JP2002045961A - Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method - Google Patents

Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method

Info

Publication number
JP2002045961A
JP2002045961A JP2000237348A JP2000237348A JP2002045961A JP 2002045961 A JP2002045961 A JP 2002045961A JP 2000237348 A JP2000237348 A JP 2000237348A JP 2000237348 A JP2000237348 A JP 2000237348A JP 2002045961 A JP2002045961 A JP 2002045961A
Authority
JP
Japan
Prior art keywords
heating
temperature
heated
test member
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000237348A
Other languages
Japanese (ja)
Inventor
Hisashi Harada
寿 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000237348A priority Critical patent/JP2002045961A/en
Publication of JP2002045961A publication Critical patent/JP2002045961A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To quantify the heating characteristic in a heating evaluating method of a beating furnace. SOLUTION: The temperature change of a test piece is measured by heating the test piece having identified physical properties while moving it in the heating furnace, the temperature change of the test piece in the heating furnace is calculated by using a differential equation with the heating characteristic of the heating furnace as parameter variables, the calculation is repeated by changing the value indicating the heating characteristic of the heating furnace so that the difference between the measured temperature of the test piece and the calculated value becomes minimum, and the optimum heating characteristic is determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加熱炉の加熱評価
方法に関し、特に、半田付用のリフロー装置を用いたリ
フロー半田付方法に用いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating heating of a heating furnace, and is particularly suitable for use in a reflow soldering method using a reflow apparatus for soldering.

【0002】[0002]

【従来の技術】一般に、電子部品の基板表面への半田付
は、電子部品を搭載した基板をリフロー炉に挿入し、ベ
ルトコンベア等の搬送手段により炉内を移動させること
によって一括して行っている。この際、従来は、リフロ
ー炉の最適な加熱条件を、実際の基板の温度を測定しな
がら目標とする温度が得られるまで条件を変更すること
により求めていた。この加熱条件の設定方法には熟練技
能を必要とし、さらに何度も試行する必要があるため効
率的ではないという問題がある。
2. Description of the Related Art Generally, soldering of electronic components to the surface of a substrate is performed in a batch by inserting the substrate on which the electronic components are mounted into a reflow furnace and moving the inside of the furnace by a conveying means such as a belt conveyor. I have. At this time, conventionally, the optimum heating condition of the reflow furnace has been obtained by measuring the actual temperature of the substrate and changing the condition until a target temperature is obtained. This method of setting heating conditions requires skilled skills, and has to be repeated many times, which is not efficient.

【0003】そこで、ある測定結果を基に効率的に基板
の温度変化を求めるようにした技術がある。この技術で
は、リフロー炉の温度条件を複数の領域に分けて考え、
まず、ある加熱条件のリフロー炉内で基板を移動させ、
基板の温度変化を測定する。そして、この温度変化を基
にして、各領域における炉の温度設定や基板の加熱時間
に影響するコンベアのスピード等を変更した場合の基板
の温度変化を計算して予測することができるようになっ
ている。
Therefore, there is a technique for efficiently obtaining a temperature change of a substrate based on a certain measurement result. In this technology, the temperature condition of the reflow furnace is divided into a plurality of areas,
First, move the substrate in a reflow furnace under certain heating conditions,
Measure the temperature change of the substrate. Then, based on this temperature change, it becomes possible to calculate and predict the temperature change of the substrate when the furnace temperature setting in each region or the speed of the conveyor which affects the heating time of the substrate is changed. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た温度変化の予測方法では、各領域において設定温度と
して1つの値のみ用いているため、複数種類の加熱源を
用いた場合等において、加熱条件によっては予測計算温
度が実測温度と異なってくる場合がある。このように、
設定温度として1つの値のみを用いることは、複数種類
の加熱源を用いる場合に各々の加熱源の加熱に関わる特
徴を考慮しておらず、リフロー炉の熱風対流に依存する
対流熱伝達係数や、赤外線ヒータに依存する赤外線放射
率等の加熱特性を考慮していないことに相当する。
However, in the above-described method for estimating a change in temperature, since only one value is used as the set temperature in each region, when a plurality of types of heating sources are used, the temperature may vary. In some cases, the predicted calculated temperature may differ from the actually measured temperature. in this way,
Using only one value as the set temperature does not take into account the features related to the heating of each heating source when using a plurality of types of heating sources. This corresponds to not taking into account heating characteristics such as infrared emissivity depending on the infrared heater.

【0005】本発明は、上記問題点に鑑み、加熱炉の加
熱評価方法において、加熱特性を定量化することを1つ
の目的とする。また、加熱炉によって加熱される被加熱
体の温度変化を精度良く予測することをもう1つの目的
とする。
In view of the above problems, an object of the present invention is to quantify heating characteristics in a heating furnace heating evaluation method. It is another object of the present invention to accurately predict a temperature change of an object to be heated by a heating furnace.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明では、加熱手段(2)と搬送
手段(4)とを備えた加熱炉(1)を有し、加熱炉内で
搬送手段によって被加熱体を移動させながら、加熱手段
により被加熱体を加熱する加熱炉の加熱評価方法におい
て、熱的物性値の明らかな試験部材(10)を用意し、
該試験部材を加熱炉内で移動させながら加熱して、試験
部材の温度の時間変化を測定し、加熱炉の加熱特性をパ
ラメータ変数として、試験部材の熱的物性値を用いて、
試験部材の温度と時間に関して数値解析を行い、該数値
解析による試験部材の温度変化と、測定した試験部材の
温度変化との偏差が最小となるように、パラメータ変数
を決定することを特徴としている。
According to the first aspect of the present invention, there is provided a heating furnace provided with a heating means (2) and a conveying means (4). In a heating furnace heating evaluation method for heating a body to be heated by a heating means while moving the body to be heated by a conveying means in a furnace, a test member (10) having a clear thermal property value is prepared.
The test member is heated while being moved in the heating furnace, the time change of the temperature of the test member is measured, and the heating characteristic of the heating furnace is used as a parameter variable, using the thermal properties of the test member,
Numerical analysis is performed on the temperature and time of the test member, and parameter variables are determined so that the deviation between the temperature change of the test member by the numerical analysis and the measured temperature change of the test member is minimized. .

【0007】一般に、試験部材の温度変化について数値
解析を行う場合、試験部材の熱的物性値と加熱炉の加熱
特性とが必要になる。本発明では、試験部材の熱的物性
値は明らかであり、試験部材の温度変化も予め測定して
いるため、加熱炉の加熱特性として適当な値を代入して
数値解析を行い、数値解析により求めた温度変化と測定
した温度変化とが近似するように、適宜、加熱特性の値
を変更することで、最適な加熱特性を求めることができ
る。このように、加熱炉の加熱特性を定量化することが
できる。
In general, when performing a numerical analysis on a temperature change of a test member, the thermal property value of the test member and the heating characteristics of the heating furnace are required. In the present invention, the thermal property values of the test member are clear, and the temperature change of the test member is also measured in advance, so that an appropriate value is substituted as the heating characteristic of the heating furnace, and a numerical analysis is performed. By appropriately changing the value of the heating characteristic so that the obtained temperature change and the measured temperature change are approximated, the optimal heating characteristic can be obtained. Thus, the heating characteristics of the heating furnace can be quantified.

【0008】例えば、請求項1の発明では、請求項2に
記載の発明のように、加熱手段による加熱温度として、
赤外線ヒータによる温度Thと熱風対流による温度T∞
を用い、試験部材の熱的な物性値として、密度ρ、比熱
c、赤外線吸収率αを用い、パラメータ変数として、対
流熱伝達係数h、赤外線放射率ε、形態係数Fを用い、
試験部材の温度をT、表面積をA、体積をvとし、時間
をtとし、数値解析を、微分方程式、dT/dt=A/
ρcv・{h(T∞−T)+αεF(Th 4−T 4)}を
用いて行うことができる。
For example, in the first aspect of the present invention,
As described in the invention, as the heating temperature by the heating means,
Temperature T by infrared heaterhAnd temperature T∞ by hot air convection
Using the density, ρ, specific heat
c, using the infrared absorption coefficient α,
Using flow heat transfer coefficient h, infrared emissivity ε, and view factor F,
The temperature of the test member is T, the surface area is A, the volume is v, and the time is
Is t, the numerical analysis is a differential equation, dT / dt = A /
ρcv · {h (T∞−T) + αεF (Th Four-T Four)}
It can be performed using.

【0009】請求項3に記載の発明では、加熱手段
(2)と搬送手段(4)とを備えた加熱炉(1)を有
し、加熱炉内で搬送手段によって被加熱体を移動させな
がら、加熱手段により被加熱体を加熱する際の被加熱体
の温度予測方法において、熱的物性値の明らかな試験部
材(10)を用意し、該試験部材を加熱炉内で移動させ
ながら加熱して、試験部材の温度の時間変化を測定し、
加熱炉の加熱特性を第1のパラメータ変数として、試験
部材の熱的物性値を用いて、試験部材の温度と時間に関
して第1の数値解析を行い、該第1の数値解析による試
験部材の温度変化と、測定した試験部材の温度変化との
偏差が最小となるように、第1のパラメータ変数を決定
する。そして、熱的物性値が未知の被加熱体を加熱炉内
で移動させながら加熱して、被加熱体の温度の時間変化
を測定し、決定した第1のパラメータ変数を用いて、被
加熱体の熱的物性値を第2のパラメータ変数として、被
加熱体の温度と時間に関して第2の数値解析を行い、該
第2の数値解析による被加熱体の温度変化と、測定した
被加熱体の温度変化との偏差が最小となるように、第2
のパラメータ変数を決定し、決定した被加熱体の熱的物
性値を用いて被加熱体の温度変化を求めることを特徴と
している。
According to the third aspect of the present invention, there is provided a heating furnace (1) provided with a heating means (2) and a conveying means (4), wherein the object to be heated is moved in the heating furnace by the conveying means. In the method for estimating the temperature of an object to be heated when the object to be heated is heated by the heating means, a test member (10) having a clear thermal property value is prepared, and the test member is heated while being moved in a heating furnace. Measuring the time change of the temperature of the test member,
Using the heating properties of the heating furnace as a first parameter variable and using the thermal physical property values of the test member, a first numerical analysis is performed on the temperature and time of the test member, and the temperature of the test member is determined by the first numerical analysis. The first parameter variable is determined such that the deviation between the change and the measured temperature change of the test member is minimized. Then, the object to be heated whose thermal physical property value is unknown is heated while moving in the heating furnace, the time change of the temperature of the object to be heated is measured, and the object to be heated is determined using the determined first parameter variable. As a second parameter variable, a second numerical analysis is performed on the temperature and time of the object to be heated, the temperature change of the object to be heated by the second numerical analysis, and the measured In order to minimize the deviation from the temperature change, the second
Are determined, and the temperature change of the object to be heated is obtained by using the determined thermal property values of the object to be heated.

【0010】被加熱体の各部位の熱的物性値が未知であ
る場合、任意の加熱条件において常に精度良く被加熱体
の各部位の温度変化を求めることができるとは限らな
い。そこで、本発明では、請求項1においてパラメータ
変数を決定した方法と同様にして第1のパラメータ変数
を決定した後、被加熱体の温度変化についての第2の数
値解析を行う。このとき、被加熱体の熱的物性値と加熱
炉の加熱特性が必要になるが、加熱特性は第1の数値解
析により既に求めてあり、被加熱体の温度変化も予め測
定しているため、被加熱体の熱的物性値として適当な値
を代入して第2の数値解析を行い、第2の数値解析によ
り求めた被加熱体の温度変化と測定した被加熱体の温度
変化とが近似するように、適宜、被加熱体の熱的物性値
の値を変更することで、最適な被加熱体の熱的物性値を
求めることができる。そして、被加熱体の熱的物性値と
加熱炉の加熱特性が分かれば、数値解析により被加熱体
の温度変化を求めることができる。従って、本発明のよ
うにすれば、加熱炉によって加熱される被加熱体の温度
変化を精度良く予測することができる。
When the thermal properties of each part of the object to be heated are unknown, it is not always possible to accurately determine the temperature change of each part of the object to be heated under arbitrary heating conditions. Therefore, in the present invention, after determining the first parameter variable in the same manner as in the method of determining the parameter variable in claim 1, a second numerical analysis is performed on the temperature change of the object to be heated. At this time, the thermal properties of the object to be heated and the heating characteristics of the heating furnace are required. However, since the heating characteristics have already been obtained by the first numerical analysis, and the temperature change of the object to be heated has been measured in advance. A second numerical analysis is performed by substituting an appropriate value as a thermal physical property value of the object to be heated, and a temperature change of the object to be heated obtained by the second numerical analysis and a temperature change of the object to be heated are measured. As appropriate, by changing the value of the thermal physical property value of the object to be heated as appropriate, the optimal thermal physical property value of the object to be heated can be obtained. If the thermal properties of the object to be heated and the heating characteristics of the heating furnace are known, the temperature change of the object to be heated can be obtained by numerical analysis. Therefore, according to the present invention, it is possible to accurately predict a temperature change of the object to be heated by the heating furnace.

【0011】例えば、請求項3の発明では、請求項4に
記載の発明のように、加熱手段による加熱温度として、
赤外線ヒータによる温度Thと熱風対流による温度T∞
を用い、試験部材の熱的な物性値として、密度ρ1、比
熱c1、赤外線吸収率α1を用い、第1のパラメータ変数
として、対流熱伝達係数h、赤外線放射率ε、形態係数
Fを用い、試験部材の温度をT1、表面積をA1、体積を
1とし、時間をtとし、第1の数値解析を、微分方程
式、dT1/dt=A1/ρ111・{h(T∞−T1
+α1εF(Th 4−T1 4)}を用いて行い、被加熱体の
温度をT2、表面積をA2、体積をv2とし、時間をtと
し、第2のパラメータ変数として、A2/ρ222、と
α2を用い、第2の数値解析を、微分方程式、dT2/d
t=A2/ρ222・{h(T∞−T2)+α2εF(T
h 4−T2 4)}を用いて行うことができる。
[0011] For example, in the invention of claim 3, as in the invention of claim 4, the heating temperature by the heating means is:
Temperature T∞ due to the temperature T h and hot air convection by the infrared heater
Using the density ρ 1 , the specific heat c 1 , and the infrared absorptivity α 1 as the thermal physical properties of the test member, and using the convection heat transfer coefficient h, the infrared emissivity ε, and the form factor F as the first parameter variables , The temperature of the test member is T 1 , the surface area is A 1 , the volume is v 1 , the time is t, and the first numerical analysis is a differential equation, dT 1 / dt = A 1 / ρ 1 c 1 v 1 · {h (T∞−T 1 )
Performed using the + α 1 εF (T h 4 -T 1 4)}, T 2 the temperature of the object to be heated, A 2 surface area, the volume and v 2, and the time t, as a second parameter variables, Using A 2 / ρ 2 c 2 v 2 and α 2 , a second numerical analysis is performed using a differential equation, dT 2 / d
t = A 2 / ρ 2 c 2 v 2 {h (T∞−T 2 ) + α 2 εF (T
h 4 -T 2 4)} can be carried out using.

【0012】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示すも
のである。
The reference numerals in parentheses of the above-mentioned means indicate the correspondence with the concrete means described in the embodiments described later.

【0013】[0013]

【発明の実施の形態】(第1実施形態)まず、本実施形
態の概要について述べる。本実施形態では、加熱炉のあ
る加熱条件に固有の加熱特性を求めるために以下の方法
を行う。まず、加熱炉内で熱的物性値が既知の試験部材
を移動させ、その際の試験部材の温度変化を測定する。
次に、温度の時間変化を示す微分方程式、dT/dt=
A/ρcv・{h(T∞−T)+αεF(Th 4
4)}を用いて、試験部材の温度変化を実測した場合
と同様の加熱炉の加熱条件で数値解析を行うことによ
り、試験部材の温度変化を計算により求める。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) First, an outline of the present embodiment will be described. In the present embodiment, the following method is performed in order to obtain a heating characteristic specific to a certain heating condition of the heating furnace. First, a test member having a known thermal property value is moved in a heating furnace, and a temperature change of the test member at that time is measured.
Next, a differential equation showing the time change of temperature, dT / dt =
A / ρcv · {h (T∞ -T) + αεF (T h 4 -
T 4 ) By using}, numerical analysis is performed under the same heating conditions of the heating furnace as in the case where the temperature change of the test member is actually measured, and the temperature change of the test member is obtained by calculation.

【0014】この微分方程式において、右辺の第1項は
熱風対流に起因する温度変化を示し、第2項は熱放射に
起因する温度変化を示す。Tは試験部材の温度、tは時
間、Aは試験部材の表面積、vは試験部材の体積、T∞
は熱風対流の温度、Thは熱放射の加熱源の温度であ
る。また、h、ε、Fは加熱炉の加熱特性を示す値であ
り、hは熱風対流に依存する対流熱伝達係数、εは熱放
射の加熱源に依存する赤外線放射率、Fは熱放射の加熱
源と試験部材との幾何学的な関係に依存する形態係数で
ある。また、ρ、c、αは試験部材の熱的物性値であ
り、ρは密度、cは比熱、αは赤外線吸収率である。
In this differential equation, the first term on the right side indicates a temperature change caused by hot air convection, and the second term indicates a temperature change caused by heat radiation. T is the temperature of the test member, t is time, A is the surface area of the test member, v is the volume of the test member, T∞
The temperature of the hot air convection, the T h is the temperature of the heating source the heat radiation. Further, h, ε, and F are values indicating the heating characteristics of the heating furnace, h is a convective heat transfer coefficient depending on hot air convection, ε is an infrared emissivity depending on a heat radiation heat source, and F is a heat radiation A view factor depending on the geometric relationship between the heating source and the test member. Further, ρ, c, and α are thermal physical properties of the test member, ρ is density, c is specific heat, and α is infrared absorptance.

【0015】そして、上記微分方程式を用いた数値解析
では、試験部材の熱的物性値が既知であるため、微分方
程式のA、ρ、c、v、α、T∞、Thに定数を代入す
る。また、h、ε、Fの値は未知であるため、仮の値と
して適当な数値を代入する。そして、微分方程式を解い
て計算による温度変化を求める。
[0015] In the numerical analysis using the above differential equation, since the thermal physical properties of the test member is known, A differential equation, [rho, c, v, alpha, T ∞, substituting constant T h I do. Since the values of h, ε, and F are unknown, appropriate numerical values are substituted as temporary values. Then, the differential equation is solved to obtain a calculated temperature change.

【0016】次に、この計算による温度変化と実際に測
定した温度変化とを比較する。そして、計算による温度
変化と測定した温度変化との偏差が小さくなるように、
h、ε、Fの値を適宜変更する。そして、最もこの偏差
が小さくなった場合を、この加熱炉における加熱特性を
示す値(h、ε、F)とする。このようにして、加熱特
性を求めることができる。
Next, the calculated temperature change is compared with the actually measured temperature change. Then, so that the deviation between the calculated temperature change and the measured temperature change is small,
The values of h, ε, and F are appropriately changed. Then, the case where the deviation is the smallest is defined as a value (h, ε, F) indicating the heating characteristic of the heating furnace. In this way, the heating characteristics can be determined.

【0017】次に、より詳細に説明する。以下、加熱炉
としてプリント基板に電子部品等をリフロー半田付する
リフロー炉を適用した場合について述べる。図1は、本
実施形態で用いる加熱炉1の模式的な断面図である。こ
の加熱炉1には、赤外線ヒータと赤外線ヒータの熱を加
熱炉1内に伝え熱風対流とするファンとからなる加熱機
2を備えており、この加熱機2が加熱手段に相当する。
図示例では、加熱炉1の上部と下部に配置された複数の
加熱機2を有する領域3によって加熱炉1が仕切られて
いる。また、加熱炉1内には基板を加熱炉1内で移動さ
せるための搬送手段としてのチェーン4が配置されてい
る。
Next, a more detailed description will be given. Hereinafter, a case where a reflow furnace for reflow soldering an electronic component or the like to a printed circuit board is applied as a heating furnace will be described. FIG. 1 is a schematic sectional view of a heating furnace 1 used in the present embodiment. The heating furnace 1 includes a heater 2 including an infrared heater and a fan that transfers heat of the infrared heater into the heating furnace 1 and generates convection of hot air. The heater 2 corresponds to a heating unit.
In the illustrated example, the heating furnace 1 is partitioned by an area 3 having a plurality of heaters 2 arranged at the upper and lower parts of the heating furnace 1. In the heating furnace 1, a chain 4 is disposed as a transfer unit for moving the substrate in the heating furnace 1.

【0018】そして、この様な加熱炉1を用いて、チェ
ーン4の上に基板を配置し、チェーン4をモータ5等に
よって動かして基板を加熱炉1内で移動させ、基板を加
熱炉1の上部と下部に配置した加熱機2によって加熱
し、基板に電子部品等を半田付するようになっている。
Then, using such a heating furnace 1, a substrate is arranged on the chain 4, the chain 4 is moved by a motor 5 or the like to move the substrate in the heating furnace 1, and the substrate is moved to the heating furnace 1. Heating is performed by the heaters 2 arranged at the upper and lower portions, and the electronic components and the like are soldered to the substrate.

【0019】次に、この加熱炉1の加熱特性の求め方に
ついて、図2のフローチャートを用いて説明する。ま
ず、ステップS101において、熱的物性値(密度ρ、
比熱c、赤外線吸収率α)及び表面積Aと体積vが既知
である試験部材を用いて、加熱炉1内で試験部材を移動
させた際の試験部材の温度変化を測定する。本実施形態
で用いる試験部材を図3に模式的な斜視図として示す。
Next, how to determine the heating characteristics of the heating furnace 1 will be described with reference to the flowchart of FIG. First, in step S101, the thermal properties (density ρ,
Using a test member whose specific heat c, infrared absorption rate α), surface area A and volume v are known, the temperature change of the test member when the test member is moved in the heating furnace 1 is measured. FIG. 3 shows a schematic perspective view of a test member used in the present embodiment.

【0020】図3に示すように、試験部材10は保持板
11とステンレス等からなる2種類の薄膜金属板12、
13と温度センサ14とからなる。保持板11には2つ
の穴が形成されており、この穴に薄膜金属板12、13
の各々が設置されている。これらのうち、一方の薄膜金
属板12の表裏両面は、赤外線の吸収率を小さくするた
めに高度研磨面となっており、他方の薄膜金属板13の
表裏両面は、赤外線の吸収率を大きくするためにつや消
し黒色塗装されている。以下、高度研磨面となっている
薄膜金属板を鏡面板12とし、黒色塗装されている薄膜
金属板を黒色板13とする。また、これらの薄膜金属板
12、13は、図示しないセンサ等によって各々温度が
随時測定できるようになっている。また、温度センサ1
4は、保持板11の上面と下面の雰囲気の温度を測定す
るために、保持板11の中央に配置されている。
As shown in FIG. 3, a test member 10 includes a holding plate 11 and two kinds of thin film metal plates 12 made of stainless steel or the like.
13 and a temperature sensor 14. The holding plate 11 has two holes formed therein.
Are installed. Of these, the front and back surfaces of one thin film metal plate 12 are highly polished to reduce the infrared absorption, and the front and back surfaces of the other thin metal plate 13 increase the absorption of infrared. For matte black paint. Hereinafter, the thin metal plate which is a highly polished surface is referred to as a mirror plate 12, and the black painted thin metal plate is referred to as a black plate 13. The temperature of each of these thin metal plates 12 and 13 can be measured at any time by a sensor (not shown) or the like. In addition, temperature sensor 1
Reference numeral 4 is arranged at the center of the holding plate 11 to measure the temperature of the atmosphere on the upper and lower surfaces of the holding plate 11.

【0021】この様な試験部材10を、チェーン4によ
って移動させながら、センサ等によって鏡面板12と黒
色板13の温度を測定する。以下、この温度変化を実測
温度変化という。図4に、この実測温度変化の結果を示
す。図中、白丸で示しているプロットが鏡面板12の温
度であり、黒丸で示しているプロットが黒色板13の温
度である。
While the test member 10 is moved by the chain 4, the temperatures of the mirror plate 12 and the black plate 13 are measured by a sensor or the like. Hereinafter, this temperature change is referred to as an actually measured temperature change. FIG. 4 shows the result of the measured temperature change. In the figure, plots indicated by white circles indicate the temperature of the mirror plate 12, and plots indicated by black circles indicate the temperature of the black plate 13.

【0022】次に、上述のように実測温度変化を測定し
た場合と同じ条件における鏡面板12と黒色板13の温
度変化を、物理モデルを用いて数値解析により求める。
まず、加熱炉1を任意の数の加熱領域に仮想的に分割す
る。この加熱領域の分割数や分割幅は、加熱炉1の構
造、雰囲気の温度分布、熱風の風速分布等により決定
し、上述のように加熱機2によって仕切られている加熱
炉1の状態と必ずしも一致しなくても良い。また、試験
部材10の上面と下面で加熱特性が異なる場合は、各々
上面と下面で加熱特性の物性値を定義する。図4におい
て、この加熱領域の境界を試験部材10が通過する時間
を破線で示している。
Next, the temperature change of the mirror plate 12 and the black plate 13 under the same conditions as when the measured temperature change is measured as described above is obtained by numerical analysis using a physical model.
First, the heating furnace 1 is virtually divided into an arbitrary number of heating regions. The number of divisions and the division width of the heating area are determined by the structure of the heating furnace 1, the temperature distribution of the atmosphere, the wind velocity distribution of the hot air, and the like, and are not necessarily the same as the state of the heating furnace 1 partitioned by the heater 2 as described above. They do not have to match. When the heating characteristics are different between the upper surface and the lower surface of the test member 10, the physical properties of the heating characteristics are defined for the upper surface and the lower surface, respectively. In FIG. 4, the time that the test member 10 passes through the boundary of the heating region is indicated by a broken line.

【0023】そして、各々の加熱領域において、加熱炉
1の加熱特性を示す値として、対流熱伝達係数h、赤外
線放射率ε、形態係数Fを設定し、これらの物性値をパ
ラメータ変数として試験部材10の温度Tの時間t変化
について数値解析を行う。
In each heating zone, a convection heat transfer coefficient h, an infrared emissivity ε, and a form factor F are set as values indicating the heating characteristics of the heating furnace 1, and these physical property values are used as parameter variables for the test member. Numerical analysis is performed on the time t change of the temperature T of No. 10.

【0024】そして、ステップS102において、各々
の加熱領域における加熱特性を示す値として適当な値を
定義し、i番目の加熱領域における加熱特性をhi
εi、F iとする。また、i番目の加熱領域における熱風
温度をT∞i、赤外線ヒータ温度をThiとする。なお、
図4において、試験部材10の上面及び下面における熱
風温度T∞iを、各々一点鎖線と太線で示している。な
お、下面における熱風温度T∞iは、上面における熱風
温度T∞iと異なる部分のみ示している。
Then, in step S102,
Appropriate value as the value indicating the heating characteristics in the heating region of
And the heating characteristic in the ith heating zone is hi,
εi, F iAnd Also, hot air in the i-th heating area
Temperature T∞i, Infrared heater temperature to ThiAnd In addition,
In FIG. 4, heat on the upper and lower surfaces of the test member 10 is shown.
Wind temperature T∞iAre indicated by a dashed line and a bold line, respectively. What
Contact, hot air temperature T∞ on the lower surfaceiIs hot air on the top surface
Temperature T∞iOnly the parts that differ from are shown.

【0025】そして、ステップS103において、微分
方程式、dT/dt=A/ρcv・{hi(T∞i−T)
+αεii(Thi 4−T4)}を用いて、各々の加熱領域
において、鏡面板12と黒色板13の温度変化を数値演
算して求める。この際、鏡面板12と黒色板13の各々
において、各加熱領域における初期温度を各々実測温度
と同一として、各加熱領域について順に数値演算するこ
とにより鏡面板12と黒色板13の温度変化を計算によ
り得る。
[0025] Then, in step S103, the differential equation, dT / dt = A / ρcv · {h i (T∞ i -T)
By using + αε i F i (T hi 4 −T 4 )}, the temperature change of the mirror plate 12 and the black plate 13 in each heating region is obtained by numerical calculation. At this time, in each of the mirror plate 12 and the black plate 13, the initial temperature in each heating region is set to be the same as the actually measured temperature, and the temperature change of the mirror plate 12 and the black plate 13 is calculated by numerically calculating each heating region in order. Obtained by

【0026】ただし、加熱特性を示す値(hi、εi、F
i)としてステップS102において定義した値を用い
ているため、この温度変化は実測温度変化とは近似しな
い場合がある。そこで、ステップS104において、計
算による温度変化と実測温度変化との偏差が最小である
かどうかを判定する。具体的には、Σ(測定値−計算
値)2の結果で判定し、温度変化を測定した各時間にお
いて温度の測定値と計算値との差を2乗して、温度変化
の最初から最後までこの2乗した値の和をとる。そし
て、この和が最小かどうかを判定する。
However, the values (h i , ε i , F
Since the value defined in step S102 is used as i ), this temperature change may not approximate the actually measured temperature change. Therefore, in step S104, it is determined whether the deviation between the calculated temperature change and the actually measured temperature change is minimum. Specifically, the judgment is made based on the result of Σ (measured value−calculated value) 2 , and at each time when the temperature change is measured, the difference between the measured value and the calculated value of the temperature is squared, and from the beginning of the temperature change The sum of the squared values is calculated. Then, it is determined whether the sum is minimum.

【0027】そして、最小でない場合は、ステップS1
02に戻って、再び、加熱特性の値を変化させて定義
し、ステップS103で数値演算をして、ステップS1
04で測定値と計算値との偏差が最小となったかどうか
を判定する。そして、測定値と計算値との偏差が最小に
なるまでステップS102からステップS104を繰り
返し、加熱特性の最適解を得る。このようにして、加熱
炉1の加熱特性を求めることができる。
If it is not the minimum, step S1
02, the value of the heating characteristic is changed and defined again, and a numerical operation is performed in step S103, and a step S1 is performed.
At 04, it is determined whether the deviation between the measured value and the calculated value has been minimized. Then, steps S102 to S104 are repeated until the deviation between the measured value and the calculated value is minimized, and an optimal solution of the heating characteristic is obtained. Thus, the heating characteristics of the heating furnace 1 can be determined.

【0028】図4において、最適解を用いた温度変化
を、鏡面板12については実線で示し黒色板13につい
ては破線で示す。図4に示すように、鏡面板12につい
ては、白丸のプロットで示した実測温度と実線で示した
計算による温度とを非常に近似させることができた。ま
た、黒色板13についても、黒丸のプロットで示した実
測温度と破線で示した計算による温度とを非常に近似さ
せることができた。このように、赤外線の吸収率が小さ
いもの(鏡面板12)の温度も、赤外線の吸収率が大き
いもの(黒色板13)の温度も共に近似させることがで
きた。
In FIG. 4, the temperature change using the optimum solution is shown by a solid line for the mirror plate 12, and by a broken line for the black plate 13. As shown in FIG. 4, with respect to the mirror plate 12, the measured temperature indicated by the white circle plot and the temperature calculated by the solid line could be approximated very much. Also, for the black plate 13, the measured temperature shown by the black circle plot and the temperature calculated by the broken line could be made very similar. As described above, the temperature of the one having a low infrared absorptivity (mirror plate 12) and the temperature of the one having a high infrared absorptance (black plate 13) could be approximated.

【0029】また、図5は、対流熱伝達係数hの値に影
響する加熱機2のファンの周波数を変えて同様の測定を
行った結果であり、この場合も、実測温度変化と計算に
よる温度変化とを非常に近似させることができた。
FIG. 5 shows the result of the same measurement performed by changing the frequency of the fan of the heater 2 which affects the value of the convection heat transfer coefficient h. In this case, the measured temperature change and the calculated temperature are also shown. The change could be very closely approximated.

【0030】このように、加熱炉1の加熱特性を定量化
しているため、実測温度変化と計算による温度変化とを
非常に近似させることができる。
As described above, since the heating characteristics of the heating furnace 1 are quantified, the measured temperature change and the calculated temperature change can be approximated very much.

【0031】なお、加熱機2による加熱が、熱風対流と
赤外線ヒータからの放射の両方によらなくても片方のみ
を利用しても良い。また、最適解の適合性の精度を高め
るために、加熱炉1の温度設定等の加熱条件を適宜変更
して、各々の加熱条件における測定値と計算値とが近づ
くように、加熱特性を決定すると良い。
It should be noted that the heating by the heater 2 does not need to rely on both hot air convection and radiation from the infrared heater, but may use only one of them. In addition, in order to increase the accuracy of the suitability of the optimal solution, the heating characteristics such as the temperature setting of the heating furnace 1 are appropriately changed, and the heating characteristics are determined so that the measured value and the calculated value under each heating condition are close to each other. Good.

【0032】また、本実施形態では、ファンの周波数を
全ての加熱領域において同じ値にしたが、適宜、各加熱
領域で異なる周波数を適用しても良い。
Further, in this embodiment, the frequency of the fan is set to the same value in all the heating regions, but a different frequency may be applied to each heating region as appropriate.

【0033】(第2実施形態)まず、本実施形態の概要
について述べる。上記第1実施形態では加熱炉の加熱特
性を求める方法について示したが、さらに、加熱炉によ
って加熱される被加熱体の温度変化を予測するために
は、第1実施形態と同様の方法によってh、ε、Fを求
めた後、同じ加熱条件の加熱炉内で被加熱体を移動さ
せ、その際の被加熱体の温度変化を測定する。そして、
第1実施形態と同じ微分方程式、dT/dt=A/ρc
v・{h(T∞−T)+αεF(Th 4−T4)}を用い
て、被加熱体の温度変化を実測した場合と同様の加熱炉
の加熱条件で数値解析を行うことにより、被加熱体の温
度変化を計算により求める。
(Second Embodiment) First, an outline of the present embodiment will be described. In the first embodiment, the method for obtaining the heating characteristics of the heating furnace is described. However, in order to predict the temperature change of the object to be heated by the heating furnace, h is calculated in the same manner as in the first embodiment. , Ε, and F, the object to be heated is moved in a heating furnace under the same heating conditions, and the temperature change of the object to be heated at that time is measured. And
The same differential equation as in the first embodiment, dT / dt = A / ρc
v · using {h (T∞-T) + αεF (T h 4 -T 4)}, by performing numerical analysis under the heating conditions of the same heating furnace in the case where a temperature change was measured in the object to be heated, The temperature change of the object to be heated is calculated.

【0034】この際、今回は、h、ε、Fを既に求めて
あるため、A、T∞、Th、h、ε、Fに定数を代入し
て、A/ρcv(擬似集中熱容量)とαに仮の値として
適当な数値を代入して微分方程式を解く。そして、計算
による温度変化と実際に測定した温度変化とを比較し
て、計算による温度変化と測定した温度変化との偏差が
小さくなるように、A/ρcvとαの値を適宜変更す
る。そして、最もこの偏差が小さくなった場合を、この
被加熱体の熱的物性値(A/ρcv、α)とする。
[0034] At this time, this time, h, epsilon, since the F have already determined, A, T∞, T h, h, ε, by substituting a constant to F, with A / ρcv (pseudo concentrated heat capacity) Substitute an appropriate numerical value as a temporary value for α to solve the differential equation. Then, the calculated temperature change is compared with the actually measured temperature change, and the values of A / ρcv and α are appropriately changed so that the deviation between the calculated temperature change and the measured temperature change is reduced. Then, the case where the deviation is the smallest is defined as the thermal physical property value (A / ρcv, α) of the object to be heated.

【0035】このように、熱的物性値の値を求めること
ができたため、さらに、加熱炉の加熱条件が変化した場
合に、その加熱特性が分かれば、上記微分方程式を用い
て、被加熱体の温度変化を求めることができる。以下、
より具体的に、加熱炉としてプリント基板に電子部品等
をリフロー半田付するリフロー炉を適用した場合につい
て説明する。
As described above, since the value of the thermal physical property value can be obtained, if the heating characteristics of the heating furnace are changed, if the heating characteristics are known, the object to be heated can be obtained by using the above differential equation. Temperature change can be obtained. Less than,
More specifically, a case where a reflow furnace for reflow soldering an electronic component or the like to a printed circuit board is applied as a heating furnace will be described.

【0036】一般に、プリント基板等に電子部品をリフ
ロー半田付する場合、半田付する部位の熱的な物性値は
未知である。これは、電子部品の一部分の熱的な物性値
を推定するのが困難であったり、熱的な物性値が電子部
品の実装密度等にも依存したりするためである。その結
果、プリント基板における半田付する部位の温度変化を
把握することが困難であった。本実施形態では、この半
田付する部位の熱的な物性値を求める。
In general, when an electronic component is reflow-soldered to a printed circuit board or the like, the thermal properties of the portion to be soldered are unknown. This is because it is difficult to estimate a thermal property value of a part of the electronic component, and the thermal property value also depends on the mounting density of the electronic component. As a result, it has been difficult to grasp the temperature change at the soldered portion on the printed circuit board. In the present embodiment, a thermal property value of the portion to be soldered is obtained.

【0037】以下、図6のフローチャートを用いて説明
する。まず、ステップS201において、第1実施形態
と同様にして、熱的な物性値の明らかな試験部材10を
用いて、加熱炉1の加熱特性を示す値である対流熱伝達
係数hi、赤外線放射率εi、形態係数Fiを決定する。
このとき、第1実施形態におけるパラメータ変数が第1
のパラメータ変数に相当し、第1実施形態における試験
部材の温度T、表面積A、体積v、密度ρ、比熱c、赤
外線吸収率α、時間tが、各々本発明でいうT 1、A1
1、ρ1、c1、α1、tに相当する。そして、本発明で
いう第1の数値解析を行う。
Hereinafter, description will be made with reference to the flowchart of FIG.
I do. First, in step S201, the first embodiment
In the same manner as described above, a test member 10 having a thermal property value
Convection heat transfer, which is a value indicating the heating characteristics of the heating furnace 1
Coefficient hi, Infrared emissivity εi, View factor FiTo determine.
At this time, the parameter variable in the first embodiment is the first
Of the first embodiment.
Temperature T of member, surface area A, volume v, density ρ, specific heat c, red
The external ray absorption rate α and the time t are each referred to as T in the present invention. 1, A1,
v1, Ρ1, C1, Α1, T. And in the present invention
A first numerical analysis is performed.

【0038】次に、ステップS202において、被加熱
体としてのプリント基板の各部位における温度変化を測
定する。本実施形態では、プリント基板におけるチップ
抵抗ランド、QFPランド、及びインダクタランドの温
度変化を測定した。以下、この温度変化を実測温度変化
という。図7に、この実測温度変化の結果を示す。図
中、白丸で示しているのがチップ抵抗ランドの温度であ
り、黒丸で示しているのがQFPランドの温度であり、
白三角で示しているのがインダクタランドの温度変化で
ある。また、図7中、被加熱体の上面及び下面における
熱風温度T∞iを、各々一点鎖線と太線で示している。
なお、下面における熱風温度T∞iは、上面における熱
風温度T∞iと異なる部分のみ示している。
Next, in step S202, the temperature change at each part of the printed circuit board as the object to be heated is measured. In the present embodiment, the temperature changes of the chip resistance land, the QFP land, and the inductor land on the printed circuit board were measured. Hereinafter, this temperature change is referred to as an actually measured temperature change. FIG. 7 shows the result of this actually measured temperature change. In the figure, white circles indicate the temperature of the chip resistor lands, black circles indicate the temperatures of the QFP lands,
The white triangle indicates the temperature change of the inductor land. Further, in FIG. 7 shows a hot air temperature T ∞ i in the upper and lower surfaces of the object to be heated, each by a chain line and a thick line.
Incidentally, the hot air temperature T ∞ i of the lower surface shows only a portion different from the hot-air temperature T ∞ i at the top surface.

【0039】次に、各ランドの温度変化を物理モデルを
用いて数値解析(第2の数値解析)により求める。この
際、ステップS201で求めた対流熱伝達係数hi、赤
外線放射率εi、形態係数Fiを用いる。そして、ステッ
プS203において、プリント基板の各々のランドの模
擬的な熱容量としてA2/ρ222の値を適当に定義す
る。
Next, the temperature change of each land is obtained by a numerical analysis (second numerical analysis) using a physical model. At this time, the convection heat transfer coefficient h i , the infrared emissivity ε i , and the view factor F i obtained in step S201 are used. Then, in step S203, the value of A 2 / ρ 2 c 2 v 2 is appropriately defined as the simulated heat capacity of each land of the printed circuit board.

【0040】次に、ステップS204において、微分方
程式、dT2/dt=A2/ρ22 2・{hi(T∞i
2)+α2εii(Thi 4−T2 4)}を用いて、A2/ρ
222とα2とをパラメータ変数(第2のパラメータ変
数)として、各々の加熱領域において各ランドの温度変
化の数値演算を行う。そして、第1実施形態のステップ
S104と同様にして、ステップS205において、測
定値と計算値との差が最小になるように、適宜、ステッ
プS203に戻って、模擬的な熱容量A2/ρ222
α2の値を調節する。
Next, in step S204, the differentiation method
Equation, dTTwo/ Dt = ATwo/ ΡTwocTwov Two・ {Hi(T∞i
TTwo) + ΑTwoεiFi(Thi Four-TTwo FourUsing A), ATwo/ Ρ
TwocTwovTwoAnd αTwoAnd the parameter variable (the second parameter
Number), the temperature change of each land in each heating area
Performs a numerical operation for conversion. And the steps of the first embodiment
In step S205, the measurement is performed in the same manner as in step S104.
Steps should be taken as appropriate to minimize the difference between the fixed and calculated values.
Returning to step S203, the simulation heat capacity ATwo/ ΡTwocTwovTwoWhen
αTwoAdjust the value of.

【0041】このようにして、最適な模擬的熱容量を算
出する。図7に、この最適な模擬的熱容量を用いた温度
変化を示した。実線がチップ抵抗ランドの温度変化であ
り、破線がQFPランドの温度変化であり、点線がイン
ダクタランドの温度変化である。この図に示すように、
かなりの精度で各々白丸、黒丸、白三角で示した実測温
度変化と計算による温度変化とを一致させることができ
た。
In this way, the optimum simulated heat capacity is calculated. FIG. 7 shows a temperature change using the optimum simulated heat capacity. The solid line is the temperature change of the chip resistance land, the broken line is the temperature change of the QFP land, and the dotted line is the temperature change of the inductor land. As shown in this figure,
The measured temperature changes indicated by white circles, black circles, and white triangles and the calculated temperature changes could be matched with considerable accuracy.

【0042】そして、このようにプリント基板の各部位
の熱的な物性値(模擬的な熱容量)が明らかとなったた
め、次に、加熱炉1の条件を変化させた時も、加熱炉1
の加熱特性が分かれば、上記微分方程式を用いる等し
て、容易にプリント基板における各部位の温度変化を求
めることができる。
Since the thermal physical properties (simulated heat capacity) of each part of the printed circuit board were clarified in this manner, the next time the conditions of the heating furnace 1 were changed,
If the heating characteristics are known, the temperature change of each part on the printed circuit board can be easily obtained by using the above differential equation.

【0043】(他の実施形態)なお、上記第2実施形態
では、測定点における温度変化を求めるようにしている
が、プリント基板における測定点とその他の部位との熱
容量の関係が既知であれば、その他の部位における温度
変化も求めることができる。
(Other Embodiments) In the above-described second embodiment, the temperature change at the measurement point is obtained. However, if the relationship between the heat capacity of the measurement point and other parts on the printed circuit board is known, , Temperature changes in other parts can also be obtained.

【0044】また、上記各実施形態では、加熱炉1を仮
想的に分割してi番目の加熱領域の各々について数値解
析を行ったが、必要無ければ仮想的に分割しなくても良
い。
In each of the above embodiments, the heating furnace 1 is virtually divided and numerical analysis is performed for each of the i-th heating regions. However, if not necessary, the heating furnace 1 may not be virtually divided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱炉の模式的な断面図である。FIG. 1 is a schematic sectional view of a heating furnace.

【図2】第1実施形態で用いる試験部材の模式図であ
る。
FIG. 2 is a schematic diagram of a test member used in the first embodiment.

【図3】加熱炉の加熱特性の求め方に関するフローチャ
ートである。
FIG. 3 is a flowchart relating to a method of obtaining a heating characteristic of a heating furnace.

【図4】第1実施形態に関する温度変化を示すグラフで
ある。
FIG. 4 is a graph showing a temperature change according to the first embodiment.

【図5】第1実施形態の他の例に関する温度変化を示す
グラフである。
FIG. 5 is a graph showing a temperature change in another example of the first embodiment.

【図6】被加熱体の熱的な物性値の求め方に関するフロ
ーチャートである。
FIG. 6 is a flowchart relating to a method of obtaining a thermal physical property value of a heated object.

【図7】第2実施形態に関する温度変化を示すグラフで
ある。
FIG. 7 is a graph showing a temperature change according to the second embodiment.

【符号の説明】[Explanation of symbols]

1…加熱炉、2…加熱機(加熱手段)、4…チェーン
(搬送手段)、10…試験部材。
DESCRIPTION OF SYMBOLS 1 ... Heating furnace, 2 ... Heating machine (heating means), 4 ... Chain (conveying means), 10 ... Test member.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 31/02 310 B23K 31/02 310F H05K 3/34 507 H05K 3/34 507K 512 512A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 31/02 310 B23K 31/02 310F H05K 3/34 507 H05K 3/34 507K 512 512A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段(2)と搬送手段(4)とが備
えられた加熱炉(1)を有し、前記加熱炉内で前記搬送
手段によって被加熱体を移動させながら、前記加熱手段
により前記被加熱体を加熱する加熱炉の加熱評価方法に
おいて、 熱的物性値の明らかな試験部材(10)を用意し、該試
験部材を前記加熱炉内で移動させながら加熱して、前記
試験部材の温度の時間変化を測定し、 前記加熱炉の加熱特性をパラメータ変数として、前記試
験部材の前記熱的物性値を用いて、前記試験部材の温度
と時間に関して数値解析を行い、 該数値解析による前記試験部材の温度変化と、前記測定
した前記試験部材の温度変化との偏差が最小となるよう
に、前記パラメータ変数を決定することを特徴とする加
熱炉の加熱評価方法。
1. A heating furnace (1) provided with a heating means (2) and a conveyance means (4), wherein the heating means is moved in the heating furnace by the conveyance means. In the heating furnace heating evaluation method for heating the object to be heated, a test member (10) having a clear thermal property value is prepared, and the test member is heated while being moved in the heating furnace. Measuring the time change of the temperature of the member, performing a numerical analysis on the temperature and the time of the test member using the thermal properties of the test member with the heating characteristic of the heating furnace as a parameter variable; And determining the parameter variable such that a deviation between the temperature change of the test member and the measured temperature change of the test member is minimized.
【請求項2】 前記加熱手段による加熱温度として、赤
外線ヒータによる温度Thと熱風対流による温度T∞を
用い、前記試験部材の熱的な物性値として、密度ρ、比
熱c、赤外線吸収率αを用い、前記パラメータ変数とし
て、対流熱伝達係数h、赤外線放射率ε、形態係数Fを
用い、 前記試験部材の温度をT、表面積をA、体積をvとし、
時間をtとし、 前記数値解析を、微分方程式、dT/dt=A/ρcv
・{h(T∞−T)+αεF(Th 4−T4)}を用いて
行うことを特徴とする請求項1に記載の加熱炉の加熱評
価方法。
As the heating temperature according to claim 2, wherein said heating means using the temperature T∞ by temperature T h and hot air convection by an infrared heater, a thermal physical property value of the test member, the density [rho, specific heat c, the infrared absorptivity α Using the convection heat transfer coefficient h, infrared emissivity ε, and view factor F as the parameter variables, the temperature of the test member is T, the surface area is A, and the volume is v,
The time is represented by t, and the numerical analysis is performed by a differential equation, dT / dt = A / ρcv
· {H (T∞-T) + αεF (T h 4 -T 4)} heating method for evaluating the heating furnace according to claim 1, characterized in that with.
【請求項3】 加熱手段(2)と搬送手段(4)とが備
えられた加熱炉(1)を有し、前記加熱炉内で前記搬送
手段によって被加熱体を移動させながら、前記加熱手段
により前記被加熱体を加熱する際の被加熱体の温度予測
方法において、 熱的物性値の明らかな試験部材(10)を用意し、該試
験部材を前記加熱炉内で移動させながら加熱して、前記
試験部材の温度の時間変化を測定し、 前記加熱炉の加熱特性を第1のパラメータ変数として、
前記試験部材の前記熱的物性値を用いて、前記試験部材
の温度と時間に関して第1の数値解析を行い、 該第1の数値解析による前記試験部材の温度変化と、前
記測定した前記試験部材の温度変化との偏差が最小とな
るように、前記第1のパラメータ変数を決定し、 熱的物性値が未知の前記被加熱体を前記加熱炉内で移動
させながら加熱して、前記被加熱体の温度の時間変化を
測定し、 前記決定した第1のパラメータ変数を用いて、前記被加
熱体の熱的物性値を第2のパラメータ変数として、前記
被加熱体の温度と時間に関して第2の数値解析を行い、 該第2の数値解析による前記被加熱体の温度変化と、前
記測定した被加熱体の温度変化との偏差が最小となるよ
うに、前記第2のパラメータ変数を決定し、 前記決定した被加熱体の熱的物性値を用いて前記被加熱
体の温度変化を求めることを特徴とする被加熱体の温度
予測方法。
3. A heating furnace (1) provided with a heating means (2) and a transport means (4), wherein the heating means is moved in the heating furnace by the transport means by the transport means. In the method for estimating the temperature of the object to be heated when heating the object to be heated, a test member (10) having a clear thermal property value is prepared, and the test member is heated while being moved in the heating furnace. Measuring the time change of the temperature of the test member, the heating characteristics of the heating furnace as a first parameter variable,
Using the thermal properties of the test member, performing a first numerical analysis on the temperature and time of the test member, the temperature change of the test member by the first numerical analysis, and the measured test member The first parameter variable is determined so that the deviation from the temperature change is minimized, and the object to be heated whose physical properties are unknown is moved while being moved in the heating furnace, so that the object to be heated is heated. Measuring the temporal change of the temperature of the body, using the determined first parameter variable as a second parameter variable with the thermal physical property value of the heated object, as a second parameter variable, with respect to the temperature and time of the heated object, The second parameter variable is determined such that the deviation between the temperature change of the heated object by the second numerical analysis and the measured temperature change of the heated object is minimized. The thermal object of the determined object to be heated Temperature prediction method of the heated body and obtains the temperature change of the heated object by using the values.
【請求項4】 前記加熱手段による加熱温度として、赤
外線ヒータによる温度Thと熱風対流による温度T∞を
用い、前記試験部材の熱的な物性値として、密度ρ1
比熱c1、赤外線吸収率α1を用い、前記第1のパラメー
タ変数として、対流熱伝達係数h、赤外線放射率ε、形
態係数Fを用い、 前記試験部材の温度をT1、表面積をA1、体積をv1
し、時間をtとし、 前記第1の数値解析を、微分方程式、dT1/dt=A1
/ρ111・{h(T∞−T1)+α1εF(Th 4−T1
4)}を用いて行い、 前記被加熱体の温度をT2、表面積をA2、体積をv2
し、時間をtとし、前記第2のパラメータ変数として、
2/ρ222、とα2を用い、 前記第2の数値解析を、微分方程式、dT2/dt=A2
/ρ222・{h(T∞−T2)+α2εF(Th 4−T2
4)}を用いて行うことを特徴とする請求項3に記載の
被加熱体の温度予測方法。
As the heating temperature according to claim 4, wherein said heating means using the temperature T∞ by temperature T h and hot air convection by an infrared heater, a thermal physical property value of the test member, the density [rho 1,
Using the specific heat c 1 , the infrared absorptance α 1 , the convective heat transfer coefficient h, the infrared emissivity ε, and the form factor F as the first parameter variables, the temperature of the test member is T 1 , and the surface area is A 1 , The volume is v 1 , the time is t, and the first numerical analysis is a differential equation, dT 1 / dt = A 1
/ Ρ 1 c 1 v 1 · {h (T∞-T 1) + α 1 εF (T h 4 -T 1
4 ) The temperature is T 2 , the surface area is A 2 , the volume is v 2 , the time is t, the time is t, and the second parameter variable is
Using A 2 / ρ 2 c 2 v 2 and α 2 , the second numerical analysis is performed using a differential equation, dT 2 / dt = A 2
/ Ρ 2 c 2 v 2 · {h (T∞-T 2) + α 2 εF (T h 4 -T 2
4 ) The method according to claim 3, wherein the method is performed by using}.
JP2000237348A 2000-08-04 2000-08-04 Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method Withdrawn JP2002045961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237348A JP2002045961A (en) 2000-08-04 2000-08-04 Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237348A JP2002045961A (en) 2000-08-04 2000-08-04 Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method

Publications (1)

Publication Number Publication Date
JP2002045961A true JP2002045961A (en) 2002-02-12

Family

ID=18729226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237348A Withdrawn JP2002045961A (en) 2000-08-04 2000-08-04 Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method

Country Status (1)

Country Link
JP (1) JP2002045961A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134276A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Method and system for providing thermal analysis information
EP1758009A1 (en) 2002-07-31 2007-02-28 Matsushita Electric Industrial Co., Ltd. Method, apparatus and program of thermal analysis, heat controller and heating furnace using the method
JP2007171107A (en) * 2005-12-26 2007-07-05 Fujitsu Ltd Inner furnace temperature measurement method
JP2008178890A (en) * 2007-01-23 2008-08-07 Tamura Seisakusho Co Ltd Soldering device, soldering method and program for soldering
JP2011171518A (en) * 2010-02-18 2011-09-01 Panasonic Corp Heating condition determining method, heating condition determining device, and reflow device having the same
KR101246582B1 (en) 2010-12-30 2013-03-25 김만섭 Monitoring method and system for reflow oven using virtual temperature profile of SMT system
DE102012217288A1 (en) * 2012-09-25 2014-03-27 Siemens Aktiengesellschaft Measuring temperature distribution in reflow soldering furnace, comprises measuring temperature of furnace by introducing test plate into printed circuit boards, and attaching a dummy of a structural member on upper side of the test plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1758009A1 (en) 2002-07-31 2007-02-28 Matsushita Electric Industrial Co., Ltd. Method, apparatus and program of thermal analysis, heat controller and heating furnace using the method
JP2005134276A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Method and system for providing thermal analysis information
JP2007171107A (en) * 2005-12-26 2007-07-05 Fujitsu Ltd Inner furnace temperature measurement method
JP2008178890A (en) * 2007-01-23 2008-08-07 Tamura Seisakusho Co Ltd Soldering device, soldering method and program for soldering
JP4685992B2 (en) * 2007-01-23 2011-05-18 株式会社タムラ製作所 Soldering apparatus, soldering method, and soldering program
JP2011171518A (en) * 2010-02-18 2011-09-01 Panasonic Corp Heating condition determining method, heating condition determining device, and reflow device having the same
KR101246582B1 (en) 2010-12-30 2013-03-25 김만섭 Monitoring method and system for reflow oven using virtual temperature profile of SMT system
DE102012217288A1 (en) * 2012-09-25 2014-03-27 Siemens Aktiengesellschaft Measuring temperature distribution in reflow soldering furnace, comprises measuring temperature of furnace by introducing test plate into printed circuit boards, and attaching a dummy of a structural member on upper side of the test plate

Similar Documents

Publication Publication Date Title
EP1527379B1 (en) Method, apparatus and program of thermal analysis, heat controller and heating furnace using the method
US6275750B1 (en) Apparatus for setting heating condition in heating furnace and thermal analyzer for object to be heated in heating furnace
CA1253592A (en) Heating apparatus with humidity sensor
KR970077431A (en) Method and apparatus for substrate temperature measurement
JPS61501526A (en) Measuring method and device for detecting thermal transmission resistance of architectural structures, especially external walls
JP2002045961A (en) Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method
US4927068A (en) Method for heating a patterned substrate
JP2676927B2 (en) Reflow equipment
JP2687505B2 (en) Heating method of heating device
CN113566969A (en) Device and method for measuring the temperature of an object in a space
JP2022175598A (en) Temperature measurement method, temperature measurement device and manufacturing method of galvanized steel sheet
JP4110845B2 (en) Printed circuit board temperature setting method
JPH1123505A (en) Thermal analysis device
Powell et al. Development of warpage measurement system to simulate convective solder reflow process
TWI691856B (en) Temperature profile prediction system and method thereof
CN113906835B (en) Temperature prediction device and temperature prediction method
JPH0237797A (en) Inspection of heating state by reflow furnace
JPH102801A (en) Method for detecting temperature of heated body in infrared heating furnace
US7316505B2 (en) Method of defining the emission coefficient of a surface to be heated
JP2004014718A (en) Thermal analysis method and thermal analyzer of printed wiring board
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JPH10107423A (en) Reflow soldering device
JPH04288967A (en) Reflow soldering apparatus
JPH06238221A (en) Painting drying furnace simulation device
CN114894319A (en) Temperature control method, device and system, computer equipment and storage medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106