部材が設けられている。
【0014】
ピストン32は、図示しないロッドおよびクランク等によってモータ駆動される。ピストン32の外周部分には、オーリング等のシール部材321が取り付けられ、シリンダ31内の各連通室311,312間での作動ガスの漏れを確実に遮断している。このようなピストン32は、各連通室311,312が流路83,84を介して他と連通していることにより、作動ガスを各連通室311,312で圧縮せずに往復動可能であり、シール部材321とシリンダ31との間で生じる摩擦抵抗を除き、往復動中に殆ど負荷を受けないディスプレーサとなっている。
【0015】
第2のパルス管33は径寸法が第1のパルス管10よりも大きいが、長さ寸法がより小さくなっている。第2のパルス管33内にも作動ガスによって仮想的にガス柱331(ガス柱:点線で図示)が形成されている。このガス柱331は、パルス管33内を図中上下に往復動する。パルス管33の下端側は冷却装置34で冷却されるが、上端側は例えば室温程度に維持される。
【0016】
冷却装置34は、冷媒等が循環するチューブをパルス管33の下端側に接触等させることで冷却するものや、その他、任意の構造のものを適用できる。
【0017】
バッファタンク40は、パルス管冷凍機に一般に用いられるものであり、第1のパルス管10とは流路85を介して連通され、流路85の途中にはオリフィス851が設けられている。また、このオリフィス851のパルス管10側では、流路85と流路83とがバイパス流路86で連通し、流路86の途中にはオリフィス861が設けられている。つまり、このバッファタンク40、オリフィス851,861、第1のパルス管10、および蓄冷器20は、従来のいわゆるダブルインレット型のパルス管冷凍機の構造と略同じである。
【0018】
このような本実施形態のパルス管冷凍機1においては、以下のように冷凍が発生する。
先ず、圧縮機30のシリンダ31内において、ピストン32が流路84側の端部にあるとき、第2のパルス管33内のガス柱331は下端の冷却端側に位置し、第1のパルス管10内のガス柱11も下端の低温側に位置する。そして、シリンダ31の蓄冷器側連通室312内の作動ガスは高圧になっている。
【0019】
この状態からピストン32を流路83側に移動させ、高圧の作動ガスを蓄冷器側連通室312から送り出すと、作動ガスの大部分は蓄冷器20の上部側を通過した後に流路82を通ってより径寸法の大きい第2のパルス管33の下端側に入り込む。この際、作動ガスは冷却装置34で冷却されて低圧となり、低圧となった作動ガスでガス柱331を上方に押し上げ、このガス柱331よりも上方にもとから存在した室温レベルの作動ガスは流路84を介してシリンダ31内のパルス管側連通室311に入る。
【0020】
一方、蓄冷器側連通室312から送り出された残りの作動ガスは、蓄冷器20を最後まで通過した後、流路81を通ってパルス管10の低温側に入り込み、ガス柱11を上方に押し上げると同時に、流路86からもオリフィス861で流量調整されてパルス管10の高温側に流入する。これに伴い、パルス管10内におけるガス柱11よりも高温側にもとから存在した作動ガスと、オリフィス861から流入した作動ガスとは混合され、流路85を通ってオリフィス851で流量調整されてバッファタンク40に入り込む。
【0021】
次に、この時点でピストン32を流路84側に戻すと、パルス管側連通室311内の室温レベルの作動ガスが第2のパルス管33側に戻るとともに、第2のパルス管33内に入り込んでいた低圧でかつ低温の作動ガスは、流路82を通って蓄冷器20の上部側で冷熱が奪われた後、徐々に高圧となってシリンダ31内の蓄冷器側連通室312内に戻る。つまり、シリンダ31、ピストン32、および第2のパルス管33を含んで形成された圧縮機30は、サーマルコンプレッサとして機能することになる。
【0022】
また、ピストン32が流路84側に戻る過程で、バッファタンク40内に入り込んでいた作動ガスが吐出され、一部は流路86を通して流路83に戻り、残りはガス柱11の高温側ガスとしてパルス管10に戻る。このとき、第1のパルス管10内においてガス柱11よりも低温側に入り込んでいた高圧の作動ガスは断熱膨張して冷凍を発生し、流路81を冷却し、蓄冷器20を通過することで低熱が当該蓄冷器20に蓄熱される。そして、断熱膨張した末に低圧となった作動ガスは蓄冷器20を過ぎて徐々に高温となり、蓄冷器側連通室312内に戻る。
【0023】
以上でパルス管冷凍機1の1サイクルが終了する。そして、次のサイクルにおいて、蓄冷器20を最後まで通過して第1のパルス管10に向かう高圧作動ガスは、蓄冷器20に蓄熱された低熱を受け取ることでより低温となってパルス管10内に入り込む。この後、この低温の作動ガスが断熱膨張することで一層低温の冷凍を発生し、これによって流路81の温度がさらに下げられる。このようなサイクルを繰り返すことで、流路81に形成されたコールドステーションは最終的に極低温に達する。
【0024】
このような本実施形態によれば、以下のような効果がある。
すなわち、圧縮機30を構成する蓄冷器20の上部側、シリンダ31、第2パルス管33同士が直列に接続されているうえ、第2のパルス管33の蓄冷器20側の端部が冷却装置34で冷却されるため、シリンダ31内のピストン32を駆動させることで圧縮機30全体をサーマルコンプレッサとして機能させることができる。
従って、ピストン32がシリンダ31内での往復動時に受ける負荷を、シール部材321を介して受けるシリンダ31との接触抵抗だけにでき、このピストン32を駆動する例えばモータ等での消費電力を極めて小さくできるとともに、ピストン32を駆動する部品の摩耗等も抑えてメンテナンスを頻繁に行う手間を省くことができ、従来に比して経済的である。
【0025】
また、パルス管冷凍機1では、圧縮機30を構成する蓄冷器と冷凍を発生させるのに直接必要な蓄冷器とが蓄冷器20によって一体に設けられているから、各蓄冷器を個別に配置する場合よりも配置スペースを小さくでき、パルス管冷凍機1を小型化できる。
【0026】
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、第2のパルス管33の下端側が冷却装置34で冷却されていたが、第2のパルス管33の一端側を冷却する本発明としては、流路82を冷却する場合も含まれる。
【0027】
さらに、前記実施形態では、第1のパルス管10側の構造が従来のダブルインレット型であったが、このような構造の他、例えば、第1のパルス管10とバッファタンク40とを単に流路85で連通した構造であってもよく、任意である。
【0028】
【発明の効果】
以上に述べたように、本発明によれば、経済的に優位なパルス管冷凍機を提供できるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るパルス管冷凍機を示す模式図である。
【符号の説明】
1 パルス管冷凍機
10 パルス管である第1のパルス管
20 蓄冷器
30 圧縮機
31 シリンダ
32 ピストン
33 別のパルス管である第2のパルス管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse tube refrigerator, for example, a pulse tube refrigerator used for a cryopump or the like.
[0002]
[Background]
Conventionally, a pulse tube refrigerator including a pulse tube, a regenerator connected to a low temperature side of the pulse tube, and a compressor connected to a high temperature side of the regenerator is known.
In such a pulse tube refrigerator, pressure oscillation is generated in the pulse tube by opening and closing a high-pressure valve and a low-pressure valve provided between the regenerator and the compressor approximately alternately. Then, a buffer (reservoir tank) is connected to the high temperature side of the pulse tube via an orifice. In addition, a flow path between the orifice and the pulse tube and a flow path between the regenerator and the compressor are connected to another orifice. By connecting via a bypass channel (double inlet type), the phase difference between the pressure oscillation in the pulse tube and the displacement of the gas column (virtual gas piston formed in the pulse tube) in the pulse tube is good. And improving the refrigeration efficiency.
[0003]
[Problems to be solved by the invention]
However, since many compressors used in conventional pulse tube refrigerators have a drive unit driven by a motor, such as a reciprocating type, screw type, rotary type, scroll type, etc., the operation of the pulse tube refrigerator There is a problem that it is uneconomical, such as a large power consumption in the motor due to the load applied to the drive unit, wear of the drive unit, etc., and frequent maintenance.
[0004]
An object of the present invention is to provide an economically advantageous pulse tube refrigerator.
[0005]
[Means for Solving the Problems]
A pulse tube refrigerator of the present invention includes a pulse tube, a regenerator connected to a low temperature side of the pulse tube, and a compressor connected to a high temperature side (room temperature side) of the regenerator. Each of the other ends of the other pulse tubes and the other regenerators, one end side of which is connected in parallel to the regenerator, and the other pulse tubes and the other regenerators. A cylinder that is connected in series between the cylinders and maintains both ends at substantially the same temperature, a displacer piston that is provided in the cylinder and mechanically driven, and the one end side of the another pulse tube is connected to the cylinder. And a cooling device that maintains a lower temperature than the one end side.
[0006]
In such an invention, another pulse tube constituting the compressor, another regenerator, and the cylinders are connected in series, and one end side of the other pulse tube on the regenerator side is connected to one end side of the cylinder. In order to lower the temperature, the compressor functions as a thermal compressor by driving a piston in the cylinder. Therefore, the load that the piston receives when reciprocating in the cylinder is only the contact resistance with the cylinder. The power consumption of, for example, a motor that drives the piston is extremely small, and the wear of the parts that drive the piston is also reduced. It is less expensive and does not require frequent maintenance, making it more economical than before.
[0007]
In the pulse tube refrigerator of the present invention, it is desirable that the regenerator and another regenerator constituting the compressor are provided integrally.
With such a configuration, the arrangement space is smaller than when each regenerator is individually arranged, and the downsizing of the pulse tube refrigerator is promoted.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, the pulse tube refrigerator 1 has a first pulse tube 10, a regenerator 20 connected to the low temperature side of the pulse tube 10, and one end side connected to the high temperature end (room temperature end) side of the regenerator 20. A cylinder 31, a piston 32 disposed in the cylinder 31, a second pulse tube 33 having one end connected to the middle of the regenerator 20, a cooling device 34 for cooling the one end of the pulse tube 33, A buffer tank 40 connected to the high temperature end side of the first pulse tube 10, and a cold (heat) station that generates a cryogenic temperature by a portion of a flow path 81 that communicates the pulse tube 10 and the regenerator 20. Is formed.
[0009]
In the present embodiment, the high temperature side of the regenerator 20 (the high temperature side with respect to a connecting portion of a flow path 82 described later), the cylinder 31, the piston 32, the second pulse tube 33, and the cooling device 34 A compressor 30 according to the present invention is formed.
[0010]
In the first pulse tube 10, a gas column 11 (gas column: illustrated by a dotted line) is virtually formed by a working gas such as helium. The gas column 11 reciprocates up and down in the figure in the pulse tube 10.
[0011]
The regenerator 20 is configured, for example, by punching a mesh knitted from copper wire into a disk shape, and accommodating the disk-shaped mesh body in a metal cylinder so as to overlap a plurality of sheets, If necessary, spheres such as lead may be additionally filled. In the regenerator 20, one end side of the second pulse tube 33, that is, the low temperature end side cooled by the cooling device 34 is connected through the flow path 82 in the middle of the working gas flow direction.
[0012]
In the compressor 30, the cylinder 31, the pulse tube 33, and the high temperature side of the regenerator 20 are connected in series by flow paths 82, 83, and 84, and the lower end side of the pulse tube 33 in the figure and The high temperature side of the regenerator 20 is connected in parallel to the low temperature side of the regenerator 20 (the low temperature side with the connection portion of the flow path 82 as a boundary).
[0013]
In the cylinder 31, a pulse tube side communication chamber 311 is formed on the flow channel 84 side, that is, the second pulse tube 33 side, with the piston 32 as a boundary, and the regenerator side on the flow channel 83 side, that is, the regenerator 20 side. A communication chamber 312 is formed. Although not shown, the cylinder 31 is provided with a seal member that ensures airtightness with the rod connected to the piston 32.
[0014]
The piston 32 is motor-driven by a rod and a crank (not shown). A seal member 321 such as an O-ring is attached to the outer peripheral portion of the piston 32, and the leakage of the working gas between the communication chambers 311 and 312 in the cylinder 31 is surely blocked. Such a piston 32 can reciprocate without compressing the working gas in each of the communication chambers 311 and 312 because each of the communication chambers 311 and 312 communicates with the other through the flow paths 83 and 84. Except for the frictional resistance generated between the seal member 321 and the cylinder 31, the displacer is hardly subjected to a load during the reciprocating motion.
[0015]
The second pulse tube 33 is larger in diameter than the first pulse tube 10 but has a smaller length. In the second pulse tube 33, a gas column 331 (gas column: illustrated by a dotted line) is virtually formed by the working gas. The gas column 331 reciprocates up and down in the pulse tube 33 in the drawing. The lower end side of the pulse tube 33 is cooled by the cooling device 34, but the upper end side is maintained at about room temperature, for example.
[0016]
As the cooling device 34, a cooling device that cools by bringing a tube in which a refrigerant or the like circulates into contact with the lower end side of the pulse tube 33, or any other structure can be applied.
[0017]
The buffer tank 40 is generally used in a pulse tube refrigerator, and communicates with the first pulse tube 10 via a flow path 85, and an orifice 851 is provided in the middle of the flow path 85. Further, on the pulse tube 10 side of the orifice 851, the flow path 85 and the flow path 83 communicate with each other by a bypass flow path 86, and an orifice 861 is provided in the middle of the flow path 86. That is, the buffer tank 40, the orifices 851 and 861, the first pulse tube 10 and the regenerator 20 have substantially the same structure as a conventional so-called double inlet type pulse tube refrigerator.
[0018]
In such a pulse tube refrigerator 1 of the present embodiment, refrigeration occurs as follows.
First, in the cylinder 31 of the compressor 30, when the piston 32 is at the end on the flow path 84 side, the gas column 331 in the second pulse tube 33 is located on the cooling end side at the lower end, and the first pulse The gas column 11 in the pipe 10 is also located on the low temperature side at the lower end. The working gas in the regenerator side communication chamber 312 of the cylinder 31 is at a high pressure.
[0019]
When the piston 32 is moved to the flow path 83 side from this state and high-pressure working gas is sent out from the regenerator side communication chamber 312, most of the working gas passes through the flow path 82 after passing through the upper side of the regenerator 20. Then, it enters the lower end side of the second pulse tube 33 having a larger diameter. At this time, the working gas is cooled by the cooling device 34 to become a low pressure, and the working gas at a low pressure pushes the gas column 331 upward, and the working gas at the room temperature level originally present above the gas column 331 is The pulse tube side communication chamber 311 in the cylinder 31 is entered via the flow path 84.
[0020]
On the other hand, the remaining working gas sent out from the regenerator side communication chamber 312 passes through the regenerator 20 to the end and then enters the low temperature side of the pulse tube 10 through the flow path 81 to push the gas column 11 upward. At the same time, the flow rate is adjusted by the orifice 861 from the flow path 86 and flows into the high temperature side of the pulse tube 10. Accordingly, the working gas originally present on the higher temperature side than the gas column 11 in the pulse tube 10 and the working gas flowing in from the orifice 861 are mixed, and the flow rate is adjusted by the orifice 851 through the flow path 85. Into the buffer tank 40.
[0021]
Next, when the piston 32 is returned to the flow path 84 side at this time, the working gas at the room temperature level in the pulse tube side communication chamber 311 returns to the second pulse tube 33 side and enters the second pulse tube 33. The low-pressure and low-temperature working gas that has entered passes through the flow path 82 and is deprived of cold heat on the upper side of the regenerator 20 and then gradually becomes high pressure in the regenerator-side communication chamber 312 in the cylinder 31. Return. That is, the compressor 30 formed including the cylinder 31, the piston 32, and the second pulse tube 33 functions as a thermal compressor.
[0022]
Further, in the process in which the piston 32 returns to the flow path 84 side, the working gas that has entered the buffer tank 40 is discharged, part of which returns to the flow path 83 through the flow path 86, and the rest is the high-temperature side gas of the gas column 11. To return to the pulse tube 10. At this time, the high-pressure working gas that has entered the lower temperature side than the gas column 11 in the first pulse tube 10 adiabatically expands to generate refrigeration, cool the flow path 81, and pass through the regenerator 20. The low heat is stored in the regenerator 20. The working gas that has become low pressure after adiabatic expansion passes the regenerator 20 and gradually becomes high temperature, and returns to the regenerator-side communication chamber 312.
[0023]
Thus, one cycle of the pulse tube refrigerator 1 is completed. Then, in the next cycle, the high-pressure working gas that passes through the regenerator 20 to the end and travels toward the first pulse tube 10 becomes lower in temperature by receiving the low heat stored in the regenerator 20, and then enters the pulse tube 10. Get in. Thereafter, the low-temperature working gas undergoes adiabatic expansion to generate refrigeration at a lower temperature, thereby further reducing the temperature of the flow path 81. By repeating such a cycle, the cold station formed in the flow path 81 finally reaches an extremely low temperature.
[0024]
According to this embodiment, there are the following effects.
That is, the upper side of the regenerator 20 constituting the compressor 30, the cylinder 31, and the second pulse tube 33 are connected in series, and the end of the second pulse tube 33 on the regenerator 20 side is a cooling device. Therefore, the entire compressor 30 can function as a thermal compressor by driving the piston 32 in the cylinder 31.
Therefore, the load that the piston 32 receives when reciprocating in the cylinder 31 can be limited only to the contact resistance with the cylinder 31 that is received via the seal member 321, and the power consumption of, for example, a motor that drives the piston 32 is extremely small. In addition, it is possible to save the trouble of frequently performing maintenance by suppressing wear and the like of the parts that drive the piston 32, which is more economical than the prior art.
[0025]
Further, in the pulse tube refrigerator 1, the regenerator constituting the compressor 30 and the regenerator directly necessary for generating the refrigeration are integrally provided by the regenerator 20, so that each regenerator is arranged individually. The arrangement space can be reduced as compared with the case where the pulse tube refrigerator 1 is made smaller.
[0026]
In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.
For example, in the above embodiment, the lower end side of the second pulse tube 33 is cooled by the cooling device 34. However, in the present invention in which one end side of the second pulse tube 33 is cooled, the flow path 82 is cooled. Is also included.
[0027]
Furthermore, in the embodiment, the structure on the first pulse tube 10 side is a conventional double inlet type. However, in addition to such a structure, for example, the first pulse tube 10 and the buffer tank 40 are simply flowed. A structure communicating with the path 85 may be used and is arbitrary.
[0028]
【The invention's effect】
As described above, according to the present invention, there is an effect that an economically advantageous pulse tube refrigerator can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a pulse tube refrigerator according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pulse tube refrigerator 10 1st pulse tube 20 which is a pulse tube Regenerator 30 Compressor 31 Cylinder 32 Piston 33 2nd pulse tube which is another pulse tube

Claims (2)

パルス管と、このパルス管の低温側に接続された蓄冷器と、この蓄冷器の高温側に接続された圧縮機とを備えたパルス管冷凍機であって、
前記圧縮機は、それぞれ一端側が前記蓄冷器に対して並列に接続された別のパルス管および別の蓄冷器と、これら別のパルス管および別の蓄冷器の各他端側間に直列に接続され、かつ両端側を略同温度に維持させるシリンダと、このシリンダ内に設けられて機械的に駆動されるディスプレーサピストンと、前記別のパルス管の前記一端側前記シリンダの前記一端側よりも低温に維持する冷却装置とを備える
ことを特徴とするパルス管冷凍機。
A pulse tube refrigerator comprising a pulse tube, a regenerator connected to the low temperature side of the pulse tube, and a compressor connected to the high temperature side of the regenerator,
The compressor is connected in series between another pulse tube and another regenerator each having one end connected in parallel to the regenerator, and between the other end sides of the other pulse tube and another regenerator. And a cylinder that maintains both ends at substantially the same temperature, a displacer piston that is provided in the cylinder and mechanically driven, and the one end side of the other pulse tube is made more than the one end side of the cylinder. A pulse tube refrigerator comprising a cooling device that maintains a low temperature.
請求項1に記載のパルス管冷凍機において、前記蓄冷器と前記圧縮機を構成する別の蓄冷器とは一体に設けられていることを特徴とするパルス管冷凍機。2. The pulse tube refrigerator according to claim 1, wherein the regenerator and another regenerator constituting the compressor are provided integrally.
JP2000238316A 2000-08-07 2000-08-07 Pulse tube refrigerator Expired - Lifetime JP4374458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238316A JP4374458B2 (en) 2000-08-07 2000-08-07 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238316A JP4374458B2 (en) 2000-08-07 2000-08-07 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JP2002048425A JP2002048425A (en) 2002-02-15
JP4374458B2 true JP4374458B2 (en) 2009-12-02

Family

ID=18730033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238316A Expired - Lifetime JP4374458B2 (en) 2000-08-07 2000-08-07 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP4374458B2 (en)

Also Published As

Publication number Publication date
JP2002048425A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
US8783045B2 (en) Reduced input power cryogenic refrigerator
JP4147697B2 (en) Pulse tube refrigerator
JPH10132404A (en) Pulse pipe freezer
JP3625511B2 (en) Gas cycle refrigerator
JP2783112B2 (en) Cryogenic refrigerator
JP5714461B2 (en) Cryogenic refrigerator
JP3602823B2 (en) Pulsating tube refrigerator
JP4374458B2 (en) Pulse tube refrigerator
JP2609327B2 (en) refrigerator
JP2000121186A (en) Cold storage refrigerating machine
JP6087168B2 (en) Cryogenic refrigerator
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JP4718957B2 (en) Pulse tube refrigerator
US5575155A (en) Cooling system
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
US5697219A (en) Cryogenic refrigerator
JP2005283026A (en) Cold storage type refrigerating machine
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP2723342B2 (en) Cryogenic refrigerator
JPH1194382A (en) Pulse tube refrigerator
JPH0814678A (en) Pulse tube freezer machine with liquid piston
JP2000018741A (en) Pulse tube refrigerating machine
KR100367617B1 (en) Pulstube refrigerator
KR100393790B1 (en) Pulstube refrigerator
KR100348614B1 (en) Pulse tube refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3