JP2002025815A - Method of manufacturing r-t-b sintered magnet - Google Patents

Method of manufacturing r-t-b sintered magnet

Info

Publication number
JP2002025815A
JP2002025815A JP2000204674A JP2000204674A JP2002025815A JP 2002025815 A JP2002025815 A JP 2002025815A JP 2000204674 A JP2000204674 A JP 2000204674A JP 2000204674 A JP2000204674 A JP 2000204674A JP 2002025815 A JP2002025815 A JP 2002025815A
Authority
JP
Japan
Prior art keywords
sintered magnet
weight
sintered
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000204674A
Other languages
Japanese (ja)
Inventor
Mitsuaki Mochizuki
光明 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000204674A priority Critical patent/JP2002025815A/en
Publication of JP2002025815A publication Critical patent/JP2002025815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an R-Fe-B sintered magnet, which is more reduced in oxygen content and residual carbon content and more improved in magnetic characteristics than ones formed through a usual dry method, where the magnet is manufactured through a R-T-B sintered magnet manufacturing method, in which R-T-B sintered magnet material alloy powder subjected to a surface treatment is molded into a body, and the molded body is sintered and thermally treated for the formation of the R-Fe-B sintered magnet. SOLUTION: A R-T-B sintered magnet alloy coarse powder; which contains an R2T14B intermetallic compound (R denotes, at least one of rare earth elements containing Y, and T is Fe or Fe and Co) serving as the main phase and being in an amount of 99.5 to 99.99 pts.wt. and 0.01 to 0.5 pts.wt. ethylene carbonate and/or propylene carbonate are added and mixed together, the mixture is atomized into fine powder whose surface is covered with ethylene carbonate and/or propylene carbonate, the fine powder is molded into a body, and the body is sintered and thermally treated for the manufacture of the R-T-B sintered magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はR14B型金属
間化合物(RはYを含む希土類元素の少なくとも1種で
あり、TはFeまたはFeとCoである)を主相とする
R−T−B系焼結磁石の製造方法に関する。
[0001] The present invention relates to an R 2 T 14 B type intermetallic compound (R is at least one rare earth element including Y, and T is Fe or Fe and Co). The present invention relates to a method for producing a sintered TB magnet.

【0002】[0002]

【従来の技術】R−T−B系焼結磁石(RはYを含む希
土類元素の少なくとも1種であり、TはFeまたはFe
とCoである)は各種磁石応用製品分野(家電製品、コ
ンピュータ周辺機器または自動車等)で多用されてい
る。これら磁石応用製品の小型化、高速化あるいは高性
能化の要求は益々厳しくなっており、R−T−B系焼結
磁石のさらなる高性能化が求められている。
2. Description of the Related Art R-T-B sintered magnets (R is at least one kind of rare earth element containing Y, T is Fe or Fe
And Co) are frequently used in various magnet application product fields (such as home appliances, computer peripherals or automobiles). The demand for downsizing, speeding up, or improving the performance of these magnet-applied products is becoming increasingly severe, and there is a demand for further improving the performance of RTB-based sintered magnets.

【0003】R−T−B系焼結磁石は、通常、溶解し、
鋳造して得られたR−T−B系合金を約20〜500μmま
で粗粉砕し、次いで約1〜20μmに微粉砕後、磁場中で
成形し、次いで焼結、熱処理および表面処理する製造工
程により製造されている。
[0003] RTB-based sintered magnets usually melt,
A manufacturing process in which the RTB-based alloy obtained by casting is roughly pulverized to about 20 to 500 μm, then finely pulverized to about 1 to 20 μm, molded in a magnetic field, and then sintered, heat treated and surface treated. It is manufactured by.

【0004】従来より、微粉砕に供するR−T−B系焼
結磁石用の合金粗粉に所定量の添加剤を添加し、混合し
て乾式微粉砕するか、あるいは微粉砕後のR−T−B系
焼結磁石用の合金微粉に所定量の添加剤を添加し、混合
することにより、成形性、磁場配向性または耐酸化性を
向上させてR−T−B系焼結磁石の生産効率、磁気特性
等を向上させる種々の提案がなされている。(特開昭60
−184602号公報、特開昭60−184603号公報、特開昭60−
184604号公報、特開平4−214803号公報および特開平4
−214804号公報を参照)。R−T−B系焼結磁石用の合
金粗粉の成形性を改善する添加剤としてステアリン酸等
の脂肪酸、ステアリン酸亜鉛等の脂肪酸塩、アミノ酸系
化合物、ポリオキシエチレン化合物、パラフィンまたは
ショウノウ等が提案されている。また、磁場配向性また
は磁場配向性と成形性とを改善する目的でオレイン酸等
の脂肪酸、脂肪酸エステル、高級アルコール、ポリエチ
レングリコール、液状ポリプロピレン等の液状ポリマー
またはほう酸エステル等を添加する提案がなされてい
る。さらにまた耐酸化性または耐酸化性と成形性とを改
善する目的で脂肪酸、脂肪酸エステル、中性リン酸エス
テルまたはシリコーン系オイル等を添加する提案がなさ
れている。これらの添加剤は2種以上を組み合わせて用
いることもある。
[0004] Conventionally, a predetermined amount of an additive is added to a coarse alloy powder for an RTB-based sintered magnet to be subjected to fine pulverization and mixed, followed by dry fine pulverization. A predetermined amount of an additive is added to the alloy fine powder for the TB-based sintered magnet and mixed to improve the formability, the magnetic field orientation or the oxidation resistance so that the RT-B-based sintered magnet can be used. Various proposals have been made to improve production efficiency, magnetic characteristics, and the like. (Japanese Patent 60
JP-184602, JP-A-60-184603, JP-A-60-184
184604, JP-A-4-214803 and JP-A-4-214803
-214804). Fatty acids such as stearic acid, fatty acid salts such as zinc stearate, amino acid compounds, polyoxyethylene compounds, paraffin, camphor and the like as additives for improving the formability of alloy coarse powder for RTB based sintered magnets Has been proposed. It has also been proposed to add a fatty acid such as oleic acid, a fatty acid ester, a higher alcohol, a polyethylene glycol, a liquid polymer such as liquid polypropylene, or a borate ester for the purpose of improving the magnetic field orientation or the magnetic field orientation and moldability. I have. Further, for the purpose of improving the oxidation resistance or the oxidation resistance and the moldability, it has been proposed to add a fatty acid, a fatty acid ester, a neutral phosphate, a silicone oil or the like. These additives may be used in combination of two or more.

【0005】添加剤およびR−T−B系焼結磁石用の原
料合金粉末の所定量を配合し、混合して前記原料合金粉
末の表面を被覆する方法は湿式法または乾式法に大別さ
れる。湿式法では、例えば、原料合金粗粉、有機溶媒お
よび添加剤の所定量を秤量後、ボールミル等に投入し微
粉砕するか、あるいは乾式微粉砕した原料合金微粉、有
機溶媒および添加剤の所定量を混合し、作製したスラリ
ー状の混合物を乾燥し、脱溶媒することによりR−T−
B系焼結磁石用の原料合金微粉表面が添加剤で被覆され
る。これに対し、乾式法では、例えば、原料合金粗粉お
よび添加剤の所定量を混合後、次いでジェットミル等に
より乾式微粉砕するとこの微粉砕時の衝撃エネルギーに
よりR−T−B系焼結磁石用の原料合金微粉表面に添加
剤が被覆される。乾式法の方が被覆工程が簡便になるの
で作業性に優れるという長所がある。
[0005] A method of mixing and mixing a predetermined amount of an additive and a raw material alloy powder for an RTB based sintered magnet to coat the surface of the raw material alloy powder is roughly classified into a wet method and a dry method. You. In the wet method, for example, a predetermined amount of a raw material alloy coarse powder, an organic solvent and an additive are weighed and then charged into a ball mill or the like and finely pulverized, or a predetermined amount of a dry finely pulverized raw material alloy fine powder, an organic solvent and an additive are measured. Are mixed, the prepared slurry-like mixture is dried, and the solvent is removed to remove the RT-
The surface of the raw material alloy fine powder for the B-based sintered magnet is coated with the additive. On the other hand, in the dry method, for example, after mixing a predetermined amount of a raw material alloy coarse powder and an additive, and then dry-pulverizing with a jet mill or the like, an RTB-based sintered magnet is obtained by the impact energy at the time of the fine pulverization. The additive is coated on the surface of the raw material alloy powder for use. The dry method has an advantage that workability is excellent because the coating process is simpler.

【0006】[0006]

【発明が解決しようとする課題】しかし、原料合金粉末
表面を添加剤で被覆する作業を従来の乾式法で行うと最
終的に得られるR−T−B系焼結磁石の酸素含有量およ
び残留炭素量が増大し、同時に磁気特性が低下してR−
T−B系焼結磁石の高性能化を阻害する要因になってい
た。
However, when the work of coating the surface of the raw material alloy powder with the additive is performed by the conventional dry method, the oxygen content and residual amount of the RTB based sintered magnet finally obtained are finally obtained. The carbon content increases, and at the same time the magnetic properties decrease,
This is a factor that hinders the high performance of the TB sintered magnet.

【0007】したがって、本発明が解決しようとする課
題は、新しい乾式法によりR−T−B系焼結磁石用原料
合金粉末表面を被覆したものを用いて成形し、次いで焼
結および熱処理を行うR−T−B系焼結磁石の製造方法
により、従来の乾式法を用いた場合に比べて酸素含有量
および残留炭素量を低減し、磁気特性を高めたR−Fe
−B系焼結磁石を提供することである。
[0007] Therefore, the problem to be solved by the present invention is to form a material by coating the surface of a raw alloy powder for RTB based sintered magnets by a new dry method, and then perform sintering and heat treatment. According to the method of manufacturing an RTB based sintered magnet, an R-Fe having reduced oxygen content and residual carbon content and improved magnetic properties as compared with the case of using a conventional dry method.
-To provide a B-based sintered magnet.

【0008】[0008]

【課題を解決するための手段】上記課題を解決した本発
明は、R14B型金属間化合物(RはYを含む希土
類元素の少なくとも1種であり、TはFeまたはFeと
Coである)を主相とするR−T−B系焼結磁石用合金
粗粉99.5〜99.99重量部と炭酸エチレンおよび/または
炭酸プロピレン0.01〜0.5重量部とを添加し、混合後、
次いで微粉砕して表面が炭酸エチレンおよび/または炭
酸プロピレンで被覆された微粉とし、次いで成形、焼結
および熱処理を行うR−T−B系焼結磁石の製造方法で
ある。本発明者らは、乾式法による添加剤の種類および
添加量と、表面が添加剤で被覆された原料微粉の成形
性、磁場配向性および耐酸化性、ならびに最終的に得ら
れたR−T−B系焼結磁石の酸素含有量、残留炭素量お
よび磁気特性の相関について鋭意検討した。その結果、
残留炭素量が少なく、かつ原料微粉表面への吸着性(被
覆性)に優れた添加剤として極性を持った有機物系の添
加剤(炭酸プロピレンCHまたは炭酸エチレンC
)を選択し、原料微粉に対して所定量添加
し、混合することにより、従来の乾式法を用いた場合に
比べて、焼結後の残留炭素量および酸素含有量を小さく
抑えられることを発見した。すなわち、極性の強い炭酸
プロピレンCHまたは炭酸エチレンC
が原料微粉に吸着し表面を被覆すると吸湿性が著しく低
下し、従来の乾式法を用いた場合よりも原料微粉および
焼結体の酸素含有量を低く抑えられるとともに、炭酸プ
ロピレンCHまたは炭酸エチレンC
の炭素量が少ないので焼結後の残留炭素量も低く抑えら
れることを発見した。特に、炭素原子数(Nc)と酸素原
子数(No)との合計に対する炭素原子数(Nc)の比率が
[Nc/(Nc+No)]≦2/3 の関係を満たすとともに室温
における比誘電率が10以上である炭酸プロピレンC
Hまたは炭酸エチレンCを用いることが好
ましい。比誘電率は10以上が好ましく、20以上がより好
ましい。比誘電率が10未満では原料微粉表面への吸着力
(被覆性)が低下し、大気に触れると瞬時に発熱あるい
は発火を生じ、工業生産を安定して行うことが困難にな
る。この場合は原料微粉を一旦機密容器内に回収し、次
いで徐々に酸化させて原料微粉を安定化処理する必要が
あり、最終的に得られるR−T−B系焼結磁石の含有酸
素量は非常に高くなる。[Nc/(Nc+No)]が2/3超では
残留炭素量が従来の乾式法による場合と同等になり有意
差が無くなるので[Nc/(Nc+No)]≦2/3の関係を満た
すものが好ましい。
According to the present invention, which solves the above-mentioned problems, there is provided an R 2 T 14 B-type intermetallic compound (R is at least one kind of rare earth element containing Y, and T is Fe or Fe and Co). 99.5 to 99.99 parts by weight of an RTB based sintered alloy alloy powder having a main phase of) and 0.01 to 0.5 parts by weight of ethylene carbonate and / or propylene carbonate are added and mixed.
This is a method for producing an RTB-based sintered magnet in which the powder is finely pulverized into fine powder whose surface is coated with ethylene carbonate and / or propylene carbonate, and then subjected to molding, sintering and heat treatment. The present inventors have determined the type and amount of additive obtained by the dry method, the moldability, the magnetic field orientation and the oxidation resistance of the raw material powder whose surface is coated with the additive, and the R-T obtained finally. The correlation between the oxygen content, the residual carbon content, and the magnetic properties of the -B-based sintered magnet was studied diligently. as a result,
A polar organic additive (propylene carbonate C 4 O 3 H or ethylene carbonate C) as an additive having a low residual carbon content and having excellent adsorptivity (coating property) to the raw material powder surface
3 O 3 H 4) is selected, adding a predetermined amount of the raw material fines, by mixing, as compared with the case of using the conventional dry method, it reduces the amount of residual carbon and the oxygen content after sintering Found that it can be suppressed. That is, propylene carbonate C 4 O 3 H or ethylene carbonate C 3 O 3 H 4 having strong polarity is used.
Is adsorbed on the raw material fine powder to cover the surface, the hygroscopicity is significantly reduced, the oxygen content of the raw material fine powder and the sintered body can be suppressed lower than in the case of using the conventional dry method, and propylene carbonate C 4 O 3 H Alternatively, it has been found that the residual carbon content after sintering can be suppressed low because the carbon content in ethylene carbonate C 3 O 3 H 4 is small. In particular, the ratio of the number of carbon atoms (Nc) to the sum of the number of carbon atoms (Nc) and the number of oxygen atoms (No) satisfies the relationship of [Nc / (Nc + No)] ≦ 2/3 and the relative dielectric constant at room temperature is Propylene carbonate C 4 O of 10 or more
It is preferable to use 3 H or ethylene carbonate C 3 O 3 H 4 . The relative dielectric constant is preferably 10 or more, more preferably 20 or more. If the relative dielectric constant is less than 10, the adsorptive power (coverability) on the surface of the raw material powder decreases, and when it comes into contact with the atmosphere, heat or ignition is instantaneously generated, making it difficult to stably perform industrial production. In this case, it is necessary to once recover the raw material fine powder in a confidential container and then gradually oxidize the raw material fine powder to stabilize the raw material fine powder. The oxygen content of the finally obtained RTB based sintered magnet is as follows: Very high. When [Nc / (Nc + No)] is more than 2/3, the residual carbon content is equivalent to that obtained by the conventional dry method and there is no significant difference. Therefore, it is preferable that the relationship [Nc / (Nc + No)] ≦ 2/3 is satisfied. .

【0009】[0009]

【発明の実施の形態】添加剤である炭酸プロピレンC
Hおよび/または炭酸エチレンCと原料
合金粗粉の混合は、原料合金粗粉99.5〜99.99重量部と
添加剤0.01〜0.5重量部とを、例えばArガスまたは窒
素ガス雰囲気に保持した混合機中に投入し、行う。添加
剤は極性を持つために吸湿性が強く、混合工程で水分が
混入する懸念があるので密封型の混合機を用いることが
好ましい。混合比率は、原料粗粉99.5〜99.99重量部と
添加剤0.01〜0.5重量部とすることが好ましく、原料粗
粉99.9〜99.98重量部と添加剤0.02〜0.1重量部とするこ
とがより好ましい。添加剤の添加量が0.01重量部未満で
は酸素含有量を低減する効果が得られないとともに原料
微粉の潤滑性が低下し、磁場配向性が低下するので最終
的に得られるR−T−B系焼結磁石の最大エネルギー積
(BH)maxが低下する。また、添加剤の添加量が0.5重量部
超では残留炭素量および酸素含有量が増大し、磁気特性
が低下する。
DETAILED DESCRIPTION OF THE INVENTION Propylene carbonate C 4 as an additive
The mixture of O 3 H and / or ethylene carbonate C 3 O 3 H 4 and the raw material alloy coarse powder is obtained by mixing 99.5 to 99.99 parts by weight of the raw material alloy coarse powder and 0.01 to 0.5 part by weight of an additive, for example, in an Ar gas or nitrogen gas atmosphere. Into the mixer held at It is preferable to use a hermetic mixer because the additive has a strong hygroscopic property due to its polarity and there is a concern that moisture may be mixed in the mixing step. The mixing ratio is preferably 99.5 to 99.99 parts by weight of the raw material coarse powder and 0.01 to 0.5 part by weight of the additive, and more preferably 99.9 to 99.98 parts by weight of the raw material coarse powder and 0.02 to 0.1 part by weight of the additive. When the amount of the additive is less than 0.01 part by weight, the effect of reducing the oxygen content is not obtained, and the lubricity of the raw material powder is reduced, and the orientation of the magnetic field is reduced. Maximum energy product of sintered magnet
(BH) max decreases. If the amount of the additive exceeds 0.5 parts by weight, the residual carbon content and the oxygen content increase, and the magnetic properties deteriorate.

【0010】添加剤の混合された原料粗粉は例えばジェ
ットミルを用いて平均粒径2〜5μmに微粉砕される。
平均粒径が2μm未満では酸素含有量が増大し、かつ成
形性が大きく劣化する。平均粒径が5μm超では保磁力
が低下する。成形性を改善するために、前記添加剤を所
定量添加してなる原料合金微粉99.0〜99.99重量部とス
テアリン酸塩0.01〜1.0重量部とを配合し、混合したも
のを成形に供することが好ましい。
The raw material coarse powder mixed with the additives is finely pulverized to an average particle size of 2 to 5 μm using, for example, a jet mill.
If the average particle size is less than 2 μm, the oxygen content increases and the moldability deteriorates significantly. If the average particle size exceeds 5 μm, the coercive force decreases. In order to improve the moldability, it is preferable to mix 99.0 to 99.99 parts by weight of the raw material alloy powder obtained by adding the above-mentioned additives in a predetermined amount and 0.01 to 1.0 part by weight of the stearate, and to subject the mixture to molding. .

【0011】本発明によるR−T−B系焼結磁石の成
形、焼結、熱処理および表面処理の工程は公知の条件を
採用して行うことができる。成形は磁場中圧縮成形によ
るのが好ましく、成形圧力は49〜490MPa(0.5〜5ton/c
m)の範囲が好ましく、印加磁場強度は636.6kA/m(8
kOe)以上が好ましい。焼結は真空中またはアルゴンガ
ス等の不活性雰囲気中で1000〜1100℃で1〜4時間加熱
保持する条件が好ましい。焼結後の熱処理は真空中また
はArガス等の不活性ガス雰囲気中で700〜1000℃に1
〜10時間加熱保持する1段目の熱処理を行い、次いで40
0〜650℃に1〜10時間加熱保持する2段目の熱処理を行
い、必要に応じてさらに400〜600℃でかつ2段目の熱処
理温度より10℃以上低い温度で1〜10時間加熱保持する
3段目の熱処理を行い、次いで室温まで冷却する条件が
好ましい。耐食性を向上するために、電解または無電解
のNiめっき、Cuめっき、Ni−Pめっきまたは電着
エポキシ樹脂膜等によりR−T−B系焼結磁石体の表面
を被覆することが好ましい。
The steps of molding, sintering, heat treatment and surface treatment of the RTB based sintered magnet according to the present invention can be carried out under known conditions. The molding is preferably performed by compression molding in a magnetic field, and the molding pressure is 49 to 490 MPa (0.5 to 5 ton / c).
m 2 ), and the applied magnetic field strength is 636.6 kA / m (8
kOe) or more is preferred. The sintering is preferably carried out in a vacuum or in an inert atmosphere such as argon gas at 1000 to 1100 ° C. for 1 to 4 hours. The heat treatment after sintering is performed at 700 to 1000 ° C in vacuum or in an inert gas atmosphere such as Ar gas.
Perform the first stage heat treatment by heating and holding for
Perform the second stage heat treatment by heating and holding at 0 to 650 ° C for 1 to 10 hours, and if necessary, further heat and maintain at 400 to 600 ° C and at least 10 ° C lower than the second stage heat treatment temperature. Preferably, the third heat treatment is performed, and then the temperature is cooled to room temperature. In order to improve corrosion resistance, it is preferable to coat the surface of the RTB-based sintered magnet body with electrolytic or electroless Ni plating, Cu plating, Ni-P plating, an electrodeposited epoxy resin film, or the like.

【0012】[0012]

【実施例】以下、本発明を実施例により詳細に説明する
が、それら実施例により本発明が限定されるものではな
い。 (実施例1)高周波溶解し、Nd:24.5wt%、Pr:
6.8wt%、Dy:0.85wt%、Al:0.08wt%、G
a:0.14wt%、B:1.0wt%、残部Feの主要成分
組成に調整した合金溶湯を、ストリップキャスト装置の
急冷ロール表面に注湯して急冷凝固し、R−Fe−B系
合金薄片を作製した。次いで、この合金薄片をArガス
雰囲気中で1000℃×2時間加熱後室温まで冷却した。次
いで、水素吸蔵させて脆化後、ランデルミルにより解砕
し、原料合金粗粉を得た。この合金粗分の主要成分組成
は前記溶湯と同様であった。次いで、前記合金粗粉99.9
5重量部と炭酸プロピレン0.05重量部とを密閉型の混合
機に投入し、15分間混合した。次いで、ジェットミルに
より窒素ガス気流中で微粉砕を行い、平均粒径4.7μm
の微粉を得た。次いで、印加磁場強度636.6kA/m(8kO
e)、成形圧力98MPa(1.0ton/cm)の条件で圧縮磁場
中成形を行い、焼結に供する成形体および強度測定用の
成形体を作製した。焼結に供する成形体は縦30mm×横
15mm×厚み16mmに、強度測定用の成形体は縦30mm
×横15mm×厚み9mmの形状に成形した。成形体強度
の測定は3点曲げ試験による抗折強度で評価した。結果
を表2に示す。焼結は1080℃×2時間、約6.7×10Pa
(5×10Torr)の真空中にて行い、その後室温まで冷
却した。次いで、熱処理をArガス雰囲気中で900×1
時間および550℃×1時間加熱する2段で行い、その後
室温まで冷却した。次いで得られた焼結体の焼結肌が無
くなるまで加工し、BHトレーサーにより室温の磁気特
性を測定した。結果を表1に示す。また、前記微粉砕微
粉および焼結体の酸素含有量および炭素含有量を分析し
た結果を表1に示す。表1、2より、実施例1の微粉お
よび焼結体の酸素含有量および炭素含有量はいずれも低
く抑えられており、工業生産効率を低下せしめないレベ
ルの成形体強度および高い磁気特性を有することがわか
る。
The present invention will be described below in more detail with reference to examples, but the present invention is not limited by these examples. (Example 1) High frequency melting, Nd: 24.5 wt%, Pr:
6.8 wt%, Dy: 0.85 wt%, Al: 0.08 wt%, G
a: 0.14 wt%, B: 1.0 wt%, the molten alloy adjusted to the main component composition of the balance Fe is poured onto the surface of a quenching roll of a strip casting device and rapidly solidified to form an R-Fe-B alloy flake. Produced. Next, this alloy flake was heated in an Ar gas atmosphere at 1000 ° C. for 2 hours and then cooled to room temperature. Then, after hydrogen embedding and embrittlement, the mixture was crushed by a Landel mill to obtain a raw material alloy coarse powder. The composition of the main components of the alloy coarse fraction was the same as that of the molten metal. Then, the alloy coarse powder 99.9
5 parts by weight and 0.05 parts by weight of propylene carbonate were charged into a closed mixer and mixed for 15 minutes. Then, finely pulverized in a nitrogen gas stream by a jet mill, average particle size 4.7μm
Was obtained. Next, the applied magnetic field strength was 636.6 kA / m (8 kO
e) Molding was performed in a compression magnetic field under the conditions of a molding pressure of 98 MPa (1.0 ton / cm 2 ) to prepare a molded body to be subjected to sintering and a molded body for strength measurement. The compact to be used for sintering is 30mm long x horizontal
15 mm x 16 mm thick, molded body for strength measurement is 30 mm long
It was formed into a shape of × 15 mm in width × 9 mm in thickness. The measurement of the strength of the compact was evaluated by the bending strength by a three-point bending test. Table 2 shows the results. Sintering is 1080 ° C x 2 hours, about 6.7 x 10 4 Pa
(5 × 10 4 Torr) in vacuum and then cooled to room temperature. Next, heat treatment is performed in an Ar gas atmosphere at 900 × 1.
The heating was performed in two stages of heating at 550 ° C. × 1 hour and then cooled to room temperature. Next, the obtained sintered body was processed until the sintered skin disappeared, and the magnetic properties at room temperature were measured with a BH tracer. Table 1 shows the results. Table 1 shows the results of analyzing the oxygen content and the carbon content of the finely pulverized fine powder and the sintered body. According to Tables 1 and 2, the oxygen content and the carbon content of the fine powder and the sintered body of Example 1 are all kept low, and have a molded body strength and high magnetic properties that do not lower the industrial production efficiency. You can see that.

【0013】(実施例2)実施例1の添加剤に替えて、
炭酸エチレン50重量部と炭酸プロピレン50重量部とを混
合したものを0.05重量部と、実施例1の原料合金粗分9
9.95重量部とを配合し、混合した以外は実施例1と同様
の評価を行った。結果を表1、2に示す。表1、2より
実施例1と同等の良好な結果を得られたことがわかる。
Example 2 Instead of the additive of Example 1,
A mixture of 50 parts by weight of ethylene carbonate and 50 parts by weight of propylene carbonate was mixed with 0.05 part by weight, and the raw material alloy crude material of Example 1 was mixed with 9 parts by weight.
The same evaluation as in Example 1 was performed, except that 9.95 parts by weight was mixed and mixed. The results are shown in Tables 1 and 2. Tables 1 and 2 show that good results equivalent to those of Example 1 were obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】実施例1、2より、本発明によれば、R−
Fe−B系焼結磁石体の酸素含有量を0.45wt%以下お
よび残留炭素量を0.04wt%以下に低減できることがわ
かる。
From Examples 1 and 2, according to the present invention, R-
It can be seen that the oxygen content of the Fe—B based sintered magnet body can be reduced to 0.45 wt% or less and the residual carbon content can be reduced to 0.04 wt% or less.

【0017】(比較例1)実施例1の添加剤に替えて、
ステアリン酸亜鉛0.05重量部と実施例1の原料合金粗分
99.95重量部とを配合し、混合した以外は実施例1と同
様の評価を行った。結果を表1、2に示す。表1、2よ
り、上記実施例に比べて、微粉、焼結体の酸素含有量お
よび炭素含有量が多く、成形体強度が低下していること
がわかる。この成形体強度の低下は工業生産効率を顕著
に落とすものであった。 (比較例2)添加剤を添加しない以外は実施例1と同様
にしてR−Fe−B系焼結磁石の室温の磁気特性および
成形体強度を測定した。結果を表1、2に示す。
(Comparative Example 1) In place of the additive of Example 1,
0.05 parts by weight of zinc stearate and the raw material alloy crude of Example 1
The same evaluation as in Example 1 was performed, except that 99.95 parts by weight were mixed and mixed. The results are shown in Tables 1 and 2. From Tables 1 and 2, it can be seen that the fine powder and the sintered body have a higher oxygen content and a higher carbon content than the above-mentioned examples, and the strength of the molded body is reduced. This decrease in the strength of the compact significantly reduced industrial production efficiency. (Comparative Example 2) The room-temperature magnetic properties and the strength of the compact of the R-Fe-B based sintered magnet were measured in the same manner as in Example 1 except that no additive was added. The results are shown in Tables 1 and 2.

【0018】(実施例3)高周波溶解し、実施例1に比
べてNd含有量を0.4wt%減少させ、Coを添加し
た、Nd:24.1wt%、Pr:6.8wt%、Dy:0.85
wt%、Al:0.08wt%、Ga:0.14wt%、B:1.
0wt%、Co:2wt%、残部Feの主要成分組成に
調整した合金溶湯を、ストリップキャスト装置の急冷ロ
ール表面に注湯して急冷凝固し、R−T−B系合金薄片
を作製した。以降は実施例1と同様にして成形体強度、
微粉および焼結体の酸素量、炭素量、室温の磁気特性を
評価した。その結果、成形体強度、微粉および焼結体の
酸素量、炭素量はいずれも実施例1と同等の値が得られ
た。また、室温の磁気特性はBr=1.37(T)、保磁力iH
c=1.33(MA/m)および(BH)max=362(kJ/m)という
高い値が得られた。
Example 3 Nd content: 24.1% by weight, Pr: 6.8% by weight, Dy: 0.85 to which Nd content was reduced by 0.4% by weight as compared with Example 1 and Co was added.
wt%, Al: 0.08 wt%, Ga: 0.14 wt%, B: 1.
An alloy melt adjusted to a main component composition of 0 wt%, Co: 2 wt%, and the balance of Fe was poured onto the surface of a quenching roll of a strip casting apparatus and rapidly solidified to produce an RTB-based alloy flake. Thereafter, in the same manner as in Example 1, the strength of the molded body,
The oxygen content, carbon content, and room temperature magnetic properties of the fine powder and the sintered body were evaluated. As a result, the same values as in Example 1 were obtained for the strength of the compact, the oxygen content and the carbon content of the fine powder and the sintered body. The magnetic properties at room temperature were Br = 1.37 (T) and the coercive force iH
High values of c = 1.33 (MA / m) and (BH) max = 362 (kJ / m 3 ) were obtained.

【0019】[0019]

【発明の効果】以上記述の通り、本発明によれば、従来
の乾式法を用いた場合に比べて微粉および焼結体の酸素
含有量および残留炭素量を低く抑えられる結果、高性能
のR−T−B系焼結磁石を提供することができる。
As described above, according to the present invention, the oxygen content and the residual carbon content of the fine powder and the sintered body can be suppressed lower than in the case where the conventional dry method is used. -A T-B based sintered magnet can be provided.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 C22C 38/00 303D 1/06 H01F 1/04 H // C22C 38/00 303 1/06 A Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01F 1/053 C22C 38/00 303D 1/06 H01F 1/04 H // C22C 38/00 303 1/06 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R14B型金属間化合物(RはYを
含む希土類元素の少なくとも1種であり、TはFeまた
はFeとCoである)を主相とするR−T−B系焼結磁
石用合金粗粉99.5〜99.99重量部と炭酸エチレンおよび
/または炭酸プロピレン0.01〜0.5重量部とを添加し、
混合後、次いで微粉砕して表面が炭酸エチレンおよび/
または炭酸プロピレンで被覆された微粉とし、次いで成
形、焼結および熱処理を行うことを特徴とするR−T−
B系焼結磁石の製造方法。
1. An R-T-B system having a main phase of R 2 T 14 B-type intermetallic compound (R is at least one of rare earth elements including Y and T is Fe or Fe and Co). 99.5 to 99.99 parts by weight of alloy coarse powder for sintered magnets and 0.01 to 0.5 parts by weight of ethylene carbonate and / or propylene carbonate are added,
After mixing, the mixture is then pulverized and the surface is ethylene carbonate and / or
Or a fine powder coated with propylene carbonate, followed by molding, sintering and heat treatment.
A method for producing a B-based sintered magnet.
JP2000204674A 2000-07-06 2000-07-06 Method of manufacturing r-t-b sintered magnet Pending JP2002025815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204674A JP2002025815A (en) 2000-07-06 2000-07-06 Method of manufacturing r-t-b sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000204674A JP2002025815A (en) 2000-07-06 2000-07-06 Method of manufacturing r-t-b sintered magnet

Publications (1)

Publication Number Publication Date
JP2002025815A true JP2002025815A (en) 2002-01-25

Family

ID=18701905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204674A Pending JP2002025815A (en) 2000-07-06 2000-07-06 Method of manufacturing r-t-b sintered magnet

Country Status (1)

Country Link
JP (1) JP2002025815A (en)

Similar Documents

Publication Publication Date Title
TWI476791B (en) RTB rare earth publication magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
WO2015159612A1 (en) Rare-earth permanent magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP2023047307A (en) Rare earth magnetic material and method for manufacturing the same
JP4900085B2 (en) Rare earth magnet manufacturing method
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JPH056322B2 (en)
JPH0551656B2 (en)
CN114223044B (en) Method for producing sintered magnet
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP2002025815A (en) Method of manufacturing r-t-b sintered magnet
JPH06116605A (en) Compacting assistant of rare-earth permanent magnet and its added alloy powder
JPH0422008B2 (en)
JPH0146574B2 (en)
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JP3498395B2 (en) Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets
JPS6144155A (en) Permanent magnet alloy
JPS6077961A (en) Permanent magnet material and its manufacture
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH10241923A (en) Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it
JPH0475303B2 (en)
JPH0480961B2 (en)
JPH0480962B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613