JP2002035977A - Piercing method - Google Patents

Piercing method

Info

Publication number
JP2002035977A
JP2002035977A JP2000231743A JP2000231743A JP2002035977A JP 2002035977 A JP2002035977 A JP 2002035977A JP 2000231743 A JP2000231743 A JP 2000231743A JP 2000231743 A JP2000231743 A JP 2000231743A JP 2002035977 A JP2002035977 A JP 2002035977A
Authority
JP
Japan
Prior art keywords
holes
laser beam
perforation
point
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000231743A
Other languages
Japanese (ja)
Other versions
JP4439092B2 (en
Inventor
Shuichi Tateno
周一 立野
Katsura Hayashi
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000231743A priority Critical patent/JP4439092B2/en
Publication of JP2002035977A publication Critical patent/JP2002035977A/en
Application granted granted Critical
Publication of JP4439092B2 publication Critical patent/JP4439092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To form high-precision through holes capable of coping with increase in input/output pads of silicon chips and preventing deformation or deterioration in a sheet material, or deformation in the through holes caused by heat radiation failure of working heat when the through holes arranged in a nearly lattice state with narrow intervals are formed by irradiating a laser beam. SOLUTION: In a piercing method which forms the through holes arranged in a nearly lattice state by irradiating the laser beam on a preset sheet, a piercing point which positions nearly center part of the nearly lattice arrangement is used as a starting point and the laser beam is irradiated while the boring point is shifted from this starting point toward the outer side nearly concentrically. Especially, it is desirable to form the through holes at every boring point by repeating a process which irradiates the laser beam on every boring point arranged in a nearly lattice state at lest at every one pulse several times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、多層配線
基板及び半導体素子収納用パッケージなどに適したプリ
ント配線基板などに用いられるプリプレグに対して、配
線層間を接続するための貫通導体を形成するために、格
子状に配列した貫通孔を穿孔するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms a through conductor for connecting wiring layers to a prepreg used for a printed wiring board or the like suitable for a multilayer wiring board and a package for accommodating a semiconductor element, for example. Therefore, the present invention relates to a method for perforating through holes arranged in a lattice.

【0002】[0002]

【従来技術】近年、半導体素子は処理する情報量の増大
につれ、情報(信号)の出し入れを行う端子数が飛躍的
に増大している。このため、シリコンチップに形成され
るパッド数(I/Oパッド)は増大し、シリコンチップ
下面に多数のパッドを形成する必要が生じている。この
ため、シリコンチップのI/Oパッドの密度は増加し、
これを受ける配線基板に格子状に配列される垂直導体間
の距離(ピッチ)も300μm以下のものが必要になっ
ている。
2. Description of the Related Art In recent years, as the amount of information to be processed has increased in semiconductor devices, the number of terminals for inputting and outputting information (signals) has increased dramatically. For this reason, the number of pads (I / O pads) formed on the silicon chip increases, and it becomes necessary to form many pads on the lower surface of the silicon chip. For this reason, the density of the I / O pads of the silicon chip increases,
The distance (pitch) between the vertical conductors arranged in a lattice on the wiring board receiving the same must be 300 μm or less.

【0003】このような高密度配線の要求に対応するた
め、これまでビルドアツプ法と呼ばれる製造方法が用い
られている。ビルドアップ法の基本構造としては、JP
CA規格では(1)ベース+ビルドアップ法、(2)全
層ビルドアップ法の2種類に分類されている。
In order to meet such a demand for high-density wiring, a manufacturing method called a build-up method has been used. The basic structure of the build-up method is JP
According to the CA standard, there are two types: (1) base + build-up method and (2) all-layer build-up method.

【0004】(1)ベース+ビルドアップの製造方法
は、ベース基板の表面および裏面に、感光性樹脂塗布−
露光−現像−メッキ−レジスト形成−エッチング−レジ
スト除去を1サイクルとして、これを繰り返して順次配
線層を形成する方法である。この方法によれば、ビルド
アップ法によって形成した配線層を微細配線化できる点
で有利である。(2)全層ビルドアップの製造方法は、
例えば特許2587593号の様に、絶縁層にレーザー
などでビアホールを形成し、そのビアホール内に導電性
ペーストを充填することにより絶縁層の表面に形成され
た配線回路層を電気的に接続して配線層を形成し、この
ように作製した配線層を多層化するものである。
(1) A method of manufacturing a base + build-up method is to apply a photosensitive resin to the front and back surfaces of a base substrate.
This is a method in which exposure-development-plating-resist formation-etching-resist removal is defined as one cycle, and a wiring layer is sequentially formed by repeating this. This method is advantageous in that the wiring layer formed by the build-up method can be finely wired. (2) Manufacturing method of all-layer build-up
For example, as in Japanese Patent No. 2587593, a via hole is formed in an insulating layer by a laser or the like, and a conductive paste is filled in the via hole to electrically connect a wiring circuit layer formed on the surface of the insulating layer to wiring. A layer is formed, and the wiring layer thus manufactured is multilayered.

【0005】従来のベース基板となるプリント配線基板
は、ガラス繊維で補強したエポキシ樹脂の絶縁基板にド
リルで穴加工し、その孔の内壁に銅メッキを行って基板
の表裏の電気的接続を行っていた。
A conventional printed wiring board serving as a base board is formed by drilling a hole in an epoxy resin insulating board reinforced with glass fiber, and plating the inner wall of the hole with copper to make electrical connection between the front and back of the board. I was

【0006】[0006]

【発明が解決しようとする課題】しかし、近年、ベース
+ビルドアップ法でも、ベース基板自体の配線密度、特
に貫通導体の形成密度が低く、ベース基板の表面と裏面
との必要な数の電気接続ができないという問題が新たに
発生している。
However, in recent years, even in the base + build-up method, the wiring density of the base substrate itself, particularly the formation density of through conductors, is low, and a required number of electrical connections between the front surface and the rear surface of the base substrate are required. There is a new problem that cannot be done.

【0007】ところが、従来のドリル加工時にはミクロ
に観察すると高い応力と熱が生じるため、加工後の内壁
には加工変質層と呼ばれるガラス繊維と樹脂が剥離した
部分が生じており、銅メッキの工程でこの剥離部に活性
なメッキ液が侵入し、基板完成後の信頼性試験で、この
剥離部を伝って金属が拡散し、マイグレーションと呼ば
れる絶縁不良を生じていた。このため、従来のドリルな
どを用いた方法ではビアとビアの間隔を狭くしてビアホ
ール密度を上げることはできなかった。
However, since high stress and heat are generated during conventional drilling when observed microscopically, a portion of the inner wall after processing, called a deteriorated layer, where the glass fiber and the resin are peeled off, is formed. As a result, an active plating solution penetrated into the peeled portion, and in a reliability test after completion of the substrate, metal was diffused along the peeled portion, resulting in insulation failure called migration. For this reason, in the conventional method using a drill or the like, it has not been possible to increase the via hole density by reducing the distance between vias.

【0008】また、ドリルの代わりに高エネルギーのレ
ーザー光を照射して貫通孔を形成し、その内壁にメッキ
を行ったり、あるいは貫通孔内に導電性ペーストを充填
して電気的接続を行うことも試みられている。しかし、
レーザーでも熱による加工変質層が生じており、めっき
の場合はドリルと同様にこの部分にメッキ液が侵入し絶
縁信頼性を低下させていた。また、導電性ペーストを充
填する場合には、加工変質層に沿って導電性金属が拡散
し、満足な絶縁信頼性は得られなかった。
Further, a through hole is formed by irradiating a high-energy laser beam instead of a drill, and an inner wall thereof is plated, or a conductive paste is filled in the through hole to perform electrical connection. Have also been tried. But,
In the case of plating, as in the case of a drill, a plating solution penetrates into this portion, and the reliability of insulation has been reduced. When the conductive paste was filled, the conductive metal diffused along the affected layer, and satisfactory insulation reliability could not be obtained.

【0009】一方、(2)全層ビルドアップ法の1つで
ある、ビアホール導体を、導電性ペースト突き当てによ
って形成する方法ではビアピッチを狭くし、ビアを密集
させると、突起の突き当てが難しく、ビア間の絶縁信頼
性が低下するためあまり高密度化できないという問題が
あった。また、アラミド不織布―エポキシ樹脂系の絶縁
材料を用いる方法では、レーザーによるビア加工は容易
であるが、アラミド樹脂の吸湿性が高いためにエポキシ
樹脂も吸湿が進み、吸湿が原因の信頼性低下が生じるた
め、この方法でも、ビア密度の改善はできていなかっ
た。
On the other hand, (2) a method of forming a via-hole conductor by abutting a conductive paste, which is one of the all-layer build-up methods, makes it difficult to abut a projection if the via pitch is narrowed and the vias are densely packed. In addition, there is a problem that the density cannot be increased much because insulation reliability between vias is reduced. In the method using an aramid nonwoven fabric-epoxy resin-based insulating material, via processing with a laser is easy, but since the aramid resin has high hygroscopicity, the epoxy resin also absorbs moisture, and the reliability is reduced due to moisture absorption. Therefore, even with this method, the via density has not been improved.

【0010】また、従来、レーザー光の照射によって貫
通孔を略格子状に形成する場合、図4に示すように、例
えば、格子配列の上段から下段に向かって順次、レーザ
ー光を照射して穿孔していた。ところが、かかる方法で
は、貫通孔のピッチ間隔が狭くなるに従い、レーザー光
の照射時の加工熱の放散が困難となり、貫通孔が変形
し、それによってこの貫通孔に導体ペーストを充填した
際に、隣接する貫通導体間でリークが発生するなどの問
題があった。
Conventionally, when the through holes are formed in a substantially lattice shape by irradiating a laser beam, as shown in FIG. 4, for example, laser beams are sequentially irradiated from the upper stage to the lower stage of the lattice arrangement to form the holes. Was. However, in such a method, as the pitch interval of the through-holes becomes narrower, it becomes difficult to dissipate the processing heat at the time of irradiating the laser light, and the through-holes are deformed, thereby filling the through-holes with the conductive paste. There is a problem that a leak occurs between adjacent through conductors.

【0011】特に、ガラス繊維の織布中に熱硬化性樹脂
を含浸した、いわゆるプリプレグに対して貫通孔を形成
する場合、レーザーの照射、特に炭酸ガスレーザーの照
射によって形成することは従来困難であった。なぜなら
ば、貫通孔密集部に加工熱が蓄積され、付近の温度が上
昇する為に樹脂が炭化したり、部分的に熱膨張が生じて
変形し、必要な精度で貫通孔の加工を行うことができな
かった。また、レーザー光の加工熱により貫通孔内壁付
近のガラス繊維と樹脂の界面に剥離が生じ、絶縁信頼性
が低下するなどの問題もあった。
Particularly, when a through hole is formed in a so-called prepreg in which a thermosetting resin is impregnated in a woven fabric of glass fiber, it is conventionally difficult to form the through hole by laser irradiation, particularly carbon dioxide laser irradiation. there were. This is because processing heat accumulates in the through-hole dense area and the resin rises near the temperature, resulting in carbonization of the resin or partial thermal expansion, resulting in deformation and processing of the through-hole with the required precision. Could not. In addition, there is another problem that the interface between the glass fiber and the resin near the inner wall of the through-hole is separated due to the processing heat of the laser beam, and the insulation reliability is reduced.

【0012】本発明は、上記のようなシリコンチップの
I/Oパッドの増加に対しても対応可能な、ピッチ間隔
の狭い略格子状に配列した貫通孔をレーザー光の照射に
よって形成するにあたり、加工熱の熱放散不良に伴うシ
ート材の変形、変質や、貫通孔の変形を防止し、精度の
高い貫通孔を形成できる穿孔方法を提供することを目的
とするものである。
According to the present invention, in forming through holes arranged in a substantially lattice shape with a narrow pitch and capable of coping with an increase in the number of I / O pads of a silicon chip by irradiating a laser beam as described above, An object of the present invention is to provide a perforation method capable of forming a highly accurate through-hole by preventing deformation and deterioration of a sheet material and deformation of a through-hole due to poor heat dissipation of processing heat.

【0013】[0013]

【課題を解決するための手段】本発明の穿孔方法は、所
定のシートに対して、レーザー光の照射によって、略格
子状に配列した貫通孔を形成する穿孔方法において、前
記略格子配列のほぼ中心部に位置する穿孔ポイントを始
点とし、この始点から外側に向かって略同心円状に穿孔
ポイントを移動させつつレーザー光を照射することによ
って上記目的を達成できることを見いだした。
According to the present invention, there is provided a punching method for forming through holes arranged in a substantially lattice pattern on a predetermined sheet by irradiating a laser beam to the predetermined sheet. It has been found that the above object can be achieved by irradiating a laser beam while moving the piercing point substantially concentrically outward from the starting point with the piercing point located at the center as the starting point.

【0014】さらに具体的には、1つの穿孔ポイントに
複数回のレーザー光を照射して貫通孔を形成すること、
特に略格子状に配列した穿孔ポイントのすべてに少なく
とも1パルスづつレーザー光を照射する工程を複数回繰
り返すことによって、すべての穿孔ポイントに貫通孔を
形成することが、変形を防止する上で望ましい。また、
前記始点から外側に向かって渦巻き状に穿孔ポイントを
移動させつつレーザー光を照射することが望ましい。
More specifically, irradiating a single drilling point with a laser beam a plurality of times to form a through-hole;
In particular, it is desirable to form through holes at all the drilling points by repeating the process of irradiating the laser light at least one pulse at a time to all of the drilling points arranged in a substantially lattice shape a plurality of times to prevent deformation. Also,
It is desirable to irradiate the laser beam while moving the perforation point spirally from the start point outward.

【0015】なお、本発明の方法は、前記シートは、未
硬化の熱硬化性樹脂を含有する場合、また貫通孔を30
0μm以下のピッチ間隔で略格子状に穿孔する場合、未
硬化の熱硬化性樹脂が、エポキシ樹脂、ポリフェニレン
エーテル樹脂、イミド樹脂の群から選ばれる少なくとも
1種である場合、前記シート中に、ガラス繊維またはア
ラミド繊維の織布または不織布からなる耐熱性繊維が含
まれる場合において特に有効である。
In the method of the present invention, when the sheet contains an uncured thermosetting resin, the sheet has 30 through holes.
In the case where the uncured thermosetting resin is at least one selected from the group consisting of an epoxy resin, a polyphenylene ether resin, and an imide resin when the perforations are formed in a substantially lattice shape at a pitch interval of 0 μm or less, the glass This is particularly effective when heat-resistant fibers made of woven or non-woven fibers or aramid fibers are included.

【0016】[0016]

【発明の実施の形態】(レーザー穿孔)本発明の穿孔方
法について具体的に図面をもとに説明する。本発明の穿
孔方法は、図1に示すように、所定のシート1に対して
レーザー光源2からミラー3など経由してシート1表面
にレーザー光4を誘導し、シート1の表面に貫通孔5を
形成するものである。また、このレーザー光4は、ミラ
ー3などの角度調整によって、シート1の任意の箇所に
レーザー光4を誘導できるように構成されている。そし
て、レーザー光4のエネルギーによってシート1に貫通
孔5を形成するものである。 (穿孔方法)本発明は、シート1に対して、図2に示す
ように、貫通孔5を例えば縦m個×横n個の貫通孔5を
略格子状に配列形成する方法である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Laser Drilling) The drilling method of the present invention will be specifically described with reference to the drawings. According to the perforation method of the present invention, as shown in FIG. 1, a laser light 4 is guided to a predetermined sheet 1 from a laser light source 2 via a mirror 3 to a surface of the sheet 1, and a through hole 5 is formed in the surface of the sheet 1. Is formed. Further, the laser light 4 is configured so that the laser light 4 can be guided to an arbitrary portion of the sheet 1 by adjusting the angle of the mirror 3 or the like. Then, through holes 5 are formed in the sheet 1 by the energy of the laser beam 4. (Punching Method) According to the present invention, as shown in FIG. 2, for example, the through holes 5 are formed in the sheet 1 in such a manner that m through n through holes 5 are arranged in a substantially lattice shape.

【0017】本発明によれば、上記のような貫通孔5を
形成するにあたり、略格子配列のほぼ中心部に位置する
穿孔ポイントp1を始点とし、この始点から外側に向か
って略同心円状にレーザー光の照射位置を移動させつつ
穿孔ポイントに穿孔するものである。
According to the present invention, in forming the through holes 5 as described above, the perforation point p1 located substantially at the center of the substantially lattice array is set as a starting point, and the laser is concentrically formed outward from the starting point. The hole is pierced at the piercing point while moving the light irradiation position.

【0018】より具体的には、図2(a)に示すよう
に、穿孔ポイントp1から外側に向かって渦巻き状にレ
ーザー光の照射位置を順次移動させる。また、図2
(b)のように、(a)と同様に渦巻き状であるが、格
子の対角線に沿ってレーザー光の照射位置を移動させて
もよい。さらに、図2(c)(d)のように、途中に折
り返し部を有しつつ、略同心円状に照射位置を移動させ
ることもできる。
More specifically, as shown in FIG. 2A, the irradiation position of the laser beam is sequentially moved in a spiral shape from the perforation point p1 toward the outside. FIG.
As shown in (b), it has a spiral shape as in (a), but the irradiation position of the laser beam may be moved along the diagonal of the lattice. Further, as shown in FIGS. 2C and 2D, the irradiation position can be moved substantially concentrically while having a folded portion in the middle.

【0019】このように、穿孔ポイントp1を始点と
し、この始点から外側に向かって略同心円状にレーザー
光の照射位置を移動させつつ穿孔ポイントに穿孔する方
法によれば、図4の従来のレーザー光の照射位置の移動
方法に比べて後述する実施例から明らかなように、貫通
孔の変形を効果的に防止することができる。これは、本
発明の方法によれば、レーザー光の照射に伴う加工熱が
穿孔過程において均等に拡散し熱の淀み等を効果的に除
去することができるためと考えられる。 (穿孔方法−サイクルショット)なお、本発明の穿孔方
法によれば、1パルスのレーザー光の照射によって貫通
孔を形成する場合、その穿孔ポイントに大量の加工熱が
付与される結果、貫通孔の変形を招くおそれがある。
As described above, according to the method in which the laser beam irradiation position is moved substantially concentrically outward from the start point with the perforation point p1 as the starting point, the conventional laser shown in FIG. As is clear from the embodiment described later, the deformation of the through-hole can be effectively prevented as compared with the method of moving the light irradiation position. It is considered that this is because according to the method of the present invention, the processing heat accompanying the irradiation of the laser beam is evenly diffused in the perforation process, and the stagnation of the heat can be effectively removed. (Punching Method-Cycle Shot) According to the drilling method of the present invention, when a through-hole is formed by irradiating one pulse of laser light, a large amount of processing heat is applied to the drilling point, and as a result, the through-hole is formed. Deformation may be caused.

【0020】そこで、1パルス当たりのレーザー光のエ
ネルギーを2パルス以上の照射によって貫通孔が形成す
る程度の低いエネルギーに設定することが望ましい。こ
れによって、2パルス以上照射することで、1パルスご
との加工熱を放散させながら徐々に加工するために、貫
通孔の変形などを防止することができる。
Therefore, it is desirable to set the energy of the laser beam per pulse to be low enough to form a through hole by irradiating two or more pulses. Thus, by irradiating two or more pulses, processing is performed gradually while dissipating the processing heat for each pulse, so that deformation of the through-hole can be prevented.

【0021】また、上記の場合には、穿孔ポイントに1
パルスまたは2パルス以上のレーザー光を照射しなが
ら、前述したようなレーザー光の照射位置の移動方法に
よって略格子状に配列した穿孔ポイントのすべてにレー
ザー光を照射した後、これを1サイクルとして、再度始
点となる穿孔ポイントに戻り同じ方法で穿孔を行って、
複数サイクル繰り返すことによって、すべての穿孔ポイ
ントに貫通孔を形成する。これによって、熱の拡散をよ
り均等にでき、貫通孔の変形なく格子状に貫通孔を形成
することができる。 (プリント基板)本発明の穿孔方法は、所定のシートに
貫通孔を形成する場合に用いられるものであって、シー
トとしては、特に少なくとも有機樹脂を含有する厚さが
20〜200μmのシートが好適である。このようなシ
ートとしては、有機樹脂、あるいは有機樹脂と無機質粉
末や、無機あるいは有機繊維体との複合体などが挙げら
れる。
Also, in the above case, 1 is set at the piercing point.
While irradiating the laser light of the pulse or two or more pulses, by irradiating the laser light to all the perforation points arranged in a substantially lattice shape by the method of moving the irradiation position of the laser light as described above, as a cycle, Return to the starting point of the drilling point again and perform drilling in the same way,
By repeating a plurality of cycles, through holes are formed at all drilling points. Thereby, the diffusion of heat can be made more uniform, and the through holes can be formed in a lattice shape without deformation of the through holes. (Printed circuit board) The perforation method of the present invention is used for forming a through hole in a predetermined sheet. As the sheet, a sheet containing at least an organic resin and having a thickness of 20 to 200 μm is particularly preferable. It is. Examples of such a sheet include an organic resin, or a composite of an organic resin and an inorganic powder, or an inorganic or organic fibrous body.

【0022】本発明の穿孔方法は、特にプリント配線基
板を作製する場合に最も好適である。具体的には、穿孔
するシート中に、エポキシ樹脂、ポリフェニレンエーテ
ル樹脂、イミド樹脂の群から選ばれる少なくとも1種の
未硬化の熱硬化性樹脂が含まれ、さらには、一般にプリ
プレグと呼ばれるガラス繊維またはアラミド繊維の織布
または不織布からなる耐熱性繊維に上記の熱硬化性樹脂
が含浸されたシートに対して貫通孔を形成する場合に好
適である。
The perforation method of the present invention is most suitable particularly for producing a printed wiring board. Specifically, the sheet to be perforated contains at least one uncured thermosetting resin selected from the group of epoxy resin, polyphenylene ether resin, and imide resin, and furthermore, glass fiber generally called prepreg or It is suitable when a through-hole is formed in a sheet in which the above-mentioned thermosetting resin is impregnated into a heat-resistant fiber made of a woven or non-woven aramid fiber.

【0023】とりわけ、情報(信号)の出し入れを行う
端子数が飛躍的に増大する中で、半導体素子を実装する
配線基板として適用させる場合、配線基板においてピッ
チ間隔が300μm以下の高密度の貫通孔を穿孔するこ
とが必要である。それと同時に、貫通孔の直径は100
μm以下であることが望まれる。これは貫通孔の直径が
100μmを超えると、レーザー光による貫通孔加工時
の熱の影響が大きくなるため、加工速度を速くできなく
なる傾向がある。
In particular, when the number of terminals through which information (signals) are taken in and out is dramatically increased, when applied as a wiring board on which a semiconductor element is mounted, a high-density through hole having a pitch interval of 300 μm or less in the wiring board. It is necessary to perforate. At the same time, the diameter of the through hole is 100
It is desired that the thickness be not more than μm. If the diameter of the through-hole exceeds 100 μm, the effect of heat at the time of processing the through-hole by the laser beam increases, so that the processing speed tends to be unable to be increased.

【0024】本発明の穿孔方法によれば、上記のよう
な、貫通孔のピッチ間隔(貫通孔の中心と最近接する貫
通孔中心との間隔)が300μm以下、特に250μm
以下の場合であっても、加工熱によって樹脂を含有する
シートが変形または変質や、貫通孔の変形を防止しつつ
貫通孔を形成することができる。
According to the drilling method of the present invention, the pitch interval between the through holes (the interval between the center of the through hole and the center of the nearest through hole) is 300 μm or less, particularly 250 μm.
Even in the following cases, the through holes can be formed while preventing the resin-containing sheet from being deformed or deteriorated by the processing heat and the through holes from being deformed.

【0025】また、上記のプリプレグに穿孔する場合、
レーザー光の1パルス当たりの照射量は小さすぎると、
貫通孔を形成するのに多くの照射が必要となり、逆に大
きすぎると加工熱が大きくなり、熱の淀みが発生しやす
くなり、プリプレグの変形、変質や貫通孔の変形が生じ
やすくなる。従って、レーザー光の1パルス当たりの照
射量は2〜20mJ、特に3〜10mJが適当である。 (プリント基板の製造方法)次に、上記の穿孔方法を用
いた多層プリント配線基板の製造方法の一例について説
明する。まず、図3(a)に示すように、未硬化樹脂と
ガラス繊維を含有するプリプレグ10を用意する。この
プリプレグ10に含まれる未硬化樹脂としては、PPE
(ポリフェニレンエーテル)、BTレジン(ビスマレイ
ミドトリアジン)、エポキシ樹脂、ポリイミド樹脂、ポ
リアミドビスマレイミドの群から選ばれる少なくとも1
種の樹脂が望ましい。
In the case of piercing the above prepreg,
If the irradiation amount per pulse of laser light is too small,
A large amount of irradiation is required to form the through-hole. Conversely, if it is too large, the processing heat increases, heat stagnation tends to occur, and prepreg deformation, alteration, and deformation of the through-hole easily occur. Therefore, the irradiation amount per pulse of the laser beam is suitably 2 to 20 mJ, particularly 3 to 10 mJ. (Method of Manufacturing Printed Circuit Board) Next, an example of a method of manufacturing a multilayer printed circuit board using the above-described punching method will be described. First, as shown in FIG. 3A, a prepreg 10 containing an uncured resin and glass fibers is prepared. The uncured resin contained in the prepreg 10 is PPE
(Polyphenylene ether), BT resin (bismaleimide triazine), epoxy resin, polyimide resin, polyamide bismaleimide
Some resins are desirable.

【0026】次に、図3(b)に示すように、未硬化状
態のプリプレグ11に、前述したような穿孔方法に基づ
いて、貫通孔12を穿孔する。このときのレーザーのエ
ネルギーは1パルスあたり2〜20mJ、特に3〜10
mJが適当である。
Next, as shown in FIG. 3B, through holes 12 are formed in the uncured prepreg 11 based on the above-described method. The energy of the laser at this time is 2 to 20 mJ per pulse, particularly 3 to 10 mJ.
mJ is appropriate.

【0027】次に、図3(c)に示すように、貫通孔1
2に、銅などの金属粉末と樹脂との混合物からなる導電
性ペーストを充填して貫通導体13を形成する。
Next, as shown in FIG.
2 is filled with a conductive paste made of a mixture of a metal powder such as copper and a resin to form the through conductor 13.

【0028】次に、このプリプレグ11の表面および/
または裏面に配線回路層を形成する。例えば、図3
(d)に示すように、フィルム14上に銅箔15を貼
り、エッチングして鏡像の配線回路層16を形成し、貫
通導体13を形成したプリプレグ11表面に転写して1
層の配線層17を作製する。
Next, the surface of the prepreg 11 and / or
Alternatively, a wiring circuit layer is formed on the back surface. For example, FIG.
As shown in (d), a copper foil 15 is applied on the film 14, etched to form a mirror image wiring circuit layer 16, and transferred to the surface of the prepreg 11 on which the penetrating conductor 13 is formed.
The wiring layer 17 is formed.

【0029】その後、図3(e)に示すように、上記と
同様にして作製した複数の配線層18,19を配線層1
7に位置合わせして積層した後に、プリプレグ中の熱硬
化性樹脂が完全に硬化する温度に加熱することによって
多層プリント配線基板を作製することができる。
Thereafter, as shown in FIG. 3E, the plurality of wiring layers 18 and 19 manufactured in the same manner as described above are connected to the wiring layer 1.
After the laminate is aligned with No. 7 and heated to a temperature at which the thermosetting resin in the prepreg is completely cured, a multilayer printed wiring board can be manufactured.

【0030】上記の製造方法においては、絶縁シートと
してプリプレグを採用しているが、絶縁シートは、これ
に限られず、前記熱硬化性樹脂に対して、シリカ、アル
ミナ、ムライト、ジルコニアなどの無機粉末を5〜70
体積%の割合で添加したものであってもよく、上記プリ
プレグとの組み合わせで用いることもできる。
In the above-described manufacturing method, prepreg is used as the insulating sheet. However, the insulating sheet is not limited to this, and the inorganic material such as silica, alumina, mullite, zirconia, etc. may be used for the thermosetting resin. 5 to 70
The prepreg may be used in combination with the prepreg described above.

【0031】[0031]

【実施例】(1)コア基板として、ガラス繊維からなる
織布にポリフェニレンエーテル(PPE)樹脂を含浸し
たプリプレグを用意した。このプリプレグに、図2
(a)〜(d)および図4のいずれかの方法によって、
CO2レーザーで10ミリ角の正方形エリア内に直径1
00μm、ピッチ間隔250μm、200μm、150
μmで配列した貫通孔の加工を行なった。また、貫通孔
の状態を観察した。
EXAMPLES (1) As a core substrate, a prepreg was prepared by impregnating a woven fabric made of glass fiber with a polyphenylene ether (PPE) resin. Fig. 2
(A) to (d) and any of the methods in FIG.
1 mm diameter within a 10 mm square area with a CO 2 laser
00 μm, pitch interval 250 μm, 200 μm, 150
The through-holes arranged in μm were processed. Further, the state of the through hole was observed.

【0032】その後、この貫通孔内に、銅粉末と有機バ
インダを含有する導体ペーストをスクリーン印刷法によ
って充填して貫通導体を形成した。
Thereafter, a conductor paste containing copper powder and an organic binder was filled in the through-hole by a screen printing method to form a through conductor.

【0033】一方、12μmの厚さの銅箔を接着したP
ET樹脂フィルムの銅箔に対してフォトレジスト法によ
って転写用配線回路層を形成した。次いで、上記プリプ
レグに、上記の樹脂フィルムを位置あわせして積層し、
120℃、30kg/cm2で加熱加圧し、樹脂フィル
ムを剥がすことで、配線回路層を転写させた。
On the other hand, P with a 12 μm thick copper foil adhered thereto
A transfer wiring circuit layer was formed on the copper foil of the ET resin film by a photoresist method. Next, on the prepreg, the resin film is aligned and laminated,
The wiring circuit layer was transferred by heating and pressing at 120 ° C. and 30 kg / cm 2 to peel off the resin film.

【0034】そして、同様に貫通導体および配線回路層
を形成したプリプレグを3層積層し、真空プレス装置用
いて20kgf/cm2の圧力を加えながら200℃で
1時間加熱して基板を完全硬化させた。
Similarly, three prepregs each having a through conductor and a wiring circuit layer formed thereon are laminated, and heated at 200 ° C. for 1 hour while applying a pressure of 20 kgf / cm 2 using a vacuum press to completely cure the substrate. Was.

【0035】得られた配線基板の貫通導体形成部を切断
し断面の形状を観察した。さらに、この配線基板を
(a)121℃、2.1気圧、湿度100%の雰囲気、
(b)130℃、湿度85%、5.5V印加の条件でそ
れぞれ300時間放置し絶縁信頼性を評価し、その結果
を表1に示した。
The through conductor forming portion of the obtained wiring board was cut, and the cross-sectional shape was observed. Further, this wiring board was subjected to (a) an atmosphere of 121 ° C., 2.1 atm, and 100% humidity,
(B) Insulation reliability was evaluated by standing for 300 hours under conditions of 130 ° C., 85% humidity, and 5.5 V, respectively. The results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果からな明らかなように、従来の
レーザー光の移動方法で貫通孔の穿孔を行なった試料N
o.9〜11では、貫通孔の周囲に変色および貫通孔の
変形が認められ、貫通導体においても隣接する貫通導体
間で絶縁不良が発生した。
As is apparent from the results shown in Table 1, the sample N in which the through-hole was formed by the conventional laser light moving method was used.
o. In Nos. 9 to 11, discoloration and deformation of the through-hole were observed around the through-hole, and insulation failure occurred between adjacent through-conductors even in the through-conductor.

【0038】これに対して、本発明に基づき、貫通孔を
形成した試料は、いずれも貫通孔の周囲や貫通孔に変色
や変形は見られず、信頼性試験においても良好な結果を
示した。
On the other hand, the samples in which the through-holes were formed according to the present invention did not show any discoloration or deformation around the through-holes or in the through-holes, and showed good results in the reliability test. .

【0039】[0039]

【発明の効果】以上詳述したように、本発明によれば、
ピッチ間隔の狭い略格子状に配列した貫通孔をレーザー
光の照射によって形成するにあたり、加工熱の熱放散不
良に伴うシート材の変形、変質や、貫通孔の変形を防止
し、精度の高い貫通孔を形成できる。そのために、シリ
コンチップのI/Oパッドの増加に対しても対応可能な
配線基板を作製することができる。
As described in detail above, according to the present invention,
When forming through holes arranged in a substantially lattice pattern with a narrow pitch interval by irradiating laser light, deformation and deterioration of the sheet material due to poor heat dissipation of processing heat and deformation of the through holes are prevented, and high precision penetration is achieved. Holes can be formed. Therefore, a wiring board that can cope with an increase in the number of I / O pads of a silicon chip can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における穿孔方法の概略を説明するため
の図である。
FIG. 1 is a view for explaining an outline of a perforation method according to the present invention.

【図2】本発明における穿孔方法におけるレーザー光の
移動方向を説明するための図である。
FIG. 2 is a diagram for explaining a moving direction of a laser beam in a perforation method according to the present invention.

【図3】多層プリント配線基板の製造方法を説明するた
めの工程図である。
FIG. 3 is a process chart for explaining a method for manufacturing a multilayer printed wiring board.

【図4】従来の穿孔方法におけるレーザー光の移動方法
を説明するための図である。
FIG. 4 is a diagram for explaining a method of moving a laser beam in a conventional perforation method.

【符号の説明】[Explanation of symbols]

1 シート 2 レーザー光源 3 ミラー 4 レーザー光 5 貫通孔 1 sheet 2 laser light source 3 mirror 4 laser light 5 through hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/03 610 H05K 1/03 610L 610U 3/00 3/00 N // B23K 101:42 B23K 101:42 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 1/03 610 H05K 1/03 610L 610U 3/00 3/00 N // B23K 101: 42 B23K 101: 42

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】所定のシートに対して、レーザー光の照射
によって、略格子状に配列した貫通孔を形成する穿孔方
法において、前記略格子配列のほぼ中心部に位置する穿
孔ポイントを始点とし、この始点から外側に向かって略
同心円状に穿孔ポイントを移動させつつレーザー光を照
射することを特徴とする穿孔方法。
1. A perforation method for forming through-holes arranged in a substantially lattice shape by irradiating a predetermined sheet with a laser beam, wherein a perforation point located substantially at the center of the substantially lattice arrangement is set as a starting point, A perforation method comprising irradiating a laser beam while moving the perforation point substantially concentrically from the starting point toward the outside.
【請求項2】1つの穿孔ポイントに2パルス以上のレー
ザー光を照射して貫通孔を形成することを特徴とする請
求項1記載の穿孔方法。
2. The perforation method according to claim 1, wherein a laser beam of two or more pulses is applied to one perforation point to form a through-hole.
【請求項3】略格子状に配列した穿孔ポイントのすべて
に少なくとも1パルスづつレーザー光を照射する工程を
複数回繰り返すことによって、すべての穿孔ポイントに
貫通孔を形成することを特徴とする請求項2記載の穿孔
方法。
3. The method according to claim 1, wherein a step of irradiating all the drilling points arranged in a substantially lattice pattern with laser light at least one pulse at a time is repeated a plurality of times to form through holes at all drilling points. 2. The perforation method according to 2.
【請求項4】前記始点から外側に向かって渦巻き状に穿
孔ポイントを移動させつつレーザー光を照射することを
特徴とする請求項1記載の穿孔方法。
4. The drilling method according to claim 1, wherein the laser beam is irradiated while moving the drilling point spirally from the starting point outward.
【請求項5】前記シートが、未硬化の熱硬化性樹脂を含
有することを特徴とする請求項1記載の穿孔方法。
5. The perforating method according to claim 1, wherein the sheet contains an uncured thermosetting resin.
【請求項6】前記貫通孔を300μm以下のピッチ間隔
で略格子状に穿孔することを特徴とする請求項1記載の
穿孔方法。
6. The drilling method according to claim 1, wherein the through holes are drilled in a substantially lattice shape at a pitch interval of 300 μm or less.
【請求項7】未硬化の熱硬化性樹脂が、エポキシ樹脂、
ポリフェニレンエーテル樹脂、イミド樹脂の群から選ば
れる少なくとも1種であることを特徴とする請求項1記
載の穿孔方法。
7. The uncured thermosetting resin is an epoxy resin,
The perforation method according to claim 1, wherein the perforation method is at least one selected from the group consisting of a polyphenylene ether resin and an imide resin.
【請求項8】前記シート中に、ガラス繊維またはアラミ
ド繊維の織布または不織布からなる耐熱性繊維が含まれ
ることを特徴とする請求項5記載の穿孔方法。
8. The perforation method according to claim 5, wherein the sheet contains heat-resistant fibers made of a woven or non-woven fabric of glass fibers or aramid fibers.
JP2000231743A 2000-07-31 2000-07-31 Drilling method Expired - Fee Related JP4439092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231743A JP4439092B2 (en) 2000-07-31 2000-07-31 Drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231743A JP4439092B2 (en) 2000-07-31 2000-07-31 Drilling method

Publications (2)

Publication Number Publication Date
JP2002035977A true JP2002035977A (en) 2002-02-05
JP4439092B2 JP4439092B2 (en) 2010-03-24

Family

ID=18724530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231743A Expired - Fee Related JP4439092B2 (en) 2000-07-31 2000-07-31 Drilling method

Country Status (1)

Country Link
JP (1) JP4439092B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224874A (en) * 2001-01-30 2002-08-13 Kyocera Corp Piercing method
JP2010162548A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Machining apparatus and program for the same
WO2013058169A1 (en) * 2011-10-20 2013-04-25 旭硝子株式会社 Method for forming through holes in insulating substrate and method for manufacturing insulating substrate for interposer
CN108406141A (en) * 2018-04-18 2018-08-17 中国科学院西安光学精密机械研究所 Ultrafast laser capillary processing method and device based on optical coherence tomography scanning
CN113873765A (en) * 2021-09-29 2021-12-31 景旺电子科技(珠海)有限公司 Circuit board manufacturing method and circuit board
CN116390361A (en) * 2023-06-07 2023-07-04 淄博芯材集成电路有限责任公司 Method for optimizing stress uniformity of X-type laser hole based on convolution type laser track

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224874A (en) * 2001-01-30 2002-08-13 Kyocera Corp Piercing method
JP4683736B2 (en) * 2001-01-30 2011-05-18 京セラ株式会社 Drilling method
JP2010162548A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Machining apparatus and program for the same
WO2013058169A1 (en) * 2011-10-20 2013-04-25 旭硝子株式会社 Method for forming through holes in insulating substrate and method for manufacturing insulating substrate for interposer
CN108406141A (en) * 2018-04-18 2018-08-17 中国科学院西安光学精密机械研究所 Ultrafast laser capillary processing method and device based on optical coherence tomography scanning
CN108406141B (en) * 2018-04-18 2024-05-03 西安中科微精光子科技股份有限公司 Ultrafast laser micropore processing method and device based on optical coherence tomography
CN113873765A (en) * 2021-09-29 2021-12-31 景旺电子科技(珠海)有限公司 Circuit board manufacturing method and circuit board
CN116390361A (en) * 2023-06-07 2023-07-04 淄博芯材集成电路有限责任公司 Method for optimizing stress uniformity of X-type laser hole based on convolution type laser track
CN116390361B (en) * 2023-06-07 2023-10-20 淄博芯材集成电路有限责任公司 Method for optimizing stress uniformity of X-type laser hole based on convolution type laser track

Also Published As

Publication number Publication date
JP4439092B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US5737833A (en) Method of producing a high-density printed wiring board for mounting
JP5698377B2 (en) Method for manufacturing component-embedded substrate and component-embedded substrate manufactured using this method
JPH11266084A (en) Manufacture of multilayer printed circuit board
JP2000101245A (en) Multilayer resin wiring board and its manufacture
WO1997048260A1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method for its production
JP3492467B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
JP2000312063A (en) Wiring substrate and manufacture thereof
JP4439092B2 (en) Drilling method
JP2007115809A (en) Wiring board
JP4683736B2 (en) Drilling method
JP2002353633A (en) Method for manufacturing multi-layer printed wiring board and multi-layer printed wiring board
US6492007B1 (en) Multi-layer printed circuit bare board enabling higher density wiring and a method of manufacturing the same
JPH1041635A (en) Single-sided circuit board for multilayer printed wiring board, its manufacture, and multilayer printed wiring board
JP4282161B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP4780881B2 (en) Drilling method of prepreg sheet by laser
JP4802402B2 (en) High-density multilayer build-up wiring board and manufacturing method thereof
JP3236812B2 (en) Multilayer wiring board
JP3253886B2 (en) Single-sided circuit board for multilayer printed wiring board, method for manufacturing the same, and multilayer printed wiring board
JPH05267853A (en) Manufacture of multilayer printed circuit board
JPH07106756A (en) Manufacture of printed wiring board
JP2737548B2 (en) Manufacturing method of multilayer printed wiring board
JPH10224041A (en) Multilayer wiring board and its manufacturing method
JP2013187458A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
JPH11126968A (en) Manufacture of multilayered printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees