JP2002038246A - Forming and heat treatment process for copper alloy electric connector material and copper alloy for electric connector material - Google Patents

Forming and heat treatment process for copper alloy electric connector material and copper alloy for electric connector material

Info

Publication number
JP2002038246A
JP2002038246A JP2000220998A JP2000220998A JP2002038246A JP 2002038246 A JP2002038246 A JP 2002038246A JP 2000220998 A JP2000220998 A JP 2000220998A JP 2000220998 A JP2000220998 A JP 2000220998A JP 2002038246 A JP2002038246 A JP 2002038246A
Authority
JP
Japan
Prior art keywords
copper alloy
heat treatment
connection member
electrical connection
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000220998A
Other languages
Japanese (ja)
Other versions
JP4460037B2 (en
Inventor
Takao Hirai
崇夫 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000220998A priority Critical patent/JP4460037B2/en
Publication of JP2002038246A publication Critical patent/JP2002038246A/en
Application granted granted Critical
Publication of JP4460037B2 publication Critical patent/JP4460037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a forming and heat treatment process for an electric connector material with spring properties and a copper alloy suitable for electric connector material. SOLUTION: This is a forming/heat treatment process for a copper alloy used for electric connector components wherein heat treatment is provided subsequent to forming process. The electric connector alloy material is formed into a spring component maintaining the change in the hardness of spring portion less than 10 in terms of Vickers hardness (Hv) before and after it is formed. It is followed by heat treatment in which the change in the hardness of spring portion is maintained less than 10 in terms of Vickers harness (Hv) before and after the heat treatment. The heat treatment is preferably performed at the temperature range of 200-800 degrees Centigrade for 5-10,000 seconds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,電気端子・スイッチ等
に使用されるばね含む電気接続部材用の銅合金の加工熱
処理方法とその電気接続部材用銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat-treating a copper alloy for an electric connection member including a spring used for an electric terminal, a switch, and the like, and a copper alloy for the electric connection member.

【0002】[0002]

【従来の技術】金属材料のばね特性を利用した電気接続
部材用部材は一般的であり、所謂端子やスイッチの電気
接続機構は、金属のばね性を以って相手材と強固に接触
させ、電気的接続を得る場合が殆どである。自動車等に
多く用いられている箱型の端子は、代表的には図1に示
すような構造をしており、メス端子4の舌片42がばね
の役割りを果たし、オス端子2が挿入された時にばねが
たわみ、その反力でオス端子2との接触力を得ている。
2. Description of the Related Art A member for an electric connection member utilizing the spring characteristics of a metal material is generally used. A so-called electric connection mechanism of a terminal or a switch is brought into firm contact with a counterpart material with the spring property of a metal. In most cases, an electrical connection is obtained. A box-shaped terminal that is often used in automobiles and the like typically has a structure as shown in FIG. 1, in which the tongue piece 42 of the female terminal 4 serves as a spring and the male terminal 2 is inserted. When the spring is bent, the contact force with the male terminal 2 is obtained by the reaction force.

【0003】電気的接点の信頼性を高める為に、様々な
アプローチがなされており、例えばメッキなどによる表
面改質や、接触力(以後、接庄という)を高くするなど
の手法が広く用いられている。この接圧は常に一定では
なく、挿抜を繰り返すことによりばね部に“へたり”が
生じ、充分な接圧を得られなくなる場合や、金属部がク
リープを生じ、徐々に接圧が減少する(応力緩和現象)
場合が多い。
Various approaches have been taken to increase the reliability of electrical contacts, and for example, techniques such as surface modification by plating or the like and enhancement of contact force (hereinafter referred to as "joining") are widely used. ing. This contact pressure is not always constant, and "sagging" occurs in the spring portion due to repeated insertion / removal, and a sufficient contact pressure cannot be obtained, or a metal portion creeps, and the contact pressure gradually decreases ( Stress relaxation phenomenon)
Often.

【0004】特に近年は機器の小型化に伴い、電気コネ
クター自体も小型薄肉化しており、使用される金属板材
の板厚は薄くなる一方である。同じ接圧を得る場合で
も、板材が薄くなればばねのたわみ量を多く取る必要が
あり、板材に掛かる最大応力は以前とはと比ベ物になら
ない程高くなっている。その結果、挿抜によるへたりが
生じ易くなっている。
In recent years, in particular, with the miniaturization of equipment, the electrical connector itself has also become smaller and thinner, and the thickness of the metal plate used has been decreasing. Even if the same contact pressure is obtained, it is necessary to increase the amount of deflection of the spring if the plate material becomes thinner, and the maximum stress applied to the plate material is so high that it does not become comparable to before. As a result, sag due to insertion / extraction tends to occur.

【0005】また、特に自動車用のコネクターは、使用
される環境温度が高くなり、より応力緩和し易い状況と
なつている。このような、接圧の経時変化が生じ易い状
況を鑑み、長期に渡って必要最低限の接圧を保てるよ
う、初期の接圧を殊更高く設計することが行われてい
る。
[0005] In addition, especially in the case of a connector for an automobile, the environment temperature in which the connector is used becomes high, so that stress is more easily alleviated. In view of such a situation in which the contact pressure tends to change with time, the initial contact pressure is designed to be particularly high so that the necessary minimum contact pressure can be maintained for a long period of time.

【0006】一方、入出力端子数の増大からコネクター
の極数は増加傾向にあり、コネクターの挿抜時の挿抜力
の増加が問題になっている。即ち、各々一対のコンタク
トの接圧が僅かに高くなるだけでも、多極のコネクター
ではコネクターを挿抜する際に必要な挿抜カは大きな変
化となる。例えば自動車の組立時には、通常人の手によ
ってコネクターを嵌合させているが、挿抜力が高くなる
と組立時の負荷増大、作業効率の悪化をもたらしてい
る。
On the other hand, the number of poles of the connector tends to increase due to an increase in the number of input / output terminals, and an increase in insertion / extraction force at the time of insertion / extraction of the connector has become a problem. That is, even if the contact pressure of each pair of contacts becomes slightly higher, the insertion / removal force required when inserting / removing the connector in a multi-pole connector is greatly changed. For example, when assembling an automobile, a connector is usually fitted by a human hand. However, a high insertion / extraction force causes an increase in load at the time of assembly and a deterioration in work efficiency.

【0007】このように、初期の接圧は高くしたいが挿
抜力は低く抑えたいと言う相反する欲求の中でジレンマ
に陥っているのが現状である。当然ながら、接圧を高く
保ったまま挿入力を低く抑える為に、低摩擦係数を得る
ため表面改質も進められているが、電気的信頼性と低摩
擦係数を両立する技術は開発されていない。
[0007] As described above, the present situation is such that a dilemma arises in the conflicting desire to increase the initial contact pressure but to reduce the insertion / extraction force. Naturally, surface modification is being promoted in order to obtain a low friction coefficient in order to keep the insertion force low while keeping the contact pressure high.However, a technology that achieves both electrical reliability and a low friction coefficient has been developed. Absent.

【0008】[0008]

【発明な解決しようとする課題】本発明はこれに鑑み、
初期の接圧を高くせずとも,接圧の経時変化が少ない電
気接続部材用金属ばね部材の提供を目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above.
It is an object of the present invention to provide a metal spring member for an electric connection member in which the contact pressure does not change with time without increasing the initial contact pressure.

【0009】[0009]

【課題を解決する手段】発明の第1の態様は、成形加工
とその後に熱処理を施す電気接続部材用銅合金の加工熱
処理方法であって、前記電気接続部材用銅合金を素材か
らばねとして成加工する前後の加工部位のヴィッカース
硬さ(Hv)変化が10以内となるように加工し、次いで熱
処理を行った際に該熱処理の前後の前記部位のヴィッカ
ース硬さ(Hv)変化を10以内とする熱処理を行うことを
特徴とする電気接続部材用銅合金の加工熱処理方法であ
る。
According to a first aspect of the present invention, there is provided a method of working and heat-treating a copper alloy for an electric connection member, wherein the copper alloy is formed from a material as a spring. The Vickers hardness (Hv) of the processed part before and after processing is processed so that the change is 10 or less, and then, when heat treatment is performed, the Vickers hardness (Hv) change of the part before and after the heat treatment is set to 10 or less. This is a method of working and heat-treating a copper alloy for an electric connection member, wherein the heat treatment is performed.

【0010】発明の第2の態様は、前記成形加工後の熱
処理は、200〜800℃の温度で5〜10000秒間行うことを特
徴とする加工熱処理方法である。
A second aspect of the present invention is a thermomechanical heat treatment method, wherein the heat treatment after the forming is performed at a temperature of 200 to 800 ° C. for 5 to 10,000 seconds.

【0011】発明の第3の態様は、素材からばねとして
成形加工する前後の加工部位のヴィッカース硬さ(Hv)
変化が10以内となるように加工し、次いで熱処理を行っ
た際に該熱処理の前後の前記部位のヴィッカース硬さ
(Hv)変化を10以内とする熱処理を行うための下記成分
組成の何れか1種又は2種以上を含み、残部がCu及び不
可避的不純物からなる電気接続部材用銅合金(下記にお
いて「0 wt%」は無添加を意味する)。 Sn:0〜10wt%、 Zn:0〜40wt%、 Ni:0〜10wt%、 Fe:0〜3wt%、 Cr:0〜1wt%、 Mn:0〜1wt%、 P:0〜0.5wt%、 Si:0〜1wt%、 Mg:0〜1wt%、 Zr:0〜0.5wt%、 Ti:0〜1wt%、 Co:0〜1wt%、 Ag:0〜1wt%、 Al:0〜5wt%、 B:0〜0.5wt%、 希土類元素:0〜0.5wt%。
A third aspect of the present invention is a Vickers hardness (Hv) before and after forming a spring from a material.
Any one of the following component compositions for performing a heat treatment so that the change in the Vickers hardness (Hv) of the site before and after the heat treatment before and after the heat treatment is performed so that the change is within 10 A copper alloy for electrical connection members containing one or more species, the balance being Cu and unavoidable impurities ("0 wt%" means no addition in the following). Sn: 0 to 10 wt%, Zn: 0 to 40 wt%, Ni: 0 to 10 wt%, Fe: 0 to 3 wt%, Cr: 0 to 1 wt%, Mn: 0 to 1 wt%, P: 0 to 0.5 wt% , Si: 0 to 1 wt%, Mg: 0 to 1 wt%, Zr: 0 to 0.5 wt%, Ti: 0 to 1 wt%, Co: 0 to 1 wt%, Ag: 0 to 1 wt%, Al: 0 to 5 wt %, B: 0 to 0.5 wt%, Rare earth element: 0 to 0.5 wt%.

【0012】発明の第4の態様は、前記成形加工後に施
される熱処理は200〜800℃の温度で5〜10000秒間である
ことを特徴とする電気接続部材用銅合金である。
In a fourth aspect of the present invention, there is provided a copper alloy for an electrical connection member, wherein the heat treatment performed after the forming is performed at a temperature of 200 to 800 ° C. for 5 to 10,000 seconds.

【0013】発明の第5の態様は、前記電気接続部材用
銅合金が、 Ni : 1〜4 wt%、 Si : 0.1〜1.0 wt%、残部がCu及び不
可避的不純物からなる銅合金であることを特徴とする電
気接続部材用銅合金である。
According to a fifth aspect of the present invention, the copper alloy for an electric connection member is a copper alloy composed of Ni: 1 to 4 wt%, Si: 0.1 to 1.0 wt%, and the balance being Cu and unavoidable impurities. It is a copper alloy for electric connection members characterized by the above-mentioned.

【0014】発明の第6の態様は、前記電気接続部材用
銅合金が、 Ni : 1〜4 wt%、 Si : 0.1〜1.0 wt%、更にSn、Mn、M
g、Zn、Ag及びCoから選択した1種以上を総量で0.005〜
1wt%を含み、残部がCu 及び不可避的不純物からな
る銅合金であることを特徴とする電気接続部材用銅合金
である。
According to a sixth aspect of the present invention, the copper alloy for an electric connection member comprises: Ni: 1-4 wt%, Si: 0.1-1.0 wt%, and further Sn, Mn, M
g, Zn, Ag and at least one selected from Ag in a total amount of 0.005 to
A copper alloy for electric connection members, characterized in that the copper alloy contains 1 wt% and the balance is Cu and unavoidable impurities.

【0015】発明の第7の態様は、前記電気接続部材用
銅合金が、 Sn : 0.5〜3 wt%、 P : 0.005〜0.5 wt%、残部がCu 及
び不可避的不純物からなる銅合金であることを特徴とす
る電気接続部材用銅合金である。
In a seventh aspect of the present invention, the copper alloy for an electric connection member is a copper alloy comprising Sn: 0.5 to 3 wt%, P: 0.005 to 0.5 wt%, and the balance being Cu and unavoidable impurities. It is a copper alloy for electric connection members characterized by the above-mentioned.

【0016】発明の第8態様は、前記電気接続部材用銅
合金が、 Sn : 0.5〜3wt%、 P : 0.005〜0.5 wt%、更にNi、Mn、F
e、Cr、Mg及びZnから選択した1種以上を総量で0.005〜
2wt%を含み、残部がCu 及び不可避的不純物からな
る銅合金であることを特徴とする電気接続部材用銅合金
である。
According to an eighth aspect of the present invention, the copper alloy for an electric connection member comprises: Sn: 0.5 to 3 wt%, P: 0.005 to 0.5 wt%, Ni, Mn, F
e, at least one selected from Cr, Mg and Zn in a total amount of 0.005 to
A copper alloy for electric connection members, characterized in that it is a copper alloy containing 2 wt% and the balance being Cu and unavoidable impurities.

【0017】発明の第9の態様は電気接続部材用銅合金
が、 Sn : 3〜10 wt%、 P : 0.005〜0.5 wt%、残部がCu及び
不可避的不純物からなる銅合金であることを特徴とする
電気接続部材用銅合金である。
A ninth aspect of the present invention is characterized in that the copper alloy for an electric connection member is a copper alloy comprising Sn: 3 to 10 wt%, P: 0.005 to 0.5 wt%, and the balance being Cu and unavoidable impurities. It is a copper alloy for electrical connection members.

【0018】発明の第10の態様は、前記電気接続部材
用銅合金が、 Sn : 3〜10 wt%、 P : 0.005〜0.5 wt%、更に、Ni、Fe
及びZnから選択した1種以上を総量で0.005〜2wt%を
含み、残部がCu及び不可避的不純物からなる銅合金であ
ることを特徴とする電気接続部材用銅合金である。
[0018] In a tenth aspect of the present invention, the copper alloy for an electrical connection member is composed of Sn: 3 to 10 wt%, P: 0.005 to 0.5 wt%, Ni, Fe
And a copper alloy containing 0.005 to 2 wt% in total of at least one selected from Zn and Zn, with the balance being a copper alloy comprising Cu and unavoidable impurities.

【0019】発明の第11の態様は、前記電気接続部材
用銅合金が、 Zn : 5〜35 wt%、 残部がCu及び不可避的不純物からな
る銅合金であることを特徴とする電気接続部材用銅合金
である。
According to an eleventh aspect of the present invention, the copper alloy for an electrical connection member is a copper alloy comprising Zn: 5 to 35 wt%, and the balance being Cu and unavoidable impurities. It is a copper alloy.

【0020】発明の第12の態様は、前記電気接続部材
用銅合金が、 Zn : 5〜35 wt%、更に、Sn、Ni、Feから選択した1種以
上を総量で0.005〜2wt%を含み、残部がCu及び不可避
的不純物からなる銅合金であることを特徴とする電気接
続部材用銅合金である。
In a twelfth aspect of the present invention, the copper alloy for an electric connection member contains Zn: 5 to 35 wt%, and further contains at least one selected from Sn, Ni and Fe in a total amount of 0.005 to 2 wt%. The copper alloy for electric connection members, the balance being a copper alloy comprising Cu and unavoidable impurities.

【0021】[0021]

【発明の実施の形態】電気接続部材用銅合金としては、
そのばね特性が優れているとこが要求される。ばね特性
は、ばね限界値で評価され、これは引張り試験から求め
られる耐力に相当する曲げ応力値であり、次のように定
義される。ばね限界値(Kb)は曲げによる表面応力が3
E/8×104となるときの弾性変形と同等の永久変形を
生じさせる表面最大応力である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Copper alloys for electrical connection members include:
Excellent spring characteristics are required. The spring characteristic is evaluated by a spring limit value, which is a bending stress value corresponding to a proof stress obtained from a tensile test, and is defined as follows. The spring limit value (Kb) is 3 when the surface stress due to bending is 3
This is the surface maximum stress that causes permanent deformation equivalent to elastic deformation when E / 8 × 10 4 .

【0022】一般的にはばね限界値を高める方法として
低温焼鈍が知られている。低温焼鈍がばね限界値を向上
させる理由は、低温焼鈍前における塑性加工で生じた転
位が熱処理で再配列するためと考えられている。そこ
で、本発明では、予め適度な塑性加工与えて転位の配列
を乱しておき、その後適正な低温焼鈍をあたえて、ばね
特性に優れた電気接続部材用銅合金部材を得ようとする
ものである。
In general, low-temperature annealing is known as a method for increasing the spring limit value. The reason why low-temperature annealing improves the spring limit value is considered to be that dislocations generated by plastic working before low-temperature annealing rearrange by heat treatment. Therefore, in the present invention, an appropriate plastic working is performed in advance to disturb the arrangement of dislocations, and then appropriate low-temperature annealing is applied to obtain a copper alloy member for an electrical connection member having excellent spring characteristics. is there.

【0023】発明の基本的態様は、成形加工とその後に
熱処理を施す電気接続部材用銅合金の加工熱処理方法で
あって、前記電気接続部材用銅合金を板または棒・線等
の素材からばねとして成形加工する前後の加工部位のヴ
ィッカース硬さ(Hv)変化が10以内となるように加工
し、次いで熱処理を行った際に該熱処理の前後の前記部
位のヴィッカース硬さ(Hv)変化を10以内とする熱処理
を行う加工熱処理方法である。ここでばね加工度が定ま
っている場合には予め適当な塑性加工又は熱処理によ
り、所定の加工を行った場合に硬度の変化が10以内とな
るように調質を行う。
A basic aspect of the present invention is a method of working and heat-treating a copper alloy for an electric connection member, which is subjected to a forming process and a heat treatment thereafter, wherein the copper alloy for an electric connection member is formed from a material such as a plate or a rod / wire by a spring. The Vickers hardness (Hv) change of the processed part before and after the forming process is made to be within 10 and then, when the heat treatment is performed, the Vickers hardness (Hv) change of the part before and after the heat treatment is changed by 10 This is a thermomechanical treatment method for performing a heat treatment within the range. Here, when the degree of spring working is determined, refining is performed by appropriate plastic working or heat treatment in advance so that the change in hardness is within 10 when predetermined working is performed.

【0024】ばねとしての作用する部位は、曲げ加工を
行った際に加工硬化してヴィッカース硬さ(Hv)に変化
が生じるが、該当部位の硬さ変化が10を超える場合に
は、後で施す熱処理によってもばねとしての特性を充分
に改善することは出来ない。この理由は、その後の低温
焼鈍で十分に転位の再配列ができないためである。
The part acting as a spring is work-hardened during bending and changes in Vickers hardness (Hv). Even the heat treatment applied cannot sufficiently improve the characteristics as a spring. This is because the rearrangement of dislocations cannot be sufficiently performed by the subsequent low-temperature annealing.

【0025】次に、熱処理としての低温焼鈍の条件とし
て、一般的には熱処温度を200〜800℃と限定した理由を
説明する。200℃未満の温度ではばね部の特性を改善す
ることはできず、800℃を超える温度では被加工材が軟
化し過ぎるため適当ではないためである。処理時間を5
〜10000秒としたのは、例え800℃程度の高温で
あっても、5秒未満では充分な特性改善効果が認められ
ず、また、10000秒を超える処理は場合によって軟
化しすぎたり、効果が飽和するためである。
Next, the reason why the heat treatment temperature is generally limited to 200 to 800 ° C. as a condition of the low temperature annealing as the heat treatment will be described. If the temperature is lower than 200 ° C., the characteristics of the spring portion cannot be improved, and if the temperature is higher than 800 ° C., the work material is excessively softened, which is not appropriate. Processing time 5
The reason for setting to 10000 seconds is that even if the temperature is as high as about 800 ° C., a sufficient property improving effect is not recognized if the time is less than 5 seconds. This is because of saturation.

【0026】上記処理温度、処理時間はばね部材となる
銅合金の材質によって、望ましい条件が各々異なり、以
下に代表的な材質と処理条件について説明する。コネク
ター用に使用される銅合金として、Cu−Ni−Si系合金
(コルソン合金ともいう)がある。1〜4wt%のN
i、0.1〜1.0wt%のSiを含み、残部が実質的
に銅からなる合金が知られている。上記合金に、更にS
n、Mn、Mg、Zn、Ag、Coの中から選ばれる1
種以上を総量で0.005〜2wt%含み、残部が実質
的に銅からなる銅合金のばね部材も知られている。これ
らについては300〜750℃が最適温度で、5〜10
000秒の処理時間が好ましい。300℃未満での処理
はばね部の特性改善が充分で無く、逆に750℃を超え
る処理は、熱処理前後で硬さが10以上軟らかくなり望
ましくない。
Desirable conditions for the above-mentioned processing temperature and processing time differ depending on the material of the copper alloy used as the spring member, and typical materials and processing conditions will be described below. As a copper alloy used for a connector, there is a Cu-Ni-Si alloy (also called a Corson alloy). 1-4 wt% N
i, an alloy containing 0.1 to 1.0 wt% of Si and the balance substantially consisting of copper is known. In addition to the above alloy,
1 selected from n, Mn, Mg, Zn, Ag, and Co
There is also known a copper alloy spring member containing at least 0.005 to 2 wt% of seeds and the balance substantially consisting of copper. For these, the optimal temperature is 300-750 ° C., and 5-10
A processing time of 000 seconds is preferred. When the treatment is performed at a temperature lower than 300 ° C., the properties of the spring portion are not sufficiently improved. On the other hand, when the temperature exceeds 750 ° C., the hardness becomes 10 or more before and after the heat treatment, which is not desirable.

【0027】銅合金として最も多く使用されている黄銅
系材料について説明する。5〜35wt%のZnを含
み、残部が実質的に銅からなるばね部材については、2
00〜600℃が最適温度で、5〜10000秒の処理
時間が好ましい。200℃未満での処理はばね部の特性
改善が充分で無く、逆に600℃を超える処理は,熱処
理前後で硬さが10以上軟らかくなり望ましくない。
The brass-based material most frequently used as a copper alloy will be described. For a spring member containing 5-35 wt% Zn and the balance substantially consisting of copper,
The optimum temperature is from 00 to 600 ° C., and a treatment time of from 5 to 10,000 seconds is preferred. When the treatment is performed at a temperature lower than 200 ° C., the characteristics of the spring portion are not sufficiently improved. On the other hand, when the treatment is performed at a temperature higher than 600 ° C., the hardness becomes 10 or more before and after the heat treatment.

【0028】次ぎに曲げ加工を含む成形加工後に実施す
る熱処理について説明する。被加工材によって厳密には
熱処理条件がそれぞれ異なるが、概して熱処理前後のヴ
ィッカ−ス硬度変化が−10〜10であれば、接圧の経時変
化が少ない良好な部材を製造することが出来る。ここ
で、熱処理前の硬さとは曲げ加工を行った部位の硬さで
あり、同一部位の熱処理後の硬さと比較を行わねばなら
ない。ヴィッカース硬さ変化が10を超えて軟らかくなる
場合には、挿抜時のへたり、応力緩和共に大きくなり過
ぎ不適である。
Next, the heat treatment performed after the forming process including the bending process will be described. Strictly, the heat treatment conditions differ depending on the material to be processed. However, if the Vickers hardness change before and after the heat treatment is -10 to 10 in general, a good member having little change with time in the contact pressure can be manufactured. Here, the hardness before the heat treatment is the hardness of the portion where the bending process is performed, and the hardness must be compared with the hardness of the same portion after the heat treatment. If the Vickers hardness change is more than 10 and becomes soft, it is unsuitable because both the set and the stress at the time of insertion and removal become too large.

【0029】また、ベリリウム銅のように、曲げを含む
成形加工後に時効硬化を起させる為の熱処理を施す金属
材料もある。これらの金属材料を時効硬化後に更に曲げ
加工を施すと、硬過ぎて曲げ加工部に割れを生じ、正常
に加工することができない。そのため割れを防止するた
めに、曲げ加工後に時効硬化処理を施すが、この場合ヴ
ィッカース硬さ(Hv)で50以上の大幅な硬度変化があ
る.これらの曲げ加工後に時効硬化させる技術は、その
技術的意味からも本願発明とは異なり、前記技術は本願
には含まれない。
Further, there is a metal material such as beryllium copper which is subjected to a heat treatment for causing age hardening after forming including bending. If these metal materials are further subjected to bending after age hardening, they are too hard, causing cracks in the bent portions, and cannot be processed normally. Therefore, to prevent cracking, an age hardening treatment is performed after bending, but in this case, there is a significant hardness change of 50 or more in Vickers hardness (Hv). The technology of age hardening after the bending is different from the present invention also in its technical meaning, and the technology is not included in the present application.

【0030】上記加工熱処理が適用できる金属材料とし
ては下記の成分組成を有する銅合金がある。即ち、下記
成分組成の何れか1種又は2種以上を含み、残部がCu及
び不可避的不純物からなる電気接続部材用銅合金(下記
において「0 wt%」は無添加を意味する)。 Sn:0〜10wt%、 Zn:0〜40wt%、 Ni:0〜10wt%、 Fe:0〜3wt%、 Cr:0〜1wt%、 Mn:0〜1wt%、 P:0〜0.5wt%、 Si:0〜1wt%、 Mg:0〜1wt%、 Zr:0〜0.5wt%、 Ti:0〜1wt%、 Co:0〜1wt%、 Ag:0〜1wt%、 Al:0〜5wt%、 B:0〜0.5wt%、 希土類元素:0〜0.5wt%。
As a metal material to which the above-mentioned thermomechanical treatment can be applied, there is a copper alloy having the following composition. That is, a copper alloy for an electric connection member containing any one or more of the following component compositions and the balance consisting of Cu and unavoidable impurities ("0 wt%" in the following means no addition). Sn: 0 to 10 wt%, Zn: 0 to 40 wt%, Ni: 0 to 10 wt%, Fe: 0 to 3 wt%, Cr: 0 to 1 wt%, Mn: 0 to 1 wt%, P: 0 to 0.5 wt% , Si: 0 to 1 wt%, Mg: 0 to 1 wt%, Zr: 0 to 0.5 wt%, Ti: 0 to 1 wt%, Co: 0 to 1 wt%, Ag: 0 to 1 wt%, Al: 0 to 5 wt %, B: 0 to 0.5 wt%, Rare earth element: 0 to 0.5 wt%.

【0031】上記合金は包括的に記載したものである。
しかし、より具体的には下記の成分組成を有する銅合金
に望ましく適用される。 Ni : 1〜4 wt%、 Si : 0.1〜1.0 wt%、残部がCu及び不
可避的不純物からなる銅合金であることを特徴とする電
気接続部材用銅合金である。この合金はいわゆるコルソ
ン合金と称される合金である。
The above alloys have been described comprehensively.
However, more specifically, it is desirably applied to a copper alloy having the following composition. Ni: 1-4 wt%, Si: 0.1-1.0 wt%, the balance being a copper alloy composed of Cu and unavoidable impurities. This alloy is an alloy called a so-called Corson alloy.

【0032】また、前記電気接続部材用銅合金として、 Ni : 1〜4 wt%、 Si : 0.1〜1.0 wt%、更にSn、Mn、M
g、Zn、Ag及びCoから選択した1種以上を総量で0.005〜
1wt%を含み、残部がCu 及び不可避的不純物からな
る銅合金も望ましい。
Further, as the copper alloy for the electric connection member, Ni: 1-4 wt%, Si: 0.1-1.0 wt%, and Sn, Mn, M
g, Zn, Ag and at least one selected from Ag in a total amount of 0.005 to
It is also desirable to use a copper alloy containing 1 wt%, with the balance being Cu and unavoidable impurities.

【0033】また、前記電気接続部材用銅合金として、 Sn : 0.5〜3 wt%、 P : 0.1〜1.0 wt%、残部がCu 及び
不可避的不純物からなる銅合金も望ましい。
Further, as the copper alloy for an electric connection member, a copper alloy comprising Sn: 0.5 to 3 wt%, P: 0.1 to 1.0 wt%, and a balance of Cu and unavoidable impurities is desirable.

【0034】また、前記電気接続部材用銅合金として
は、 Sn : 0.5〜3 wt%、 P : 0.1〜1.0 wt%、更にNi、Mn、F
e、Cr、Mg、Znから選択した1種以上を総量で0.005〜2
wt%を含み、残部がCu 及び不可避的不純物からなる
銅合金も望ましい。
Further, as the copper alloy for the electric connection member, Sn: 0.5 to 3 wt%, P: 0.1 to 1.0 wt%, Ni, Mn, F
e, Cr, Mg, at least one selected from Zn, 0.005 to 2 in total amount
It is also desirable to use a copper alloy containing wt%, with the balance being Cu and unavoidable impurities.

【0035】また、前記電気接続部材用銅合金として、 Sn : 3〜10 wt%、 P : 0.005〜0.5 wt%、残部がCu 及
び不可避的不純物からなる銅合金にも適用できる。
Further, as the copper alloy for electric connection members, Sn: 3 to 10 wt%, P: 0.005 to 0.5 wt%, and the balance can be applied to a copper alloy composed of Cu and unavoidable impurities.

【0036】更に、前記電気接続部材用銅合金は、 Sn : 3〜10 wt%、 P : 0.005〜0.5 wt%、更に、Ni、Fe
及びZnから選択した1種以上を総量で0.005〜2wt%を
含み、残部がCu 及び不可避的不純物からなる銅合金と
することができる。
Further, the copper alloy for an electric connection member comprises: Sn: 3 to 10 wt%, P: 0.005 to 0.5 wt%, and Ni, Fe
And a copper alloy containing at least one selected from Zn and 0.005 to 2 wt% in total, with the balance being Cu and unavoidable impurities.

【0037】さらに、前記電気接続部材用銅合金とし
て、 Zn : 5〜35 wt%、 残部がCu 及び不可避的不純物から
なる銅合金も利用することをができる。
Further, as the copper alloy for the electric connection member, a copper alloy consisting of Zn: 5 to 35 wt% and the balance consisting of Cu and unavoidable impurities can be used.

【0038】さらに、前記電気接続部材用銅合金とし
て、 Zn : 5〜35 wt%、更に、Sn、Ni及びFeから選択した1種
以上を総量で0.005〜2wt%を含み、残部がCu 及び不
可避的不純物からなる銅合金も利用できる。
Further, the copper alloy for an electric connection member contains Zn: 5 to 35 wt%, and further contains at least one selected from Sn, Ni and Fe in a total amount of 0.005 to 2 wt%, with the balance being Cu and unavoidable. Copper alloys composed of chemical impurities can also be used.

【0039】[0039]

【実施例1】図4として示す表1に記載した成分組成の
銅合金(A:コルソン合金、B、C:青銅、D:真鍮)で、
板厚0.25mm材を図1に示した形状のメス端子に加工し、
加工後図5として示す表2の条件で熱処理を行った。従
来例は熱処理をしない場合であり、比較例は温度又は熱
処理時間が不適当な場合である。熱処理は急速加熱や急
速冷却の可能な密封型小型電気炉で行った。非酸化性雰
囲気中で、非加工材に熱電対を装着した状態で行った。
Example 1 A copper alloy (A: Corson alloy, B, C: bronze, D: brass) having the composition shown in Table 1 shown in FIG.
A 0.25mm thick material is processed into a female terminal with the shape shown in Fig. 1,
After processing, heat treatment was performed under the conditions shown in Table 2 shown in FIG. In the conventional example, no heat treatment is performed, and in the comparative example, the temperature or the heat treatment time is inappropriate. The heat treatment was performed in a sealed small electric furnace capable of rapid heating and rapid cooling. The test was performed in a non-oxidizing atmosphere with a thermocouple attached to a non-processed material.

【0040】特性評価は、硬さ、ばね部のへたり、応力
緩和特性の評価を行った。各々の評価方法を記す。 <硬さ>測定はばねとして作用する曲げ加工された部位
で行う必要があり、曲げ部の硬さを測定する為に、被加
工材を樹脂に埋め、研磨後の断面において行った。曲げ
部断面中の板厚中央から曲げ半径方向外側の部位で3ケ
所測定した。また、曲げが施されていない部位について
も3カ所測定し、それぞれの平均値により曲げ加工前後
の硬さ変化を求めた。次ぎに、熱処理後のビッカース硬
さ(Hv)を測定した。硬さ測定部は、上記曲げ加工部で
ある。熱処理前後の硬さ変化は、それぞれの3点平均の
差により求めた。
In the evaluation of the characteristics, the hardness, the set of the spring portion, and the stress relaxation characteristics were evaluated. Each evaluation method is described. <Hardness> It is necessary to perform the measurement at a bent portion that acts as a spring. In order to measure the hardness of the bent portion, the work was buried in a resin, and the measurement was performed on the polished cross section. The measurement was made at three locations in the cross section of the bent portion at a portion radially outward from the center of the plate thickness in the bending direction. In addition, three places where no bending was performed were also measured, and a change in hardness before and after the bending was calculated based on an average value of each of the three parts. Next, the Vickers hardness (Hv) after the heat treatment was measured. The hardness measuring section is the above-mentioned bending section. The change in hardness before and after the heat treatment was determined from the difference between the averages of the three points.

【0041】<ばね部のへたり>熱処理後のサンプル5
ケについて、図1で示したギャップの間隔を複数回測
定し、その平均値Aを求めた。また、熱処理後図2のよう
にオスタブを挿入し、60秒保持後にオスタブを抜去した
サンプル5ケについて同様にギャップの間隔を複数回
測定し、その平均値Bを求めた。そして、AとBの差を求
めて、オスタブ挿抜後のばね部へたりとした。
<Spring Set> Sample 5 after heat treatment
For each sample, the gap interval shown in FIG. 1 was measured a plurality of times, and the average value A was obtained. Also, after the heat treatment, the male tab was inserted as shown in FIG. 2, and after holding for 60 seconds, the gap interval was similarly measured a plurality of times for five samples from which the male tab was removed, and the average value B was obtained. Then, the difference between A and B was determined, and the spring portion after insertion and removal of the male tab was set.

【0042】<応力緩和特性>熱処理後のサンプル5ケ
について、オスタブを挿入し、その状態で150℃中500時
間の緩和処理を行った。500時間経過後、処理炉から取
り出し、オスタブを抜去し、囲lで示したギャップの
間隔を測定し、5ケの平均値Cを求め、前記AとCの差を求
めて、緩和量とした。
<Stress Relaxation Property> A male tab was inserted into each of the five heat-treated samples, and a relaxation treatment was performed at 150 ° C. for 500 hours in this state. After the elapse of 500 hours, remove from the processing furnace, remove the male stub, measure the gap interval indicated by l, determine the average value C of 5 pieces, determine the difference between A and C, and set the amount of relaxation .

【0043】上記ギャップは、端子を樹脂に埋め、研磨
後の断面を観察することによって測定した。上記測定結
果は図6として示す表3に記した。尚、本実施例の曲げ
加工部においては、A〜Dの何れの材料も曲げ加工前後の
硬さ変化は10以内であった。図6の表3によると、曲げ
加工を含む成形加工後に熱処理を行わない従来例No.14
〜17は、ばね部のへたりと応力緩和量が何れも劣ってい
る。成形加工後に熱処理を行なった本発明例No.1〜13
は非常に優れた特性を示していることが判る。
The gap was measured by embedding the terminals in a resin and observing the cross section after polishing. The measurement results are shown in Table 3 shown in FIG. In the bent portion of this example, the change in hardness before and after bending of any of the materials A to D was within 10 or less. According to Table 3 in FIG. 6, conventional example No. in which no heat treatment is performed after the forming process including the bending process. 14
Nos. 17 to 17 are inferior in the amount of settling of the spring portion and the amount of stress relaxation. Invention Example No. No. 1-13
It turns out that it shows very excellent characteristics.

【0044】また、熱処理温度の高いNo.19、20、23、
25、27は何れも熱処理後の硬さが、処理前よりもHvで10
以上軟らかくなっており、ばね部のへたりと緩和量も大
きく劣化していることが判る.このように、被加工材が
軟化し過ぎない程度に熱処理を行うことが肝要であり、
その最適熱処理条件は材質によって異なる。
In addition, No. 19, 20, 23,
The hardness after heat treatment of both 25 and 27 is 10 times higher in Hv than before treatment.
It is clear that it is softer, and the amount of relaxation and the amount of relaxation of the spring part are greatly deteriorated. As described above, it is important to perform the heat treatment to the extent that the workpiece is not excessively softened.
The optimum heat treatment conditions differ depending on the material.

【0045】[0045]

【実施例2】前記C材の曲げ加工における硬度変化が異な
る試験片(イ、ロ、ハ)を用意し、実施例1と同じ試験
を行った。熱処理条件は実施例1で示したNo.10と同じ
条件で実施した。結果を図7として表4に示す。元々軟
質であったNo.30は、曲げ加工前後の硬さ変化が12とな
り、ばねとしての特性は本発明例であるNo.28とNo.29
に比べ劣っていた。即ち、曲げ加工前における試験片の
熱処理条件によっては同一加工でも曲げ加工における硬
度変化が異なり、本発明外の条件では、ばね特性が劣る
ことを示す例である。以上、本発明を銅合金に限定して
説明したが、原理的には例えば炭素鋼やステンレス鋼な
どにも適用できる。
Example 2 Test pieces (a, b, c) having different hardness changes during bending of the C material were prepared, and the same test as in Example 1 was performed. The heat treatment conditions were the same as in No. 1 shown in Example 1. Performed under the same conditions as 10. The results are shown in Table 4 as FIG. No. was originally soft. In No. 30, the change in hardness before and after bending was 12, and the characteristics as a spring were No. 3 of the present invention. 28 and No. 29
Was inferior to In other words, this is an example showing that, depending on the heat treatment conditions of the test piece before bending, the hardness change in bending is different even under the same processing, and the spring characteristics are inferior under the conditions other than the present invention. Although the present invention has been described with reference to the copper alloy, the present invention can be applied to, for example, carbon steel and stainless steel in principle.

【0046】[0046]

【発明の効果】以上記述したように、電気接続部材用銅
合金に本発明の加工熱処理方法を適用すると、ばね部の
へたりや応力緩和特性が改善され、接圧を常に高く保ち
続けることが可能である。また、接圧の経時的な変化が
小さいが故に、初期の接圧を殊更高く設計する必要が無
く、従って挿入カの低下にも寄与することが出来る。ま
た、上記加工熱処理方法を適用した銅合金は電気接続部
材として長期間使用できる。従って、本発明は産業上顕
著な貢献を奏するものである。
As described above, when the thermomechanical treatment method of the present invention is applied to a copper alloy for an electric connection member, the sag of the spring portion and the stress relaxation characteristics are improved, and the contact pressure can always be kept high. It is possible. Further, since the change with time of the contact pressure is small, it is not necessary to design the initial contact pressure to be particularly high. Therefore, it is possible to contribute to a reduction in insertion force. Further, the copper alloy to which the above-mentioned thermomechanical treatment method is applied can be used as an electrical connection member for a long time. Therefore, the present invention has a remarkable industrial contribution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ばねを含む電気接続部材の形状例を示す図であ
る。
FIG. 1 is a diagram showing an example of a shape of an electric connection member including a spring.

【図2】電気接続部のオス部とメス部が接続した状態を
示す図である。
FIG. 2 is a diagram showing a state in which a male part and a female part of the electrical connection part are connected.

【図3】曲げ加工された部材の硬度を測定した部位を示
す図である。
FIG. 3 is a diagram showing a portion where the hardness of a bent member is measured.

【図4】試験した合金成分組成を表1として示す図であ
る。
FIG. 4 is a diagram showing the composition of the tested alloy components as Table 1.

【図5】試験した熱処理温度を表2として示す図であ
る。
FIG. 5 is a table showing heat treatment temperatures tested as Table 2.

【図6】試験した熱処理前後の硬度変化、ばね部のへた
り、及び緩和量を示す図である。
FIG. 6 is a graph showing a change in hardness, a set of a spring portion, and an amount of relaxation before and after a heat treatment tested.

【図7】ばねとして曲げ加工した場合における曲げ加工
前後の硬度変化とばね特性との関係を表4として示す図
である。
FIG. 7 is a table showing a relationship between a change in hardness before and after bending and a spring characteristic when the spring is bent as a spring.

【符号の説明】[Explanation of symbols]

2 接続部オス端子 4 接続部のメス端子 42 メス端子の舌片 2 Male terminal of connection part 4 Female terminal of connection part 42 Tongue of female terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 9/06 C22C 9/06 // C22F 1/00 630 C22F 1/00 630F 661 661A 685 685Z 691 691B 691C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 9/06 C22C 9/06 // C22F 1/00 630 C22F 1/00 630F 661 661A 685 685Z 691 691B 691C

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 成形加工とその後に熱処理を施す電気接
続部材用銅合金の加工熱処理方法であって、前記電気接
続部材用銅合金を素材からばねとして成形加工する前後
の加工部位のヴィッカース硬さ(Hv)変化が10以内とな
るように加工し、次いで熱処理を行った際に該熱処理の
前後の前記部位のヴィッカース硬さ(Hv)変化を10以内
とする熱処理を行うことを特徴とする電気接続部材用銅
合金の加工熱処理方法。
1. A method for processing and heat treating a copper alloy for an electrical connection member, wherein the copper alloy for an electrical connection member is subjected to a forming process and then a heat treatment, wherein the Vickers hardness of a processed portion before and after forming the copper alloy for an electrical connection member as a spring from a material. (Hv) a process in which a change is made to be within 10 and then a heat treatment is performed so that a change in Vickers hardness (Hv) of the portion before and after the heat treatment is made to be 10 or less when the heat treatment is performed. Method for thermomechanical processing of copper alloy for connecting members.
【請求項2】 前記成形加工後の熱処理は、200〜800℃
の温度で5〜10000秒間行うことを特徴とする請求項1記
載の電気接続部材用銅合金の加工熱処理方法。
2. The heat treatment after the forming process is performed at 200 to 800 ° C.
2. The method according to claim 1, wherein the heating is performed at a temperature of 5 to 10,000 seconds.
【請求項3】 素材からばねとして成形加工する前後の
加工部位のヴィッカース硬さ(Hv)変化が10以内となる
ように加工し、次いで熱処理を行った際に該熱処理の前
後の前記部位のヴィッカース硬さ(Hv)変化を10以内と
する熱処理を行うための下記成分組成の何れか1種又は
2種以上を含み、残部がCu及び不可避的不純物からなる
電気接続部材用銅合金(下記において「0 wt%」は無添
加を意味する)。 Sn:0〜10wt%、 Zn:0〜40wt%、 Ni:0〜10wt%、 Fe:0〜3wt%、 Cr:0〜1wt%、 Mn:0〜1wt%、 P:0〜0.5wt%、 Si:0〜1wt%、 Mg:0〜1wt%、 Zr:0〜0.5wt%、 Ti:0〜1wt%、 Co:0〜1wt%、 Ag:0〜1wt%、 Al:0〜5wt%、 B:0〜0.5wt%、 希土類元素:0〜0.5wt%。
3. A Vickers hardness (Hv) change of a processing portion before and after forming a spring from a material so as to be within 10 and then, when a heat treatment is performed, Vickers of the portion before and after the heat treatment. Any one of the following component compositions for performing a heat treatment to change the hardness (Hv) within 10 or
Copper alloy for electric connection members containing two or more kinds, the balance being Cu and unavoidable impurities ("0 wt%" means no addition in the following). Sn: 0 to 10 wt%, Zn: 0 to 40 wt%, Ni: 0 to 10 wt%, Fe: 0 to 3 wt%, Cr: 0 to 1 wt%, Mn: 0 to 1 wt%, P: 0 to 0.5 wt% , Si: 0 to 1 wt%, Mg: 0 to 1 wt%, Zr: 0 to 0.5 wt%, Ti: 0 to 1 wt%, Co: 0 to 1 wt%, Ag: 0 to 1 wt%, Al: 0 to 5 wt %, B: 0 to 0.5 wt%, Rare earth element: 0 to 0.5 wt%.
【請求項4】 前記成形加工後に施される熱処理は200
〜800℃の温度で5〜10000秒間であることを特徴とする
請求項3記載の電気接続部材用銅合金。
4. The heat treatment performed after the forming process is 200
The copper alloy for an electrical connection member according to claim 3, wherein the temperature is 800800 ° C. for 5 to 10,000 seconds.
【請求項5】 前記電気接続部材用銅合金が、 Ni : 1〜4 wt%、 Si : 0.1〜1.0 wt%、残部がCu及び不
可避的不純物からなる銅合金であることを特徴とする請
求項3又は4記載の電気接続部材用銅合金。
5. The copper alloy for an electrical connection member, wherein the copper alloy is Ni: 1-4 wt%, Si: 0.1-1.0 wt%, and the balance is Cu and unavoidable impurities. The copper alloy for an electrical connection member according to 3 or 4.
【請求項6】 前記電気接続部材用銅合金が、 Ni : 1〜4 wt%、 Si : 0.1〜1.0 wt%、更にSn、Mn、M
g、Zn、Ag及びCoから選択した1種以上を総量で0.005〜
1wt%を含み、残部がCu及び不可避的不純物からなる
銅合金であることを特徴とする請求項3又は4記載の電
気接続部材用銅合金。
6. The copper alloy for an electrical connection member comprises: Ni: 1 to 4 wt%, Si: 0.1 to 1.0 wt%, Sn, Mn, M
g, Zn, Ag and at least one selected from Ag in a total amount of 0.005 to
The copper alloy for an electrical connection member according to claim 3, wherein the copper alloy contains 1 wt% and the balance is Cu and an unavoidable impurity.
【請求項7】 前記電気接続部材用銅合金が、 Sn :0.5〜3 wt%、 P : 0.005〜0.5 wt%、残部がCu及び
不可避的不純物からなる銅合金であることを特徴とする
請求項3又は4記載の電気接続部材用銅合金。
7. The copper alloy for an electrical connection member is a copper alloy comprising Sn: 0.5 to 3 wt%, P: 0.005 to 0.5 wt%, and the balance being Cu and unavoidable impurities. The copper alloy for an electrical connection member according to 3 or 4.
【請求項8】 前記電気接続部材用銅合金が、 Sn : 0.5〜3 wt%、 P : 0.005〜0.5 wt%、更にNi、Mn、
Fe、Cr、Mg及びZnから選択した1種以上を総量で0.005
〜2wt%を含み、残部がCu 及び不可避的不純物から
なる銅合金であることを特徴とする請求項3又は4記載
の電気接続部材用銅合金。
8. The copper alloy for an electric connection member comprises: Sn: 0.5 to 3 wt%, P: 0.005 to 0.5 wt%, Ni, Mn,
0.005 or more of at least one selected from Fe, Cr, Mg and Zn
The copper alloy for an electrical connection member according to claim 3 or 4, wherein the copper alloy contains up to 2 wt% and the balance is Cu and unavoidable impurities.
【請求項9】 前記電気接続部材用銅合金が、 Sn : 3〜10 wt%、 P : 0.005〜0.5 wt%、残部がCu及び
不可避的不純物からなる銅合金であることを特徴とする
請求項3又は4記載の電気接続部材用銅合金。
9. The copper alloy for an electrical connection member is a copper alloy comprising Sn: 3 to 10 wt%, P: 0.005 to 0.5 wt%, and the balance being Cu and unavoidable impurities. The copper alloy for an electrical connection member according to 3 or 4.
【請求項10】 前記電気接続部材用銅合金が、 Sn : 3〜10 wt%、 P : 0.005〜0.5 wt%、更に、Ni、Fe
及びZnから選択した1種以上を総量で0.005〜2wt%を
含み、残部がCu及び不可避的不純物からなる銅合金であ
ることを特徴とする請求項3又は4記載の電気接続部材
用銅合金。
10. The copper alloy for an electrical connection member comprises: Sn: 3 to 10 wt%, P: 0.005 to 0.5 wt%, and further, Ni, Fe
The copper alloy for an electrical connection member according to claim 3, wherein the copper alloy contains 0.005 to 2 wt% in total of at least one selected from Zn and Zn, and the balance is a copper alloy including Cu and unavoidable impurities.
【請求項11】 前記電気接続部材用銅合金が、 Zn : 5〜35 wt%、 残部がCu及び不可避的不純物からな
る銅合金であることを特徴とする請求項3又は4記載の
電気接続部材用銅合金。
11. The electrical connection member according to claim 3, wherein the copper alloy for an electrical connection member is a copper alloy comprising Zn: 5 to 35 wt%, and the balance being Cu and unavoidable impurities. For copper alloy.
【請求項12】 前記電気接続部材用銅合金が、 Zn : 5〜35 wt%、更に、Sn、Ni及びFeから選択した1種
以上を総量で0.005〜5wt%を含み、残部がCu 及び不
可避的不純物からなる銅合金であることを特徴とする請
求項3又は4記載の電気接続部材用銅合金。
12. The copper alloy for an electric connection member contains Zn: 5 to 35 wt%, further contains at least one selected from Sn, Ni and Fe in a total amount of 0.005 to 5 wt%, and the balance is Cu and unavoidable. The copper alloy for an electrical connection member according to claim 3, wherein the copper alloy is a copper alloy comprising a temporary impurity.
JP2000220998A 2000-07-21 2000-07-21 Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member Expired - Fee Related JP4460037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220998A JP4460037B2 (en) 2000-07-21 2000-07-21 Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220998A JP4460037B2 (en) 2000-07-21 2000-07-21 Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member

Publications (2)

Publication Number Publication Date
JP2002038246A true JP2002038246A (en) 2002-02-06
JP4460037B2 JP4460037B2 (en) 2010-05-12

Family

ID=18715502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220998A Expired - Fee Related JP4460037B2 (en) 2000-07-21 2000-07-21 Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member

Country Status (1)

Country Link
JP (1) JP4460037B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024964A3 (en) * 2002-09-13 2004-07-01 Olin Corp Age-hardening copper-base alloy and processing
US8246764B2 (en) * 2002-11-21 2012-08-21 Jx Nippon Mining & Metals Corporation Copper alloy sputtering target and semiconductor element wiring
US8273193B2 (en) * 2008-12-02 2012-09-25 Xiamen Lota International Co., Ltd. Lead-free, bismuth-free free-cutting silicon brass alloy
US20120312431A1 (en) * 2010-02-24 2012-12-13 Poongsan Corporation Copper alloy with high strength and high conductibility, and method for manufacturing same
US8425697B2 (en) * 2008-06-11 2013-04-23 Xiamen Lota International Co., Ltd. Tin-free lead-free free-cutting magnesium brass alloy
US9340853B2 (en) 2002-12-23 2016-05-17 Auxitrol Sa Cu—Al—Ni—Fe alloy and sensor for measuring a physical parameter comprising a component made of such an alloy
CN108754221A (en) * 2018-02-28 2018-11-06 南京工程学院 Bullet train motor frictional disk material and preparation method thereof
US10780476B2 (en) 2018-02-22 2020-09-22 E. Holdings, Inc Method for making Mg brass EDM wire
WO2021145294A1 (en) * 2020-01-14 2021-07-22 株式会社オートネットワーク技術研究所 Connection terminal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688732B (en) * 2002-09-13 2010-05-26 Gbc金属有限责任公司 Age-hardening copper-base alloy and processing process
WO2004024964A3 (en) * 2002-09-13 2004-07-01 Olin Corp Age-hardening copper-base alloy and processing
US8246764B2 (en) * 2002-11-21 2012-08-21 Jx Nippon Mining & Metals Corporation Copper alloy sputtering target and semiconductor element wiring
US10665462B2 (en) 2002-11-21 2020-05-26 Jx Nippon Mining & Metals Corporation Copper alloy sputtering target and semiconductor element wiring
US9340853B2 (en) 2002-12-23 2016-05-17 Auxitrol Sa Cu—Al—Ni—Fe alloy and sensor for measuring a physical parameter comprising a component made of such an alloy
US8425697B2 (en) * 2008-06-11 2013-04-23 Xiamen Lota International Co., Ltd. Tin-free lead-free free-cutting magnesium brass alloy
US8273193B2 (en) * 2008-12-02 2012-09-25 Xiamen Lota International Co., Ltd. Lead-free, bismuth-free free-cutting silicon brass alloy
US8652274B2 (en) * 2010-02-24 2014-02-18 Poonsgan Corporation Copper alloy with high strength and high conductibility, and method for manufacturing same
US20120312431A1 (en) * 2010-02-24 2012-12-13 Poongsan Corporation Copper alloy with high strength and high conductibility, and method for manufacturing same
US10780476B2 (en) 2018-02-22 2020-09-22 E. Holdings, Inc Method for making Mg brass EDM wire
CN108754221A (en) * 2018-02-28 2018-11-06 南京工程学院 Bullet train motor frictional disk material and preparation method thereof
WO2021145294A1 (en) * 2020-01-14 2021-07-22 株式会社オートネットワーク技術研究所 Connection terminal
JP2021110014A (en) * 2020-01-14 2021-08-02 株式会社オートネットワーク技術研究所 Connection terminal
JP7266540B2 (en) 2020-01-14 2023-04-28 株式会社オートネットワーク技術研究所 Connecting terminal

Also Published As

Publication number Publication date
JP4460037B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP2617703B2 (en) Method for producing a copper-based alloy having improved combination ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP4981748B2 (en) Copper alloy for electrical and electronic equipment
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP2005532477A (en) Copper alloy containing cobalt, nickel and silicon
JP3510469B2 (en) Copper alloy for conductive spring and method for producing the same
US20040238086A1 (en) Processing copper-magnesium alloys and improved copper alloy wire
JP3520046B2 (en) High strength copper alloy
JP2010275640A (en) Age-hardening copper-base alloy and processing
JP2008081846A (en) High-conductivity, stress relaxation-resistant beryllium-nickel-copper lean-alloy
JP3872932B2 (en) Copper alloy with enhanced crack resistance
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP2002038246A (en) Forming and heat treatment process for copper alloy electric connector material and copper alloy for electric connector material
JP2001518980A (en) High strength silver-palladium alloy
JPS5839912B2 (en) Manufacturing method of copper alloy material for leads
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JPH04236736A (en) Copper-base alloy for terminal and terminal using the same
JP3445432B2 (en) Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling
JP2009019239A (en) Method for producing copper alloy material for electrical/electronic parts
TW202016324A (en) Copper-nickel-silicon alloys with high strength and high electrical conductivity
EP1967597A2 (en) Beryllium-Copper conductor
US4076560A (en) Wrought copper-silicon based alloys with enhanced elasticity and method of producing same
JP2005298910A (en) Copper alloy sheet for electroconductive component and its production method
WO2021145294A1 (en) Connection terminal
JP3094045U (en) Copper alloy conductive spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees