JP2002037629A - Lithium content cobalt compounded oxide and method of producing the same - Google Patents

Lithium content cobalt compounded oxide and method of producing the same

Info

Publication number
JP2002037629A
JP2002037629A JP2000256444A JP2000256444A JP2002037629A JP 2002037629 A JP2002037629 A JP 2002037629A JP 2000256444 A JP2000256444 A JP 2000256444A JP 2000256444 A JP2000256444 A JP 2000256444A JP 2002037629 A JP2002037629 A JP 2002037629A
Authority
JP
Japan
Prior art keywords
lithium
cobalt
product
room temperature
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000256444A
Other languages
Japanese (ja)
Inventor
Isao Kuribayashi
功 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEE KK
Kee KK
Original Assignee
KEE KK
Kee KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEE KK, Kee KK filed Critical KEE KK
Priority to JP2000256444A priority Critical patent/JP2002037629A/en
Publication of JP2002037629A publication Critical patent/JP2002037629A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve overcharging resistance which is a disadvantage of a conventional lithium cobalate (LiCoO2) when used as a lithium ion secondary cell and also to make it possible to improve cell capacity. SOLUTION: This lithium content cobalt compounded oxide is represented by the following formula: LiaMbNicCo(1-b-c)O2 (Wherein, M is represented by at least one kind of element selected from Ti, Ga, Zr, Cr, Al, Cu, Zn, and a, b, c, are each represented by 1.00 <=a<=1.03, 0.0003<=b<=0.015, 0<=c<=0.3). In this lithium content cobalt compounded oxide, a lithium compound is mixed with a cobalt compound with the mole ratio of lithium/cobalt within the range of 1.03-1.25 and this mixture is mixed with at least one kind of element selected from Ti, Ga, Zr, Cr, Al, Cu, Zn, and is heat-treated within the range of 800-1050<=, and thereafter the mole ratio of lithium/cobalt is made to show<=1.00<=1.03.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】〔産業上の利用範囲〕本発明は、リチウム
イオン二次電池用のリチウム含有コバルト複合酸化物及
びその製造方法に関する。
[0001] The present invention relates to a lithium-containing cobalt composite oxide for a lithium ion secondary battery and a method for producing the same.

【0002】〔発明の属する技術分野〕近年、正極にコ
バルト酸リチウムを活物質として用いるリチウムイオン
二次電池は、種々の電子機器の電源として使用されてい
る。電子機器の小型化、軽量化を図る上で、これらの電
子機器の電源としてきわめて有用である。更なる電池と
しての高容量化、長寿命化が要望されている。本発明
は、リチウム含有コバルト複合酸化物及びその製造方法
に関するものである。
[0002] In recent years, lithium ion secondary batteries using lithium cobalt oxide as the active material for the positive electrode have been used as power sources for various electronic devices. In order to reduce the size and weight of electronic devices, they are extremely useful as power supplies for these electronic devices. There is a demand for higher capacity and longer life as batteries. The present invention relates to a lithium-containing cobalt composite oxide and a method for producing the same.

【0003】〔従来の技術〕コバルト酸リチウム(Li
CoO)は、リチウムイオン二次電池の正極活物質と
して広く使用されているが、炭素質材料を活物質とする
負極との組み合わせのリチウムイオン二次電池として
4.2V以上の充電電圧で、充放電を繰り返すと容量が
著しく低下したり、電解液の分解を伴い電池内ガス圧力
が高まり、液漏れ、あるいは、安全弁の開裂を招くた
め、この過充電に対して弱点を補う為に、高価な厳重な
電圧制御電子回路が必要であり、電子機器電源として割
高となる難があった。
[PRIOR ART] Lithium cobaltate (Li)
CoO 2 ) is widely used as a positive electrode active material of a lithium ion secondary battery, but at a charge voltage of 4.2 V or more as a lithium ion secondary battery in combination with a negative electrode using a carbonaceous material as an active material, Repeated charging / discharging causes the capacity to drop significantly, the gas pressure in the battery to rise with the decomposition of the electrolyte, causing liquid leakage or opening the safety valve. A strict voltage control electronic circuit is required, and there has been a difficulty in making the power supply of an electronic device expensive.

【0004】〔発明が解決しようとする課題〕本発明
は、従来のコバルト酸リチウム(LiCoO)の欠点
であるリチウムイオン二次電池としての耐過充電性を改
良し、かつ電池容量の向上を可能にすることにより、耐
過充電性の改良による安全性向上、高容量化、長寿命化
を図れるリチウム含有コバルト複合酸化物を提供するこ
ととその製造方法を確立することにある。
[0004] The present invention is to improve the overcharge resistance as a lithium ion secondary battery, which is a disadvantage of conventional lithium cobalt oxide (LiCoO 2 ), and to improve the battery capacity. An object of the present invention is to provide a lithium-containing cobalt composite oxide capable of improving safety, improving capacity, and extending service life by improving overcharge resistance, and establishing a manufacturing method thereof.

【0005】〔課題を解決するための手段〕本発明者ら
は、上記課題について種々検討した結果、特定の金属種
の化合物を用いてコバルト酸リチウム中に少量存在させ
ることにより従来のコバルト酸リチウム(LiCo
)の欠点であるリチウムイオン二次電池としての耐
過充電性を改良し、かつ電池容量の向上を可能にするこ
とにより、耐過充電性の改良による安全性向上、高容量
化、長寿命化を図れるリチウム含有コバルト複合酸化物
とその製造方法を見い出し、本発明を完成させるに至っ
た。
[Means for Solving the Problems] As a result of various studies on the above-mentioned problems, the present inventors have found that a small amount of a compound of a specific metal species is used in lithium cobalt oxide to form a conventional lithium cobalt oxide. (LiCo
By improving the overcharge resistance as a lithium ion secondary battery, which is a drawback of O 2 ), and improving the battery capacity, it is possible to improve the safety, increase the capacity, and increase the length by improving the overcharge resistance. The present inventors have found a lithium-containing cobalt composite oxide having a prolonged life and a method for producing the same, and have completed the present invention.

【0006】〔発明の実施の形態〕以下、本発明を具体
的に説明する。すなわち、本発明は:一般式Li
NiCo(1−b−c)(但しMは、Ti、G
a、Zr、Cr、Al、Cu、Znの群から選ばれた少
なくとも一種を表し、a、b、cは、それぞれ1.00
≦a≦1.03、0.0003≦b≦0.015、0≦
c≦0.30の数を表す。)であることを特徴とするリ
チウム含有コバルト複合酸化物であり、炭酸リチウム、
水酸化リチウム、酢酸リチウムから選ばれた少なくとも
一種のリチウム化合物と四酸化三コバルト、水酸化コバ
ルト、炭酸コバルトから選ばれた少なくとも一種のコバ
ルト化合物をリチウム/コバルトとのモル比が1.03
〜1.25の範囲に混合し、900℃〜1050℃の範
囲であらかじめ加熱処理した後、粉砕し、これにCr、
Al、Ti、Ga、Zr、Cu、Znの酢酸塩、硝酸
塩、硫酸塩、炭酸塩、水酸化物、酸化物の群から選ばれ
た少なくとも一種を混合し、800℃〜1050℃の範
囲で加熱処理した後、蒸留水、脱イオン水等で過剰リチ
ウムをリチウム/コバルトとのモル比が1.00以上
1.03になるように抽出・除去し、温度を100℃〜
150℃の範囲か又は更に800℃〜900℃の範囲ま
で高めて加熱乾燥することを特徴とするリチウム含有コ
バルト複合酸化物の製造法である。
[Embodiment of the Invention] The present invention will be specifically described below. That is, the present invention provides a compound of the general formula: Li a M b
Ni c Co (1-b- c) O 2 ( where M is, Ti, G
a, Zr, Cr, Al, Cu, Zn represents at least one selected from the group, a, b, and c each represent 1.00
≦ a ≦ 1.03, 0.0003 ≦ b ≦ 0.015, 0 ≦
represents a number of c ≦ 0.30. ) Is a lithium-containing cobalt composite oxide, wherein lithium carbonate,
At least one lithium compound selected from lithium hydroxide and lithium acetate and at least one cobalt compound selected from tricobalt tetroxide, cobalt hydroxide and cobalt carbonate have a molar ratio of lithium / cobalt of 1.03.
~ 1.25 and mixed in advance in a temperature range of 900 ° C ~ 1050 ° C, and then pulverized.
A mixture of at least one selected from the group consisting of acetates, nitrates, sulfates, carbonates, hydroxides and oxides of Al, Ti, Ga, Zr, Cu and Zn is mixed and heated at a temperature in the range of 800C to 1050C. After the treatment, excess lithium is extracted and removed with distilled water, deionized water, or the like so that the molar ratio of lithium / cobalt is 1.00 or more and 1.03, and the temperature is set to 100 ° C. to 100 ° C.
A method for producing a lithium-containing cobalt composite oxide, which comprises heating to 150 ° C. or further to 800 ° C. to 900 ° C. and drying by heating.

【0007】本発明のリチウム含有コバルト複合酸化物
は、あらかじめ、メジアン粒子径が6〜20μmのLi
1+xCoO(ここでxは、0.03≦x≦0.25
の数を表す。)を生成させた後にTi、Ga、Zr、C
r、Al、Cu、Znの酢酸塩、硝酸塩、硫酸塩、炭酸
塩、水酸化物、酸化物の群から選ばれた少なくとも一種
を混合し、800℃〜1000℃の範囲で加熱処理した
後、蒸留水、脱イオン水等で過剰リチウムをリチウム/
コバルトとのモル比が1.00以上1.03になるよう
に抽出・除去し、加熱乾燥することにより、粒子表層近
くに当該金属が存在することにより、従来の純粋なLi
CoOと異なる挙動を発現できるようになる。
[0007] The lithium-containing cobalt composite oxide of the present invention is prepared in advance by using Li having a median particle diameter of 6 to 20 µm.
1 + x CoO 2 (where x is 0.03 ≦ x ≦ 0.25
Represents the number of ), Ti, Ga, Zr, C
r, Al, Cu, a mixture of at least one selected from the group consisting of acetate, nitrate, sulfate, carbonate, hydroxide, and oxide of Zn, and heat-treated in a range of 800 ° C to 1000 ° C, Remove excess lithium with distilled water, deionized water, etc.
Extraction and removal so that the molar ratio with cobalt becomes 1.00 or more and 1.03, followed by drying by heating, the presence of the metal near the particle surface layer allows the conventional pure Li
A behavior different from that of CoO 2 can be exhibited.

【0008】コバルト原子が1のうち1.5モル%以下
の範囲でニッケルを除いた前記異金属により置換されて
いる。1.5モル%を越えると放電容量が著しく低下し
て行くので好ましくない。リチウム/コバルトとのモル
比が1.00未満では、放電容量が低く、また充放電を
繰り返した場合、サイクル寿命が劣悪となる。また1.
03を越えると、正極として通常の湿度、温度環境下で
長期保存するとアルミニウム箔にアルカリ腐蝕を生じ、
また充電時の電流効率の低下を招くので好ましくない。
またあらかじめコバルト酸リチウムを製造する際に前記
異金属化合物を添加すると粒子径肥大が抑制されて好ま
しい肥大化粒子が得られず、本発明の目的である耐過充
電性に優れたものが得られ難い。従来のリチウム酸コバ
ルトでは、対リチウム金属極に対して4.20V以上の
電圧で、充電を繰り返すと、放電容量が著しく低下し、
サイクル寿命が、短くなったり、炭素質材料を負極に用
いたリチウムイオン二次電池として電解液の分解による
ガス発生を伴い、電池缶内圧力が上昇し、圧力開放の為
の安全弁、ラプチャーデイスクが、開裂してしまうの
で、厳重な充電電圧監視制御機構を組み込む高価な電子
回路が必要であり、電池の軽量、小型化を図れる正極活
物質ながら、電源コストが高いことが、欠点であった。
本発明により、対リチウム金属極に対して4.30Vの
電圧で充電を繰り返しても、安定した放電容量を維持
し、かつ4.20V以下での充電でしか安定した放電容
量を得られない従来のリチウム酸コバルトでは、到達で
きない高容量を発現できる。ただし、ニッケル以外の前
記異金属において本発明の正極の特性を損ねない範囲で
添加される。すなわち、Cu、Znでは、それぞれ0.
05モル%以上をコバルト原子と置換しても無添加のリ
チウム酸コバルトより4.3Vでの充電でガス発生しや
すくなるので、0.05モル%未満にとどめるようにす
る。Ga、Zr、Cr、Alでは、コバルト原子が1の
うち1.5モル%以下の範囲でCu、Znのそれぞれ
0.05モル%未満量との差分を添加することになる。
通常の四酸化三コバルトには、上記の異金属は、コバル
トに対して0.030モル%以下しか含まれず、前記金
属の酢酸塩、硝酸塩、硫酸塩、炭酸塩、水酸化物、酸化
物を添加するか、回収金属コバルトに微量残存する上記
金属を四酸化三コバルト、水酸化コバルト、炭酸コバル
トから選ばれた少なくとも一種のコバルト化合物として
コバルトに対して上記範囲以下ににとどまるようにする
ことにより製造される。リチウム/コバルトとのモル比
が1.03〜1.25の範囲に混合し、900℃〜10
50℃の範囲であらかじめ加熱処理した際に、過剰な前
記金属は、生成する粒子径の肥大を阻害するので、前記
金属種の全量が上記範囲を越えて不純物としての前記金
属種の混入を避ける必要がある。
[0008] Cobalt atoms are substituted by the above-mentioned foreign metal except nickel in the range of 1.5 mol% or less of 1 atom. If it exceeds 1.5 mol%, the discharge capacity is remarkably reduced, which is not preferable. If the molar ratio of lithium / cobalt is less than 1.00, the discharge capacity is low, and the cycle life becomes poor when charging and discharging are repeated. Also 1.
If it exceeds 03, when it is stored for a long time under normal humidity and temperature environment as a positive electrode, alkali corrosion occurs on the aluminum foil,
In addition, the current efficiency during charging is lowered, which is not preferable.
In addition, when the above-mentioned foreign metal compound is added during the production of lithium cobaltate in advance, particle diameter enlargement is suppressed, and preferable enlarged particles are not obtained.Thus, an object excellent in overcharge resistance, which is the object of the present invention, is obtained. hard. In the conventional cobalt lithium oxide, when charging is repeated at a voltage of 4.20 V or more with respect to the lithium metal electrode, the discharge capacity is significantly reduced,
Cycle life is shortened, and as a lithium ion secondary battery using a carbonaceous material for the negative electrode, gas is generated by decomposition of the electrolyte, the pressure inside the battery can rises, and a safety valve for releasing pressure and a rupture disk are released. However, it is necessary to use an expensive electronic circuit incorporating a strict charge voltage monitoring and control mechanism, and the disadvantage is that the power supply cost is high in spite of the positive electrode active material that can reduce the weight and size of the battery.
According to the present invention, a stable discharge capacity can be maintained even when charging is repeatedly performed at a voltage of 4.30 V with respect to a lithium metal electrode, and a stable discharge capacity can be obtained only by charging at 4.20 V or less. With lithium cobaltate, a high capacity that cannot be attained can be exhibited. However, the above-mentioned different metals other than nickel are added within a range that does not impair the characteristics of the positive electrode of the present invention. That is, for Cu and Zn, respectively.
Even if 05 mol% or more is replaced with a cobalt atom, gas is more likely to be generated by charging at 4.3 V than unadded cobalt lithium oxide, so that it is limited to less than 0.05 mol%. In the case of Ga, Zr, Cr, and Al, the difference between Cu and Zn is less than 0.05 mol% in the range of 1.5 mol% or less of cobalt atoms in one.
Ordinary tricobalt tetroxide contains only 0.030 mol% or less of the above-mentioned foreign metal with respect to cobalt, and forms acetate, nitrate, sulfate, carbonate, hydroxide and oxide of the metal. By adding the above-mentioned metal remaining in the recovered metal cobalt in a trace amount to the cobalt as at least one type of cobalt compound selected from tricobalt tetroxide, cobalt hydroxide, and cobalt carbonate, the content is kept below the above range for cobalt. Manufactured. The molar ratio of lithium / cobalt was mixed in the range of 1.03 to 1.25, and 900 ° C to 10 ° C.
When the heat treatment is performed in advance in the range of 50 ° C., an excess amount of the metal inhibits an increase in the particle size to be generated, so that the total amount of the metal species exceeds the above range to avoid mixing of the metal species as an impurity. There is a need.

【0009】本発明のリチウム含有コバルト複合酸化物
を使用した正極は、リチウム含有コバルト複合酸化物8
8〜96重量%とグラファイト粉、アセチレンブラック
等の導電助剤3〜6重量%とポリフッ化ビニリデン(P
VDF),プロピレンとフッ化ビニリデンとテトラフル
オロエチレンの三元共重合体、フッ化ビニリデンとヘキ
サフルオロプロピレンとテトラフルオロエチレンの三元
共重合体、エチレンとプロピレンとエチリデンノルボー
ネンの三元共重合体(EPDM)、カルボキシ変性スチ
レンーブタジエン共重合体、カルボキシ変性水添スチレ
ンーブタジエン共重合体、カルボキシメチルセルロー
ス、変性カルボキシ変性ポリアクリル酸エステル、カル
ボキシ変性ポリメタクリル酸エステル、エチレンーテト
ラフルオロエチレン共重合体、ポリテトラフルオロエチ
レン(PTFE)等のバインダー1〜6重量%からなる
有機溶媒分散液ないし水分散液を脱脂されたアルミニウ
ム箔(厚さ10〜20μm)あるいはレーザー、パン
チ、電蝕、酸処理により開孔されたアルミニウムに、塗
布・乾燥する、必要あればプレス(圧化)して高密度に
したものである。
The positive electrode using the lithium-containing cobalt composite oxide of the present invention is a lithium-containing cobalt composite oxide 8
8 to 96% by weight, 3 to 6% by weight of a conductive auxiliary such as graphite powder and acetylene black, and polyvinylidene fluoride (P
VDF), terpolymer of propylene, vinylidene fluoride and tetrafluoroethylene, terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene, terpolymer of ethylene, propylene and ethylidene norbornene (EPDM), carboxy-modified styrene-butadiene copolymer, carboxy-modified hydrogenated styrene-butadiene copolymer, carboxymethylcellulose, modified carboxy-modified polyacrylate, carboxy-modified polymethacrylate, ethylene-tetrafluoroethylene copolymer An organic solvent dispersion or an aqueous dispersion comprising 1 to 6% by weight of a binder such as polytetrafluoroethylene (PTFE) or the like is used for degreased aluminum foil (thickness 10 to 20 μm) or laser, punch, electrolytic corrosion, and acid treatment. Yo The apertures aluminum, coating and drying, is obtained by a high density by pressing (pressurization) if necessary.

【0010】本発明の正極に対する負極は、リチウム金
属箔、リチウム合金箔、及び粒状又は多角形の天然グラ
ファイト、繊維状、球形、粒子状、多角形の人造グラフ
ァイト、前記グラファイトの1種以上にコークス、ベン
ゼン、トルエン、ベンズピレン、アセナフテン等を用い
て炭素質材料を被覆した多層構造炭素材、コークス、有
機高分子材料から得られる炭化物から選ばれた少なくと
も1種の炭素質材料88〜98%重量%をポリフッ化ビ
ニリデン(PVDF),プロピレンとフッ化ビニリデン
とテトラフルオロエチレンの三元共重合体、エチレンと
プロピレンとエチリデンノルボーネンの三元共重合体
(EPDM)、カルボキシ変性スチレンーブタジエン共
重合体、カルボキシ変性水添スチレンーブタジエン共重
合体、カルボキシメチルセルロース、変性カルボキシ変
性ポリアクリル酸エステル、カルボキシ変性ポリメタク
リル酸エステル等のバインダー2〜6重量%からなる有
機溶媒分散液ないし水分散液を調製し、脱脂された圧延
銅箔、電解銅箔(7〜16μm)あるいは、レーザー、
パンチ、電蝕、酸処理、銅微粉末焼結圧延により開孔さ
れた銅に、塗布・乾燥し、必要あればプレス(圧化)し
て高密度にしたものである。前記炭素質材料のメジアン
粒子径が5〜30μmの範囲にあり、電池の安全性と高
容量化を図る上で好ましいのは、メジアン粒子径13〜
30μmの範囲のものである。また電池の安全性を損ね
ない限り、錫、珪素、ホウ素等を前記炭素質材料に含有
させることも出来る。
The negative electrode for the positive electrode of the present invention may be made of lithium metal foil, lithium alloy foil, granular or polygonal natural graphite, fibrous, spherical, particulate, or polygonal artificial graphite, or coke of at least one of the above graphites. At least one carbonaceous material selected from the group consisting of carbonaceous materials obtained from multi-layered carbonaceous materials, coke, and organic polymer materials coated with carbonaceous materials using benzene, toluene, benzpyrene, acenaphthene, etc. 88 to 98% by weight With polyvinylidene fluoride (PVDF), terpolymer of propylene, vinylidene fluoride and tetrafluoroethylene, terpolymer of ethylene, propylene and ethylidene norbornene (EPDM), carboxy-modified styrene butadiene copolymer, Carboxy-modified hydrogenated styrene butadiene copolymer, An organic solvent dispersion or an aqueous dispersion comprising 2 to 6% by weight of a binder such as cellulose, modified carboxy-modified polyacrylate, carboxy-modified polymethacrylate, etc., is prepared and degreased rolled copper foil, electrolytic copper foil ( 7-16 μm) or laser,
It is coated and dried on copper that has been opened by punching, electrolytic corrosion, acid treatment, and sintering of copper fine powder, and if necessary, pressed (pressurized) to obtain a high density. The median particle diameter of the carbonaceous material is in the range of 5 to 30 μm, and is preferable in terms of enhancing the safety and the capacity of the battery.
It is in the range of 30 μm. Further, as long as the safety of the battery is not impaired, tin, silicon, boron and the like can be contained in the carbonaceous material.

【0011】本発明に使用される電解液には、非プロト
ン性の有機溶媒として、例えば、ジメチルカーボネー
ト、エチルメチルカーボネート、ジエチルカーボネー
ト、プロピレンカーボネート、エチレンカーボネート、
エチリデンカーボナネート等のカーボネート類、γ−ブ
チロラクトン、ε―カプロラクトン等のラクトン類、蟻
酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル等のエ
ステル類、1,2−ジメトキシメタン、1,2−ジエト
キシメタン、1,2−ジエトキシエタン、ジグライム等
のエーテル類、アセトニトリル、プロピオニトリル等の
ニトリル類及び硫黄又は/及び窒素を含む複素環化合物
等のいずれか1種又は2種以上を混合した物を用いるこ
とが出来る。電解質としては、LiPF、LiB
、(CFSONLi、(CFSO
CLi等のリチウム塩のいずれか1種又は、2種以上混
合した物が使用できる。
The electrolyte used in the present invention contains, as an aprotic organic solvent, for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate,
Carbonates such as ethylidene carbonate, lactones such as γ-butyrolactone and ε-caprolactone, esters such as methyl formate, ethyl formate, methyl acetate and ethyl acetate, 1,2-dimethoxymethane and 1,2-diethoxy A mixture of one or more of ethers such as methane, 1,2-diethoxyethane and diglyme, nitriles such as acetonitrile and propionitrile, and heterocyclic compounds containing sulfur and / or nitrogen. Can be used. As the electrolyte, LiPF 6 , LiB
F 4 , (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 2
Any one of lithium salts such as CLi or a mixture of two or more thereof can be used.

【0012】本発明に使用されるセパレーターには、ポ
リエチレン微孔膜、ポリプロピレン微孔膜、ポリフッ化
ビニリデン微孔膜、部分架橋ポリアクリロニトリル、架
橋ポリアクリル酸エステル、極細セルロース繊維抄紙に
支持されたプロピレンーフッ化ビニリデンーテトラフル
オロエチレン3元共重合体の微孔膜等が使用できる。
The separator used in the present invention includes a polyethylene microporous membrane, a polypropylene microporous membrane, a polyvinylidene fluoride microporous membrane, a partially crosslinked polyacrylonitrile, a crosslinked polyacrylic ester, and a propylene-fluoride supported on ultrafine cellulose fiber paper. A microporous membrane of vinylidene fluoride-tetrafluoroethylene terpolymer can be used.

【0013】本発明のリチウム含有コバルト複合酸化物
を使用した正極と上記負極を上記セパレーターを介して
対峙し、スパイラル状に巻回し、円筒缶に入れて前記電
解液を注入し、封口する。或いは楕円形もしくは長円形
に巻回し、或いは前記正極と上記負極を上記セパレータ
を積層し、角型缶、もしくは、長円缶に入れて前記電解
液を注入し、封口する。更には、前記の楕円形巻回物、
長円形巻回物、積層物を、内層がポリエチレンないしポ
リプロピレン膜、中間層がアルミニウム箔、表層がナイ
ロンないしポリエステル膜からなるラミネートフィルム
に入れて前記電解液を注入し、封口することも出来る。
巻回数或いは積層数を変えることにより、薄型シート電
池形状とすることも可能である。
The positive electrode using the lithium-containing cobalt composite oxide of the present invention and the above-mentioned negative electrode face each other with the above-mentioned separator interposed therebetween, spirally wound, placed in a cylindrical can, injected with the electrolytic solution, and sealed. Alternatively, the separator is wound in an elliptical or elliptical shape, or the positive electrode and the negative electrode are laminated with the separator, placed in a square can or an oblong can, and the electrolyte is injected and sealed. Furthermore, the above-mentioned elliptical roll,
The elliptical wound material and the laminate can be sealed by injecting the electrolytic solution into a laminated film having an inner layer made of a polyethylene or polypropylene film, an intermediate layer made of an aluminum foil, and a surface layer made of a nylon or polyester film.
By changing the number of windings or the number of laminations, it is also possible to form a thin sheet battery.

【0014】〔実施例〕以下実施例、比較例により本発
明を詳しく説明するが、本発明の範囲は、これに限定さ
れるものではない。
EXAMPLES The present invention will be described in detail with reference to examples and comparative examples, but the scope of the present invention is not limited to these examples.

【0015】なお、放電容量の測定は、炭酸ガスで表面
処理されたリチウム金属箔を負極として用い、電解液
は、1MLiPFのエチレンカーボネート(EC)と
エチルメチルカーボネート(EMC)とジメチルカーボ
ネート(DMC)との容積比1:2:2の電解液を用い
て、減圧下200℃で3時間乾燥した東洋濾紙製グラス
フィルターGA100をセパレーターとして用いてスク
リューセルにて充放電評価をする。リチウム含有コバル
ト複合酸化物ないしコバルト酸リチウムの粉末(90.
5部)と電導助剤としてのグラファイト粉末(KS−
6、3.0部、日本黒鉛LB300H、2.5部)を混
合した後、呉羽製PVDF1300(4.0部)をバイ
ンダーとしてPVDFに対して1000ppmの無水マ
レイン酸を加えたN−メチルピロリドン(NMP)溶液
(固形分65〜68%)をつくり、15μmの三菱アル
ミニウム社製の両面光沢なしアルミニウム箔の片面に塗
布し、150℃で1分以内に乾燥、更に2〜3分間、同
温度の熱風を吹き付ける。冷却後、所定の大きさの電極
として切断した後、更に柴田社製グラスチューブオーブ
ンGTO350に入れて130℃で3時間、0.1mm
Hgの真空下に乾燥し、乾燥アルゴンガス気流中でスク
リューセル中に正極として組み込まれる。電解液を添加
後約30分後からリチウム電位0Vに対して4.30V
まで0.2mA/cmの定電流密度で充電し、4.3
0Vに到達後更に4.30Vの定電圧に3時間に保持
し、電流密度のほとんど0mA/cmになるのを確認
後、15分間の休止状態を経て0.4mA/cmの定
電流密度で 放電し、3.70Vに到達後、更に3.7
0Vで3時間に保持する。その間に流れた電気量をスク
リューセル内の正極活物質重量で割り算し、mAh/g
を単位として放電容量(A)とする。更に15分間の休
止状態を経て0.4mA/cmの定電流密度で4.3
0Vまで充電し、4.30Vに到達後更に4.30Vの
定電圧に3時間に保持し、電流密度のほとんど0mA/
cmになるのを確認後、15分間の休止状態を経て
0.4mA/cmの定電流密度で 放電し、3.70
Vに到達後、更に3.70Vで3時間に保持する。その
間に流れた電気量をスクリュウセル内の正極活物質重量
で割り算し、mAh/gを単位として放電容量(B)と
する。この充電と放電を繰り返す。活物質としての寿命
の目安としての容量保持率は、前記放電容量に対して第
10回目の放電容量(B)の百分率である。同様に4.
20Vの充放電とは、4.30Vを4.20Vに設定す
る以外は、全く同じ条件で測定する。
The discharge capacity was measured by using a lithium metal foil surface-treated with carbon dioxide gas as a negative electrode, and using 1 M LiPF 6 of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) as a negative electrode. Using an electrolyte having a volume ratio of 1: 2: 2 with respect to (1) and (2) for 2 hours at 200 ° C. under reduced pressure, and using a glass filter GA100 made by Toyo Roshi Kaisha as a separator, charge / discharge evaluation is performed with a screw cell. Powder of lithium-containing cobalt composite oxide or lithium cobaltate (90.
5 parts) and graphite powder (KS-
6, 3.0 parts, Nippon Graphite LB300H, 2.5 parts) and then N-methylpyrrolidone (1000 ppm maleic anhydride added to PVDF with PVDF1300 (4.0 parts) manufactured by Kureha as a binder). NMP) solution (solid content 65-68%), applied to one side of a 15 μm double-sided glossy aluminum foil made by Mitsubishi Aluminum Co., Ltd., dried at 150 ° C. within 1 minute, and further heated at the same temperature for 2-3 minutes. Blow hot air. After cooling, the electrode was cut into an electrode having a predetermined size, and further placed in a glass tube oven GTO350 manufactured by Shibata Corporation at 130 ° C. for 3 hours for 0.1 mm.
Dry under Hg vacuum and incorporate as positive electrode in a screw cell in a stream of dry argon gas. Approximately 30 minutes after the addition of the electrolyte, 4.30 V with respect to lithium potential 0 V
Charge at a constant current density of 0.2 mA / cm 2 until 4.3
And held for three hours in a constant voltage further 4.30V after reaching to 0V, and a constant current density of 0.4 mA / cm 2 Most After confirming become 0 mA / cm 2, through a quiescent state for 15 minutes in the current density And after reaching 3.70V, 3.7 more
Hold at 0V for 3 hours. The amount of electricity flowing during that time was divided by the weight of the positive electrode active material in the screw cell, and mAh / g
Is defined as the discharge capacity (A). After a resting state of 15 minutes, the constant current density of 0.4 mA / cm 2 was 4.3.
0V, and after reaching 4.30V, the voltage was kept at a constant voltage of 4.30V for 3 hours, and the current density was almost 0 mA /
After confirming become cm 2, and discharged at a constant current density of 0.4 mA / cm 2 through a dormant for 15 minutes, 3.70
After reaching V, it is further held at 3.70 V for 3 hours. The amount of electricity flowing during that time is divided by the weight of the positive electrode active material in the screw cell, and the result is defined as the discharge capacity (B) in units of mAh / g. This charge and discharge are repeated. The capacity retention as a measure of the life as an active material is a percentage of the tenth discharge capacity (B) with respect to the discharge capacity. Similarly, 4.
20V charge / discharge is measured under exactly the same conditions except that 4.30V is set to 4.20V.

【0016】〔実施例1〕四酸化三コバルト5.284
kgと炭酸リチウム2.872kgを20Lヘンシェル
ミキサーにて高速1分間、続いて低速1.0分間混合し
た後、低速攪拌下に脱イオン水0.300kgを添加し
た後、1分間混合攪拌する。この混合物を1時間あたり
150℃の昇温速度で室温から960℃まで加熱する。
960℃に8時間保持した後に890℃に下げ3時間保
持した後、約150℃の冷却速度で室温まで冷やす。こ
の焼成品をハンマーミルで粉砕し、75μm網目のフル
イにかけて99%余のフルイ通過品(A)を得る(L
i:Coモル比は、1.17:1)。このフルイ通過品
(A)99.91gと硝酸チタン1.4797グラムg
をラボミキサーで混合する。これを1時間あたり150
℃の昇温速度で室温から900℃まで加熱する。900
℃に3時間保持した後に850℃に下げ3.0時間保持
し後、約150℃の冷却速度で室温まで冷やす。これに
5倍量の脱イオン水を加えて、30分間強力攪拌した後
に遠心脱水する。この脱水品に新たに5倍量の脱イオン
水を加えて、良く分散し再度30分間強力攪拌した後に
遠心脱水する。これに新たに5倍量の脱イオン水を加え
て、良く分散し再度30分間強力攪拌した後に遠心脱水
する。これを150℃で乾燥した後、1時間あたり15
0℃の昇温速度で室温から850まで加熱する。850
℃に2.0時間保持した後に約150℃の冷却速度で室
温まで冷やす。75μm網目のフルイにかけてフルイ通
過品(B)を得る。このフルイ通過品(B)のICP法
で求めた組成は、Li1.01Ti0.005Co
0.995である。放電容量及び容量保持率の測定
結果を表1に示す。
Example 1 Tricobalt tetroxide 5.284
kg and 2.872 kg of lithium carbonate are mixed in a 20 L Henschel mixer at a high speed for 1 minute, then at a low speed for 1.0 minute, and then 0.300 kg of deionized water is added under low speed stirring, followed by mixing and stirring for 1 minute. The mixture is heated from room temperature to 960 ° C. at a rate of 150 ° C./hour.
After maintaining at 960 ° C. for 8 hours, the temperature is lowered to 890 ° C. and maintained for 3 hours, and then cooled to room temperature at a cooling rate of about 150 ° C. This calcined product is pulverized with a hammer mill and sieved through a 75 μm mesh sieve to obtain 99% or more of the sieved product (A) (L
i: Co molar ratio is 1.17: 1). 99.91 g of this sieve passed product (A) and 1.4797 g of titanium nitrate
In a lab mixer. 150 per hour
Heat from room temperature to 900 ° C. at a rate of temperature increase of 90 ° C. 900
The temperature is lowered to 850 ° C. for 3 hours, kept at 850 ° C. for 3.0 hours, and then cooled to room temperature at a cooling rate of about 150 ° C. Five times the volume of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, and then centrifugally dehydrated. To the dehydrated product, 5 times the amount of deionized water is newly added, well dispersed, and after vigorous stirring for 30 minutes, centrifugally dehydrated. A new 5 times volume of deionized water is added thereto, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. After drying this at 150 ° C., 15
Heat from room temperature to 850 at 0 ° C. ramp rate. 850
After maintaining at 2.0 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. The product is passed through a sieve with a mesh size of 75 μm to obtain a sieve-passed product (B). The composition determined by the ICP method of the sieved product (B) is Li 1.01 Ti 0.005 Co
A 0.995 O 2. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0017】〔実施例2〕実施例1のフルイ通過品
(A)99.91gと蓚酸第1クロム1水塩0.790
2ggをラボミキサーで混合する。これを1時間あたり
150℃の昇温速度で室温から900℃まで加熱する。
900℃に3時間保持した後に850℃に下げ3.0時
間保持し後、約150℃の冷却速度で室温まで冷やす。
これに5倍量の脱イオン水を加えて、30分間強力攪拌
した後に遠心脱水する。この脱水品に新たに5倍量の脱
イオン水を加えて、良く分散し再度30分間強力攪拌し
た後に遠心脱水する。これに新たに5倍量の脱イオン水
を加えて、良く分散し再度30分間強力攪拌した後に遠
心脱水する。これを150℃で乾燥した後、1時間あた
り150℃の昇温速度で室温から850まで加熱する。
850℃に2.0時間保持した後に約150℃の冷却速
度で室温まで冷やす。75μm網目のフルイにかけてフ
ルイ通過品(C)を得る。このフルイ通過品(C)のI
CP法で求めた組成は、Li1.01Cr0.006
0.995である。放電容量及び容量保持率の測
定結果を表1に示す。
Example 2 99.91 g of the product (A) passed through the sieve of Example 1 and 0.790 of chromic monooxalate monohydrate
Mix 2 gg in a lab mixer. This is heated from room temperature to 900 ° C. at a rate of 150 ° C./hour.
After maintaining at 900 ° C. for 3 hours, the temperature is lowered to 850 ° C. and maintained for 3.0 hours, and then cooled to room temperature at a cooling rate of about 150 ° C.
Five times the volume of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, and then centrifugally dehydrated. To the dehydrated product, 5 times the amount of deionized water is newly added, well dispersed, and after vigorous stirring for 30 minutes, centrifugally dehydrated. A new 5 times volume of deionized water is added thereto, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. After drying at 150 ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour.
After maintaining at 850 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. The product is passed through a sieve of 75 μm mesh to obtain a sieve-passed product (C). I of this sifted goods (C)
The composition determined by the CP method is Li 1.01 Cr 0.006 C
a o 0.995 O 2. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0018】〔実施例3〕コバルトに対してCu、Zn
をそれぞれ0.005モル%、0.002モル%含む四
酸化三コバルト(回収品)1.761kgと炭酸リチウ
ム0.859kgをラボミキサーで混合した後、攪拌下
に脱イオン水0.100kgを添加した後、更に1分間
混合する。この混合物を1時間あたり150℃の昇温速
度で室温から900℃まで加熱する。900℃に3時間
保持した後に890℃に下げ3時間保持した後、約15
0℃の冷却速度で室温まで冷やす。この焼成品をハンマ
ーミルで粉砕し、75μm網目のフルイにかけてほぼ1
00%のフルイ通過品(D)を得る(Li:Coモル比
は、1.05:1)。このフルイ通過品(D)193.
30gと酸化ジルコニア2水塩4.6596gと水酸化
リチウム1水塩1.3427gをラボミキサーで混合す
る。これを1時間あたり150℃の昇温速度で室温から
900℃まで加熱する。900℃に3時間保持した後に
850℃に下げ3.0時間保持し後、約150℃の冷却
速度で室温まで冷やす。これに3倍量の脱イオン水を加
えて、30分間強力攪拌した後に遠心脱水する。この脱
水品に新たに3倍量の脱イオン水を加えて、良く分散し
再度30分間強力攪拌した後に遠心脱水する。この脱水
品に新たに3倍量の脱イオン水を加えて、良く分散し再
度30分間強力攪拌した後に遠心脱水する。これを15
0℃で乾燥した後、1時間あたり150℃の昇温速度で
室温から850まで加熱する。850℃に2.0時間保
持した後に約150℃の冷却速度で室温まで冷やす。7
5μm網目のフルイにかけてフルイ通過品(E)を得
る。このフルイ通過品(E)のICP法で求めた組成
は、Li1.008Zr0.015Cu0.00006
Zn0.00002Co0.9849である。放電
容量及び容量保持率の測定結果を表1に示す。
[Embodiment 3] Cu, Zn with respect to cobalt
Was mixed with a lab mixer after mixing 1.761 kg of tricobalt tetroxide (recovered product) containing 0.005 mol% and 0.002 mol% of lithium carbonate, respectively, and 0.100 kg of deionized water was added with stirring. After mixing, mix for an additional minute. The mixture is heated from room temperature to 900 ° C. at a rate of 150 ° C./hour. After holding at 900 ° C for 3 hours, lowering to 890 ° C and holding for 3 hours, about 15
Cool to room temperature at 0 ° C cooling rate. This calcined product is pulverized with a hammer mill and sieved through a sieve of 75 μm mesh to obtain approximately 1 μm.
A 00% sieve pass (D) is obtained (Li: Co molar ratio 1.05: 1). This screened product (D) 193.
30 g, 4.6596 g of zirconia dihydrate, and 1.3427 g of lithium hydroxide monohydrate are mixed with a laboratory mixer. This is heated from room temperature to 900 ° C. at a rate of 150 ° C./hour. After maintaining at 900 ° C. for 3 hours, the temperature is lowered to 850 ° C. and maintained for 3.0 hours, and then cooled to room temperature at a cooling rate of about 150 ° C. Three times the amount of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, followed by centrifugal dehydration. To the dehydrated product, add three times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes again, centrifuge to dehydrate. To the dehydrated product, add three times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes again, centrifuge to dehydrate. This is 15
After drying at 0 ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. After maintaining at 850 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. 7
The sifted product (E) is obtained by sieving through a 5-μm mesh sieve. The composition determined by the ICP method of the sieved product (E) was Li 1.008 Zr 0.015 Cu 0.00006.
Zn 0.00002 Co 0.9849 O 2 . Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0019】〔実施例4〕実施例1のフルイ通過品
(A)99.91gと硝酸アルミニウム9水塩1.87
5gをラボミキサーで混合する。これを1時間あたり1
50℃の昇温速度で室温から900℃まで加熱する。9
00℃に3時間保持した後に850℃に下げ3.0時間
保持し後、約150℃の冷却速度で室温まで冷やす。こ
れに5倍量の脱イオン水を加えて、30分間強力攪拌し
た後に遠心脱水する。この脱水品に新たに5倍量の脱イ
オン水を加えて、良く分散し再度30分間強力攪拌した
後に遠心脱水する。これに新たに5倍量の脱イオン水を
加えて、良く分散し再度30分間強力攪拌した後に遠心
脱水する。これを150℃で乾燥した後、1時間あたり
150℃の昇温速度で室温から850まで加熱する。8
50℃に2.0時間保持した後に約150℃の冷却速度
で室温まで冷やす。75μm網目のフルイにかけてフル
イ通過品(F)を得る。このフルイ通過品(F)のIC
P法で求めた組成は、Li1.03Al0.005Co
0.995である。放電容量及び容量保持率の測定
結果を表1に示す。
Example 4 99.91 g of the product (A) passed through the sieve of Example 1 and aluminum nitrate nonahydrate 1.87
Mix 5 g with a lab mixer. One hour per hour
Heat from room temperature to 900 ° C. at a rate of 50 ° C. 9
After maintaining at 00 ° C. for 3 hours, the temperature is lowered to 850 ° C. and maintained for 3.0 hours, and then cooled to room temperature at a cooling rate of about 150 ° C. Five times the volume of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, and then centrifugally dehydrated. To the dehydrated product, 5 times the amount of deionized water is newly added, well dispersed, and after vigorous stirring for 30 minutes, centrifugally dehydrated. A new 5 times volume of deionized water is added thereto, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. After drying at 150 ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. 8
After maintaining at 50 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. The product is passed through a sieve of 75 μm mesh to obtain a screened product (F). IC of this sieved product (F)
The composition determined by the P method is Li 1.03 Al 0.005 Co
A 0.995 O 2. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0020】〔実施例5〕実施例1のフルイ通過品
(A)197.81gと水酸化アルミニウム1.559
6gと硝酸ガリウム(98.3%純度)1.3000g
とをラボミキサーで混合する。これを1時間あたり15
0℃の昇温速度で室温から960℃まで加熱する。96
0℃に2.5時間保持した後に890℃に下げ2.5時
間保持し後、約150℃の冷却速度で室温まで冷やす。
これに4倍量の脱イオン水を加えて、30分間強力攪拌
した後に遠心脱水する。この脱水品に新たに4倍量の脱
イオン水を加えて、良く分散し再度30分間強力攪拌し
た後に遠心脱水する。この脱水品に新たに4倍量の脱イ
オン水を加えて、良く分散し再度30分間強力攪拌し、
停止後上澄み液を捨てる。新たに4倍量の脱イオン水を
加えて、良く分散し再度30分間強力攪拌した後に遠心
脱水する。新たに4倍量の脱イオン水を加えて、良く分
散し再度30分間強力攪拌した後に遠心脱水する。これ
を150℃で乾燥した後、1時間あたり150℃の昇温
速度で室温から850まで加熱する。850℃に2.0
時間保持した後に約150℃の冷却速度で室温まで冷や
す。75μm網目のフルイにかけてフルイ通過品(G)
を得る。このフルイ通過品(G)のICP法で求めた組
成は、Li1.02Al0.010Ga0.005CO
0.985である。放電容量及び容量保持率の測定
結果を表1に示す。
Example 5 197.81 g of the product (A) passed through the sieve of Example 1 and 1.559 of aluminum hydroxide
6 g and gallium nitrate (98.3% purity) 1.3000 g
And in a lab mixer. 15 per hour
Heat from room temperature to 960 ° C. at a rate of 0 ° C. 96
After maintaining at 0 ° C. for 2.5 hours, the temperature is lowered to 890 ° C. and maintained for 2.5 hours, and then cooled to room temperature at a cooling rate of about 150 ° C.
Four times the amount of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, followed by centrifugal dehydration. To the dehydrated product, add 4 times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes, centrifugally dehydrate. To this dehydrated product, add 4 times the amount of deionized water, disperse well, and vigorously stir again for 30 minutes.
After stopping, discard the supernatant. A new 4 times amount of deionized water is added, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. A new 4 times amount of deionized water is added, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. After drying at 150 ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. 2.0 at 850 ° C
After holding for a time, cool to room temperature at a cooling rate of about 150 ° C. Product that has passed through a sieve with a mesh of 75 μm (G)
Get. The composition obtained by the ICP method of the product (G) passed through the sieve was Li 1.02 Al 0.010 Ga 0.005 CO
A 0.985 O 2. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0021】〔実施例6〕四酸化三コバルト3.699
kgと水酸化ニッケル1.868kgと炭酸リチウム
2.872kgを20Lヘンシェルミキサーにて高速1
分間、続いて低速1.0分間混合した後、低速攪拌下に
脱イオン水0.300kgを添加した後、1分間混合攪
拌する。この混合物を1時間あたり150℃の昇温速度
で室温から960℃まで加熱する。960℃に8時間保
持した後に890℃に下げ3時間保持した後、約150
℃の冷却速度で室温まで冷やす。この焼成品をハンマー
ミルで粉砕し、75μm網目のフルイにかけて99%余
のフルイ通過品(H)を得る(Li:Co/Niモル比
は、1.17:1)。このフルイ通過品(H)196.
97gと硝酸アルミニウム9水塩3.75gとをラボミ
キサーで混合する。これを1時間あたり100℃の昇温
速度で室温から960℃まで加熱する。960℃に2.
5時間保持した後に890℃に下げ2.5時間保持し
後、約100℃の冷却速度で室温まで冷やす。これに4
倍量の脱イオン水を加えて、30分間強力攪拌した後に
遠心脱水する。この脱水品に新たに4倍量の脱イオン水
を加えて、良く分散し再度30分間強力攪拌した後に遠
心脱水する。この脱水品に新たに4倍量の脱イオン水を
加えて、良く分散し再度30分間強力攪拌し、停止後上
澄み液を捨てる。新たに4倍量の脱イオン水を加えて、
良く分散し再度30分間強力攪拌した後に遠心脱水す
る。新たに4倍量の脱イオン水を加えて、良く分散し再
度30分間強力攪拌した後に遠心脱水する。これを15
0℃で乾燥した後、1時間あたり150℃の昇温速度で
室温から850まで加熱する。850℃に2.0時間保
持した後に約150℃の冷却速度で室温まで冷やす。7
5μm網目のフルイにかけてフルイ通過品(I)を得
る。このフルイ通過品(I)のICP法で求めた組成
は、Li1,02Al0.005Ni0.299CO
0,896である。放電容量及び容量保持率の測定
結果を表1に示す。
Example 6 Tricobalt tetroxide 3.699
kg, 1.868 kg of nickel hydroxide and 2.872 kg of lithium carbonate at a high speed of 1 with a 20 L Henschel mixer.
After mixing at low speed for 1.0 minute, 0.300 kg of deionized water is added under low speed stirring, followed by mixing and stirring for 1 minute. The mixture is heated from room temperature to 960 ° C. at a rate of 150 ° C./hour. After holding at 960 ° C. for 8 hours, lowering to 890 ° C. and holding for 3 hours, about 150
Cool to room temperature at a cooling rate of ° C. This calcined product is pulverized with a hammer mill, and sieved through a 75 μm mesh sieve to obtain a 99% or more sieve-passed product (H) (Li: Co / Ni molar ratio is 1.17: 1). This screened product (H) 196.
97 g and 3.75 g of aluminum nitrate nonahydrate are mixed with a laboratory mixer. This is heated from room temperature to 960 ° C. at a rate of 100 ° C./hour. 1. at 960 ° C.
After holding for 5 hours, the temperature is lowered to 890 ° C. and held for 2.5 hours, and then cooled to room temperature at a cooling rate of about 100 ° C. This is 4
Double volume of deionized water is added, and after vigorous stirring for 30 minutes, centrifugal dehydration is performed. To the dehydrated product, add 4 times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes, centrifugally dehydrate. To the dehydrated product, add 4 times the amount of deionized water, disperse well, stir vigorously again for 30 minutes, and after stopping, discard the supernatant. Add 4 times more deionized water,
Disperse well, and after vigorous stirring for 30 minutes again, spin-dry. A new 4 times amount of deionized water is added, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. This is 15
After drying at 0 ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. After maintaining at 850 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. 7
The product is passed through a sieve of 5 μm mesh to obtain a sieve-passed product (I). The composition obtained by the ICP method of the product (I) passed through the sieve was Li 1,02 Al 0.005 Ni 0.299 CO
It is a 0,896 O 2. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0022】〔比較例1〕四酸化三コバルト5.284
kgと炭酸リチウム2.577kgを20Lヘンシェル
ミキサーにて高速1分間、続いて低速1.0分間混合し
た後、低速攪拌下に脱イオン水0.300kgを添加し
た後、1分間混合攪拌する。この混合物を1時間あたり
100℃の昇温速度で室温から900℃まで加熱する。
900℃に3時間保持した後に890℃に下げ3時間保
持した後、約100℃の冷却速度で室温まで冷やす。こ
の焼成品をハンマーミルで粉砕し、75μm網目のフル
イにかけてほぼ100%のフルイ通過品(J)を得る
(Li:Coモル比は、1.05:1)。このフルイ通
過品(J)189.55gと水酸化アルミニウム4.6
789gと三酸化二ガリウムを1.8744gとをラボ
ミキサーで混合する。これを1時間あたり150℃の昇
温速度で室温から960℃まで加熱する。960℃に
2.5時間保持した後に890℃に下げ2.5時間保持
し後、約150℃の冷却速度で室温まで冷やす。これに
4倍量の脱イオン水を加えて、30分間強力攪拌した後
に遠心脱水する。この脱水品に新たに4倍量の脱イオン
水を加えて、良く分散し再度30分間強力攪拌した後に
遠心脱水する。この脱水品に新たに4倍量の脱イオン水
を加えて、良く分散し再度30分間強力攪拌し、停止後
上澄み液を捨てる。新たに4倍量の脱イオン水を加え
て、良く分散し再度30分間強力攪拌した後に遠心脱水
する。新たに4倍量の脱イオン水を加えて、良く分散し
再度30分間強力攪拌した後に遠心脱水する。これを1
50℃で乾燥した後、1時間あたり150℃の昇温速度
で室温から850まで加熱する。850℃に2.0時間
保持した後に約150℃の冷却速度で室温まで冷やす。
75μm網目のフルイにかけてフルイ通過品(K)を得
る。このフルイ通過品(K)のICP法で求めた組成
は、Li1.03Al0,03Ga0.005CO
0.965である。放電容量及び容量保持率の測定
結果を表1に示す。
Comparative Example 1 Tricobalt tetroxide 5.284
kg and 2.577 kg of lithium carbonate are mixed in a 20 L Henschel mixer at a high speed for 1 minute, then at a low speed for 1.0 minute, 0.300 kg of deionized water is added under low speed stirring, and then mixed and stirred for 1 minute. The mixture is heated from room temperature to 900 ° C. at a rate of 100 ° C./hour.
After the temperature is maintained at 900 ° C. for 3 hours, the temperature is lowered to 890 ° C. and maintained for 3 hours, and then cooled to room temperature at a cooling rate of about 100 ° C. This calcined product is pulverized with a hammer mill and sieved through a sieve of 75 μm mesh to obtain an almost 100% sieved product (J) (Li: Co molar ratio: 1.05: 1). 189.55 g of this sieved product (J) and 4.6 of aluminum hydroxide
789 g and 1.8744 g of digallium trioxide are mixed in a laboratory mixer. This is heated from room temperature to 960 ° C. at a rate of 150 ° C./hour. After maintaining at 960 ° C. for 2.5 hours, the temperature is lowered to 890 ° C. and maintained for 2.5 hours, and then cooled to room temperature at a cooling rate of about 150 ° C. Four times the amount of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, followed by centrifugal dehydration. To the dehydrated product, add 4 times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes, centrifugally dehydrate. To the dehydrated product, add 4 times the amount of deionized water, disperse well, stir vigorously again for 30 minutes, and after stopping, discard the supernatant. A new 4 times amount of deionized water is added, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. A new 4 times amount of deionized water is added, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. This one
After drying at 50 ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. After maintaining at 850 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C.
The product is passed through a sieve of 75 μm mesh to obtain a sieve-passed product (K). The composition determined by the ICP method of the sieved product (K) is Li 1.03 Al 0.03 Ga 0.005 CO
A 0.965 O 2. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0023】〔比較例2〕比較例1のフルイ通過品
(J)96.247gと酸化チタン1.59763と水
酸化リチウム1水塩0.8812gをラボミキサーで混
合する。これを1時間あたり150℃の昇温速度で室温
から900℃まで加熱する。900℃に3時間保持した
後に850℃に下げ3.0時間保持し後、約150℃の
冷却速度で室温まで冷やす。これに5倍量の脱イオン水
を加えて、30分間強力攪拌した後に遠心脱水する。こ
の脱水品に新たに5倍量の脱イオン水を加えて、良く分
散し再度30分間強力攪拌した後に遠心脱水する。これ
に新たに5倍量の脱イオン水を加えて、良く分散し再度
30分間強力攪拌した後に遠心脱水する。これを150
℃で乾燥した後、1時間あたり150℃の昇温速度で室
温から850まで加熱する。850℃に2.0時間保持
した後に約150℃の冷却速度で室温まで冷やす。75
μm網目のフルイにかけてフルイ通過品(L)を得る。
このフルイ通過品(L)のICP法で求めた組成は、L
1.03Ti0.02CO0.98である。放電
容量及び容量保持率の測定結果を表1に示す。
Comparative Example 2 96.247 g of the product passed through the sieve (J) of Comparative Example 1, 1.59763 of titanium oxide and 0.8812 g of lithium hydroxide monohydrate were mixed with a laboratory mixer. This is heated from room temperature to 900 ° C. at a rate of 150 ° C./hour. After maintaining at 900 ° C. for 3 hours, the temperature is lowered to 850 ° C. and maintained for 3.0 hours, and then cooled to room temperature at a cooling rate of about 150 ° C. Five times the volume of deionized water is added thereto, and the mixture is vigorously stirred for 30 minutes, and then centrifugally dehydrated. To the dehydrated product, 5 times the amount of deionized water is newly added, well dispersed, and after vigorous stirring for 30 minutes, centrifugally dehydrated. A new 5 times volume of deionized water is added thereto, and the mixture is well dispersed. After vigorous stirring for 30 minutes, the mixture is centrifugally dehydrated. This is 150
After drying at ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. After maintaining at 850 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. 75
The product is passed through a sieve with a mesh of μm to obtain a sieve-passed product (L).
The composition determined by the ICP method of this sieved product (L) is L
i 1.03 Ti 0.02 CO 0.98 O 2 . Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0024】〔比較例3〕四酸化三コバルト77.07
9gと水酸化リチウム1水塩42.799gと水酸化ア
ルミニウム3.119gをラボミキサーで混合する。こ
れを1時間あたり100℃の昇温速度で室温から900
℃まで加熱する。900℃に3時間保持した後に850
℃に下げ3.0時間保持し後、約100℃の冷却速度で
室温まで冷やす。これを乳鉢で粉砕し、75μm網目の
フルイにかけてほぼ100%のフルイ通過品(M)を得
る。このフルイ通過品(M)のICP法で求めた組成
は、Li1.02Al0.04CO0.96であ
る。放電容量及び容量保持率の測定結果を表1に示す。
Comparative Example 3 Tricobalt tetroxide 77.07
9 g, 42.799 g of lithium hydroxide monohydrate and 3.119 g of aluminum hydroxide are mixed with a laboratory mixer. The temperature is increased from room temperature to 900 at a rate of 100 ° C./hour.
Heat to ° C. 850 after holding at 900 ° C. for 3 hours
C. and maintained for 3.0 hours, then cooled to room temperature at a cooling rate of about 100.degree. This is crushed in a mortar and sieved through a 75 μm mesh sieve to obtain an almost 100% sieved product (M). The composition determined by the ICP method of the sieved product (M) is Li 1.02 Al 0.04 CO 0.96 O 2 . Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0025】[参考例1]比較例1のフルイ通過品
(J)294.0750gに3倍量の脱イオン水を加え
て、30分間強力攪拌した後に遠心脱水する。この脱水
品に新たに3倍量の脱イオン水を加えて、良く分散し再
度30分間強力攪拌した後に遠心脱水する。この脱水品
に新たに3倍量の脱イオン水を加えて、良く分散し再度
30分間強力攪拌した後に遠心脱水する。これを150
℃で乾燥した後、1時間あたり150℃の昇温速度で室
温から850まで加熱する。850℃に2.0時間保持
した後に約150℃の冷却速度で室温まで冷やす。75
μm網目のフルイにかけてフルイ通過品(N)を得る。
このフルイ通過品(N)のICP法で求めた組成は、L
1.003CoOであった。4.20V、4,30
Vでの充放電評価をする。放電容量及び容量保持率の測
定結果を表1に示す。
Reference Example 1 To 294.0750 g of the product passed through the sieve (J) of Comparative Example 1, a three-fold amount of deionized water was added, and the mixture was vigorously stirred for 30 minutes, followed by centrifugal dehydration. To the dehydrated product, add three times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes again, centrifuge to dehydrate. To the dehydrated product, add three times the amount of deionized water, disperse well, and after vigorous stirring for 30 minutes again, centrifuge to dehydrate. This is 150
After drying at ° C., it is heated from room temperature to 850 at a rate of 150 ° C./hour. After maintaining at 850 ° C. for 2.0 hours, it is cooled to room temperature at a cooling rate of about 150 ° C. 75
The product is passed through a sieve with a mesh of μm to obtain a product (N) that has passed through the sieve.
The composition determined by the ICP method of this sieved product (N) is L
i 1.003 CoO 2 . 4.20V, 4,30
The charge / discharge evaluation at V is performed. Table 1 shows the measurement results of the discharge capacity and the capacity retention.

【0026】[0026]

【表1】 [Table 1]

【0027】〔発明の効果〕本発明による特定組成のリ
チウム含有コバルト複合酸化物及び本発明の異金属化合
物を用いるリチウム含有コバルト複合酸化物の製造方法
により、従来のコバルト酸リチウムの放電容量より高
く、かつ4.3V充電が可能となり、高い容量保持率を
得られる。本発明の目的である4.2V以上での耐過充
電性を改良により安全性が向上し、高容量化、長寿命化
を図れるリチウム含有コバルト複合酸化物を提供するこ
とが出来るようになる。
[Effects of the Invention] By the method for producing a lithium-containing cobalt composite oxide having a specific composition according to the present invention and the lithium-containing cobalt composite oxide using the foreign metal compound of the present invention, a discharge capacity higher than that of the conventional lithium cobalt oxide is obtained. , And 4.3 V charging, and a high capacity retention ratio can be obtained. The object of the present invention is to provide a lithium-containing cobalt composite oxide which improves safety, improves overcharge resistance at 4.2 V or more, and can achieve high capacity and long life.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB05 AB08 AC06 AE05 5H029 AJ03 AJ12 AK03 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ08 CJ12 EJ03 EJ05 HJ02 HJ14 5H050 AA03 AA07 AA08 BA17 CA08 CB12 DA02 GA02 GA05 GA10 GA12 HA02 HA14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB01 AB05 AB08 AC06 AE05 5H029 AJ03 AJ12 AK03 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ08 CJ12 EJ03 EJ05 HJ02 HJ14 5H050 AA03 GAA17 GA02 DA GA12 HA02 HA14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式LiNiCo
(1−b−c)(但しMは、Ti、Ga、Zr、C
r、Al、Cu、Znの群から選ばれた一種以上を表
し、a、b、cは、それぞれ1.00≦a≦1.03、
0.0003≦b≦0.015、0≦c≦0.3の数を
表す。)であることを特徴とするリチウム含有コバルト
複合酸化物。
1. A general formula Li a M b Ni c Co
(1-bc) O 2 (where M is Ti, Ga, Zr, C
represents at least one member selected from the group consisting of r, Al, Cu, and Zn, and a, b, and c each represent 1.00 ≦ a ≦ 1.03;
Represents the numbers 0.0003 ≦ b ≦ 0.015 and 0 ≦ c ≦ 0.3. A) a lithium-containing cobalt composite oxide;
【請求項2】炭酸リチウム、水酸化リチウム、酢酸リチ
ウムから選ばれた少なくとも一種のリチウム化合物と四
酸化三コバルト、水酸化コバルト、炭酸コバルトから選
ばれた少なくとも一種のコバルト化合物をリチウム/コ
バルトとのモル比が1.05〜1.25の範囲に混合
し、900℃〜1050℃の範囲であらかじめ加熱処理
した後、粉砕し、これにTi、Ga、Zr、Cr、A
l、Cu、Znの酢酸塩、硝酸塩、硫酸塩、炭酸塩、水
酸化物、酸化物の群から選ばれた少なくとも一種を混合
し、800℃〜1050℃の範囲で加熱処理した後、蒸
留水、脱イオン水等で過剰リチウムをリチウム/コバル
トとのモル比が1.00以上1.03になるように抽出
・除去し、加熱乾燥することを特徴とする請求項1に記
載のリチウム含有コバルト複合酸化物の製造法。
2. A method of converting at least one lithium compound selected from lithium carbonate, lithium hydroxide and lithium acetate and at least one cobalt compound selected from tricobalt tetroxide, cobalt hydroxide and cobalt carbonate into lithium / cobalt. The molar ratio was mixed in the range of 1.05 to 1.25, and after preliminarily heat-treated in the range of 900 ° C to 1050 ° C, pulverized, and Ti, Ga, Zr, Cr, A
l, a mixture of at least one selected from the group consisting of acetate, nitrate, sulfate, carbonate, hydroxide, and oxide of Cu and Zn, heat-treated at a temperature in the range of 800 ° C. to 1050 ° C., and then distilled water 2. The lithium-containing cobalt according to claim 1, wherein excess lithium is extracted and removed with deionized water or the like so that the molar ratio of lithium / cobalt becomes 1.00 or more and 1.03, followed by heating and drying. A method for producing a composite oxide.
JP2000256444A 2000-07-25 2000-07-25 Lithium content cobalt compounded oxide and method of producing the same Pending JP2002037629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256444A JP2002037629A (en) 2000-07-25 2000-07-25 Lithium content cobalt compounded oxide and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256444A JP2002037629A (en) 2000-07-25 2000-07-25 Lithium content cobalt compounded oxide and method of producing the same

Publications (1)

Publication Number Publication Date
JP2002037629A true JP2002037629A (en) 2002-02-06

Family

ID=18745056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256444A Pending JP2002037629A (en) 2000-07-25 2000-07-25 Lithium content cobalt compounded oxide and method of producing the same

Country Status (1)

Country Link
JP (1) JP2002037629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051771A1 (en) * 2002-11-29 2004-06-17 Seimi Chemical Co., Ltd. Method for preparing positive electrode active material for lithium secondary cell
CN1328806C (en) * 2003-01-10 2007-07-25 日本化学工业株式会社 Lithium-cobalt system composite oxides and mfg. method, lithium storage battery positive pole active material and lithium storage battery
JP2007335169A (en) * 2006-06-13 2007-12-27 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051771A1 (en) * 2002-11-29 2004-06-17 Seimi Chemical Co., Ltd. Method for preparing positive electrode active material for lithium secondary cell
US7192672B2 (en) 2002-11-29 2007-03-20 Seimi Chemical Co., Ltd. Process for producing positive electrode active material for lithium secondary battery
CN1328806C (en) * 2003-01-10 2007-07-25 日本化学工业株式会社 Lithium-cobalt system composite oxides and mfg. method, lithium storage battery positive pole active material and lithium storage battery
JP2007335169A (en) * 2006-06-13 2007-12-27 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR100946610B1 (en) Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP4752244B2 (en) Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
CN1312792C (en) Positive electrode active material powder for lithium secondary battery
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US20070218362A1 (en) Lithium Ion Secondary Battery
WO2012001840A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
WO2013137380A1 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP2005053764A (en) Lithium-nickel-manganese-cobalt multiple oxide and lithium-ion secondary battery using the same as positive electrode active material
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
WO2005124898A1 (en) Positive electrode active material powder for lithium secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2006019229A (en) Positive electrode material for lithium secondary battery, and its manufacturing method
JP4293852B2 (en) Method for producing coprecipitate and method for producing substituted lithium transition metal composite oxide
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2004311297A (en) Powdered lithium secondary battery positive electrode material, lithium secondary battery positive electrode, and lithium secondary battery
JP2006093067A (en) Lithium secondary battery positive pole material and method for manufacturing it
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP2005141983A (en) Layered lithium nickel base composite oxide powder for positive electrode material of lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this