JP2002022371A - Heat exchanger for cold water supply and water temperature control method - Google Patents
Heat exchanger for cold water supply and water temperature control methodInfo
- Publication number
- JP2002022371A JP2002022371A JP2000205020A JP2000205020A JP2002022371A JP 2002022371 A JP2002022371 A JP 2002022371A JP 2000205020 A JP2000205020 A JP 2000205020A JP 2000205020 A JP2000205020 A JP 2000205020A JP 2002022371 A JP2002022371 A JP 2002022371A
- Authority
- JP
- Japan
- Prior art keywords
- temperature refrigerant
- heat exchanger
- refrigerant
- temperature
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 164
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000003507 refrigerant Substances 0.000 claims abstract description 271
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000005057 refrigeration Methods 0.000 claims description 38
- 238000005192 partition Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 abstract description 12
- 238000007599 discharging Methods 0.000 abstract description 2
- 238000007710 freezing Methods 0.000 abstract 3
- 230000008014 freezing Effects 0.000 abstract 3
- 238000012856 packing Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000012267 brine Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷水を供給する冷
水供給用熱交換器とその冷水の水温制御方法に関し、詳
しくは、例えば、冷房専用チリングユニットの水側の熱
交換器としての冷水供給用熱交換器とその水温制御方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chilled water supply heat exchanger for supplying chilled water and a method for controlling the temperature of the chilled water, and more particularly to, for example, a chilled water supply as a water-side heat exchanger of a cooling only chilling unit. The present invention relates to a heat exchanger for water and a method for controlling its water temperature.
【0002】[0002]
【従来の技術】以下、従来の技術を図10乃至図19に
基づいて説明する。先ず、図19において、図は冷水供
給用熱交換器としての冷房専用チリングユニットの水側
の熱交換器本体の正面図(一部透視)である。図中の符
号1は筒状に構成された熱交換器本体、2は熱交換器本
体1から供給排出される冷水排出口、3は熱交換器本体
1内に水を導入する水導入口である。4は熱交換器本体
1の一方の円状の端面側を被う鏡蓋としての冷媒出入口
鏡蓋であり、5は熱交換器本体1の他方の円状の端面側
を被う鏡蓋としての冷媒戻側鏡蓋である。何れの鏡蓋
4,5も、その内側に空洞部6,7を備えている(図1
0、図11、図14、図16)。2. Description of the Related Art A conventional technique will be described below with reference to FIGS. First, in FIG. 19, the figure is a front view (partially transparent) of the water-side heat exchanger main body of the cooling only chilling unit as the heat exchanger for supplying cold water. In the figure, reference numeral 1 denotes a heat exchanger main body formed in a tubular shape, 2 denotes a cold water discharge port supplied and discharged from the heat exchanger main body 1, and 3 denotes a water inlet for introducing water into the heat exchanger main body 1. is there. Reference numeral 4 denotes a refrigerant inlet / outlet mirror cover as a mirror cover covering one circular end face side of the heat exchanger main body 1, and 5 denotes a mirror cover covering the other circular end face side of the heat exchanger main body 1. Of the refrigerant return side mirror lid. Each of the lens covers 4, 5 has a cavity 6, 7 inside thereof (FIG. 1).
0, FIG. 11, FIG. 14, FIG. 16).
【0003】熱交換器本体1の内部には、多数の伝熱管
8が互いに適度な間隙を隔てて筒の長手方向に向けて配
設されており、各伝熱管8の両端口は、それぞれの鏡蓋
4,5の空洞部6,7に向けて開口されたままである
(図12、図15)。水導入口3から熱交換器本体1内
に導入された水は、上記伝熱管8相互の間隙を流れて行
く。即ち、伝熱管8相互間の間隙は、熱交換器本体1内
で冷却される水が通される流水路9である(図12、図
15)。上記の伝熱管8には冷媒が流され、この冷媒が
流水路9を流れる水の熱を蒸発によって奪う熱交換によ
り水の冷却が行われる。この熱交換が行われる伝熱管8
としては銅管が最適である。[0003] Inside the heat exchanger body 1, a number of heat transfer tubes 8 are arranged in the longitudinal direction of the cylinder with an appropriate gap therebetween, and both ends of each heat transfer tube 8 are connected to the respective ends. It remains open toward the cavities 6, 7 of the mirror covers 4, 5 (FIGS. 12 and 15). Water introduced into the heat exchanger body 1 from the water inlet 3 flows through the gap between the heat transfer tubes 8. That is, the gap between the heat transfer tubes 8 is the flowing water passage 9 through which the water cooled in the heat exchanger main body 1 passes (FIGS. 12 and 15). A coolant flows through the heat transfer tube 8, and the coolant is cooled by heat exchange in which the coolant removes heat of the water flowing through the water passage 9 by evaporation. Heat transfer tube 8 where this heat exchange is performed
A copper tube is the best.
【0004】図14において、上記の冷媒出入口鏡蓋4
には、図示されていない冷凍サイクルシステム管路から
低温の冷媒が導入される冷媒入口10と、熱交換を終え
た冷媒を流し出す冷媒出口11とが、それぞれ設けられ
ている。鏡蓋4の内側には、その空洞部6を上下に仕切
る仕切板12が設けられており、この仕切板12によっ
て、鏡蓋4の内側に導入された冷媒と、伝熱管8を経て
鏡蓋4の内側に戻ってきた熱交換を終えた冷媒とが混合
しないように隔てられている。伝熱管8に流入した低温
の冷媒は、当該伝熱管8の内部を流れながら、熱交換に
よって次第に高温化し、気化しながらガス状の低温冷媒
となって冷媒出口11へと流れ出て行く。[0004] In FIG.
Are provided with a refrigerant inlet 10 through which a low-temperature refrigerant is introduced from a refrigeration cycle system pipe line (not shown), and a refrigerant outlet 11 through which the refrigerant that has undergone heat exchange flows. A partition plate 12 is provided inside the mirror cover 4 to partition the hollow portion 6 up and down. The partition plate 12 allows the refrigerant introduced into the inside of the mirror cover 4 to pass through the heat transfer tube 8 and the mirror cover. The heat-exchanged refrigerant that has returned inside 4 is separated so as not to mix. The low-temperature refrigerant that has flowed into the heat transfer tube 8 gradually rises in temperature by heat exchange while flowing inside the heat transfer tube 8, becomes a gaseous low-temperature refrigerant while evaporating, and flows out to the refrigerant outlet 11.
【0005】図12は熱交換器本体1の一方側の端面、
この例では冷媒出入口鏡蓋4側に向いた出入口側端面で
あり、多数の伝熱管8の端口が開口している。図から分
かる通り、互いに適度の間隙を以って束ねられたような
状態の多数の伝熱管8は、上下の群れ(以下、伝熱管群
ともいう)に分けられており、当該端面の下半分側が低
温冷媒の入口側、上半分が低温冷媒の出口側とされてい
る。FIG. 12 shows one end face of the heat exchanger body 1.
In this example, it is an entrance / exit-side end face facing the refrigerant entrance / exit mirror cover 4 side, and end openings of many heat transfer tubes 8 are open. As can be seen from the figure, a large number of heat transfer tubes 8 in a state of being bundled with an appropriate gap therebetween are divided into upper and lower groups (hereinafter, also referred to as heat transfer tube groups), and the lower half of the end face concerned. The side is the inlet side of the low-temperature refrigerant, and the upper half is the outlet side of the low-temperature refrigerant.
【0006】再び図14において、冷媒出入口鏡蓋4は
上記したように仕切板12を有しており、この仕切板1
2によって、熱交換器本体1の出入口側端面の下半分側
の伝熱管8の端口を冷媒の入口とし、上半分の伝熱管8
の端口を出口として仕切ることで、当該鏡蓋4の空洞部
6における冷媒の伝熱管8に対する出入流路を上下に区
切っている。尚、図13の13は熱交換器本体1の端面
に宛がわれるパッキンであり、この冷媒出入口鏡蓋側パ
ッキン13を挟んで冷媒出入口鏡蓋4が熱交換器本体1
の端面側に気密に取付けられている。Referring again to FIG. 14, the inlet / outlet mirror lid 4 has the partition plate 12 as described above.
2, the end of the heat transfer tube 8 on the lower half side of the inlet / outlet side end surface of the heat exchanger body 1 is used as the refrigerant inlet, and the heat transfer tube 8 on the upper half is used.
Is divided as an outlet so that the flow path of the refrigerant into and out of the heat transfer tube 8 in the cavity 6 of the mirror cover 4 is vertically divided. In FIG. 13, reference numeral 13 denotes a packing addressed to the end face of the heat exchanger main body 1. The refrigerant inlet / outlet lid 4 is sandwiched between the refrigerant inlet / outlet lid 13 and the heat exchanger main body 1.
It is airtightly mounted on the end face side of.
【0007】再び図19において、水導入口3から熱交
換器本体1に導入されて流水路9を流れる水は、伝熱管
8に沿って流れる途中で熱交換を行いながら、即ち冷媒
に熱を奪われながら流れて行き、冷水排出口2から供給
排出される。この流水路9には、伝熱効率を良くするた
めに、バッフルプレート14が適所に配置され、水の流
れに攪拌特性を持たせて効率化を図っている。Referring again to FIG. 19, water introduced into the heat exchanger main body 1 through the water inlet 3 and flowing through the water passage 9 performs heat exchange while flowing along the heat transfer tube 8, that is, heat is transferred to the refrigerant. It flows while being robbed, and is supplied and discharged from the cold water discharge port 2. A baffle plate 14 is disposed at an appropriate position in the flowing water channel 9 to improve the heat transfer efficiency, and the efficiency of the flow is improved by imparting a stirring characteristic to the flow of water.
【0008】さて、冷凍サイクルシステムから供給され
る低温の冷媒は、熱交換器本体1の冷媒入口10から空
洞部6の下空間に導入され、図12に示す熱交換器本体
1の端面の下半分側に開口する多数の伝熱管8、この例
では18本の各銅管に分流して流れ込み、熱交換器本体
1の他方端側の冷媒戻側鏡蓋5の空洞部7に一旦集ま
る。当該空洞部7に一旦集まった冷媒は、当該空洞部7
に向けて、熱交換器本体1の端面の上半分側に開口する
伝熱管群即ち多数の伝熱管8に、分流して再び流れ込
み、更に熱交換を行った後に、ガス状の冷媒(冷媒ガ
ス)となって熱交換器本体1の他方端側の空洞部6の上
空間を経て冷媒出口11から押し出されるように流れ出
る。尚、上記の冷媒戻側鏡蓋5もまた、図17に示す形
態の冷媒戻側鏡蓋側パッキン15を挟んで熱交換器本体
1の端面に気密に取付けられている。[0008] The low-temperature refrigerant supplied from the refrigeration cycle system is introduced into the space below the cavity 6 through the refrigerant inlet 10 of the heat exchanger main body 1 and is located below the end face of the heat exchanger main body 1 shown in FIG. The heat is split and flows into a large number of heat transfer tubes 8 opened in half, in this example, 18 copper tubes, and once collects in the cavity 7 of the refrigerant return mirror cover 5 at the other end of the heat exchanger body 1. The refrigerant once collected in the cavity 7 is
To the heat exchanger tube group, that is, a large number of heat exchanger tubes 8 which open to the upper half side of the end face of the heat exchanger body 1, flow again, and further perform heat exchange. ) And flows out through the upper space of the cavity 6 on the other end side of the heat exchanger body 1 so as to be pushed out from the refrigerant outlet 11. The above-described refrigerant return head cover 5 is also hermetically attached to the end surface of the heat exchanger body 1 with the refrigerant return head cover side packing 15 in the form shown in FIG.
【0009】上記のような水と冷媒との流れにより、図
19に示す水導入口3から導入された水は、熱交換器本
体1の流水路9を冷水排出口2へ向かって流れて行く間
に冷却される。こうして熱交換器本体1から供給排水さ
れる冷水は、勿論所定の温度に維持されることが望まし
い。このため、出口水温検出手段としての水温検出セン
サー16を冷水排出口2に配設して、供給排出される冷
水の温度を検出し、後述する従来型温度制御手段によ
り、冷水の温度を一定に保つようにしている。尚、上記
の水は、単なる水だけでなく、広く液体であればよい。
例えば、流体ブラインであってもよい。Due to the flow of the water and the refrigerant as described above, the water introduced from the water inlet 3 shown in FIG. 19 flows through the water passage 9 of the heat exchanger body 1 toward the cold water outlet 2. Cooled in between. It is desirable that the cold water supplied and drained from the heat exchanger body 1 be maintained at a predetermined temperature. For this reason, a water temperature detecting sensor 16 as an outlet water temperature detecting means is disposed at the chilled water discharge port 2 to detect the temperature of the chilled water to be supplied and discharged, and to keep the temperature of the chilled water constant by the conventional temperature control means described later. I try to keep it. In addition, the above-mentioned water is not limited to simple water, and may be a wide liquid.
For example, it may be a fluid brine.
【0010】従来の水温検出センサー16の検出値に基
づく従来型温度制御手段は、図18に示す熱交換器冷媒
配管系統図に示されるように構成されていた。図中の2
0は冷媒圧縮機、21は凝縮器、22は凝縮器用送風機
モーター、23は羽根、24は高温高圧ガス即ち高温冷
媒のバイパス用の制御弁、25は冷媒量調整用制御弁と
しての膨張弁を示し、26は膨張弁25をコントロール
するための温度及び圧力センサーである。従来の通常冷
却の流れは、冷媒圧縮機20→凝縮器21→膨張弁25
→冷媒入口10→冷媒出口11→冷媒圧縮機20であ
る。The conventional temperature control means based on the detection value of the conventional water temperature detection sensor 16 has been configured as shown in a heat exchanger refrigerant piping system diagram shown in FIG. 2 in the figure
0 is a refrigerant compressor, 21 is a condenser, 22 is a blower motor for the condenser, 23 is a blade, 24 is a control valve for bypassing high-temperature and high-pressure gas, that is, high-temperature refrigerant, and 25 is an expansion valve as a control valve for adjusting the amount of refrigerant. Reference numeral 26 denotes a temperature and pressure sensor for controlling the expansion valve 25. The conventional normal cooling flow is as follows: refrigerant compressor 20 → condenser 21 → expansion valve 25
→ refrigerant inlet 10 → refrigerant outlet 11 → refrigerant compressor 20.
【0011】[0011]
【発明が解決しようとする課題】従来の上記のような構
成においては、冷水排出口2から供給排出される冷水の
温度が低下し過ぎた場合には、冷媒圧縮機20の能力を
下げたり、更にその温度が低下する場合には、高温高圧
ガスバイパス制御弁24によって、冷却能力を抑制する
などして制御していた。しかし、このような制御では、
排水される冷水の温度が、上記の抑制制御を行っても更
に低下した場合には、冷媒圧縮機20をサーモ停止し
て、冷水の温度上昇を待つ以外に対処する方法がなかっ
た。従って、従来のような構造や制御方法では、供給排
出される冷水の温度を所定の温度に一定に保つことがで
きず、冷水の供給排水(供給)が停止したり、水温が上
下に変化した冷水しか供給することができないという問
題があった。In the above-described conventional configuration, if the temperature of the chilled water supplied and discharged from the chilled water outlet 2 is too low, the capacity of the refrigerant compressor 20 is reduced, When the temperature further decreases, the cooling capability is controlled by the high-temperature and high-pressure gas bypass control valve 24. However, with such control,
If the temperature of the discharged cold water further decreases even after performing the above-described suppression control, there is no method other than taking measures other than stopping the thermostat of the refrigerant compressor 20 and waiting for the temperature of the cold water to rise. Therefore, with the conventional structure and control method, the temperature of the cold water to be supplied and discharged cannot be kept constant at a predetermined temperature, and the supply and drainage (supply) of the cold water stops or the water temperature changes up and down. There was a problem that only cold water could be supplied.
【0012】又、この問題を解決しようとして、冷水配
管系統内に他の熱源からの熱供給を得ることで、供給排
出される冷水の温度を安定させる方法が試みられていた
が、この方法では、熱をやりとりするための熱交換器
(本体)を別途に追加設備する必要があることが問題と
なっていた。In order to solve this problem, a method of stabilizing the temperature of chilled water supplied and discharged by obtaining heat supply from another heat source in the chilled water piping system has been attempted. However, it is necessary to additionally provide a heat exchanger (main body) for exchanging heat.
【0013】上記のように、従来の冷房専用チリングユ
ニットにおいては、負荷変動により冷水の出口水温が上
下変化してしまうという好ましくない特性があったた
め、この出口水温の上下変化の改善策として、更に、次
のような方法が提案された。即ち、熱交換器本体への水
の供給量を一定として、周辺機器による制御、例えば、
冷媒回路内でのホットガスバイパスや圧縮機の容量を制
御する等の方法である。As described above, the conventional cooling only chilling unit has an unfavorable characteristic that the outlet water temperature of the chilled water changes up and down due to load fluctuation. The following method was proposed. That is, with a constant amount of water supplied to the heat exchanger body, control by peripheral devices, for example,
This is a method of controlling the hot gas bypass in the refrigerant circuit or the capacity of the compressor.
【0014】しかし、これらの従来の方法では、例えば
周辺機器で制御する等の方法では、負担が小さくなる
か、或いは負荷が無くなった時点で冷却が停止される
か、例えば圧縮機を停止したりするので、温度開閉器の
デファレンシャル(ONと0FFとの幅)が発生し、そ
の結果、どうしても、冷水排出口の水温が不安定になっ
てしまうという問題があった。However, in these conventional methods, for example, in a method of controlling with peripheral devices, the load is reduced, or the cooling is stopped when the load is removed, for example, the compressor is stopped. Therefore, a differential (width between ON and 0FF) of the temperature switch is generated, and as a result, there is a problem that the water temperature of the cold water discharge port becomes unstable.
【0015】本発明は、上記のような問題を解消し、一
定温度の冷水を供給排出することのできる冷水供給用熱
交換器とその水温制御方法の提供を目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat exchanger for supplying chilled water capable of supplying and discharging chilled water at a constant temperature and a method for controlling the temperature of the chilled water.
【0016】[0016]
【課題を解決するための手段】請求項1の発明は、冷媒
が通る伝熱管と当該伝熱管によって冷却される水が通る
流水路とを有する熱交換器本体と、前記冷媒が循環する
冷凍サイクルシステムと、前記熱交換器本体から供給排
出される冷水温度に基づいて前記冷凍サイクルシステム
を制御するシステム制御手段とを備えた冷水供給用熱交
換器において、前記熱交換器本体は、前記流水路に、前
記冷凍サイクルシステムにおいて生じた高温冷媒が適宜
通される高温冷媒用伝熱管と、当該高温冷媒用伝熱管に
高温冷媒を供給する高温冷媒供給手段と、前記高温冷媒
の供給を制御する高温冷媒供給制御手段とを備えたこと
を特徴とする。According to a first aspect of the present invention, there is provided a heat exchanger body having a heat transfer tube through which a refrigerant passes and a water passage through which water cooled by the heat transfer tube passes, and a refrigeration cycle in which the refrigerant circulates. A chilled water supply heat exchanger comprising: a system and system control means for controlling the refrigeration cycle system based on the temperature of the chilled water supplied and discharged from the heat exchanger body. A high-temperature refrigerant heat transfer tube through which a high-temperature refrigerant generated in the refrigeration cycle system is appropriately passed; a high-temperature refrigerant supply unit that supplies the high-temperature refrigerant to the high-temperature refrigerant heat transfer tube; and a high-temperature refrigerant that controls the supply of the high-temperature refrigerant. And a refrigerant supply control means.
【0017】請求項2の発明は、請求項1に記載の冷水
供給用熱交換器において、高温冷媒供給制御手段は、供
給排出される冷水の温度を検出する出口温度検出手段か
らの検出信号に基づいて高温冷媒の供給を制御すること
を特徴とする。According to a second aspect of the present invention, in the chilled water supply heat exchanger according to the first aspect, the high-temperature refrigerant supply control means includes a detection signal from an outlet temperature detection means for detecting a temperature of the supplied and discharged chilled water. The supply of the high-temperature refrigerant is controlled based on this.
【0018】請求項3の発明は、請求項1乃至請求項2
の何れかに記載の冷水供給用熱交換器において、熱交換
器本体は、冷凍サイクルシステムにおいて生じた高温冷
媒を高温冷媒用伝熱管に導く高温冷媒供給管路と、当該
高温冷媒用伝熱管に供給されて凝縮された冷媒を冷凍サ
イクルシステムに戻す帰還管路とを備えたことを特徴と
する。The invention according to claim 3 is the invention according to claim 1 or claim 2.
In the heat exchanger for cold water supply according to any one of the above, the heat exchanger body is a high-temperature refrigerant supply pipe line that guides the high-temperature refrigerant generated in the refrigeration cycle system to the high-temperature refrigerant heat transfer tube, and the high-temperature refrigerant heat transfer tube. A return line for returning the supplied and condensed refrigerant to the refrigeration cycle system.
【0019】請求項4の発明は、請求項1乃至請求項3
の何れかに記載の冷水供給用熱交換器において、高温冷
媒供給手段は、冷凍サイクルシステムにおいて高温冷媒
が生じている管路から分岐されて熱交換器本体に接続さ
れた高温冷媒分岐管路と、前記熱交換器本体内に配設さ
れた高温冷媒が通る高温冷媒用伝熱管と、当該高温冷媒
用伝熱管から熱を奪われてて流れ出る常温冷媒を前記冷
媒サイクルの常温冷媒通過領域の管路に戻すよう接続さ
れた帰還管路とを備えた構成であることを特徴とする。The invention of claim 4 is the invention of claims 1 to 3
In the chilled water supply heat exchanger according to any one of the above, the high-temperature refrigerant supply means is a high-temperature refrigerant branch line branched from a line in which the high-temperature refrigerant is generated in the refrigeration cycle system and connected to the heat exchanger body. A high-temperature refrigerant heat transfer tube through which the high-temperature refrigerant disposed in the heat exchanger main body passes, and a normal-temperature refrigerant flowing out of the high-temperature refrigerant heat transfer tube by being deprived of heat from the high-temperature refrigerant heat transfer tube. And a return pipe connected to return to the road.
【0020】請求項5の発明は、請求項1乃至請求項4
の何れかに記載の冷水供給用熱交換器において、熱交換
器本体は、当該本体内部に多数配設された伝熱管の両端
開口側に各々配設される鏡蓋に設けられた仕切板によっ
て、前記多数の伝熱管を低温冷媒用伝熱管群と高温冷媒
用伝熱管とに区分した構成であることを特徴とする。The invention according to claim 5 is the invention according to claims 1 to 4.
In the chilled water supply heat exchanger according to any one of the above, the heat exchanger main body is provided with a partition plate provided on each of the mirror lids disposed at both ends of the heat transfer tubes disposed inside the main body. The heat transfer tubes are characterized in that the heat transfer tubes are divided into a heat transfer tube group for low-temperature refrigerant and a heat transfer tube for high-temperature refrigerant.
【0021】請求項6の発明は、冷媒が通る伝熱管と当
該伝熱管によって冷却される水が通る流水路とを有する
熱交換器本体と、前記冷媒が循環する冷凍サイクルシス
テムと、前記熱交換器本体から供給排出される冷水温度
に基づいて前記冷凍サイクルシステムを制御するシステ
ム制御手段とにより前記冷水温度を所定温度に制御する
冷水供給用熱交換器の水温制御方法において、前記冷凍
サイクルシステムから供給される低温冷媒が通る低温冷
媒用伝熱管群と、同じく、前記冷凍サイクルシステムに
おいて生じる高温冷媒が導入されて通る高温冷媒用伝熱
管群とを内部に備えた熱交換器本体を構成して、前記低
温冷媒によって熱交換器本体の流水路を流れる水を冷却
すると共に、適宜、前記高温冷媒によって前記水を加熱
することによって、供給排出される冷水の温度を一定に
制御することを特徴とする。According to a sixth aspect of the present invention, there is provided a heat exchanger body having a heat transfer tube through which a refrigerant passes and a water passage through which water cooled by the heat transfer tube passes; a refrigeration cycle system in which the refrigerant circulates; A water temperature control method for a chilled water supply heat exchanger that controls the chilled water temperature to a predetermined temperature by system control means that controls the refrigeration cycle system based on the chilled water temperature supplied and discharged from the vessel body. A heat exchanger body internally provided with a low-temperature refrigerant heat transfer tube group through which the supplied low-temperature refrigerant passes, and a high-temperature refrigerant heat transfer tube group through which the high-temperature refrigerant generated in the refrigeration cycle system is introduced. By cooling the water flowing through the flow passage of the heat exchanger body with the low-temperature refrigerant, and appropriately heating the water with the high-temperature refrigerant, And controlling the temperature of the cold water supplied discharged constant.
【0022】請求項7の発明は、請求項1、請求項2、
請求項3又は請求項5の何れかに記載された冷水供給用
熱交換器において、冷凍サイクルシステムにおいて生じ
た高温冷媒に代えて、外部の他の熱媒体を高温冷媒用伝
熱管に通すことを特徴とする。According to a seventh aspect of the present invention, there is provided the first and second aspects of the present invention.
In the heat exchanger for supplying chilled water according to any one of claims 3 and 5, in place of the high-temperature refrigerant generated in the refrigeration cycle system, passing another external heat medium through the heat transfer tube for high-temperature refrigerant. Features.
【0023】請求項8の発明は、請求項6に記載された
冷水供給用熱交換器の水温制御方法において、冷凍サイ
クルシステムにおいて生じた高温冷媒に代えて、外部の
他の熱媒体を高温冷媒用伝熱管に通すことを特徴とす
る。According to an eighth aspect of the present invention, in the water temperature control method for a chilled water supply heat exchanger according to the sixth aspect, instead of the high temperature refrigerant generated in the refrigeration cycle system, another external heat medium is replaced with the high temperature refrigerant. It is characterized in that it passes through a heat transfer tube.
【0024】[0024]
【発明の実施の形態】実施の形態1.実施の形態1は、
冷媒が通る伝熱管と当該伝熱管によって冷却される水が
通る流水路とを有する熱交換器本体と、前記冷媒が循環
する冷凍サイクルシステムと、前記熱交換器本体から供
給排出される冷水温度に基づいて前記冷凍サイクルシス
テムを制御するシステム制御手段とを備えた冷水供給用
熱交換器において、前記熱交換器本体は、前記流水路
に、前記冷凍サイクルシステムにおいて生じた高温冷媒
が適宜通される高温冷媒用伝熱管と、当該高温冷媒用伝
熱管に高温冷媒を供給する高温冷媒供給手段と、前記高
温冷媒の供給を制御する高温冷媒供給制御手段とを備え
た構成としたものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1
A heat exchanger body having a heat transfer tube through which the refrigerant passes and a water passage through which water cooled by the heat transfer tube passes; a refrigeration cycle system in which the refrigerant circulates; and a temperature of cold water supplied and discharged from the heat exchanger body. A heat control unit for controlling the refrigeration cycle system based on the refrigeration cycle system, wherein the high-temperature refrigerant generated in the refrigeration cycle system is appropriately passed through the water passage in the heat exchanger body. The heat transfer pipe for high temperature refrigerant, high temperature refrigerant supply means for supplying high temperature refrigerant to the heat transfer pipe for high temperature refrigerant, and high temperature refrigerant supply control means for controlling the supply of the high temperature refrigerant are provided.
【0025】以下、この実施の形態1を図1乃至図9に
基づいて説明する。図1は熱交換器本体の正面図、図2
は熱交換器本体の平面図、図3は熱交換器冷媒配管系統
図、図4は高温冷媒出入口鏡蓋の背面図、図5は高温冷
媒出入口鏡蓋側パッキンの正面図、図6は高温冷媒出入
口鏡蓋の斜視図、図7は低温冷媒鏡蓋の背面図、図8は
低温冷媒蓋側パッキンの正面図、図9は低温冷媒蓋の斜
視図である。尚、図10乃至図19で示す符号と同一の
符号は同様の内容のものであるので、その説明を省略す
る。The first embodiment will be described below with reference to FIGS. FIG. 1 is a front view of a heat exchanger body, and FIG.
3 is a plan view of the heat exchanger main body, FIG. 3 is a diagram of the heat exchanger refrigerant piping system, FIG. 4 is a rear view of the high-temperature refrigerant inlet / outlet head lid, FIG. 7 is a rear view of the low-temperature refrigerant head, FIG. 8 is a front view of the low-temperature refrigerant lid side packing, and FIG. 9 is a perspective view of the low-temperature refrigerant lid. Note that the same reference numerals as those shown in FIGS. 10 to 19 have the same contents, and thus description thereof will be omitted.
【0026】図1において、70は低温冷媒出入口鏡蓋
であり、この鏡蓋70はその内側に空洞部71を有し、
円筒状の熱交換器本体1の一方端側に、当該熱交換器本
体1の円形の端面に対して気密に被うように取付けられ
ている。この低温冷媒出入口鏡蓋70は、図8に示す低
温冷媒出入口鏡蓋70側のパッキン76を介して熱交換
器本体1の当該端面に気密に取付けられる。上記の低温
冷媒出入口鏡蓋70には、熱交換器本体1内の伝熱管8
に通される低温の冷媒が導入される低温冷媒入口71と
水との熱交換を終えてガス化した低温過熱冷媒が回収さ
れる低温冷媒出口72とが設けられている。In FIG. 1, reference numeral 70 denotes a low-temperature refrigerant inlet / outlet head cover, which has a hollow portion 71 inside thereof.
It is attached to one end of the cylindrical heat exchanger body 1 so as to hermetically cover the circular end face of the heat exchanger body 1. The low-temperature refrigerant entrance / exit head cover 70 is hermetically attached to the end face of the heat exchanger main body 1 via the packing 76 on the low-temperature refrigerant entrance / exit head cover 70 side shown in FIG. The heat transfer tube 8 in the heat exchanger body 1 is connected to the low-temperature refrigerant inlet / outlet lid 70.
A low-temperature refrigerant inlet 71 through which low-temperature refrigerant is introduced and a low-temperature refrigerant outlet 72 through which heat exchange between water and gasified low-temperature superheated refrigerant is recovered.
【0027】次に、低温冷媒出入口鏡蓋70の構造を図
7及び図9に基づいて説明する。図において,低温冷媒
出入口鏡蓋70の空洞部71は、縦の直径方向に設けら
れた仕切板74によって左右半分に区分された上、当該
左右仕切板74で仕切られた左右何れか一方、図示の例
では左側半分の空洞部71が更に横の半径方向に設けら
れた仕切板75にて上下に区分されている。仕切板75
にて上下に区分された下側には低温冷媒入口72が、上
側には低温冷媒出口73が開設されている。又、低温冷
媒出入口鏡蓋側パッキン76も、図8に示すように、低
温冷媒出入口鏡70の仕切板74,75の配置構造に対
応した形態に形成されている。このように形成された低
温冷媒出入口鏡蓋70及び低温冷媒出入口鏡蓋側パッキ
ン76が、熱交換器本体1の一方の端面に取付けられて
いる。Next, the structure of the low-temperature refrigerant inlet / outlet head cover 70 will be described with reference to FIGS. In the drawing, the hollow portion 71 of the low-temperature refrigerant inlet / outlet lid 70 is divided into left and right halves by a partition plate 74 provided in the vertical diametric direction, and one of the right and left divided by the left and right partition plate 74 is shown. In the example, the left half cavity portion 71 is further divided vertically by a partition plate 75 provided in the horizontal radial direction. Partition plate 75
A low-temperature refrigerant inlet 72 is opened on the lower side, and a low-temperature refrigerant outlet 73 is opened on the upper side. Also, as shown in FIG. 8, the low-temperature refrigerant entrance / exit mirror lid side packing 76 is formed in a form corresponding to the arrangement structure of the partition plates 74 and 75 of the low-temperature refrigerant entrance / exit mirror 70. The low-temperature refrigerant entrance / exit head cover 70 and the low-temperature refrigerant entrance / exit head cover-side packing 76 thus formed are attached to one end surface of the heat exchanger body 1.
【0028】このような取付により、低温冷媒入口72
及び低温冷媒出口73の方向から熱交換器本体1の端面
を見て、冷媒サイクルから供給される低温冷媒は、低温
冷媒入口72から低温冷媒出入口鏡70の空洞部71に
導入され、前記端面の1/4に相応する右下側領域の空
洞部71に開口している多数の伝熱管8へと流入し、熱
交換器本体1の他方端側へと流れて行く。この流れの途
中で熱交換によりガス化した低温過熱冷媒が、前記端面
の1/4に相応する右上側の領域の空洞部71に開口し
ている多数の伝熱管8の開口から流れ出て来る。流れ出
て来た冷媒は冷凍サイクルシステム(図3)へと戻され
る。尚、熱交換器本体1の他方端側における冷媒の流路
構成については後述する。With this mounting, the low-temperature refrigerant inlet 72
Looking at the end face of the heat exchanger main body 1 from the direction of the low-temperature refrigerant outlet 73, the low-temperature refrigerant supplied from the refrigerant cycle is introduced from the low-temperature refrigerant inlet 72 into the cavity 71 of the low-temperature refrigerant inlet / outlet mirror 70. The heat flows into a large number of heat transfer tubes 8 opened in the hollow portion 71 in the lower right region corresponding to 1 /, and flows toward the other end of the heat exchanger body 1. In the middle of this flow, the low-temperature superheated refrigerant gasified by heat exchange flows out from the openings of the plurality of heat transfer tubes 8 opened in the cavity 71 in the upper right region corresponding to 1 / of the end face. The refrigerant flowing out is returned to the refrigeration cycle system (FIG. 3). The configuration of the flow path of the refrigerant at the other end of the heat exchanger body 1 will be described later.
【0029】次に、熱交換器本体1の他方端側、即ち、
上記低温冷媒出入口鏡蓋70の反対側に位置する高温冷
媒出入口鏡蓋80の構成を図4乃至図6において説明す
る。図において,上記の低温冷媒出入口鏡7と同様に、
熱交換器本体1の円形の端面に対して適度の空間即ち空
洞部81を介して気密に被うように構成された高温冷媒
出入口鏡蓋80の当該空洞部81もまた、縦の直径方向
に設けられた仕切板84によって左右半分に区分されて
いる。Next, the other end side of the heat exchanger body 1, that is,
The configuration of the high-temperature refrigerant entrance / exit lid 80 located on the opposite side of the low-temperature refrigerant entrance / exit lid 70 will be described with reference to FIGS. In the figure, similar to the low-temperature refrigerant entrance / exit mirror 7 described above,
The hollow portion 81 of the high-temperature refrigerant inlet / outlet lid 80, which is configured to hermetically cover the circular end face of the heat exchanger main body 1 through a moderate space, that is, the hollow portion 81, also in the vertical diametric direction. It is divided into left and right halves by a provided partition plate 84.
【0030】上記の仕切板84で仕切られた左右の空洞
部81のうち、前記の低温冷媒出入口鏡70において上
下に仕切られていない左右何れかの半面側に相対する
側、図示の例では右側半分の空洞部81が、更に横の半
径方向に設けられた仕切板85で上下に区分されてお
り、上下仕切板85にて区分された下側の空洞部81に
は高温冷媒入口82が、上側の空洞部81には高温冷媒
出口83が設けられている。尚、高温冷媒出入口鏡蓋側
パッキン86もまた、図5に示すように、高温冷媒出入
口鏡80の仕切板84,85の配置構造に対応した形態
に形成されている。Of the left and right cavities 81 partitioned by the partition plate 84, the side opposed to one of the left and right half surfaces which is not vertically partitioned in the low-temperature refrigerant inlet / outlet mirror 70, the right side in the illustrated example. A half cavity portion 81 is further divided vertically by a partition plate 85 provided in a horizontal radial direction, and a high-temperature refrigerant inlet 82 is provided in a lower cavity portion 81 divided by the upper and lower partition plates 85, The upper cavity portion 81 is provided with a high-temperature refrigerant outlet 83. The high-temperature refrigerant entrance / exit mirror lid side packing 86 is also formed in a form corresponding to the arrangement structure of the partition plates 84 and 85 of the high-temperature refrigerant entrance / exit mirror 80 as shown in FIG.
【0031】このように形成された高温冷媒出入口鏡蓋
80及び高温冷媒出入口鏡蓋側パッキン86を熱交換器
本体1の他方の端面、即ち、前記一方の端面と同様に、
水の通る流水路9として適度の間隔を保って、多数の伝
熱管8が筒体内に束ねられたように配設された熱交換器
本体1の端面に気密に取付けられている。The high-temperature refrigerant inlet / outlet head lid 80 and the high-temperature refrigerant inlet / outlet head lid-side packing 86 thus formed are connected to the other end face of the heat exchanger body 1, that is, like the one end face described above.
A large number of heat transfer tubes 8 are hermetically attached to the end face of the heat exchanger main body 1, which is arranged so as to be bundled in a cylindrical body, with an appropriate interval as a flowing water passage 9 through which water passes.
【0032】上記のように、高温冷媒出入口鏡蓋80を
熱交換器本体1の他方端側に設けることによって、従来
技術には無かった高圧の高温冷媒を高温冷媒入口82及
び常温となった高温冷媒出口83の方向より見て、右上
半分側の空洞部81に開口している多数の伝熱管8から
流入させ、流れの途中において、流水路9を流れる水に
熱を与える熱交換を行って、熱を失って常温となった高
温冷媒が右下半分側の空洞部81に開口している多数の
伝熱管8からから当該空洞部81へと流れ出て来るよう
に構成されている。As described above, the high-temperature refrigerant inlet / outlet lid 80 is provided at the other end of the heat exchanger body 1 so that the high-pressure high-temperature refrigerant, which has not been available in the prior art, can be supplied to the high-temperature refrigerant inlet 82 and the high-temperature When viewed from the direction of the refrigerant outlet 83, the heat is supplied from a large number of the heat transfer tubes 8 opening to the hollow portion 81 on the upper right half side, and heat exchange is performed in the middle of the flow to give heat to the water flowing through the flowing water channel 9. The high-temperature refrigerant that has lost heat and has become room temperature flows out from the large number of heat transfer tubes 8 that are open to the cavity 81 in the lower right half, and flows into the cavity 81.
【0033】尚、図2において、図は熱交換器本体1の
平面図であり、低温冷媒出入口鏡蓋70及び高温冷媒出
入口鏡蓋80のそれぞれの鏡蓋70,80の内側に設け
られた仕切板84、85によって、それぞれの鏡蓋7
0,80内側の左右に区分された空洞部71、81の各
々の気密が確保されている。同図から分かる通り、低温
冷媒出入口鏡蓋70の低温冷媒出入口72,73が設け
られた半面側の空洞部71と相対する高温冷媒出入口鏡
蓋80の半面側の空洞部81は出入口のない半面側であ
り、高温冷媒出入口鏡蓋80の高温冷媒出入口82,8
3が設けられた半面側の空洞部81と相対する低温冷媒
出入口鏡蓋70の半面側の空洞部71は出入口のない半
面側となっている。これによって、熱交換器本体1の一
方端側の低温冷媒入口72から導入されて低温冷媒出口
73に戻って来る低温冷媒と、他方端側の高温冷媒入口
82から導入されて高温冷媒出口83に戻って来る高温
冷媒との流路が区別されている。In FIG. 2, the figure is a plan view of the heat exchanger body 1 and includes partitions provided inside the low-temperature refrigerant inlet / outlet head cover 70 and the high-temperature refrigerant inlet / outlet head cover 80, respectively. Each of the mirror covers 7 is
The airtightness of each of the hollow portions 71 and 81 divided into right and left inside of 0 and 80 is ensured. As can be seen from the figure, the half-side cavity 81 of the high-temperature refrigerant inlet / outlet lid 80 opposite to the half-side cavity 71 where the low-temperature refrigerant entrance / exit 72, 73 of the low-temperature refrigerant inlet / outlet lid 70 is provided is a half-side without an entrance. And the high-temperature refrigerant ports 82 and 8 of the high-temperature refrigerant port mirror 80.
The half-side cavity 71 of the low-temperature refrigerant entrance / exit lid 70 opposite to the half-side cavity 81 provided with 3 is a half-side without an entrance. As a result, the low-temperature refrigerant introduced from the low-temperature refrigerant inlet 72 at one end of the heat exchanger body 1 and returned to the low-temperature refrigerant outlet 73 and the high-temperature refrigerant outlet 83 introduced from the high-temperature refrigerant inlet 82 at the other end. The flow path with the returning high-temperature refrigerant is distinguished.
【0034】実施の形態1においては、上記のように、
冷凍サイクルシステムから供給される低温冷媒が通され
る伝熱管(以下、低温冷媒用伝熱管ともいう)8群と、
同じく、前記冷凍サイクルシステムにおいて生じる高温
冷媒を導入して高温冷媒が通される伝熱管(以下、高温
冷媒用伝熱管ともいう)8群とを一体的に備えた熱交換
器本体1を構成し、低温冷媒によって熱交換器本体1の
流水路9を流れる水を冷却して冷水を供給排出させると
共に、適宜、高温冷媒を流通させることによって、熱交
換器本体1の流水路を流れる水を加熱することによっ
て、熱交換器本体1から供給排出される冷水を常に一定
温度に保つことができる。In the first embodiment, as described above,
A group of eight heat transfer tubes through which the low-temperature refrigerant supplied from the refrigeration cycle system passes (hereinafter also referred to as a low-temperature refrigerant heat transfer tube);
Similarly, the heat exchanger body 1 integrally includes a heat transfer tube (hereinafter also referred to as a heat transfer tube for high-temperature refrigerant) 8 groups through which a high-temperature refrigerant generated in the refrigeration cycle system is introduced and through which the high-temperature refrigerant passes. In addition, the water flowing through the water passage 9 of the heat exchanger body 1 is cooled by the low-temperature refrigerant to supply and discharge the cold water, and the water flowing through the water passage of the heat exchanger body 1 is heated by appropriately flowing the high-temperature refrigerant. By doing so, the cold water supplied and discharged from the heat exchanger main body 1 can always be kept at a constant temperature.
【0035】図3において、上記実施の形態1の温度制
御について説明する。基本冷凍サイクルシステムは、冷
媒圧縮機20で圧縮された冷媒が、凝縮器21で凝縮さ
れ、膨張弁25で冷媒流量が制御され、低温冷媒入口7
2から熱交換器本体1の所定の伝熱管即ち低温冷媒用伝
熱管8に流通して熱交換を行った後、熱交換本体1の低
温冷媒出口73から流れ出て、冷媒圧縮機20へと戻
る。水は、水導入口3から導入され、熱交換器本体1内
の流水路9を流れる途中で、伝熱管8を介して低温媒体
との熱交換によって冷却され、熱交換器本体1の冷水排
出口2から供給排出される。Referring to FIG. 3, the temperature control of the first embodiment will be described. In the basic refrigeration cycle system, the refrigerant compressed by the refrigerant compressor 20 is condensed in the condenser 21, the refrigerant flow rate is controlled by the expansion valve 25,
After passing through the predetermined heat transfer tube of the heat exchanger body 1, that is, the heat transfer tube for low-temperature refrigerant 8, and performing heat exchange, the refrigerant flows out of the low-temperature refrigerant outlet 73 of the heat exchange body 1 and returns to the refrigerant compressor 20. . Water is introduced from the water inlet 3 and is cooled by heat exchange with a low-temperature medium via the heat transfer tube 8 while flowing through the flowing water channel 9 in the heat exchanger body 1. It is supplied and discharged from the outlet 2.
【0036】通常運転における冷水の温度調節は、従来
とほぼ同様に、冷水排出口2に設けられた出口水温検出
手段としての水温センサ16によって、供給排出される
冷却水の水温を常に検出し、その検出信号に基づいて温
度制御手段が冷媒圧縮機20の能力を抑制したり、下が
り過ぎ防止のサーモON、OFF機能を制御したりして
温度制御を行っている。The temperature control of the chilled water in the normal operation is performed in substantially the same manner as in the prior art by always detecting the temperature of the chilled water supplied and discharged by the water temperature sensor 16 provided as an outlet water temperature detecting means provided at the chilled water discharge port 2. On the basis of the detection signal, the temperature control means controls the temperature of the refrigerant compressor 20 by controlling the capacity of the refrigerant compressor 20 and controlling the thermo-ON / OFF function for preventing the temperature from dropping too much.
【0037】さて、この実施の形態1では、上記の機能
に加えて、冷水排出口2から排出される冷水の温度降下
やその温度の微調整を目的として、上記した既設の冷凍
サイクルシステムにおいて生ずる高温冷媒を制御弁11
0を介して無断階に制御して熱交換器本体1の所定の伝
熱管(以下、高温冷媒用伝熱管ともいう)8に適宜流通
させて、当該熱交換器本体1内の流水路9を流れる水を
適度に加熱する高温冷媒供給手段と高温冷媒供給制御手
段とを備えている。これによって、当該熱交換器本体1
の冷水排出口2から所定水温の冷水を供給排出すること
ができる。In the first embodiment, in addition to the above-described functions, for the purpose of lowering the temperature of the cold water discharged from the cold water discharge port 2 and finely adjusting the temperature, the above-described existing refrigeration cycle system is used. Control valve 11 for high-temperature refrigerant
0, the flow is controlled to a predetermined level through a predetermined heat transfer tube (hereinafter, also referred to as a high-temperature refrigerant heat transfer tube) 8 of the heat exchanger main body 1 by flowing to a flowing water passage 9 in the heat exchanger main body 1. A high-temperature refrigerant supply unit for appropriately heating the flowing water and a high-temperature refrigerant supply control unit are provided. Thereby, the heat exchanger body 1
The cold water of a predetermined water temperature can be supplied and discharged from the cold water discharge port 2 of the first embodiment.
【0038】高温冷媒供給手段は、既設の冷凍サイクル
システムにおいて高温冷媒が生じている高温冷媒通過領
域の管路から分岐されて熱交換器本体1の上記高温冷媒
入口82に接続された高温冷媒分岐管路40と、高温冷
媒入口82から流入した高温冷媒が通る所定の伝熱管8
群と、当該伝熱管8群から熱を奪われて常温となった高
温冷媒出口83から流れ出る高温冷媒を前記冷凍サイク
ルシステムの常温冷媒通過領域の管路に接続する高温冷
媒の帰還管路41と、前記高温冷媒分岐管路41に設け
られた高温冷媒供給制御手段としての制御弁43と、前
記帰還管路42に設けられた逆止弁44と、前記高温冷
媒分岐管路41の制御弁43の下流側から冷媒サイクル
の常温冷媒通過領域の管路に接続された液封防止用毛細
管路45や、前記制御弁43を迂回して当該制御弁43
の上流側と下流側とに接続された液封防止用毛細管路4
5等によって構成されている。尚、図3において、図中
の46は、冷媒量が不安定になるものと予測されるの
で、そのクッション用として設けられた液溜めである。The high-temperature refrigerant supply means is a high-temperature refrigerant branch branched from a pipe in a high-temperature refrigerant passage area where high-temperature refrigerant is generated in the existing refrigeration cycle system and connected to the high-temperature refrigerant inlet 82 of the heat exchanger body 1. The pipe 40 and a predetermined heat transfer tube 8 through which the high-temperature refrigerant flowing from the high-temperature refrigerant inlet 82 passes.
And a high-temperature refrigerant return line 41 for connecting the high-temperature refrigerant flowing out of the high-temperature refrigerant outlet 83, which has been deprived of heat from the heat transfer tube group 8 to the normal temperature, to the normal-temperature refrigerant passage region of the refrigeration cycle system. A control valve 43 provided in the high-temperature refrigerant branch line 41 as a high-temperature refrigerant supply control means, a check valve 44 provided in the return line 42, and a control valve 43 of the high-temperature refrigerant branch line 41. From the downstream side to the liquid-sealing preventing capillary line 45 connected to the line in the room-temperature refrigerant passage area of the refrigerant cycle, and the control valve 43 bypassing the control valve 43.
For preventing liquid sealing, connected to the upstream and downstream sides of the vessel 4
5 and the like. In FIG. 3, reference numeral 46 in the figure denotes a liquid reservoir provided for cushioning since it is predicted that the amount of refrigerant will become unstable.
【0039】又、図示されていない高温冷媒制御手段
は、出口水温検出手段としての水温センサ16からの検
出信号の値と予め設定されている所定温度の値とを比較
して比較値信号を出力する比較手段と、当該比較手段か
らの比較値信号に基づいて開閉される高温冷媒供給制御
手段としての制御弁43等によって構成されている。The high-temperature refrigerant control means (not shown) compares a value of a detection signal from a water temperature sensor 16 as an outlet water temperature detection means with a predetermined temperature value and outputs a comparison value signal. And a control valve 43 or the like as a high-temperature refrigerant supply control unit that is opened and closed based on a comparison value signal from the comparison unit.
【0040】上記のように構成された高温冷媒供給手段
や高温冷媒供給制御手段によって、排水される冷水の温
度が目標値を維持するように制御されている。即ち、冷
媒圧縮機20で圧縮された高圧の高温冷媒(高温過熱冷
媒)を制御弁43を介して高温冷媒入口82から熱交換
器本体1の高温冷媒伝熱管8へ適量流し込んで、熱交換
器本体1内の流水路9を流れる水に適当量の熱を供給す
るのである。こうした熱交換によって熱を奪われて常温
となった高温冷媒は凝縮して常温冷媒となって、熱交換
器本体1の高温冷媒出口83から流れ出て、逆止弁44
を通過して、基本冷凍サイクルシステムの膨張弁25へ
と戻される。The temperature of the discharged cold water is controlled by the high-temperature refrigerant supply means and the high-temperature refrigerant supply control means configured as described above so as to maintain the target value. That is, an appropriate amount of the high-pressure high-temperature refrigerant (high-temperature superheated refrigerant) compressed by the refrigerant compressor 20 flows from the high-temperature refrigerant inlet 82 into the high-temperature refrigerant heat transfer tube 8 of the heat exchanger body 1 via the control valve 43. An appropriate amount of heat is supplied to the water flowing through the water passage 9 in the main body 1. The high-temperature refrigerant, which has been deprived of heat by the heat exchange and has become a normal temperature, condenses and becomes a normal-temperature refrigerant, flows out of the high-temperature refrigerant outlet 83 of the heat exchanger body 1, and flows through the check valve 44.
To return to the expansion valve 25 of the basic refrigeration cycle system.
【0041】このような冷媒コントロールにより高圧圧
力が不安定となることを防止するためには、凝縮器21
の出口配管側に設けた温度又は圧力センサー47により
温度又は圧力を検出して、凝縮器用送風機モーター22
及び羽根23の回転数を適宜に制御すればよい。In order to prevent the high pressure from becoming unstable due to such refrigerant control, the condenser 21
Temperature or pressure is detected by a temperature or pressure sensor 47 provided on the outlet pipe side of the blower motor 22 for the condenser.
The rotation speed of the blades 23 may be appropriately controlled.
【0042】上記実施の形態1によれば、従来の構成や
制御では、負荷低下があった場合、最終的には、冷水の
供給排出を自動停止させて水温の上昇を持つ必要があっ
たが、この形態1では、最小負荷時でも冷却能力を上回
る加熱能力を供給できるので、冷水の供給排出が停止さ
れることなく、常に一定の冷水を供給排出させることが
できる。又、熱交換器本体内の水に高温冷媒による熱供
給を無段階に行うことができるので、冷水の出口水温を
検出しながら、水への冷却能力を0%から100%まで
無段階に制御することができる。又、従来では、出口水
温制御を行うためには冷水回路の冷水保有水量を多くす
る必要があったが、この形態1では、一般冷房機種と同
じ水量で済ますことができる。According to the first embodiment, in the conventional configuration and control, if the load is reduced, it is necessary to automatically stop the supply and discharge of the cold water to increase the water temperature. In the first embodiment, since the heating capacity exceeding the cooling capacity can be supplied even at the time of the minimum load, constant supply and discharge of the cold water can be always performed without stopping the supply and discharge of the cold water. In addition, since the heat supply to the water in the heat exchanger body by the high-temperature refrigerant can be performed in a stepless manner, the cooling capacity to the water is steplessly controlled from 0% to 100% while detecting the outlet water temperature of the cold water. can do. Further, conventionally, in order to control the outlet water temperature, it is necessary to increase the amount of cold water retained in the chilled water circuit. However, in the first embodiment, the same amount of water as that of a general cooling model can be used.
【0043】又、上記実施の形態1では、水を過熱する
熱源として既設の冷凍サイクルシステムにおいて生ずる
高圧の高温冷媒を高温冷媒用伝熱管に導入しているが、
熱源はこれに限らず、他の熱源としての蒸気や温水、例
えば井戸水などを用いても良い。この場合、当該高温冷
媒用伝熱管から熱交換を終えて流れ出る熱媒体は、適当
なこの形態1の帰還管路とは勿論別の記管路を適当に設
ける必要がある。又、冷房専用のチリングユニットにこ
の形態1の熱交換器を取付けて蒸気を流すことにより蒸
気暖房も可能となる。In the first embodiment, the high-pressure high-temperature refrigerant generated in the existing refrigeration cycle system is introduced into the high-temperature refrigerant heat transfer tube as a heat source for superheating water.
The heat source is not limited to this, and steam or warm water such as well water may be used as another heat source. In this case, it is necessary to appropriately provide a separate pipeline for the heat medium flowing out after the heat exchange from the high-temperature refrigerant heat transfer tube after the heat exchange, as well as the appropriate return pipeline of the first embodiment. In addition, steam heating can be performed by attaching the heat exchanger of the first embodiment to a chilling unit exclusively used for cooling and flowing steam.
【0044】[0044]
【発明の効果】請求項1乃至請求項8の発明によれば、
何れも、一定温度の冷水を常に供給排出することができ
る。According to the first to eighth aspects of the present invention,
In any case, cold water at a constant temperature can always be supplied and discharged.
【0045】請求項3乃び請求項4の発明によれば、何
れも、水を過熱する熱源として既設冷凍サイクルシステ
ムで生ずる高温冷媒を用いているので、他に加熱用の熱
源を求める必要がなく、構造簡易で安価な冷水供給用熱
交換器を提供できる。According to the third and fourth aspects of the present invention, since a high-temperature refrigerant generated in an existing refrigeration cycle system is used as a heat source for superheating water, it is necessary to find another heat source for heating. In addition, a simple and inexpensive heat exchanger for supplying cold water can be provided.
【0046】請求項5の発明によれば、両端の鏡蓋の構
成を代えるだけで、既存の熱交換器本体をそのまま用い
ることができるので、製作が比較的容易であり、安価な
冷水供給用熱交換器を提供できる。According to the fifth aspect of the present invention, the existing heat exchanger body can be used as it is simply by changing the configuration of the mirror lids at both ends, so that it is relatively easy to manufacture and inexpensive cold water supply. A heat exchanger can be provided.
【図1】 熱交換器本体の正面図である。FIG. 1 is a front view of a heat exchanger body.
【図2】 熱交換器本体の平面図である。FIG. 2 is a plan view of a heat exchanger body.
【図3】 熱交換器冷媒配管系統図である。FIG. 3 is a diagram of a refrigerant piping system of a heat exchanger.
【図4】 高温冷媒出入口鏡蓋の背面図である。FIG. 4 is a rear view of the high-temperature refrigerant inlet / outlet mirror lid;
【図5】 高温冷媒出入口鏡蓋側パッキンの正面図であ
る。FIG. 5 is a front view of a high-temperature refrigerant inlet / outlet lid-side packing.
【図6】 高温冷媒出入口鏡蓋の斜視図である。FIG. 6 is a perspective view of a high-temperature refrigerant entrance / exit mirror cover.
【図7】 低温冷媒鏡蓋の背面図である。FIG. 7 is a rear view of the low-temperature refrigerant head;
【図8】 低温冷媒鏡蓋側パッキンの正面図である。FIG. 8 is a front view of the low-temperature refrigerant mirror lid-side packing.
【図9】 低温冷媒鏡蓋の斜視図である。FIG. 9 is a perspective view of a low-temperature refrigerant head;
【図10】 従来の熱交換器本体の平面図である。FIG. 10 is a plan view of a conventional heat exchanger body.
【図11】 従来の低温冷媒鏡蓋の背面図である。FIG. 11 is a rear view of a conventional low-temperature refrigerant head cover.
【図12】 従来の熱交換器本体の一方の端面を示す正
面である。FIG. 12 is a front view showing one end face of a conventional heat exchanger body.
【図13】 従来の冷媒出入口鏡蓋側パッキンを示す正
面図である。FIG. 13 is a front view showing a conventional packing for a refrigerant inlet / outlet lid.
【図14】 従来の冷媒出入口鏡蓋の斜視図である。FIG. 14 is a perspective view of a conventional refrigerant inlet / outlet lid.
【図15】 従来の熱交換器本体の他方の端面を示す正
面である。。FIG. 15 is a front view showing the other end face of the conventional heat exchanger body. .
【図16】 従来の冷媒戻側鏡蓋の斜視図である。FIG. 16 is a perspective view of a conventional refrigerant return head cover.
【図17】 従来の冷媒戻側鏡蓋側パッキンを示す正面
図である。FIG. 17 is a front view showing a conventional refrigerant return side mirror cover side packing.
【図18】 従来の熱交換器冷媒配管系統図である。FIG. 18 is a conventional heat exchanger refrigerant piping system diagram.
【図19】 従来の熱交換器の正面図である。FIG. 19 is a front view of a conventional heat exchanger.
1 熱交換器本体、2 供給排出口、3 水導入口、8
伝熱管、16 冷水本土検出手段、40 高温冷媒供
給管路、41 帰還管路、43 高温冷媒供給制御手
段、44 逆止弁、70 低温冷媒蓋鏡蓋、72 低温
冷媒入口、73低温冷媒出口、74,75 仕切板、8
0 高温冷媒鏡蓋、82 高温冷媒入口、83 高温冷
媒出口、84、85 仕切板、14 制御弁。1 heat exchanger body, 2 supply / discharge port, 3 water inlet, 8
Heat transfer tube, 16 cold water mainland detecting means, 40 high temperature refrigerant supply line, 41 return line, 43 high temperature refrigerant supply control means, 44 check valve, 70 low temperature refrigerant lid mirror lid, 72 low temperature refrigerant inlet, 73 low temperature refrigerant outlet, 74,75 divider, 8
0 High-temperature refrigerant head, 82 High-temperature refrigerant inlet, 83 High-temperature refrigerant outlet, 84, 85 Partition plate, 14 Control valve.
Claims (8)
冷却される水が通る流水路とを有する熱交換器本体と、
前記冷媒が循環する冷凍サイクルシステムと、前記熱交
換器本体から供給排出される冷水温度に基づいて前記冷
凍サイクルシステムを制御するシステム制御手段とを備
えた冷水供給用熱交換器において、 前記熱交換器本体は、前記流水路に、前記冷凍サイクル
システムにおいて生じた高温冷媒が適宜通される高温冷
媒用伝熱管と、当該高温冷媒用伝熱管に高温冷媒を供給
する高温冷媒供給手段と、前記高温冷媒の供給を制御す
る高温冷媒供給制御手段とを備えたことを特徴とする冷
水供給用熱交換器。1. A heat exchanger body having a heat transfer tube through which a refrigerant passes and a flow passage through which water cooled by the heat transfer tube passes;
A heat exchanger for supplying cold water, comprising: a refrigeration cycle system in which the refrigerant circulates; and system control means for controlling the refrigeration cycle system based on a temperature of chilled water supplied and discharged from the heat exchanger body. A main body, a high-temperature refrigerant heat transfer tube through which the high-temperature refrigerant generated in the refrigeration cycle system is appropriately passed through the water passage, a high-temperature refrigerant supply means for supplying the high-temperature refrigerant to the high-temperature refrigerant heat transfer tube, A heat exchanger for supplying cold water, comprising: a high-temperature refrigerant supply control means for controlling the supply of the refrigerant.
る冷水の温度を検出する出口温度検出手段からの検出信
号に基づいて高温冷媒の供給を制御することを特徴とす
る請求項1に記載の冷水供給用熱交換器。2. The high-temperature refrigerant supply control means controls the supply of the high-temperature refrigerant based on a detection signal from an outlet temperature detection means for detecting the temperature of the chilled water to be supplied and discharged. Heat exchanger for cold water supply.
において生じた高温冷媒を高温冷媒用伝熱管に導く高温
冷媒供給管路と、当該高温冷媒用伝熱管に供給されて凝
縮された冷媒を冷凍サイクルシステムに戻す帰還管路と
を備えたことを特徴とする請求項1乃至請求項2の何れ
かに記載の冷水供給用熱交換器。3. A high-temperature refrigerant supply pipe for guiding a high-temperature refrigerant generated in a refrigeration cycle system to a high-temperature refrigerant heat transfer tube, and a refrigerant which is condensed by being supplied to the high-temperature refrigerant heat transfer tube. 3. The chilled water supply heat exchanger according to claim 1, further comprising a return pipe returning to the cycle system.
テムにおいて高温冷媒が生じている管路から分岐されて
熱交換器本体に接続された高温冷媒分岐管路と、前記熱
交換器本体内に配設された高温冷媒が通る高温冷媒用伝
熱管と、当該高温冷媒用伝熱管から熱を奪われてて流れ
出る常温冷媒を前記冷媒サイクルの常温冷媒通過領域の
管路に戻すよう接続された帰還管路とを備えた構成であ
ることを特徴とする請求項1乃至請求項3の何れかに記
載の冷水供給用熱交換器。4. A high-temperature refrigerant supply means, comprising: a high-temperature refrigerant branch pipe branched from a pipe in which a high-temperature refrigerant is generated in a refrigeration cycle system and connected to a heat exchanger main body; A high-temperature refrigerant heat transfer tube through which the provided high-temperature refrigerant passes, and a return tube connected to return the normal-temperature refrigerant flowing out of the high-temperature refrigerant heat transfer tube by depriving the heat to the normal-temperature refrigerant passage region of the refrigerant cycle. The chilled water supply heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is provided with a path.
設された伝熱管の両端開口側に各々配設される鏡蓋に設
けられた仕切板によって、前記多数の伝熱管を低温冷媒
用伝熱管群と高温冷媒用伝熱管とに区分した構成である
ことを特徴とする請求項1乃至請求項4の何れかに記載
の冷水供給用熱交換器。5. The heat exchanger main body includes a plurality of heat transfer tubes which are disposed at both ends opening sides of the heat transfer tubes disposed inside the main body by a partition plate provided on a mirror lid. The heat exchanger for supplying cold water according to any one of claims 1 to 4, wherein the heat exchanger is configured to be divided into a heat transfer tube group for heat transfer and a heat transfer tube for high temperature refrigerant.
冷却される水が通る流水路とを有する熱交換器本体と、
前記冷媒が循環する冷凍サイクルシステムと、前記熱交
換器本体から供給排出される冷水温度に基づいて前記冷
凍サイクルシステムを制御するシステム制御手段とによ
り前記冷水温度を所定温度に制御する冷水供給用熱交換
器の水温制御方法において、 前記冷凍サイクルシステムから供給される低温冷媒が通
る低温冷媒用伝熱管群と、同じく、前記冷凍サイクルシ
ステムにおいて生じる高温冷媒が導入されて通る高温冷
媒用伝熱管群とを内部に備えた熱交換器本体を構成し
て、前記低温冷媒によって熱交換器本体の流水路を流れ
る水を冷却すると共に、適宜、前記高温冷媒によって前
記水を加熱することによって、供給排出される冷水の温
度を一定に制御することを特徴とする冷水供給用熱交換
器の水温制御方法。6. A heat exchanger body having a heat transfer tube through which a refrigerant passes and a water passage through which water cooled by the heat transfer tube passes;
A refrigeration cycle system in which the refrigerant circulates, and a system control means for controlling the refrigeration cycle system based on the temperature of the chilled water supplied and discharged from the heat exchanger main body. In the water temperature control method for the exchanger, a low-temperature refrigerant heat transfer tube group through which a low-temperature refrigerant supplied from the refrigeration cycle system passes, and a high-temperature refrigerant heat transfer tube group through which a high-temperature refrigerant generated in the refrigeration cycle system passes are introduced. A heat exchanger main body provided therein is provided, and the low-temperature refrigerant cools the water flowing through the water passage of the heat exchanger main body, and is appropriately supplied and discharged by heating the water with the high-temperature refrigerant. A method for controlling the temperature of a cold water supply heat exchanger, comprising controlling the temperature of cold water to be constant.
温冷媒に代えて、外部の他の熱媒体を高温冷媒用伝熱管
に通すことを特徴とする請求項1、請求項2、請求項3
又は請求項5の何れかに記載された冷水供給用熱交換
器。7. A high-temperature refrigerant heat transfer tube through which another external heat medium is passed instead of the high-temperature refrigerant generated in the refrigeration cycle system.
Or a heat exchanger for supplying cold water according to claim 5.
温冷媒に代えて、外部の他の熱媒体を高温冷媒用伝熱管
に通すことを特徴とする請求項6に記載された冷水供給
用熱交換器の水温制御方法。8. The chilled water supply heat exchanger according to claim 6, wherein another external heat medium is passed through the high-temperature refrigerant heat transfer tube in place of the high-temperature refrigerant generated in the refrigeration cycle system. Water temperature control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000205020A JP2002022371A (en) | 2000-07-06 | 2000-07-06 | Heat exchanger for cold water supply and water temperature control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000205020A JP2002022371A (en) | 2000-07-06 | 2000-07-06 | Heat exchanger for cold water supply and water temperature control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002022371A true JP2002022371A (en) | 2002-01-23 |
Family
ID=18702177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000205020A Withdrawn JP2002022371A (en) | 2000-07-06 | 2000-07-06 | Heat exchanger for cold water supply and water temperature control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002022371A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013526695A (en) * | 2010-05-11 | 2013-06-24 | アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ | Gas compression dryer |
CN105953450A (en) * | 2016-06-22 | 2016-09-21 | 海信容声(广东)冷柜有限公司 | Working medium pressure self-adaptive low-temperature refrigerating system and control method thereof |
KR101708224B1 (en) * | 2015-10-01 | 2017-02-22 | 주식회사 피코그램 | a istantaneous cooling device using refrigeration cycle |
CN109341122A (en) * | 2018-11-16 | 2019-02-15 | 珠海格力电器股份有限公司 | Refrigeration system and control method |
CN115060015A (en) * | 2022-06-22 | 2022-09-16 | 珠海格力智能装备有限公司 | Cooling system and control method |
-
2000
- 2000-07-06 JP JP2000205020A patent/JP2002022371A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013526695A (en) * | 2010-05-11 | 2013-06-24 | アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ | Gas compression dryer |
US9050554B2 (en) | 2010-05-11 | 2015-06-09 | Atlas Copco Airpower | Device for compressing and drying gas |
KR101708224B1 (en) * | 2015-10-01 | 2017-02-22 | 주식회사 피코그램 | a istantaneous cooling device using refrigeration cycle |
CN105953450A (en) * | 2016-06-22 | 2016-09-21 | 海信容声(广东)冷柜有限公司 | Working medium pressure self-adaptive low-temperature refrigerating system and control method thereof |
CN109341122A (en) * | 2018-11-16 | 2019-02-15 | 珠海格力电器股份有限公司 | Refrigeration system and control method |
CN109341122B (en) * | 2018-11-16 | 2023-09-12 | 珠海格力电器股份有限公司 | Refrigerating system and control method |
CN115060015A (en) * | 2022-06-22 | 2022-09-16 | 珠海格力智能装备有限公司 | Cooling system and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102844631B (en) | Air conditioning apparatus | |
US10274237B2 (en) | Ice maker for an appliance | |
CN106839824B (en) | Control device of liquid cooling based on serpentine condenser | |
BR112018008767B1 (en) | STEAM COMPRESSION SYSTEM AND METHOD FOR OPERATING A COMPRESSOR UNIT AND SWITCHING THE COMPRESSION CAPACITY | |
EP4040069B1 (en) | Hot water supply device | |
JP2002022371A (en) | Heat exchanger for cold water supply and water temperature control method | |
CN108413661A (en) | A kind of water cooling oil cooling but circulating frozen system | |
JP3660961B2 (en) | Refrigeration equipment | |
JP2717716B2 (en) | refrigerator | |
JPH0473062B2 (en) | ||
JPH08270989A (en) | Regenerator and operating method for the same | |
JP3733119B2 (en) | Heat pump water heater / heater | |
KR960034947A (en) | Refrigerator | |
KR20190040650A (en) | Refrigerant cycle system of structure improvement type | |
JP2000146357A (en) | Cooling system | |
JP3831924B2 (en) | Capsule type latent heat storage system | |
JP3503583B2 (en) | Refrigeration equipment | |
JP2001174078A (en) | Controlling device of outlet-side refrigerant of evaporator | |
JP3205409B2 (en) | Thermal storage air conditioning system | |
JPH0752492Y2 (en) | Outside air processing unit | |
JPH04227447A (en) | Icemaker | |
JP2940838B2 (en) | Air conditioning | |
JPS6028938Y2 (en) | water-cooled ice maker | |
JPH0237271A (en) | Cold temperature adjusting device | |
JP3710982B2 (en) | Brine showcase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060403 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071002 |