JP2002026337A - Static ram - Google Patents

Static ram

Info

Publication number
JP2002026337A
JP2002026337A JP2001169123A JP2001169123A JP2002026337A JP 2002026337 A JP2002026337 A JP 2002026337A JP 2001169123 A JP2001169123 A JP 2001169123A JP 2001169123 A JP2001169123 A JP 2001169123A JP 2002026337 A JP2002026337 A JP 2002026337A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor layer
insulating film
back gate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001169123A
Other languages
Japanese (ja)
Other versions
JP3986767B2 (en
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001169123A priority Critical patent/JP3986767B2/en
Publication of JP2002026337A publication Critical patent/JP2002026337A/en
Application granted granted Critical
Publication of JP3986767B2 publication Critical patent/JP3986767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Dram (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an SRAM having excellent characteristics. SOLUTION: A back gate electrode is provided on a board with an insulating surface, a semiconductor layer equipped with an N-type impurity region is provided on the board through the intermediary of an insulating film, covering the back gate electrode. The back gate electrodes is formed, overlapping only on either one of a source or a drain, but not on the other one and kept at 0 potential or certain negative potential. An N channel-type thin film transistor has a structure is which two gate electrodes are formed on the semiconductor layer through the intermediary of a gate insulating film, including the above back gate electrode. A P-channel thin film transistor has a structure in which a semiconductor layer with a P-type impurity region is formed on the board through the intermediary of an insulating film, and a single gate electrode is formed on the semiconductor layer through the intermediary of a gate insulating film. The N-channel and P-channel thin film transistor are combined for the formation of a complementary MOS circuit, and the MOS circuits are combined into a static RAM.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁基板状に形成さ
れた薄膜状の活性層(活性化領域、チャネル領域ともい
う)を有する絶縁ゲイト型半導体装置、例えば薄膜トラ
ンジスタ(TFT)に関する。本発明の応用される分野
としては、半導体集積回路、液晶表示装置、光学読み取
り装置等である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate semiconductor device having a thin-film active layer (also referred to as an active region or a channel region) formed on an insulating substrate, for example, a thin film transistor (TFT). Fields to which the present invention is applied include semiconductor integrated circuits, liquid crystal display devices, optical reading devices, and the like.

【0002】[0002]

【従来の技術】最近、絶縁基板上に、薄膜状の活性層を
有する絶縁ゲイト型の半導体装置の研究がなされてい
る。特に、薄膜状の絶縁ゲイトトランジスタ、いわゆる
薄膜トランジスタ(TFT)が熱心に研究されている。
これらは、液晶等の表示装置において、マトリクス構造
を有するものの各画素の制御用に利用することが目的で
あり、利用する半導体の材料・結晶状態によって、アモ
ルファスシリコンTFTや多結晶シリコンTFTという
ように区別されている。もっとも、最近では多結晶シリ
コンとアモルファスの中間的な状態を呈する材料も利用
する研究がなされている。これは、セミアモルファスと
いわれ、アモルファス状の組織に小さな結晶が浮かんだ
状態であると考えられている。
2. Description of the Related Art Recently, studies have been made on an insulated gate type semiconductor device having a thin film active layer on an insulating substrate. In particular, a thin film insulated gate transistor, a so-called thin film transistor (TFT), has been enthusiastically studied.
These have a matrix structure in a display device such as a liquid crystal device, but are intended to be used for controlling each pixel. Depending on the material and crystal state of a semiconductor to be used, an amorphous silicon TFT or a polycrystalline silicon TFT may be used. Are distinguished. However, recently, research has been made on using a material exhibiting an intermediate state between polycrystalline silicon and amorphous. This is called semi-amorphous, and is considered to be a state in which small crystals float in an amorphous structure.

【0003】また、単結晶シリコン集積回路において
も、いわゆるSOI技術として多結晶シリコンTFTが
用いられており、これは例えば高集積度SRAMにおい
て、負荷トランジスタとして使用される。但し、この場
合には、アモルファスシリコンTFTはほとんど使用さ
れない。
[0003] Also in a single-crystal silicon integrated circuit, a polycrystalline silicon TFT is used as a so-called SOI technique, which is used as a load transistor in, for example, a highly integrated SRAM. However, in this case, the amorphous silicon TFT is hardly used.

【0004】一般にアモルファス状態の半導体の電界移
動度は小さく、したがって、高速動作が要求されるTF
Tには利用できない。また、アモルファスシリコンで
は、P型の電界移動度は著しく小さいので、Pチャネル
型のTFT(PMOSのTFT)を作製することができ
ず、したがって、Nチャネル型TFT(NMOSのTF
T)と組み合わせて、相補型のMOS回路(CMOS)
を形成することができない。
Generally, the electric field mobility of a semiconductor in an amorphous state is small, and therefore, a TF which requires high-speed operation is required.
Not available for T. Further, in the case of amorphous silicon, the P-type electric field mobility is extremely small, so that a P-channel TFT (PMOS TFT) cannot be manufactured.
T) and complementary MOS circuit (CMOS)
Cannot be formed.

【0005】しかしながら、アモルファス半導体によっ
て形成したTFTはOFF電流が小さいという特徴を持
つ。そこで、液晶のアクティブマトリクスのトランジス
タのように、それほどの高速動作が要求されず、一方の
導電型だけで十分であり、かつ、電荷保持能力の高いT
FTが必要とされる用途に利用されている。
[0005] However, a TFT formed of an amorphous semiconductor has a feature that the OFF current is small. Therefore, unlike a transistor of an active matrix of a liquid crystal, such a high-speed operation is not required, and only one conductivity type is sufficient, and T
It is used for applications where FT is required.

【0006】一方、多結晶半導体は、アモルファス半導
体よりも電界移動度が大きく、したがって、高速動作が
可能である。例えば、レーザーアニールによって再結晶
化させたシリコン膜を用いたTFTでは、電界移動度と
して300cm2 /Vsもの値が得られている。通常の
単結晶シリコン基板上に形成されたMOSトランジスタ
の電界移動度が500cm2 /Vs程度であることから
すると、極めて大きな値であり、単結晶シリコン上のM
OS回路が基板と配線間の寄生容量によって、動作速度
が制限されるのに対して、絶縁基板上であるのでそのよ
うな制約は何ら無く、著しい高速動作が期待されてい
る。
On the other hand, a polycrystalline semiconductor has a higher electric field mobility than an amorphous semiconductor, and thus can operate at high speed. For example, in a TFT using a silicon film recrystallized by laser annealing, a value as high as 300 cm 2 / Vs is obtained as the electric field mobility. Since the electric field mobility of a MOS transistor formed on a normal single crystal silicon substrate is about 500 cm 2 / Vs, it is an extremely large value,
The operating speed of the OS circuit is limited by the parasitic capacitance between the substrate and the wiring. On the other hand, since the OS circuit is on an insulating substrate, there is no such restriction, and a remarkably high-speed operation is expected.

【0007】また、多結晶シリコンでは、NTFTだけ
でなく、PTFTも同様に得られるのでCMOS回路を
形成することが可能で、例えば、アクティブマトリクス
方式の液晶表示装置においては、アクティブマトリクス
部分のみならず、周辺回路(ドライバー等)をもCMO
Sの多結晶TFTで構成する、いわゆるモノリシック構
造を有するものが知られている。前述のSRAMに使用
されるTFTもこの点に注目したものであり、PMOS
をTFTで構成し、これを負荷トランジスタとしてい
る。
Further, in the case of polycrystalline silicon, not only the NTFT but also the PTFT can be obtained in the same manner, so that a CMOS circuit can be formed. For example, in an active matrix type liquid crystal display device, not only an active matrix portion but also an active matrix portion can be formed. CMO for peripheral circuits (drivers, etc.)
There is known an S polycrystalline TFT having a so-called monolithic structure. The above-mentioned TFT used in the SRAM also pays attention to this point.
Are constituted by TFTs, which are used as load transistors.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、一般に
多結晶TFTはアモルファスTFTに比べて、電界移動
度が大きな分だけ、リーク電流が大きく、アクティブマ
トリクスの画素の電荷を保持する能力には劣っていた。
例えば、液晶表示素子に用いる場合には、従来は画素の
大きさが数100μm角で、画素容量が大きかったため
に特に問題となることはなかったが、最近では、高精細
化とともに画素の微細化が進み、画素容量が小さくな
り、安定なスタティック表示をおこなうのに不十分とな
っている。
However, in general, a polycrystalline TFT has a large leakage current and a poor ability to hold electric charges of pixels in an active matrix, as compared with an amorphous TFT, due to the large electric field mobility. .
For example, when used in a liquid crystal display device, the size of the pixel was conventionally several hundreds of μm square and the pixel capacity was large, so that there was no particular problem. , The pixel capacity becomes small, and it is insufficient to perform stable static display.

【0009】このような多結晶TFTのリーク電流の問
題に対しては、いくつかの解決法が提案されている。そ
の一つは、活性層を薄くする方法である。こうすること
によって、OFF電流が小さくなることが報告されてい
る。例えば、活性層の厚さを25nmとすることによっ
て、OFF電流が10-13 A以下にできることが知られ
ている。しかしながら、薄い半導体膜を結晶化させるこ
とは非常に難しく、容易に結晶化しないことが知られて
いる。
Several solutions have been proposed for the problem of the leakage current of the polycrystalline TFT. One method is to make the active layer thinner. It has been reported that this reduces the OFF current. For example, it is known that the OFF current can be reduced to 10 −13 A or less by setting the thickness of the active layer to 25 nm. However, it is known that it is very difficult to crystallize a thin semiconductor film and it is not easily crystallized.

【0010】また、活性層を薄くすることはソース/ド
レイン領域も薄くすることにつながる。すなわち、通常
の作製方法ではソース/ドレインも活性層も同時に作製
された半導体膜から形成され、同じ厚さを有するからで
ある。このことはソース/ドレイン領域の抵抗が大きく
なることにつながる。
Further, thinning the active layer leads to thinning of the source / drain regions. That is, in a normal manufacturing method, both the source / drain and the active layer are formed from the semiconductor films manufactured at the same time and have the same thickness. This leads to an increase in the resistance of the source / drain region.

【0011】そのためには、ソース/ドレイン領域の大
部分を厚くなるように別に形成する方法が採用される
が、そのことはマスクプロセスを余分に追加することで
あり、歩留りの点から好ましくない。
For this purpose, a method is employed in which most of the source / drain regions are separately formed so as to be thick. However, this involves an extra mask process, which is not preferable in terms of yield.

【0012】また、本発明人等の知見によると、活性層
が50nm以下のTFTでは、MOSしきい値電圧が大
きくシフトし、特にNMOSの場合には顕著であるが、
しきい値は0Vないし、負の値となる。このようなTF
TでCMOSを作製すると動作が不安定となる。
According to the findings of the present inventors, in a TFT having an active layer of 50 nm or less, the MOS threshold voltage shifts greatly, and is particularly remarkable in the case of an NMOS.
The threshold value is 0 V or a negative value. Such a TF
When a CMOS is manufactured with T, the operation becomes unstable.

【0013】一方、活性層を厚くするとリーク電流が大
きくなるが、その大きさは活性層の厚さに比例するもの
でなく、したがって、何らかの要因によってリーク電流
が非線型的に大きくなるものと考えられる。本発明人等
の研究の結果、活性層の厚いTFTのリーク電流の大部
分は、活性層の基板側の部分を経由してバイパス的に流
れることが明らかにされた。このようなリーク電流の原
因としては2つのことが考えられる。1つは、基板と活
性層の間の界面準位に固定化された電荷によるものであ
り、もう一つは、基板側からナトリウム等の可動イオン
が活性層に侵入し、基板側の部分を導通化するためであ
る。後者はプロセスの清浄度を高めることによって克服
される。
On the other hand, when the active layer is thickened, the leak current increases, but the magnitude is not proportional to the thickness of the active layer. Therefore, it is considered that the leak current increases nonlinearly due to some factor. Can be As a result of the study by the present inventors, it has been found that most of the leak current of a TFT having a thick active layer flows in a bypass manner via a portion of the active layer on the substrate side. There are two possible causes for such a leak current. One is due to the electric charge fixed to the interface state between the substrate and the active layer, and the other is that mobile ions such as sodium enter the active layer from the substrate side, and the portion on the substrate side is removed. This is to make it conductive. The latter is overcome by increasing the cleanliness of the process.

【0014】前者に関しては、いかに基板と活性層間の
界面を清浄にしても解決できなかった。例えば、基板に
直接、活性層を積層することは界面準位を上げることと
なるので、ゲイト酸化膜と同じ程度に良質な酸化膜(例
えば、シリコンの熱酸化膜)を下地にして、その上に活
性層を形成してもリーク電流を解決することはできなか
った。すなわち、固定電荷は容易に除去できないことが
判明した。
Regarding the former, no matter how clean the interface between the substrate and the active layer, it could not be solved. For example, since laminating an active layer directly on a substrate raises the interface state, an oxide film (for example, a thermal oxide film of silicon) of the same quality as a gate oxide film is used as a base, and However, even if an active layer was formed, the leak current could not be solved. That is, it has been found that fixed charges cannot be easily removed.

【0015】[0015]

【課題を解決するための手段】本発明人は、このような
困難を解決するために、基板と活性層の間に、別のゲイ
ト電極(裏面ゲイト電極という)を形成し、このゲイト
電極の電位を適切な値に保つことによって、上記のよう
な固定電荷の効果を打ち消すことができることを発見し
た。本発明の構成の典型的な例は図1および図2に示さ
れる。
In order to solve such difficulties, the present inventor forms another gate electrode (referred to as a backside gate electrode) between a substrate and an active layer, and forms a gate electrode of this type. It has been found that by keeping the potential at an appropriate value, the above-described effect of the fixed charge can be negated. A typical example of the configuration of the present invention is shown in FIGS.

【0016】図1は、本発明の概念を示すもので、Aが
通常のゲイト電極であり、Bが裏面ゲイト電極である。
このような裏面ゲイト電極は図1(A)のように、ソー
ス、ドレインの全面に重なっていてもよいが、この場合
にはソース、ドレインと、裏面ゲイト電極の間の寄生容
量が大きくなるので、高速動作等が要求される場合に
は、図1(B)のようにソース、もしくはドレインの一
方、あるいは両方と重ならないような構成としてもよ
い。重要なことはこのような裏面ゲイト電極は、少なく
とも活性層の一部に重なっていることであり、効果を確
実にするためには可能な限り活性層を横断していること
である。
FIG. 1 shows the concept of the present invention, wherein A is a normal gate electrode and B is a backside gate electrode.
Such a back gate electrode may overlap the entire surface of the source and the drain as shown in FIG. 1A. In this case, however, the parasitic capacitance between the source, the drain and the back gate electrode becomes large. In the case where high-speed operation or the like is required, the configuration may be such that one or both of the source and the drain do not overlap as shown in FIG. What is important is that such a backside gate electrode overlaps at least a part of the active layer, and crosses the active layer as much as possible to ensure the effect.

【0017】例えば、従来のNMOSにおいて、ソース
とゲイトの電位を0、ドレインの電位を10Vとした場
合には、理想的にはドレイン電流は0であるが、基板側
の固定電荷によって、活性層が弱い反転状態にあるた
め、熱的な励起によってドレイン電流が流れる。その様
子が図4に示されている。すなわち、従来のTFTで
は、基板側の固定電荷によって図に示すような弱反転領
域が形成されていた。これは、ゲイト電極にどのような
電圧が印加されていてもほとんど変わらず存在するた
め、リーク電流の源となった。ただし、活性層の厚さが
著しく薄い場合には、ゲイト電極の影響が基板側にもお
よび、ゲイトの電位によってこの弱反転領域は消滅す
る。これまで、特に理由がわからないまま、活性層を薄
くすることによってリーク電流が低減できることが報告
されたものはこのような理由によるものであると考えら
れる。しかしながら、このモデルからは、容易にしきい
値電圧がシフトすることが示され、本質的な解決方法で
ないことも明らかとなった。
For example, in a conventional NMOS, when the source and gate potentials are set to 0 and the drain potential is set to 10 V, the drain current is ideally 0. Is in a weak inversion state, a drain current flows by thermal excitation. This is shown in FIG. That is, in the conventional TFT, the weak inversion region as shown in the figure was formed by the fixed charge on the substrate side. This was almost the same regardless of what voltage was applied to the gate electrode, and thus became a source of leakage current. However, when the thickness of the active layer is extremely thin, the influence of the gate electrode extends to the substrate side, and the weak inversion region disappears due to the gate potential. It has been reported that the leak current can be reduced by reducing the thickness of the active layer without knowing the reason. However, this model shows that the threshold voltage shifts easily, and also reveals that this is not an essential solution.

【0018】本発明は、上記のような裏面ゲイト電極を
設け、裏面ゲイト電極を0もしくは負の値にすることに
よって、固定電荷の効果を除去しようとするのである。
図2には、本発明の例を示した。この場合には、いずれ
も裏面ゲイト電極は、絶縁膜の一部にコンタクトホール
を設けて、ソース領域に接続され、常にソースと同じ電
位となるようにされている。図2(A)では、裏面ゲイ
ト電極9をソース領域6、ドレイン領域5と全く同じよ
うに重ねて構成したものである。この場合には、工程が
比較的単純で、ゲイト電極のある部分に段差が生じない
ため歩留りがよい。
The present invention is intended to eliminate the effect of the fixed charge by providing the back gate electrode as described above and setting the back gate electrode to 0 or a negative value.
FIG. 2 shows an example of the present invention. In this case, the back gate electrode is provided with a contact hole in a part of the insulating film, is connected to the source region, and is always at the same potential as the source. In FIG. 2A, the back gate electrode 9 is configured to overlap the source region 6 and the drain region 5 in exactly the same manner. In this case, the process is relatively simple, and a step is not generated in a portion where the gate electrode exists, so that the yield is good.

【0019】このような構造の素子を形成しようとすれ
ば以下のようにおこなえばよい。すなわち、基板上に裏
面ゲイト電極となる被膜と絶縁膜8を形成し、これにコ
ンタクトホール10を形成して、さらに半導体層を形成
し、これをまとめてパターニングする。そして、ゲイト
絶縁膜4とゲイト電極1を形成してセルフアライン的に
ドレイン領域5とソース領域6を形成し、不純物ドープ
のされない部分は活性層7となる。最後にドレイン電極
2、ソース電極3を形成すればよい。以上の工程で使用
されるマスクは4枚(ソース電極とドレイン電極を同時
に形成しない場合は5枚)である。
In order to form an element having such a structure, the following operation may be performed. That is, a film serving as a back gate electrode and an insulating film 8 are formed on a substrate, a contact hole 10 is formed in the film, a semiconductor layer is further formed, and these are collectively patterned. Then, a gate insulating film 4 and a gate electrode 1 are formed to form a drain region 5 and a source region 6 in a self-aligned manner, and a portion not doped with impurities becomes an active layer 7. Finally, the drain electrode 2 and the source electrode 3 may be formed. The number of masks used in the above steps is four (five when the source electrode and the drain electrode are not formed simultaneously).

【0020】一方、図2(B)には裏面ゲイト電極19
とドレイン領域15が重ならないようにしたもので、裏
面ゲイト電極の段差によってゲイト電極11に段差の影
響が出る。そのためゲイト電極の剥離が生じるおそれが
ある。また、工程も図2(A)に比べて増加する。すな
わち、最初に裏面ゲイト電極19をパターニングし、つ
いで、絶縁膜18を形成して、コンタクトホールを設け
る。そして、半導体層を形成し、これをパターニングし
てからゲイト電極11をパターニングし、ソース領域1
4、ドレイン15、活性化領域17をセルフアライン的
に形成して、ソース電極13とドレイン電極12を形成
する。以上の工程で使用されるマスクは5枚ないし6枚
である。寄生容量を減らし、プロセスの簡略化のために
は裏面ゲイト電極も、ソース領域、ドレイン領域とセル
フアライン的に形成されることが理想である。
On the other hand, FIG. 2B shows the back gate electrode 19.
And the drain region 15 do not overlap each other, and the step of the back surface gate electrode affects the gate electrode 11. Therefore, the gate electrode may be peeled off. In addition, the number of steps is increased as compared with FIG. That is, first, the backside gate electrode 19 is patterned, and then the insulating film 18 is formed to provide a contact hole. Then, a semiconductor layer is formed, and after patterning the semiconductor layer, the gate electrode 11 is patterned and the source region 1 is formed.
4, a drain 15 and an activation region 17 are formed in a self-aligned manner, and a source electrode 13 and a drain electrode 12 are formed. Five or six masks are used in the above steps. Ideally, the back gate electrode is formed in a self-aligned manner with the source region and the drain region in order to reduce the parasitic capacitance and simplify the process.

【0021】なお、裏面ゲイト電極9、19の材料はそ
の後のプロセスに留意して決定されなければならない。
例えば、熱酸化法によってゲイト絶縁膜を形成する場合
にはそれだけの高温に耐える材料で形成されなければな
らないし、裏面ゲイト材料から、活性層への異性有害元
素の拡散は避けなければならない。例えば、活性層がシ
リコンで形成され、ゲイト絶縁膜膜がシリコンの熱酸化
膜であれば、通常、最高プロセス温度は1000℃を越
えるので、裏面ゲイト電極の材料としてはドープドポリ
シリコンが望ましい。
The material of the back gate electrodes 9 and 19 must be determined in consideration of the subsequent process.
For example, when a gate insulating film is formed by a thermal oxidation method, the gate insulating film must be formed of a material that can withstand such a high temperature, and diffusion of an isomerically harmful element from the back gate material to the active layer must be avoided. For example, if the active layer is formed of silicon and the gate insulating film is a thermal oxide film of silicon, the maximum process temperature usually exceeds 1000 ° C., so that doped polysilicon is desirable as the material of the back gate electrode.

【0022】また、最高プロセス温度が600℃程度の
低温プロセスでは、ドープドシリコンでもよいが、より
低抵抗な材料を利用するとしたらクロムやタンタル、タ
ングステンが好ましい。もちろんこれら以外の材料を使
用することも実施する者の設計事項として取り扱われる
べきものである。
In a low-temperature process having a maximum process temperature of about 600 ° C., doped silicon may be used. However, if a material having a lower resistance is used, chromium, tantalum, or tungsten is preferable. Of course, the use of materials other than these should be treated as a matter of design for the implementer.

【0023】このような構造を有するTFTの動作を図
3にまとめた。ここではNMOSの例を示したが、PM
OSの場合には不等号の向きを逆にすればよい。最初に
ゲイトの電位VG がソース電位VS もしくはドレイン電
位VD のいずれか低い方に等しい場合を考える。この場
合には、図4に示されるようにソースとドレインが対称
ではないので、ドレインの電位VD の高低によって状況
が異なる。もし、VS<VD ならば、図3(A)のよう
にゲイト電極と裏面ゲイト電極とソースが同じ電位であ
り、これらの領域からは、電子が掃き出されて、空乏領
域もしくは蓄積領域が形成される。逆に、もし、VD
S であれば、図3(B)のようにゲイト電極側は空乏
領域であるが、裏面ゲイト電極側は反転領域が形成さ
れ、ドレイン電流が流れる。以上の議論は非常に荒っぽ
いもので、厳密にはしきい値電圧を考慮しなければなら
ないが、本発明の概要は理解できる。
The operation of the TFT having such a structure is summarized in FIG. Here, an example of NMOS is shown, but PM
In the case of an OS, the direction of the inequality sign may be reversed. First potential V G of the gate is considered to equal to the lower of the source potential V S or the drain potential V D. In this case, since the source and the drain is not symmetrical, as shown in FIG. 4, the situation by high and low drain potential V D varies. If V S <V D , the gate electrode, the back gate electrode, and the source have the same potential as shown in FIG. 3A, and electrons are swept out of these regions to form a depletion region or a storage region. Is formed. Conversely, if V D <
In the case of V S , the gate electrode side is a depletion region as shown in FIG. 3B, but an inversion region is formed on the back surface gate electrode side, and a drain current flows. Although the above discussion is very rough and strictly requires consideration of the threshold voltage, the outline of the present invention can be understood.

【0024】VD >VS の条件ではVG <VS では、空
乏領域が活性層の全域に拡がるが(図3(C))、VG
>VS では、ゲイト電極側に反転領域が形成される(図
3(D))。また、VD <VS の条件ではVG <VD
は、裏面ゲイト側に反転領域が形成されて、ドレイン電
流が流れ(図3(E))、VG >VD では、両側に反転
領域が形成される(図3(F))。
[0024] In V G <V S is under the condition of V D> V S, but the depletion region spreads over the entire area of the active layer (FIG. 3 (C)), V G
When> V S , an inversion region is formed on the gate electrode side (FIG. 3D). Also, the V G <V D is under the condition of V D <V S, are inverted regions formed on the back gate side, the drain current flows (FIG. 3 (E)), the V G> V D, inverted on both sides A region is formed (FIG. 3F).

【0025】VD がVS に等しいか、同程度の場合には
状況は複雑である。すなわち、この場合にはソースから
ドレインへ(もしくはドレインからソースへ)流れる電
気力線がないので、裏面ゲイト側の固定電荷の影響によ
って、弱反転領域が形成され、従来のTFTで見られた
ようなリーク電流が生じる(図3(G)および
(H))。
The situation is complicated when V D is equal to or similar to V S. That is, in this case, since there is no line of electric force flowing from the source to the drain (or from the drain to the source), a weak inversion region is formed due to the influence of the fixed charge on the back gate side, as seen in the conventional TFT. A large leak current occurs (FIGS. 3G and 3H).

【0026】裏面ゲイト電極は、実用的にはソースもし
くはドレインと同電位に保たれると都合がよいが、も
し、それが無理な場合には他の電源電位と同じに保たれ
るとよい。また、ソースもしくはドレインと同電位に保
たれる場合にあっても、この電位は変動しないものであ
れば、素子の動作特性に与える影響が少ない。
The back gate electrode is practically preferably kept at the same potential as the source or drain, but if that is impossible, it is better kept at the same potential as the other power supply. Even when the potential is kept the same as that of the source or the drain, as long as this potential does not fluctuate, the influence on the operating characteristics of the element is small.

【0027】例えば、オフ状態でのリークを少なくし
て、ON/OFFをTFTにおこなわせる場合には、図
3(A)もしくは(C)(OFF状態)と図3(D)、
(F)もしくは(H)(ON状態)とが実現するよう
に、電位を定めればよい。また、この素子を用いて、C
MOSインバータ回路も構成できる。
For example, in the case where the TFT is turned on / off by reducing the leak in the off state, the operation shown in FIG. 3 (A) or (C) (OFF state) and FIG.
The potential may be determined so that (F) or (H) (ON state) is realized. Also, using this element, C
A MOS inverter circuit can also be configured.

【0028】固定電荷は主としてNMOSで問題となる
ので、PMOSは従来と同じように作製し、NMOSの
みを本発明を用いて作製してもよいが、電荷が負の場合
にはPMOSでも問題となるので、両方を用いてもよ
い。
Since the fixed charge is mainly a problem in the NMOS, the PMOS may be manufactured in the same manner as in the prior art, and only the NMOS may be manufactured by using the present invention. Therefore, both may be used.

【0029】[0029]

【実施例】〔実施例1〕本実施例では、本発明を利用し
た高温プロセスによる結晶化シリコンTFTの作製方法
について記述する。本実施例では、ゲイト電極も裏面ゲ
イト電極もドープドポリシリコンによって構成した。作
製技術は既に公知となっている各種半導体集積回路プロ
セス技術と同じであるので、詳細は述べない。
[Embodiment 1] In this embodiment, a method of manufacturing a crystallized silicon TFT by a high-temperature process utilizing the present invention will be described. In this embodiment, both the gate electrode and the backside gate electrode are made of doped polysilicon. The fabrication techniques are the same as those of various known semiconductor integrated circuit process techniques, and thus will not be described in detail.

【0030】石英基板21上にリンが1019〜5×10
20cm-3、例えば8×1019cm-3ドープされた多結晶
シリコン膜を減圧CVD法によって厚さ100〜500
nm、例えば200nmだけ形成し、これを1000℃
の酸素雰囲気中で熱酸化し、シリコン皮膜22と酸化珪
素膜23を形成した。酸化珪素の厚さは50〜200n
m、例えば70nmとした。不純物のドーピングされて
いないシリコン膜を形成し、これに不純物をドープして
から熱酸化しても、あるいは熱酸化してから不純物をド
ープしてもよい。
Phosphorus on the quartz substrate 21 is 10 19 to 5 × 10
A polycrystalline silicon film doped with 20 cm −3 , for example, 8 × 10 19 cm −3, is formed to a thickness of 100 to 500 by a low pressure CVD method.
nm, for example, 200 nm,
The silicon film 22 and the silicon oxide film 23 were formed by thermal oxidation in an oxygen atmosphere. Silicon oxide thickness is 50-200n
m, for example, 70 nm. A silicon film which is not doped with impurities may be formed and doped with impurities and then thermally oxidized, or thermally oxidized and then doped with impurities.

【0031】その後、不純物のドープされていないアモ
ルファスシリコン膜24を厚さ100〜1000nm、
例えば300nm堆積した。堆積時の基板温度は450
〜550℃、例えば480℃とした。また、原料ガスと
してはモノシランやポリシラン(ジシラン、トリシラ
ン)が使用できたが、ジシランはトリシラン以上のポリ
シランよりも安定で、かつ、モノシランよりも良好な皮
膜が形成できた。そして、600℃で12時間かけてゆ
っくりと結晶を成長させた。ここまでの様子を図5
(A)に示す。
Thereafter, the amorphous silicon film 24 not doped with impurities is formed to a thickness of 100 to 1000 nm.
For example, 300 nm was deposited. Substrate temperature during deposition is 450
550 ° C., for example, 480 ° C. In addition, monosilane or polysilane (disilane, trisilane) could be used as a source gas, but disilane was more stable than polysilane of trisilane or more, and a better film could be formed than monosilane. Then, the crystal was slowly grown at 600 ° C. for 12 hours. Figure 5 up to this point
It is shown in (A).

【0032】次いで、パターニングをおこなって、島状
の半導体領域(シリコンアイランド)を形成し、酸素雰
囲気中での熱酸化することによって、その表面にゲイト
絶縁膜となる酸化珪素膜25を厚さ50〜500nm、
例えば150nm形成した。ここまでの様子を図5
(B)に示す。
Next, patterning is performed to form an island-shaped semiconductor region (silicon island), and by thermal oxidation in an oxygen atmosphere, a silicon oxide film 25 serving as a gate insulating film is formed on the surface with a thickness of 50%. ~ 500 nm,
For example, it was formed to a thickness of 150 nm. Figure 5 up to this point
It is shown in (B).

【0033】さらに、減圧CVD法によってリンのドー
プされた多結晶シリコン膜を厚さ300〜1000n
m、例えば500nm形成し、これをパターニングして
ゲイト電極26とした。さらに、このゲイト電極をマス
クとしてセルフアライン的にイオン注入をおこない、1
000℃でアニールして、ソース領域28とドレイン領
域27を形成した。そして、TEOSのプラズマCVD
法によって層間絶縁物29を形成し、これにコンタクト
ホールを設けてドレイン電極30を形成した。ここまで
の様子を図5(C)に示す。
Further, a polycrystalline silicon film doped with phosphorus by a low pressure CVD method is formed to a thickness of 300 to 1000 n.
m, for example, 500 nm, and this was patterned to form a gate electrode 26. Further, ion implantation is performed in a self-aligned manner using the gate electrode as a mask.
Annealing was performed at 000 ° C. to form a source region 28 and a drain region 27. And TEOS plasma CVD
An interlayer insulator 29 was formed by a method, a contact hole was provided in the interlayer insulator 29, and a drain electrode 30 was formed. The state so far is shown in FIG.

【0034】その後、ソース電極を形成したが、このプ
ロセスは特殊であるので詳述する。まず、ドレイン電極
形成後、さらに層間絶縁物31を形成した。そして、フ
ォトレジスト32をスピンコーティング法によって形成
し、ソース電極のコンタクトホールを形成するために孔
33を設けた。
Thereafter, a source electrode was formed. This process is special and will be described in detail. First, after the formation of the drain electrode, an interlayer insulator 31 was further formed. Then, a photoresist 32 was formed by a spin coating method, and a hole 33 was provided for forming a contact hole of a source electrode.

【0035】次に、等方的なエッチング方法、例えば等
方性ドライエッチング法やウェットエッチング法によっ
て層間絶縁物層とゲイト絶縁膜(いずれも酸化珪素)を
エッチングした。このときには酸化珪素膜のみが選択的
にエッチングされることが望まれる。例えば、薄いフッ
化水素酸をエッチャントとして用いるとよい。そして、
エッチングの時間を長めに取ると、エッチングはコンタ
クトホールの側面にまで及び、孔33より広いコンタク
トホール34が形成された。ここまでの様子は図5
(D)に示される。
Next, the interlayer insulating layer and the gate insulating film (both of which are silicon oxide) were etched by an isotropic etching method, for example, an isotropic dry etching method or a wet etching method. At this time, it is desired that only the silicon oxide film is selectively etched. For example, thin hydrofluoric acid may be used as an etchant. And
When the etching time was extended, the etching extended to the side surface of the contact hole, and a contact hole 34 wider than the hole 33 was formed. Fig. 5
It is shown in (D).

【0036】そして、今度はRIE(反応性イオンエッ
チング法)等の異方性エッチング法によってエッチング
をおこない、孔33にほぼ忠実にソース領域28をエッ
チングし、コンタクトホール35を形成した。ここまで
の様子は図5(E)に示される。その後、ソース領域と
裏面ゲイト電極の間に存在する薄い酸化珪素膜も除去し
た。
Then, etching was performed by an anisotropic etching method such as RIE (reactive ion etching method), and the source region 28 was etched almost exactly to the hole 33 to form a contact hole 35. The state so far is shown in FIG. Thereafter, the thin silicon oxide film existing between the source region and the back gate electrode was also removed.

【0037】フォトレジストを除去したのち、ソースに
金属配線材料によってソース電極36を形成した。すな
わち、先の2段階のエッチングによって、コンタクトホ
ールはソース領域と裏面ゲイト電極の双方に十分なコン
タクトが形成される。この様子を図5(F)に示す。以
上で、TFTが完成した。
After removing the photoresist, a source electrode 36 was formed of a metal wiring material as a source. That is, by the above-described two-stage etching, a sufficient contact is formed in both the source region and the back gate electrode in the contact hole. This state is shown in FIG. Thus, the TFT is completed.

【0038】このようにして形成したNMOSとPMO
SのTFTを図6(A)のように組み合わせてCMOS
インバータ回路を構成した。この回路の回路図は図6
(B)に示される。このインバータ回路では裏面ゲイト
電極は常にソースの電位(PMOSの場合はVH 、NM
OSの場合はVL )に保たれる。すなわち、スタティッ
クな状態においては、VinがVH (したがって、Vout
がVL )であれば、NMOSは図3(H)の状態に、P
MOSは図3(A)の状態になる。逆にVinがV L (し
たがって、Vout がVH )であれば、NMOSは図3
(A)の状態に、PMOSは図3(H)の状態になり、
基板側のリーク電流は極めて抑制される。
The thus formed NMOS and PMO
S TFTs are combined as shown in FIG.
An inverter circuit was configured. The circuit diagram of this circuit is shown in FIG.
It is shown in (B). In this inverter circuit, back gate
The electrode is always at the source potential (V for a PMOS).H, NM
V for OSL) Is kept. That is,
VinIs VH(Thus, Vout
Is VL), The NMOS changes to the state shown in FIG.
The MOS is in the state shown in FIG. Conversely, VinIs V L(And
Therefore, VoutIs VH), The NMOS is
In the state of (A), the PMOS is in the state of FIG.
The leakage current on the substrate side is extremely suppressed.

【0039】このように裏面ゲイト電極がソースと同じ
電位に保たれるだけでリーク電流を減らせるのは以下の
ように説明される。すなわち、NMOSにおいて、図6
(C)に示すように、ドレイン61がソース63に比べ
て電位が高い状態を考える。もし、裏面ゲイト電極がな
かったり、あっても裏面ゲイト電極64が浮遊状態にあ
れば、ドレインからソースへの電気力線は図6(C)に
示すように、活性層領域62を真っ直ぐに横断する。
The reason why the leakage current can be reduced only by keeping the back gate electrode at the same potential as the source is explained as follows. That is, in the NMOS, FIG.
Assume that the drain 61 has a higher potential than the source 63 as shown in FIG. If the back gate electrode is absent or the back gate electrode 64 is in a floating state, the electric lines of force from the drain to the source traverse the active layer region 62 straight as shown in FIG. I do.

【0040】しかし、裏面ゲイト電極がソースと同じ電
位に保たれていれば、本来は真っ直ぐにソースに向かう
電気力線の一部が裏面ゲイト電極に引き寄せられ、電気
力線は図6(D)に示すように曲げられる。
However, if the back gate electrode is kept at the same potential as the source, a part of the line of electric force which is originally directed straight toward the source is drawn to the back gate electrode, and the electric line of force is as shown in FIG. Bend as shown.

【0041】実際には、活性層領域と絶縁膜の界面には
固定電荷が存在するので事態は複雑である。すなわち、
裏面ゲイト電極がなかったり、あるいは浮遊状態であれ
ば、固定電荷(この場合は正)によって、電気力線は影
響を受け、図6(E)に示すように、絶縁膜(あるいは
裏面ゲイト電極)側から活性層へ向かう成分を有する電
気力線が生じる。このような電気力線の意味しているこ
とは、活性層内部に比べて絶縁膜(あるいは裏面ゲイト
電極)の方が電位が高いということであるので、この電
位に電子が引き寄せられて、絶縁膜界面付近に弱い反転
領域が形成される。この弱反転領域は、ドレインからソ
ースまで連続的に発生するのでリーク電流の原因とな
る。
Actually, the situation is complicated because fixed charges exist at the interface between the active layer region and the insulating film. That is,
If there is no back gate electrode or if the back gate electrode is in a floating state, the lines of electric force are affected by fixed charges (positive in this case), and as shown in FIG. 6E, the insulating film (or the back gate electrode) Lines of electric force are created having components that go from the side to the active layer. The meaning of such lines of electric force is that the potential of the insulating film (or the back gate electrode) is higher than that of the inside of the active layer, and electrons are attracted to this potential, and A weak inversion region is formed near the film interface. Since this weak inversion region is continuously generated from the drain to the source, it causes a leak current.

【0042】一方、裏面ゲイト電極がソースと同じ電位
に保たれている場合には、活性層と絶縁膜(あるいは裏
面ゲイト電極)の間に固定電荷が存在していても、ドレ
インから出た電気力線は裏面電極に向かう成分を有して
いるので相互に打ち消し合い、図6(F)に示すよう
に、裏面電極から活性層表面に向かう成分を有する電気
力線はほとんど生じない。また、一部にはそのような成
分を有する電気力線が生じても、ソースからドレインに
かけて全面的に生じるわけではないのでリークは極めて
起こりにくい。
On the other hand, when the back gate electrode is kept at the same potential as the source, even if a fixed charge exists between the active layer and the insulating film (or the back gate electrode), the electric current generated from the drain is reduced. Since the force lines have components heading toward the back electrode, they cancel each other out, and as shown in FIG. 6F, almost no electric force lines having components heading from the back electrode toward the active layer surface are generated. Further, even if electric lines of force having such components are generated in part, leakage is extremely unlikely to occur because the lines of electric force do not entirely occur from the source to the drain.

【0043】このように、裏面ゲイト電極をソースの電
位に保つことによって、リーク電流を著しく削減するこ
とができた。例えば、CMOS回路を構成した場合に
は、スタテッィク状態での維持電流は、平均的にはNM
OSとPMOSのリーク電流の和程度であるが、従来の
TFTでは、ドレイン電圧を5Vとした場合に、1pA
程度の電流が流れた。例えば、1Mビットのスタテッィ
クRAMには約200万のCMOSインバータ回路が存
在するが、記憶を保持するために2μA程度の電流が絶
えず流れていた。
As described above, by keeping the back gate electrode at the source potential, the leak current was significantly reduced. For example, when a CMOS circuit is configured, the sustain current in the static state is NM on average.
This is about the sum of the leakage currents of the OS and the PMOS.
About current flowed. For example, about 2 million CMOS inverter circuits exist in a 1-Mbit static RAM, but a current of about 2 μA constantly flows in order to retain the memory.

【0044】しかしながら、本発明によって特にNMO
Sのリーク電流が著しく低下したことにより、1つのC
MOSインバータの維持電流は0.01〜0.1pA以
下にまで減少した。したがって、1MビットSRAMの
保持電流は0.02〜0.2μAにまで削減できた。S
RAMにバックアップ用のバッテリーをパッケージした
不揮発性メモリーに本発明を使用した場合には、バッテ
リーの寿命を従来の10〜100倍とすることが可能で
ある。
However, according to the present invention, especially the NMO
Due to the remarkable decrease in the leakage current of S, one C
The sustain current of the MOS inverter was reduced to 0.01 to 0.1 pA or less. Therefore, the holding current of the 1-Mbit SRAM could be reduced to 0.02 to 0.2 μA. S
When the present invention is used in a nonvolatile memory in which a backup battery is packaged in a RAM, the life of the battery can be made 10 to 100 times that of the conventional battery.

【0045】本発明では、従来のCMOSインバータ回
路において設計事項として盛り込まれていたゲイト電極
とチャネルとの容量C1 に加えて、裏面ゲイト電極を介
したドレインとソースの寄生容量C2 、C3 が存在する
ことに注意しなければならない。この寄生容量は負荷と
して働き、インバータの動作時に信号伝達速度を低下さ
せ、消費電力を増やすこととなる。簡単な計算では、信
号遅延時間はC2 とC 3 の和に比例し、消費電力はその
和の4乗に比例する。
In the present invention, the conventional CMOS inverter circuit is used.
Gate electrode included as a design item in the road
And channel capacity C1In addition, through the backside gate electrode
Drain and source parasitic capacitance CTwo, CThreeExists
You have to be careful. This parasitic capacitance is
Work and reduce the signal transmission speed when the inverter operates.
Power consumption. In simple calculations,
Signal delay time is CTwoAnd C ThreeIs proportional to the sum of
It is proportional to the fourth power of the sum.

【0046】したがって、出来る限りこれらの寄生容量
を削減することが望まれる。実際には、固定電荷はほと
んど正の電荷であるので、MOSに対しては影響はでな
い。したがって、PMOSは従来と同じ構造とし、NM
OPSだけに裏面ゲイト電極を設けて本発明を適用する
ことは有効である。単純に考えれば寄生容量を半減する
ことができ、寄生容量による電力のロスを16分の1に
できる。
Therefore, it is desired to reduce these parasitic capacitances as much as possible. Actually, since the fixed charge is almost positive, there is no influence on the MOS. Therefore, the PMOS has the same structure as the conventional one, and NM
It is effective to apply the present invention by providing a backside gate electrode only in OPS. Simply thinking, the parasitic capacitance can be halved, and the power loss due to the parasitic capacitance can be reduced to 1/16.

【0047】〔実施例2〕本実施例では、本発明を利用
した高温プロセスによる結晶化シリコンTFTの作製方
法について記述する。本実施例では、ゲイト電極も裏面
ゲイト電極もドープドポリシリコンによって構成した。
作製技術は既に公知となっている各種半導体集積回路プ
ロセス技術と同じであるので、詳細は述べない。
[Embodiment 2] In this embodiment, a method of manufacturing a crystallized silicon TFT by a high-temperature process utilizing the present invention will be described. In this embodiment, both the gate electrode and the backside gate electrode are made of doped polysilicon.
The fabrication techniques are the same as those of various known semiconductor integrated circuit process techniques, and thus will not be described in detail.

【0048】石英基板71上に実施例1と同じ条件で燐
のドープされた多結晶シリコン膜を形成し、これをパタ
ーニングして裏面ゲイト電極72とした。そして、10
00℃の酸素雰囲気中で熱酸化し、酸化珪素膜73を形
成した。その後、実施例1と同じ条件で不純物のドープ
されていないアモルファスシリコン膜74を堆積し、熱
アニールによって結晶を成長させた。ここまでの様子を
図7(A)に示す。
A polycrystalline silicon film doped with phosphorus was formed on a quartz substrate 71 under the same conditions as in Example 1 and was patterned to form a back gate electrode 72. And 10
Thermal oxidation was performed in an oxygen atmosphere at 00 ° C. to form a silicon oxide film 73. Thereafter, an amorphous silicon film 74 not doped with an impurity was deposited under the same conditions as in Example 1, and a crystal was grown by thermal annealing. The state so far is shown in FIG.

【0049】次いで、パターニングをおこなって、島状
の半導体領域(シリコンアイランド)を形成し、実施例
1と同様に熱酸化膜75を形成した。さらに、ドープド
シリコンによってNMOS用のゲイト電極77とPMO
S用のゲイト電極76を形成し、セルフアライン的にN
型不純物イオンを注入して、不純物領域78を形成し
た。この際には、裏面ゲイト電極にもN型不純物(例え
ばリンや砒素)が注入されるが、裏面ゲイト電極自体が
N型であったので問題はなかった。ここまでの様子を図
7(B)に示す。
Next, patterning was performed to form an island-shaped semiconductor region (silicon island), and a thermal oxide film 75 was formed in the same manner as in Example 1. Further, the gate electrode 77 for NMOS and the PMO
A gate electrode 76 for S is formed, and N
Impurity regions 78 were formed by implanting type impurity ions. At this time, an N-type impurity (for example, phosphorus or arsenic) is also implanted into the back gate electrode, but there was no problem because the back gate electrode itself was N-type. FIG. 7B shows the state up to this point.

【0050】そして、今度は図の右側のTFTの部分を
フォトレジスト等で覆って、P型不純物イオン(ボロン
等)を注入した。以上の工程によって、PMOSのソー
ス79、ドレイン80、NMOSのソース82、ドレイ
ン81が形成された。その後、層間絶縁物83を形成し
た。ここまでの様子を図7(C)に示す。
Then, the TFT portion on the right side of the figure was covered with a photoresist or the like, and P-type impurity ions (boron or the like) were implanted. Through the above steps, the source 79 and the drain 80 of the PMOS and the source 82 and the drain 81 of the NMOS were formed. After that, an interlayer insulator 83 was formed. The state so far is shown in FIG.

【0051】その後、フォトレジスト84を全面に形成
し、コンタクトホールを設ける部分に孔85〜87を形
成した。そして、実施例1と同様な手法で等方性エッチ
ングによって層間絶縁物層とゲイト酸化膜(いずれも酸
化珪素)にコンタクトホール88〜90を設けた。いず
れの場合も、レジストに形成された孔よりもコンタクト
ホールは拡がった。さらに、異方性エッチングによっ
て、孔85〜87通りにシリコン層をエッチングし、コ
ンタクトホール90の部分に関してはその下の薄い酸化
珪素膜もエッチングした。ここまでの様子を図7(D)
に示す。
Thereafter, a photoresist 84 was formed on the entire surface, and holes 85 to 87 were formed in portions where contact holes were to be provided. Then, contact holes 88 to 90 were formed in the interlayer insulating layer and the gate oxide film (both of which were silicon oxide) by isotropic etching in the same manner as in Example 1. In each case, the contact hole was wider than the hole formed in the resist. Further, the silicon layer was etched through holes 85 to 87 by anisotropic etching, and the thin silicon oxide film under the contact hole 90 was also etched. Figure 7 (D) shows the situation so far.
Shown in

【0052】最後に金属材料によって、電極91〜93
を形成した。この様子を図7(E)に示す。電極91を
高電位に、電極93を低電位に、また、電極92を出力
端子としてインバータが形成された。このような工程に
よるインバータは、実施例1の場合に比べて、PMOS
のリークが多いことが懸念されるが、一般的には、本発
明によってNMOSのリーク電流が1〜2桁減少するの
に対して、PMOSのリーク電流は1桁弱程度の改善し
か見られず、結果的に、NMOSのみに本発明を実施し
ても、NMOSとPMOSのリーク電流の差が縮まると
いうことによって、CMOSインバータ回路としての特
性の劣化は特には観測されなかった。
Finally, the electrodes 91 to 93 are made of a metal material.
Was formed. This state is shown in FIG. An inverter was formed using the electrode 91 at a high potential, the electrode 93 at a low potential, and the electrode 92 as an output terminal. The inverter according to such a process is different from that of the first embodiment in that the PMOS is used.
There is a concern that the leakage current of the NMOS transistor is large. In general, the leakage current of the NMOS is reduced by one to two digits, while the leakage current of the PMOS is improved by only slightly less than one digit. As a result, even when the present invention is applied only to the NMOS, deterioration in characteristics as the CMOS inverter circuit was not particularly observed because the difference between the leakage currents of the NMOS and the PMOS was reduced.

【0053】さらに、CMOSインバータにおいては、
高電圧入力状態(NMOSがON、PMOSがOFF)
では、リーク電流はPMOSのリーク電流によって決定
され、また、低電圧入力状態(NMOSがOFF、PM
OSがON)では、リーク電流はNMOSのリーク電流
によって決定された。そして、従来のTFTにおいては
NMOSのリーク電流がPMOSの100倍以上であっ
たので、これをSRAM回路にした場合には、1つの記
憶セルにおいては、いずれかのインバータが低電圧入力
状態(NMOSがOFF、PMOSがON)となってい
るので、結局、SRAM回路のリーク電流はNMOSの
リーク電流に支配されていた。
Further, in the CMOS inverter,
High voltage input state (NMOS ON, PMOS OFF)
In this case, the leakage current is determined by the leakage current of the PMOS and the low voltage input state (NMOS is OFF, PM
In the case of OS ON), the leakage current was determined by the leakage current of the NMOS. In the conventional TFT, the leakage current of the NMOS is 100 times or more than that of the PMOS. Therefore, when this is used as an SRAM circuit, in one memory cell, one of the inverters is in a low voltage input state (NMOS Is OFF and the PMOS is ON), so that the leakage current of the SRAM circuit is dominated by the leakage current of the NMOS.

【0054】したがって、実質的には本実施例のよう
に、NMOSのみに裏面ゲイト電極を設けてNMOSの
リーク電流を1〜2桁減少させるだけでも十分であっ
た。仮にNMOSとPMOSの双方に裏面ゲイト電極を
設けた場合でも、リーク電流の多くの部分はNMOSに
よるものであるからである。むしろ、裏面ゲイト電極と
ドレインとの寄生容量によるデメリットを考慮すればP
MOSには裏面ゲイト電極を設けないことは賢明であ
る。
Therefore, as in the present embodiment, it is sufficient to provide the back gate electrode only on the NMOS and reduce the leakage current of the NMOS by one or two digits. This is because even if the back gate electrode is provided for both the NMOS and the PMOS, most of the leak current is due to the NMOS. Rather, considering the demerit due to the parasitic capacitance between the back gate electrode and the drain, P
It is advisable not to provide a back gate electrode in the MOS.

【0055】[0055]

【発明の効果】本発明によってリーク電流の少ない優れ
た特性を有するTFTを作製できた。また、すでに示し
たように、このTFTを組み合わせてCMOSインバー
タの特性を向上することができた。TFTは液晶ディス
プレーやイメージセンサーにとどまらず、高速論理回路
や高速メモリー(具体的には、上記実施の形態で説明し
たSRAM回路)にも応用できる。
According to the present invention, a TFT having excellent characteristics with little leakage current can be manufactured. Further, as described above, the characteristics of the CMOS inverter could be improved by combining the TFTs. The TFT can be applied not only to a liquid crystal display and an image sensor but also to a high-speed logic circuit and a high-speed memory (specifically, the SRAM circuit described in the above embodiment).

【0056】本発明はこれらの装置に応用することがで
き、しかも、これらの装置の信頼性や消費電力等の諸特
性を向上させる上で有効である。実施例では、主として
高温プロセスを取り上げて、これに応用する方法を示し
たが、低温プロセスにおいても何ら問題なく適用できる
ことは明らかであろう。なお、低温プロセスを採用する
場合には、本発明人等の発明である特願平4−3863
7、同4−54322等に示されるような陽極酸化プロ
セスを利用してもよい。
The present invention can be applied to these devices, and is effective in improving various characteristics such as reliability and power consumption of these devices. In the embodiment, a high-temperature process is mainly taken up and a method of applying the high-temperature process is described. However, it is apparent that the present invention can be applied to a low-temperature process without any problem. When a low-temperature process is adopted, the invention of the present inventors has been disclosed in Japanese Patent Application No. 4-3863.
7, anodic oxidation process as shown in 4-54322 and the like may be used.

【0057】また、TFTは従来の単結晶集積回路にお
いても使用されるが、本発明を利用することによって、
従来の補助的な目的ではなく、通常のMOSトランジス
タの代わりとして使用し、より一層回路の特性を高める
ことができることも明らかであろう。このように本発明
は産業的な価値の大きな発明である。
Although a TFT is used in a conventional single crystal integrated circuit, by utilizing the present invention,
It will also be apparent that the circuit can be used in place of the conventional auxiliary purpose, instead of the ordinary MOS transistor, to further enhance the characteristics of the circuit. Thus, the present invention is an invention of great industrial value.

【0058】特に、前述したように、SRAM回路にあ
っては、リーク電流の多くの部分を占めるNMOSに本
発明のTFTを適用することで、NMOSのリーク電流
を著しく低下でき、1つのCMOSインバータの維持電
流を0.01〜0.1pA以下にまで減少できる。した
がって、1MビットSRAM回路の保持電流を0.02
〜0.2μAにまで削減できる。さらに、SRAM回路
にバックアップ用のバッテリーをパッケージした不揮発
性メモリーに本発明を使用した場合には、バッテリーの
寿命を従来の10〜100倍とすることが可能となる。
In particular, as described above, in the SRAM circuit, by applying the TFT of the present invention to the NMOS occupying a large part of the leak current, the leak current of the NMOS can be remarkably reduced, and one CMOS inverter can be used. Can be reduced to 0.01 to 0.1 pA or less. Therefore, the holding current of the 1 Mbit SRAM circuit is set to 0.02
0.20.2 μA. Further, when the present invention is applied to a nonvolatile memory in which a backup battery is packaged in an SRAM circuit, the life of the battery can be increased to 10 to 100 times that of the conventional battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のTFTの構成の概念図を示す。FIG. 1 shows a conceptual diagram of a configuration of a TFT of the present invention.

【図2】従来のTFTの構成例を示す。FIG. 2 shows a configuration example of a conventional TFT.

【図3】本発明のTFTの動作を示す。FIG. 3 shows the operation of the TFT of the present invention.

【図4】従来のTFTの動作を示す。FIG. 4 shows the operation of a conventional TFT.

【図5】本発明のTFTの作製工程を示す。FIG. 5 shows a manufacturing process of the TFT of the present invention.

【図6】本発明のTFTの応用例を示す。FIG. 6 shows an application example of the TFT of the present invention.

【図7】本発明のTFTの作製工程を示す。FIG. 7 shows a manufacturing process of the TFT of the present invention.

【符号の説明】[Explanation of symbols]

1、11 ・・・ゲイト電極 2、12 ・・・ドレイン電極 3、13 ・・・ソース電極 4、14 ・・・ゲイト絶縁膜 5、15 ・・・ドレイン領域 6、16 ・・・ソース領域 7、17 ・・・活性領域 8、18 ・・・絶縁膜 9、19 ・・・裏面ゲイト電極 10、20・・・コンタクト部 1, 11 ... gate electrode 2, 12 ... drain electrode 3, 13 ... source electrode 4, 14 ... gate insulating film 5, 15 ... drain region 6, 16 ... source region 7 , 17 ... Active region 8, 18 ... Insulating film 9, 19 ... Backside gate electrode 10, 20 ... Contact part

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年7月4日(2001.7.4)[Submission date] July 4, 2001 (2001.7.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/11 H01L 27/08 321D Fターム(参考) 5F048 AA00 AA09 AB01 AB04 AC04 BA16 BB02 BB06 BB09 BF16 5F083 BS15 BS27 BS29 BS31 GA03 GA06 HA02 JA32 JA39 PR00 PR03 PR05 PR12 PR21 PR33 PR36 ZA14 5F110 AA02 AA06 BB01 BB04 BB07 BB10 CC02 DD03 EE04 EE09 EE22 EE30 EE45 FF02 FF23 FF24 GG02 GG13 GG24 GG35 GG42 HJ01 HJ13 HJ23 HL02 HL14 HM12 HM14 NN03 NN23 NN35 NN78 PP01 PP10 QQ11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01L 27/11 H01L 27/08 321D F-term (Reference) 5F048 AA00 AA09 AB01 AB04 AC04 BA16 BB02 BB06 BB09 BF16 5F083 BS15 BS27 BS29 BS31 GA03 GA06 HA02 JA32 JA39 PR00 PR03 PR05 PR12 PR21 PR33 PR36 ZA14 5F110 AA02 AA06 BB01 BB04 BB07 BB10 CC02 DD03 EE04 EE09 EE22 EE30 EE45 FF02 FF23 FF24 GG02 GG13 GG14 NN14 NN14 NN14 NN PP10 QQ11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性の表面を有する基板上に裏面ゲイ
ト電極が設けられ、N型の不純物領域を有する半導体層
が、該裏面ゲイト電極を覆った状態で絶縁膜を介して設
けられ、該裏面ゲイト電極が、ソース上またはドレイン
上の一方のみに重ねて形成されるとともに、ソース上ま
たはドレイン上の他方には重ねることなく形成された状
態で0もしくは負の一定電位に保持され、該裏面ゲイト
電極を含む2つのゲイト電極がゲイト絶縁膜を介して該
半導体層上に設けられた構造を有するNチャネル型薄膜
トランジスタと、該基板上にP型の不純物領域を有する
半導体層が絶縁膜を介して設けられるとともに、ゲイト
絶縁膜を介して単一のゲイト電極が該半導体層上に設け
られた構造を有するPチャネル型薄膜トランジスタとを
組み合わせて構成された相補型のMOS回路を組み合わ
せて構成されたことを特徴とするスタティックRAM。
A back gate electrode is provided on a substrate having an insulating surface, and a semiconductor layer having an N-type impurity region is provided via an insulating film so as to cover the back gate electrode. A back surface gate electrode is formed so as to overlap only on one of the source and the drain and is formed without overlapping the other on the source or the drain and is held at 0 or a negative constant potential. An N-channel thin film transistor having a structure in which two gate electrodes including a gate electrode are provided on the semiconductor layer with a gate insulating film interposed therebetween, and a semiconductor layer having a P-type impurity region on the substrate with an insulating film interposed therebetween And a P-channel thin film transistor having a structure in which a single gate electrode is provided on the semiconductor layer via a gate insulating film. A static RAM comprising a combination of complementary MOS circuits.
【請求項2】 絶縁性の表面を有する基板上に裏面ゲイ
ト電極が設けられ、N型の不純物領域を有する半導体層
が、該裏面ゲイト電極を覆った状態で絶縁膜を介して設
けられ、該裏面ゲイト電極が、少なくとも前記半導体層
の一部に重ねて形成された状態で0もしくは負の一定電
位に保持され、該裏面ゲイト電極を含む2つのゲイト電
極がゲイト絶縁膜を介して該半導体層上に設けられた構
造を有するNチャネル型薄膜トランジスタと、該基板上
にP型の不純物領域を有する半導体層が絶縁膜を介して
設けられるとともに、ゲイト絶縁膜を介して単一のゲイ
ト電極が該半導体層上に設けられた構造を有するPチャ
ネル型薄膜トランジスタとを組み合わせて構成された相
補型のMOS回路を組み合わせて構成されたことを特徴
とするスタティックRAM。
2. A backside gate electrode is provided on a substrate having an insulating surface, and a semiconductor layer having an N-type impurity region is provided via an insulating film so as to cover the backside gate electrode. A back gate electrode is maintained at 0 or a negative constant potential in a state where the back gate electrode is formed to overlap at least a part of the semiconductor layer, and two gate electrodes including the back gate electrode are connected to the semiconductor layer via a gate insulating film. An N-channel thin film transistor having a structure provided thereon, a semiconductor layer having a P-type impurity region over the substrate are provided via an insulating film, and a single gate electrode is provided via a gate insulating film. A static circuit comprising a combination of a complementary MOS circuit formed by combining a P-channel thin film transistor having a structure provided on a semiconductor layer. RAM.
【請求項3】 絶縁性の表面を有する基板上に裏面ゲイ
ト電極が設けられ、N型の不純物領域を有する半導体層
が、該裏面ゲイト電極を覆った状態で絶縁膜を介して設
けられ、該裏面ゲイト電極が、前記半導体層を横断する
ように重ねて形成された状態で0もしくは負の一定電位
に保持され、該裏面ゲイト電極を含む2つのゲイト電極
がゲイト絶縁膜を介して該半導体層上に設けられた構造
を有するNチャネル型薄膜トランジスタと、該基板上に
P型の不純物領域を有する半導体層が絶縁膜を介して設
けられるとともに、ゲイト絶縁膜を介して単一のゲイト
電極が該半導体層上に設けられた構造を有するPチャネ
ル型薄膜トランジスタとを組み合わせて構成された相補
型のMOS回路を組み合わせて構成されたことを特徴と
するスタティックRAM。
3. A back gate electrode is provided on a substrate having an insulating surface, and a semiconductor layer having an N-type impurity region is provided via an insulating film so as to cover the back gate electrode. A back gate electrode is held at 0 or a negative constant potential in a state where the back gate electrode is formed so as to cross the semiconductor layer, and two gate electrodes including the back gate electrode are connected to the semiconductor layer via a gate insulating film. An N-channel thin film transistor having a structure provided thereon, a semiconductor layer having a P-type impurity region over the substrate are provided via an insulating film, and a single gate electrode is provided via a gate insulating film. A static R circuit comprising a combination of a complementary MOS circuit formed by combining a P-channel thin film transistor having a structure provided on a semiconductor layer. AM.
【請求項4】 絶縁性の表面を有する基板上に裏面ゲイ
ト電極が設けられ、N型の不純物領域を有する半導体層
が、該裏面ゲイト電極を覆った状態で絶縁膜を介して設
けられ、該裏面ゲイト電極が、ソース上またはドレイン
上の一方のみに重ねて形成されるとともに、ソース上ま
たはドレイン上の他方には重ねることなく形成された状
態で0もしくは負の一定電位に保持され、該裏面ゲイト
電極を含む2つのゲイト電極がゲイト絶縁膜を介して該
半導体層上に設けられた構造を有するNチャネル型薄膜
トランジスタと、該基板上にP型の不純物領域を有する
半導体層が絶縁膜を介して設けられるとともに、ゲイト
絶縁膜を介して単一のゲイト電極が該半導体層上に設け
られた構造を有するPチャネル型薄膜トランジスタとを
組み合わせて構成されたことを特徴とするスタティック
RAM。
4. A back gate electrode is provided on a substrate having an insulating surface, and a semiconductor layer having an N-type impurity region is provided via an insulating film so as to cover the back gate electrode. A back surface gate electrode is formed so as to overlap only on one of the source and the drain and is formed without overlapping the other on the source or the drain and is held at 0 or a negative constant potential. An N-channel thin film transistor having a structure in which two gate electrodes including a gate electrode are provided on the semiconductor layer with a gate insulating film interposed therebetween, and a semiconductor layer having a P-type impurity region on the substrate with an insulating film interposed therebetween And a P-channel thin film transistor having a structure in which a single gate electrode is provided on the semiconductor layer via a gate insulating film. A static RAM, characterized in that it is obtained.
【請求項5】 絶縁性の表面を有する基板上に裏面ゲイ
ト電極が設けられ、N型の不純物領域を有する半導体層
が、該裏面ゲイト電極を覆った状態で絶縁膜を介して設
けられ、該裏面ゲイト電極が、少なくとも前記活性層の
一部に重ねて形成された状態で0もしくは負の一定電位
に保持され、該裏面ゲイト電極を含む2つのゲイト電極
がゲイト絶縁膜を介して該半導体層上に設けられた構造
を有するNチャネル型薄膜トランジスタと、該基板上に
P型の不純物領域を有する半導体層が絶縁膜を介して設
けられるとともに、ゲイト絶縁膜を介して単一のゲイト
電極が該半導体層上に設けられた構造を有するPチャネ
ル型薄膜トランジスタとを組み合わせて構成されたこと
を特徴とするスタティックRAM。
5. A back gate electrode is provided on a substrate having an insulating surface, and a semiconductor layer having an N-type impurity region is provided via an insulating film so as to cover the back gate electrode. A back gate electrode is maintained at 0 or a negative constant potential in a state formed over at least a part of the active layer, and two gate electrodes including the back gate electrode are connected to the semiconductor layer via a gate insulating film. An N-channel thin film transistor having a structure provided thereon, a semiconductor layer having a P-type impurity region over the substrate are provided via an insulating film, and a single gate electrode is provided via a gate insulating film. A static RAM comprising a combination of a P-channel thin film transistor having a structure provided on a semiconductor layer.
【請求項6】 絶縁性の表面を有する基板上に裏面ゲイ
ト電極が設けられ、N型の不純物領域を有する半導体層
が、該裏面ゲイト電極を覆った状態で絶縁膜を介して設
けられ、該裏面ゲイト電極が、前記活性層を横断するよ
うに重ねて形成された状態で0もしくは負の一定電位に
保持され、該裏面ゲイト電極を含む2つのゲイト電極が
ゲイト絶縁膜を介して該半導体層上に設けられた構造を
有するNチャネル型薄膜トランジスタと、該基板上にP
型の不純物領域を有する半導体層が絶縁膜を介して設け
られるとともに、ゲイト絶縁膜を介して単一のゲイト電
極が該半導体層上に設けられた構造を有するPチャネル
型薄膜トランジスタとを組み合わせて構成されたことを
特徴とするスタティックRAM。
6. A back gate electrode is provided on a substrate having an insulating surface, and a semiconductor layer having an N-type impurity region is provided via an insulating film so as to cover the back gate electrode. A back gate electrode is held at 0 or a negative constant potential in a state where the back gate electrode is formed so as to cross the active layer, and two gate electrodes including the back gate electrode are connected to the semiconductor layer via a gate insulating film. An N-channel type thin film transistor having a structure provided on
And a P-channel thin film transistor having a structure in which a semiconductor layer having an impurity region of a type is provided via an insulating film, and a single gate electrode is provided on the semiconductor layer via a gate insulating film. A static RAM, characterized in that:
【請求項7】 前記相補型のMOS回路を用いて構成さ
れたCMOSインバータ回路を用いたことを特徴とする
請求項1乃至3のいずれか一項に記載のスタティックR
AM。
7. The static R circuit according to claim 1, wherein a CMOS inverter circuit configured by using said complementary MOS circuit is used.
AM.
【請求項8】 前記Pチャネル型薄膜トランジスタを負
荷トランジスタとして用いていることを特徴とする請求
項1乃至6のいずれか一項に記載のスタティックRA
M。
8. The static RA according to claim 1, wherein the P-channel type thin film transistor is used as a load transistor.
M.
JP2001169123A 2001-06-05 2001-06-05 Static RAM and semiconductor integrated circuit Expired - Lifetime JP3986767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169123A JP3986767B2 (en) 2001-06-05 2001-06-05 Static RAM and semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169123A JP3986767B2 (en) 2001-06-05 2001-06-05 Static RAM and semiconductor integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17488392A Division JP3254007B2 (en) 1992-06-09 1992-06-09 Thin film semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002026337A true JP2002026337A (en) 2002-01-25
JP3986767B2 JP3986767B2 (en) 2007-10-03

Family

ID=19011236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169123A Expired - Lifetime JP3986767B2 (en) 2001-06-05 2001-06-05 Static RAM and semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3986767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520346A (en) * 2005-12-19 2009-05-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Substrate solution for back gate controlled SRAM with coexisting logic devices
WO2009119666A1 (en) * 2008-03-28 2009-10-01 独立行政法人産業技術総合研究所 Sram cell and sram device
JP2020129665A (en) * 2011-09-23 2020-08-27 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520346A (en) * 2005-12-19 2009-05-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Substrate solution for back gate controlled SRAM with coexisting logic devices
WO2009119666A1 (en) * 2008-03-28 2009-10-01 独立行政法人産業技術総合研究所 Sram cell and sram device
JP5131788B2 (en) * 2008-03-28 2013-01-30 独立行政法人産業技術総合研究所 SRAM cell and SRAM device
US8659088B2 (en) 2008-03-28 2014-02-25 National Institute Of Advanced Industrial Science And Technology SRAM cell and SRAM device
JP2020129665A (en) * 2011-09-23 2020-08-27 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JP3986767B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3254007B2 (en) Thin film semiconductor device and method for manufacturing the same
JP3556679B2 (en) Electro-optical device
US5807772A (en) Method for forming semiconductor device with bottom gate connected to source or drain
US5854494A (en) Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
JP2666103B2 (en) Thin film semiconductor device
US20030201435A1 (en) Semiconductor device including active matrix circuit
US6028333A (en) Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
JPH10125928A (en) Semiconductor integrated circuit and its manufacture
JP3987303B2 (en) Display device
JP3986767B2 (en) Static RAM and semiconductor integrated circuit
JP3977032B2 (en) Thin film transistor and semiconductor integrated circuit
JP3986768B2 (en) Display device
JP2001028446A (en) Semiconductor device
JPH04206970A (en) Film semiconductor device
JP3730530B2 (en) Display device and active matrix device
JP2761496B2 (en) Thin film insulated gate semiconductor device and method of manufacturing the same
JP3467257B2 (en) Display device
JP3860148B2 (en) Manufacturing method of semiconductor circuit
JP3467255B2 (en) Memory device
JP2001298168A (en) Memory device
JPH0297063A (en) Semiconductor device
JPH0786609A (en) Multi-gate semiconductor element
JP2001320062A (en) Thin film transistor, its manufacturing method and liquid crystal display device
JPH0730116A (en) Semiconductor device and its manufacture
JPH11154754A (en) Insulation gate type semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

EXPY Cancellation because of completion of term