JPH04227447A - Icemaker - Google Patents

Icemaker

Info

Publication number
JPH04227447A
JPH04227447A JP14356291A JP14356291A JPH04227447A JP H04227447 A JPH04227447 A JP H04227447A JP 14356291 A JP14356291 A JP 14356291A JP 14356291 A JP14356291 A JP 14356291A JP H04227447 A JPH04227447 A JP H04227447A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
aqueous solution
ice
water heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14356291A
Other languages
Japanese (ja)
Other versions
JP2789852B2 (en
Inventor
Isao Kondo
功 近藤
Koji Matsuoka
弘二 松岡
Shinji Matsuura
松浦 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3143562A priority Critical patent/JP2789852B2/en
Publication of JPH04227447A publication Critical patent/JPH04227447A/en
Application granted granted Critical
Publication of JP2789852B2 publication Critical patent/JP2789852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PURPOSE:To prevent damage of an icemaker in generating slurrylike iced material in a heat exchanger of a water circulation passage due to freezing of the exchanger. CONSTITUTION:Water, etc., of an ice reservoir 5 is circulated to a water circulation passage 51, and supercooled by a water heat exchanger 22. When a rising chamber of an output water temperature of the exchanger 22 becomes larger than a predetermined value, it is decided that the exchanger 22 is frozen. Thus, partial freezing in the exchanger 22 can be accurately sensed, freezing of the exchanger 22 is eliminated by cooling capacity control means 102 before the exchanger 22 is entirely frozen to be able to take preventive means. The freezing of the exchanger can be sensed even by an evaporating temperature of refrigerant for cooling the exchanger 22, a flow rate of the passage 51. Further, it can be accurately sensed by sensing it by a noncontact sensor such as a light permeability sensor, etc., without eliminating supercooling state of water, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蓄氷槽の水等を水循環
路に循環させ、熱交換器で過冷却した後氷化物を生成す
るようにした製氷装置に係り、特に熱交換器内部の凍結
の早期検知対策に関する。
[Industrial Field of Application] The present invention relates to an ice making device in which water, etc. in an ice storage tank is circulated through a water circulation path, supercooled in a heat exchanger, and then frozen products are produced, and in particular, Regarding measures for early detection of freezing.

【0002】0002

【従来の技術】従来より、例えば実開平1―13683
0号公報に開示される如く、蓄氷槽の水を循環させる水
循環路と、該水循環路の出口端に設けられ、水を過冷却
するための熱交換器と、該熱交換器で過冷却された水の
過冷却状態を解消させてスラリ―状の氷化物を生成する
ための所定の機構とを備えた製氷装置において、上記熱
交換器の伝熱管に結露を防止するための断熱層を設け、
伝熱管内壁の温度を所定範囲(−5.8〜0℃)に維持
することにより、熱交換器内部における水の凍結による
熱交換器の破損を防止しようとするものは公知の技術で
ある。
[Prior Art] Conventionally, for example, Utility Model Application Publication No. 1-13683
As disclosed in Publication No. 0, a water circulation path for circulating water in an ice storage tank, a heat exchanger provided at the outlet end of the water circulation path for supercooling the water, and a heat exchanger for supercooling the water by the heat exchanger. In an ice making apparatus equipped with a predetermined mechanism for eliminating the supercooled state of the water and producing a slurry-like frozen product, a heat insulating layer is provided on the heat transfer tube of the heat exchanger to prevent condensation. established,
A known technique attempts to prevent damage to the heat exchanger due to freezing of water inside the heat exchanger by maintaining the temperature of the inner wall of the heat exchanger tube within a predetermined range (-5.8 to 0°C).

【0003】0003

【発明が解決しようとする課題】しかしながら、熱交換
器内部では水が凝固温度以下の低温に過冷却されるので
、伝熱管の温度を管理していても、例えば振動のような
機械的衝撃や急激な温度変化等の熱的衝撃が作用しても
、それがきっかけとなって水の過冷却状態が解消されう
る。そして、氷核が発生してそれが管壁に付着すると、
そこから氷の結晶が成長してついには熱交換器内部の伝
熱管全体が凍結して、破損する虞れがある。また、破損
しない場合でも、冷却効率が悪化する。
[Problem to be Solved by the Invention] However, since the water inside the heat exchanger is supercooled to a low temperature below the freezing temperature, even if the temperature of the heat exchanger tubes is controlled, mechanical shocks such as vibrations and Even if a thermal shock such as a sudden temperature change occurs, it can be used as a trigger to eliminate the supercooled state of the water. Then, when ice nuclei are generated and adhere to the tube wall,
From there, ice crystals grow and eventually the entire heat exchanger tube inside the heat exchanger may freeze and be damaged. In addition, even if it is not damaged, the cooling efficiency deteriorates.

【0004】したがって、上記従来のもののように、単
に伝熱管の温度を管理するだけでは、熱交換器内部の凍
結の虞れを有効に検知することができず、そのため有効
な凍結防止手段を講ずることができないという問題があ
った。
[0004] Therefore, it is not possible to effectively detect the possibility of freezing inside the heat exchanger by simply controlling the temperature of the heat exchanger tubes, as in the conventional method described above, and therefore effective antifreeze measures must be taken. The problem was that I couldn't do it.

【0005】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、熱交換器内部で水又は水溶液の過冷
却状態がなんらかの原因で解消されて部分的に凍結した
場合、その凍結により水等の状態量の変化が通常とは異
なる特有の変化を示すことに着目し、斯かる状態量の変
化から水等の部分的な凍結状態を正確に検知することに
より、熱交換器の全面的な凍結の予防を可能とすること
にある。
[0005] The present invention has been made in view of the above, and its object is to prevent the freezing of water or aqueous solution when the supercooled state inside the heat exchanger is resolved for some reason and the water or aqueous solution partially freezes. By focusing on the fact that the change in the state quantity of water, etc. shows a unique change that is different from normal, and by accurately detecting the partially frozen state of water, etc. from the change in the state quantity, it is possible to improve the temperature of the heat exchanger. The purpose is to make it possible to prevent complete freezing.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
第1の解決手段は、図1に示すように(実線部分のみ)
、水又は水溶液のスラリ―状の氷化物を貯溜するための
蓄氷槽(5)と、冷却装置に接続され、水又は水溶液を
過冷却するための水熱交換器(22)と、該水熱交換器
(22)と上記蓄氷槽(5)との間で水又は水溶液を強
制循環させるための水循環路(51)とを設けた製氷装
置を前提とする。
[Means for solving the problem] In order to achieve the above object, the first solution is as shown in Fig. 1 (solid line only).
, an ice storage tank (5) for storing frozen slurry of water or an aqueous solution, a water heat exchanger (22) connected to a cooling device for supercooling the water or an aqueous solution, and a water heat exchanger (22) for supercooling the water or the aqueous solution. An ice making apparatus is assumed to be provided with a water circulation path (51) for forcedly circulating water or an aqueous solution between a heat exchanger (22) and the ice storage tank (5).

【0007】そして、上記水熱交換器(22)出口にお
ける水又は水溶液の温度を検出する水温検出手段(Th
w)と、該水温検出手段(Thw)の出力を受け、水又
は水容液の出口温度の上昇変化が所定値よりも大きいと
き、水熱交換器(22)内部の水又は水溶液が部分的に
凍結していると判定する判定手段(101A)とを設け
る構成としたものである。
[0007] Water temperature detection means (Th
w) and the output of the water temperature detection means (Thw), when the increase in the outlet temperature of the water or aqueous liquid is larger than a predetermined value, the water or aqueous solution inside the water heat exchanger (22) partially This configuration includes a determining means (101A) for determining that the frozen state is frozen.

【0008】第2の解決手段は、上記第1の解決手段に
おける冷却装置を冷凍装置の冷媒回路(1)とする。
In a second solution, the cooling device in the first solution is a refrigerant circuit (1) of a refrigeration device.

【0009】そして、図1に示すように(破線部分を含
む)、上記水熱交換器(22)出口における水又は水溶
液の温度を検出する水温検出手段(Thw)と、冷媒回
路(1)の水熱交換器(22)出口における冷媒の蒸発
温度を検出する蒸発温度検出手段(Pe)と、上記水温
検出手段(Thw)及び蒸発温度検出手段(Pe)の出
力を受け、水又は水溶液の出口温度と冷媒の蒸発温度と
の差の増大変化が所定値よりも大きいとき、水熱交換器
(22)内部の水又は水溶液が部分的に凍結していると
判定する判定手段(101B)とを設ける構成としたも
のである。
As shown in FIG. 1 (including the broken line portion), there is a water temperature detection means (Thw) for detecting the temperature of the water or aqueous solution at the outlet of the water heat exchanger (22), and a An evaporation temperature detection means (Pe) detects the evaporation temperature of the refrigerant at the outlet of the water heat exchanger (22), and receives the outputs of the water temperature detection means (Thw) and the evaporation temperature detection means (Pe), and receives the output of the water or aqueous solution at the outlet of the water or aqueous solution. determining means (101B) for determining that the water or aqueous solution inside the water heat exchanger (22) is partially frozen when the increase change in the difference between the temperature and the evaporation temperature of the refrigerant is larger than a predetermined value; The structure is such that it is provided.

【0010】第3の解決手段は、図1の点線部分に示す
ように、上記第1又は第2の解決手段において、水熱交
換器(22)に流れる水又は水溶液の流量を検出する流
量検出手段(Fm)を設ける。
[0010] A third solution, as shown by the dotted line in FIG. A means (Fm) is provided.

【0011】そして、判定手段(101)を、水又は水
溶液の流量の減少変化をも加味して水熱交換器(22)
内部の水又は水溶液が部分的に凍結していると判定する
ものとしたものである。
[0011] The determination means (101) is then used to determine whether the water heat exchanger (22)
It is determined that the water or aqueous solution inside is partially frozen.

【0012】第4の解決手段は、水又は水溶液のスラリ
―状の氷化物を貯溜するための蓄氷槽(5)と、冷却装
置に接続され、水又は水溶液を過冷却するための水熱交
換器(22)と、該水熱交換器(22)と上記蓄氷槽(
5)との間で水又は水溶液を強制循環させるための水循
環路(51)とを備えた製氷装置を前提とする。
The fourth solution includes an ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, and a hydrothermal tank (5) connected to a cooling device for supercooling the water or an aqueous solution. an exchanger (22), the water heat exchanger (22) and the ice storage tank (
5) and a water circulation path (51) for forced circulation of water or an aqueous solution.

【0013】そして、上記水熱交換器(22)出口にお
ける水又は水溶液の凍結に関連する情報を水又は水溶液
とは非接触で検出する非接触センサと、該非接触センサ
で検出される情報量に基づき水熱交換器(22)内部の
水又は水溶液が部分的に凍結していると判定する判定手
段(101C)とを設けたものである。
[0013] A non-contact sensor that detects information related to the freezing of water or an aqueous solution at the outlet of the water heat exchanger (22) without contacting the water or the aqueous solution, and an amount of information detected by the non-contact sensor. Based on this, a determining means (101C) is provided for determining that the water or aqueous solution inside the water heat exchanger (22) is partially frozen.

【0014】第5の解決手段は、図1の一点鎖線部分に
示すように、上記第1,第2,第3又は第4の解決手段
において、判定手段(101)の出力を受け、水熱交換
器(22)内部の水又は水溶液の部分的な凍結状態を解
消するよう水熱交換器(22)の過冷却能力を制御する
冷却能力制御手段(102)を設ける構成としたもので
ある。
[0014] As shown in the dot-dash line in FIG. The cooling capacity control means (102) is provided to control the supercooling capacity of the water heat exchanger (22) so as to eliminate the partially frozen state of water or aqueous solution inside the exchanger (22).

【0015】第6の解決手段は、図12に示すように、
水又は水溶液のスラリ―状の氷化物を貯溜するための蓄
氷槽(5)と、水又は水溶液を過冷却するための水熱交
換器(22)と、該水熱交換器(22)と上記蓄氷槽(
5)との間で水又は水溶液を強制循環させるための水循
環路(51)と、該水循環路(51)の水熱交換器(2
2)上流側に配設され、水熱交換器(22)に供給され
る水又は水溶液を予熱する予熱熱交換器(6)とを備え
た製氷装置を前提とし、該製氷装置に、圧縮機(11)
,(21)、熱源側熱交換器(12)、熱源側減圧弁(
13)、製氷用減圧弁(23)及び上記水熱交換器(2
2)を順次接続してなる冷媒回路と、上記熱源側熱交換
器(12)のガス管を吐出ラインと吸入ラインとに択一
的に連通させるよう切換える切換機構(2)と、上記予
熱熱交換器(6)の冷媒流通部に上記冷媒回路から水又
は水溶液の加熱用冷媒を導入するバイパス手段(105
)とを設けるものとする。
The sixth solution is as shown in FIG.
An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, a water heat exchanger (22) for supercooling the water or an aqueous solution, and the water heat exchanger (22). Above ice storage tank (
5) for forced circulation of water or an aqueous solution between the water circulation path (51) and the water heat exchanger (2) of the water circulation path (51).
2) It is assumed that the ice making device is equipped with a preheating heat exchanger (6) that is arranged on the upstream side and preheats the water or aqueous solution supplied to the water heat exchanger (22), and the ice making device is equipped with a compressor. (11)
, (21), heat source side heat exchanger (12), heat source side pressure reducing valve (
13), pressure reducing valve for ice making (23) and the water heat exchanger (2)
2), a switching mechanism (2) that switches the gas pipe of the heat source side heat exchanger (12) to selectively communicate with the discharge line and the suction line, and the preheating heat Bypass means (105) for introducing a heating refrigerant such as water or an aqueous solution from the refrigerant circuit into the refrigerant flow section of the exchanger (6).
) shall be provided.

【0016】そして、上記水熱交換器(22)における
製氷運転時、上記水熱交換器(22)内部の水又は水溶
液の凍結状態を検出する凍結検出手段と、該凍結検出手
段の出力を受け、水熱交換器(22)内部が凍結したと
きには、上記熱源側熱交換器(12)のガス管を吸入ラ
インに連通させるよう上記切換機構(2)を切換えると
ともに、上記予熱熱交換器(6)の加熱能力を増大させ
るよう上記バイパス手段(105)を制御する解凍運転
制御手段とを設けたものである。
[0016] During ice making operation in the water heat exchanger (22), a freeze detection means for detecting the frozen state of the water or aqueous solution inside the water heat exchanger (22), and a freeze detection means for receiving the output of the freeze detection means are provided. When the inside of the water heat exchanger (22) freezes, the switching mechanism (2) is switched to connect the gas pipe of the heat source side heat exchanger (12) to the suction line, and the preheating heat exchanger (6) ) is provided with a thawing operation control means for controlling the bypass means (105) to increase the heating capacity.

【0017】第7の解決手段は、図13に示すように、
水又は水溶液のスラリ―状の氷化物を貯溜するための蓄
氷槽(5)と、水又は水溶液を過冷却するための水熱交
換器(22)と、該水熱交換器(22)と上記蓄氷槽(
5)との間で水又は水溶液を強制循環させるための水循
環路(51)と、該水循環路(51)の水熱交換器(2
2)上流側に配設され、水熱交換器(22)に供給され
る水又は水溶液を予熱する予熱熱交換器(6)とを備え
た製氷装置を前提とし、該製氷装置に、圧縮機(11)
,(21)、室外熱交換器(12)、室外減圧弁(13
)、室内減圧弁(33)及び室内熱交換器(32)を順
次接続してなる冷媒回路(1)と、該冷媒回路(1)の
冷凍サイクルを正逆切換える切換機構(2)と、上記水
熱交換器(22)の冷媒流通部の入口側を製氷用減圧弁
(23)を介して冷媒回路(1)の室外減圧弁(13)
−室内減圧弁(33)間の液管に、出口側を吸入ライン
にそれぞれ接続する製氷バイパス路(24)と、上記予
熱熱交換器(6)の冷媒流通部に上記冷媒回路(1)か
ら水又は水溶液の加熱用冷媒を導入するバイパス手段(
105)とを設けるものとする。
The seventh solution is as shown in FIG.
An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, a water heat exchanger (22) for supercooling the water or an aqueous solution, and the water heat exchanger (22). Above ice storage tank (
5) for forced circulation of water or an aqueous solution between the water circulation path (51) and the water heat exchanger (2) of the water circulation path (51).
2) It is assumed that the ice making device is equipped with a preheating heat exchanger (6) that is arranged on the upstream side and preheats the water or aqueous solution supplied to the water heat exchanger (22), and the ice making device is equipped with a compressor. (11)
, (21), outdoor heat exchanger (12), outdoor pressure reducing valve (13)
), a refrigerant circuit (1) formed by sequentially connecting an indoor pressure reducing valve (33) and an indoor heat exchanger (32), a switching mechanism (2) for switching between forward and reverse refrigeration cycles of the refrigerant circuit (1), and the above-mentioned The inlet side of the refrigerant flow part of the water heat exchanger (22) is connected to the outdoor pressure reducing valve (13) of the refrigerant circuit (1) via the ice making pressure reducing valve (23).
- An ice making bypass passage (24) connecting the outlet side to the suction line, respectively, to the liquid pipe between the indoor pressure reducing valve (33), and the refrigerant circuit (1) to the refrigerant flow part of the preheating heat exchanger (6). Bypass means for introducing water or aqueous solution heating refrigerant (
105) shall be provided.

【0018】そして、上記水熱交換器(22)における
製氷運転時、上記水熱交換器(22)内部の水又は水溶
液の凍結状態を検出する凍結検出手段と、該凍結検出手
段の出力を受け、水熱交換器(22)内部が凍結したと
きには、上記室内熱交換器(32)が蒸発器になるよう
切換機構(2)を切換えるとともに、上記予熱熱交換器
(6)の加熱能力を増大させるよう上記バイパス手段(
105)を制御する解凍運転制御手段とを設けたもので
ある。
[0018] During ice making operation in the water heat exchanger (22), a freeze detection means for detecting the frozen state of water or aqueous solution inside the water heat exchanger (22), and a freeze detection means that receives the output of the freeze detection means. When the inside of the water heat exchanger (22) freezes, the switching mechanism (2) is switched so that the indoor heat exchanger (32) becomes an evaporator, and the heating capacity of the preheating heat exchanger (6) is increased. The above bypass means (
105).

【0019】第8の解決手段は、図14に示すように、
水又は水溶液のスラリ―状の氷化物を貯溜するための蓄
氷槽(5)と、水又は水溶液を過冷却するための水熱交
換器(22)と、該水熱交換器(22)と上記蓄氷槽(
5)との間で水又は水溶液を強制循環させるための水循
環路(51)と、該水循環路(51)の水熱交換器(2
2)上流側に配設され、水熱交換器(22)に供給され
る水又は水溶液を予熱する予熱熱交換器(6)とを備え
た製氷装置を前提とし、該製氷装置に、圧縮機(11)
,(21)、室内熱交換器(12)、室外減圧弁(13
)、室内減圧弁(33)及び室内熱交換器(32)を順
次接続してなる冷媒回路(1)と、上記室外熱交換器(
12)及び室内熱交換器(32)のガス管を吐出ライン
と吸入ラインとに択一的に連通させるようそれぞれ切換
える室外切換機構(2)及び室内切換機構(36)と、
上記水熱交換器(22)の冷媒流通部の入口側を製氷用
減圧弁(23)を介して冷媒回路(1)の室外減圧弁(
13)−室内減圧弁(33)間の液管に、出口側を吸入
ラインにそれぞれ接続する製氷用バイパス路(24)と
、上記予熱熱交換器(6)の冷媒流通部に上記冷媒回路
(1)から水又は水溶液の加熱用冷媒を導入するバイパ
ス手段(105)とを設けるものとする。
The eighth solution is as shown in FIG.
An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, a water heat exchanger (22) for supercooling the water or an aqueous solution, and the water heat exchanger (22). Above ice storage tank (
5) for forced circulation of water or an aqueous solution between the water circulation path (51) and the water heat exchanger (2) of the water circulation path (51).
2) It is assumed that the ice making device is equipped with a preheating heat exchanger (6) that is arranged on the upstream side and preheats the water or aqueous solution supplied to the water heat exchanger (22), and the ice making device is equipped with a compressor. (11)
, (21), indoor heat exchanger (12), outdoor pressure reducing valve (13)
), an indoor pressure reducing valve (33), and an indoor heat exchanger (32) are sequentially connected to the refrigerant circuit (1), and the outdoor heat exchanger (
12) and an outdoor switching mechanism (2) and an indoor switching mechanism (36) that switch the gas pipes of the indoor heat exchanger (32) to selectively communicate with the discharge line and the suction line, respectively;
The inlet side of the refrigerant flow part of the water heat exchanger (22) is connected to the outdoor pressure reducing valve (
13) An ice-making bypass passage (24) connecting the outlet side to the suction line is connected to the liquid pipe between the indoor pressure reducing valve (33), and the refrigerant circuit ( Bypass means (105) for introducing a heating refrigerant such as water or an aqueous solution from 1) shall be provided.

【0020】そして、上記水熱交換器(22)における
製氷運転時、上記水熱交換器(22)内部の水又は水溶
液の凍結状態を検出する凍結検出手段と、該凍結検出手
段の出力を受け、水熱交換器(22)内部が凍結したと
きには、上記室外熱交換器(12)及び室内熱交換器(
32)のガス管を吸入ラインに連通させるよう各切換機
構(2),(36)を切換えるとともに、上記予熱熱交
換器(6)の加熱能力を増大させるよう上記バイパス手
段(105)を制御する解凍運転制御手段とを設けたも
のである。
[0020] During ice making operation in the water heat exchanger (22), a freeze detection means for detecting the frozen state of the water or aqueous solution inside the water heat exchanger (22), and a freeze detection means for receiving the output of the freeze detection means are provided. , when the inside of the water heat exchanger (22) freezes, the outdoor heat exchanger (12) and the indoor heat exchanger (
The switching mechanisms (2) and (36) are switched so that the gas pipe (32) is communicated with the suction line, and the bypass means (105) is controlled to increase the heating capacity of the preheating heat exchanger (6). A defrosting operation control means is provided.

【0021】第9の解決手段は、上記第6,第7又は第
8の解決手段において、製氷用減圧弁(23)を流量調
節機能を有するものとし、解凍運転制御手段を、解凍運
転時に製氷用減圧弁(23)を閉じるよう制御するよう
に構成したものである。
A ninth solution is that in the sixth, seventh, or eighth solution, the ice-making pressure reducing valve (23) has a flow rate adjustment function, and the thawing operation control means controls the ice-making operation during the thawing operation. The pressure reducing valve (23) is controlled to close.

【0022】第10の解決手段は、上記第6,第7又は
第8の解決手段において、水熱交換器(22)出口の水
又は水溶液の温度を検出する水温検出手段(Thw)を
設ける。そして、製氷用減圧弁(23)を流量調節機能
を有するものとし、解凍運転制御手段を、上記水温検出
手段(Thw)の出力を受け、解凍運転開始時に製氷用
減圧弁(23)を閉じた後、水熱交換器(22)出口の
水又は水溶液の温度が所定値以上になると製氷用減圧弁
(23)を開くよう制御するように構成したものである
[0022] A tenth solution is the sixth, seventh or eighth solution, in which a water temperature detection means (Thw) is provided for detecting the temperature of the water or aqueous solution at the outlet of the water heat exchanger (22). The ice making pressure reducing valve (23) has a flow rate adjustment function, and the thawing operation control means receives the output of the water temperature detecting means (Thw) and closes the ice making pressure reducing valve (23) at the start of the thawing operation. Then, when the temperature of the water or aqueous solution at the outlet of the water heat exchanger (22) reaches a predetermined value or higher, the ice-making pressure reducing valve (23) is controlled to be opened.

【0023】のであることを特徴とする製氷装置。An ice making device characterized by:

【0024】第11の解決手段は、上記第6,第7又は
第8の解決手段において、解凍運転制御手段により解凍
運転が開始されてからの経過時間を計測する計時手段を
設ける。そして、製氷用減圧弁(23)を流量調節機能
を有するものとし、解凍運転制御手段を、上記計時手段
の出力を受け、解凍運転開始時に製氷用減圧弁(23)
を閉じた後、解凍運転開始後の経過時間が一定時間以上
になると製氷用減圧弁(23)を開くよう制御するよう
に構成したものである。
[0024] An eleventh solution is the sixth, seventh, or eighth solution, which is provided with a timer for measuring the elapsed time after the thawing operation is started by the thawing operation control means. The ice-making pressure reducing valve (23) is configured to have a flow rate adjustment function, and the thawing operation control means receives the output of the clocking means and controls the ice-making pressure reducing valve (23) at the start of the thawing operation.
After the ice making pressure reducing valve (23) is closed, when the elapsed time after the start of the thawing operation reaches a certain time, the ice making pressure reducing valve (23) is controlled to be opened.

【0025】[0025]

【作用】以上の構成により請求項1の発明では、蓄氷槽
(5)の水又は水溶液が水循環路(51)の水熱交換器
(22)を介して冷却装置により冷却されて過冷却状態
になる。
[Operation] With the above structure, in the invention of claim 1, the water or aqueous solution in the ice storage tank (5) is cooled by the cooling device via the water heat exchanger (22) in the water circulation path (51) to a supercooled state. become.

【0026】その場合、水熱交換器(22)内部で水等
が部分的に凍結すると、その際の凝固熱の発生で水温が
上昇する。ここで、本発明では、水温検出手段(Thw
)で検出される水等の出口温度の上昇変化が所定値より
も大きいときに、判定手段(101A)により、水熱交
換器(22)の水等が部分的に凍結していると判定され
るので、水熱交換器(22)内部が全面的に凍結して破
損等を生じる前に、水等の部分的な凍結状態が正確に検
知されることになる。
[0026] In this case, when water or the like partially freezes inside the water heat exchanger (22), the water temperature rises due to the generation of heat of solidification. Here, in the present invention, water temperature detection means (Thw
), when the increase in the outlet temperature of the water, etc. detected by the determination means (101A) determines that the water, etc. in the water heat exchanger (22) is partially frozen. Therefore, a partially frozen state of water or the like can be accurately detected before the interior of the water heat exchanger (22) completely freezes and causes damage.

【0027】請求項2の発明では、水熱交換器(22)
が冷凍装置の冷媒回路(1)の冷媒との熱交換により過
冷却されるようにした場合、水熱交換器(22)内部で
水等が部分的に凍結すると、水温検出手段(Thw)で
検出される水等の出口温度が上昇する一方、蒸発温度検
出手段(Pe)で検出される冷媒の蒸発温度が低下する
In the invention of claim 2, the water heat exchanger (22)
When the water is supercooled by heat exchange with the refrigerant in the refrigerant circuit (1) of the refrigeration system, if the water etc. partially freezes inside the water heat exchanger (22), the water temperature detection means (Thw) While the detected outlet temperature of water or the like increases, the evaporation temperature of the refrigerant detected by the evaporation temperature detection means (Pe) decreases.

【0028】したがって、水等の出口温度と冷媒の蒸発
温度との差が増大することになるが、本発明では、両者
の差の増大変化が所定値以上になったときに、判定手段
(101B)により、水等が部分的に凍結していると判
定されるので、水熱交換器(22)が全面的に凍結する
前に部分的な水等の凍結状態がより正確に検知されるこ
とになる。
Therefore, the difference between the outlet temperature of water, etc. and the evaporation temperature of the refrigerant increases. However, in the present invention, when the increase in the difference between the two exceeds a predetermined value, the determining means (101B ), it is determined that the water, etc. is partially frozen, so that the partially frozen state of the water, etc. can be detected more accurately before the water heat exchanger (22) completely freezes. become.

【0029】請求項3の発明では、上記請求項1又は2
の発明の作用において、判定手段(101)により、水
熱交換器(22)内部の水等の部分的な凍結による流量
の減少変化をも加味して凍結の判定が行われるので、部
分的な凍結状態がさらに正確に検知されることになる。
[0029] In the invention of claim 3, the above-mentioned claim 1 or 2
In the operation of the invention, the determination means (101) makes a determination of freezing by taking into account the decrease in flow rate due to partial freezing of water, etc. inside the water heat exchanger (22). The frozen state will be detected more accurately.

【0030】請求項4の発明では、非接触センサで検出
される水熱交換器(22)出口における水等の凍結状態
に関連する情報が検知され、判定手段(101C)によ
り、この情報に基づいて水等の凍結が判定される。すな
わち、通常の温度センサで水等の凍結状態を検知しよう
とすると、センサの検知部を水等の流れに晒すので、セ
ンサや配線等により水の流れが乱され、過冷却状態が解
消することがあるが、本発明では、非接触センサにより
水等の凍結に関連する情報が得られるので、水等の過冷
却状態に対する影響を与えることなく、凍結状態が精度
よく検知されることになる。
In the invention of claim 4, information related to the frozen state of water, etc. at the outlet of the water heat exchanger (22) detected by the non-contact sensor is detected, and the determination means (101C) determines based on this information. It is determined whether water, etc. has frozen. In other words, when trying to detect the frozen state of water, etc. with a normal temperature sensor, the detection part of the sensor is exposed to the flow of water, etc., so the flow of water is disturbed by the sensor, wiring, etc., and the supercooling state is eliminated. However, in the present invention, since information related to freezing of water, etc. can be obtained using a non-contact sensor, the frozen state can be detected with high accuracy without affecting the supercooled state of water, etc.

【0031】請求項5の発明では、上記請求項1,2,
3又は4の発明の作用に加えて、判定手段(101)に
より、水熱交換器(22)内部の水等が部分的に凍結し
ていると判定されたときには、冷却能力制御手段(10
2)により、水熱交換器(22)が全面的に凍結する前
に凍結を解消するよう水熱交換器(22)の水等に対す
る過冷却能力が制御されるので、水熱交換器(22)の
破損や冷却効率の低下が防止されることになる。
[0031] In the invention of claim 5, the above-mentioned claims 1, 2,
In addition to the effects of the third or fourth invention, when the determination means (101) determines that the water etc. inside the water heat exchanger (22) is partially frozen, the cooling capacity control means (10
2), the supercooling capacity of the water heat exchanger (22) for water, etc. is controlled so that the water heat exchanger (22) is thawed before the water heat exchanger (22) completely freezes. ) and a decrease in cooling efficiency.

【0032】請求項6の発明では、製氷運転時には、水
循環路(51)において、予熱熱交換器(6)により水
等の氷核が融解され、水熱交換器(22)で水等が過冷
却されて、スラリ―状の氷化物を生成する製氷作用が行
われる。
According to the invention of claim 6, during ice making operation, ice cores such as water are melted by the preheating heat exchanger (6) in the water circulation path (51), and water etc. are heated by the water heat exchanger (22). It is cooled and an ice-making action is performed to produce a slurry-like frozen product.

【0033】そのとき、製氷運転中に凍結検出手段によ
り水熱交換器(22)の凍結状態が検知されると、解凍
運転制御手段により、予熱熱交換器(6)の加熱能力を
増大させるようバイパス手段(105)が制御されるの
で、水循環路(51)では、水熱交換器(22)により
水等が冷却されつつ上流での水温上昇による水熱交換器
(22)の解凍が行われ、水熱交換器(22)を直接加
熱する場合に比べて水熱交換器(22)の出口水温の上
昇が抑制され、熱ロスが低減して運転効率が向上する。
At this time, if the freezing state of the water heat exchanger (22) is detected by the freezing detection means during the ice making operation, the thawing operation control means increases the heating capacity of the preheating heat exchanger (6). Since the bypass means (105) is controlled, in the water circulation path (51), the water, etc. is cooled by the water heat exchanger (22), and the water heat exchanger (22) is thawed due to the rise in water temperature upstream. Compared to the case where the water heat exchanger (22) is directly heated, an increase in the outlet water temperature of the water heat exchanger (22) is suppressed, heat loss is reduced, and operating efficiency is improved.

【0034】一方、冷媒回路側では、熱源側熱交換器(
12)が蒸発器となる冷凍サイクルで冷媒が循環するよ
う制御されるので、予熱熱交換器(6)の加熱能力の増
大が熱源側熱交換器(12)により相殺されて円滑な冷
媒の循環が確保される。
On the other hand, on the refrigerant circuit side, the heat source side heat exchanger (
12) is controlled so that the refrigerant circulates in the refrigeration cycle which serves as an evaporator, so the increase in heating capacity of the preheating heat exchanger (6) is offset by the heat source side heat exchanger (12), resulting in smooth refrigerant circulation. is ensured.

【0035】請求項7の発明では、製氷運転時には、上
記請求項6の発明と同様の製氷作用が得られる。
According to the seventh aspect of the invention, during the ice making operation, the same ice making effect as in the sixth aspect of the invention can be obtained.

【0036】そのとき、凍結検知手段により水熱交換器
(22)の凍結が検知されると、解凍運転制御手段によ
り、予熱熱交換器(6)の加熱能力を増大させるようバ
イパス手段(105)が制御されるので、水循環路(5
1)では、上記請求項6の発明と同様の作用により、水
熱交換器(22)の解凍が行われ、熱ロスの低減により
運転効率が向上する。
At this time, when freezing of the water heat exchanger (22) is detected by the freezing detection means, the thawing operation control means operates the bypass means (105) to increase the heating capacity of the preheating heat exchanger (6). is controlled, the water circulation path (5
In 1), the water heat exchanger (22) is thawed by the same effect as the invention of claim 6, and the operating efficiency is improved by reducing heat loss.

【0037】一方、冷媒回路(1)側では、解凍運転制
御手段の制御によって室内熱交換器(32)が蒸発器と
なる冷凍サイクルで冷媒が循環するので、冷媒を利用し
た室内の直接冷房が可能となる。
On the other hand, on the refrigerant circuit (1) side, the refrigerant is circulated in the refrigeration cycle in which the indoor heat exchanger (32) acts as an evaporator under the control of the thawing operation control means, so that direct indoor cooling using the refrigerant is possible. It becomes possible.

【0038】請求項8の発明では、製氷運転時には、上
記請求項6の発明と同様の製氷作用が得られる。
According to the invention of claim 8, during the ice making operation, the same ice making effect as in the invention of claim 6 can be obtained.

【0039】そのとき、凍結検知手段により水熱交換器
(22)の凍結が検知されると、解凍運転制御手段によ
り、予熱熱交換器(6)の加熱能力を増大させるようバ
イパス手段(105)が制御されるので、水循環路(5
1)では、上記請求項6の発明と同様の作用により、水
熱交換器(22)の解凍が行われ、熱ロスの低減により
運転効率が向上する。
At this time, when freezing of the water heat exchanger (22) is detected by the freezing detection means, the thawing operation control means operates the bypass means (105) to increase the heating capacity of the preheating heat exchanger (6). is controlled, the water circulation path (5
In 1), the water heat exchanger (22) is thawed by the same effect as the invention of claim 6, and the operating efficiency is improved by reducing heat loss.

【0040】一方、冷媒回路(1)側では、解凍運転制
御手段の制御によって室外熱交換器(12)及び室内熱
交換器(32)がいずれも蒸発器になる冷凍サイクルで
冷媒が循環するので、請求項7の発明に比べ、予熱熱交
換器(6)の凝縮能力が向上する。
On the other hand, on the refrigerant circuit (1) side, the refrigerant circulates in a refrigeration cycle in which both the outdoor heat exchanger (12) and the indoor heat exchanger (32) become evaporators under the control of the thawing operation control means. , the condensing capacity of the preheating heat exchanger (6) is improved compared to the invention of claim 7.

【0041】請求項9の発明では、解凍運転の間、解凍
運転制御手段により製氷用減圧弁(23)が閉じるられ
るので、水熱交換器(22)を凝縮器にして直接解凍す
る場合に比べて、管壁付近の温度がそれほど上昇するこ
とがなく、解凍の終了後製氷運転に復帰したときに、製
氷の立ち上がりが早くなる。
According to the ninth aspect of the invention, since the ice making pressure reducing valve (23) is closed by the thawing operation control means during the thawing operation, compared to the case where the water heat exchanger (22) is used as a condenser and thawing is performed directly. Therefore, the temperature near the pipe wall does not rise so much, and when ice-making operation is resumed after thawing, ice-making starts quickly.

【0042】請求項10又は11の発明では、解凍運転
開始時には製氷用減圧弁(23)が閉じられ、水熱交換
器(22)出口の水温が所定温度以上になったとき、又
は一定時間が経過したときに、製氷用減圧弁(23)が
開かれるので、解凍運転の時間が短縮されるとともに、
熱ロスが低減することになる。
In the invention of claim 10 or 11, the ice making pressure reducing valve (23) is closed at the start of the thawing operation, and when the water temperature at the outlet of the water heat exchanger (22) reaches a predetermined temperature or higher, or after a certain period of time. Since the ice-making pressure reducing valve (23) is opened when the ice-making time has elapsed, the thawing operation time is shortened, and
Heat loss will be reduced.

【0043】[0043]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIG. 2 and subsequent drawings.

【0044】図2は第1実施例の空気調和装置の冷媒回
路(1)の構成を示し、(11)は第1圧縮機、(12
)は該第1圧縮機(11)の吐出側に配置され、冷媒と
室外空気との熱交換を行う室外熱交換器、(13)は該
室外熱交換器(12)の冷媒流量を調節し、又は減圧を
行う室外電動膨張弁であって、上記各機器(11)〜(
13)は第1管路(14)中で直列に接続されている。
FIG. 2 shows the configuration of the refrigerant circuit (1) of the air conditioner of the first embodiment, in which (11) is the first compressor, (12)
) is an outdoor heat exchanger that is arranged on the discharge side of the first compressor (11) and exchanges heat between the refrigerant and outdoor air, and (13) adjusts the refrigerant flow rate of the outdoor heat exchanger (12). , or an outdoor electric expansion valve that reduces pressure, which includes each of the above devices (11) to (
13) are connected in series in the first conduit (14).

【0045】また、(21)は第2圧縮機、(22)は
後述の蓄氷槽(5)の水又は水溶液を過冷却するための
主熱交換器としての水熱交換器、(23)は該水熱交換
器(22)が凝縮器として機能するときには冷媒流量を
調節し、蒸発器として機能するときには冷媒の減圧を行
う製氷用減圧弁としての水側電動膨張弁であって、上記
各機器(21)〜(23)は第2管路(24)中で直列
に接続されている。
Further, (21) is a second compressor, (22) is a water heat exchanger as a main heat exchanger for supercooling the water or aqueous solution in the ice storage tank (5), which will be described later, (23) is a water-side electric expansion valve as an ice-making pressure reducing valve that adjusts the flow rate of refrigerant when the water heat exchanger (22) functions as a condenser, and reduces the pressure of the refrigerant when it functions as an evaporator; The devices (21) to (23) are connected in series in the second conduit (24).

【0046】なお、(SD1 ),(SD2 )はそれ
ぞれ各圧縮機(11),(21)の吐出管に設けられた
油分離器、(C1 ),(C2 )は該各油分離器(S
D1 ),(SD2 )から各圧縮機(11),(21
)の吸入側にそれぞれ設けられた油戻し管(RT1 )
,(RT2 )にそれぞれ介設された減圧用キャピラリ
チュ―ブである。
Note that (SD1) and (SD2) are oil separators installed in the discharge pipes of the compressors (11) and (21), respectively, and (C1) and (C2) are the oil separators (S
D1 ), (SD2 ) to each compressor (11), (21
) Oil return pipes (RT1) installed on the suction side of each
, (RT2), respectively, are decompression capillary tubes.

【0047】さらに、(32),(32)は各室内に配
置される室内熱交換器、(33),(33)は冷房運転
時には冷媒を減圧し、暖房運転時には冷媒流量を調節す
る室内電動膨張弁であって、上記各機器(32),(3
3)は各々直列に接続され、かつその各組が第3管路(
34)中で並列に接続されている。いいかえると、第2
管路(24)は、第1,第3管路(14),(34)で
形成される空調運転用の冷媒回路に対して製氷バイパス
路となるものである。
Further, (32) and (32) are indoor heat exchangers placed in each room, and (33) and (33) are indoor electric units that reduce the pressure of the refrigerant during cooling operation and adjust the refrigerant flow rate during heating operation. An expansion valve, each of the above devices (32), (3
3) are connected in series, and each set is connected to the third pipe line (
34) are connected in parallel inside. In other words, the second
The pipe line (24) serves as an ice-making bypass line for the refrigerant circuit for air conditioning operation formed by the first and third pipe lines (14) and (34).

【0048】そして、上記第1管路(14)及び第2管
路(24)は第3管路(34)に対して並列に接続され
、冷媒が循環する閉回路に構成されている。なお、(A
c)は各圧縮機(11),(21)の吸入側に設けられ
たアキュムレ―タである。
[0048] The first pipe line (14) and the second pipe line (24) are connected in parallel to the third pipe line (34), forming a closed circuit in which the refrigerant circulates. In addition, (A
c) is an accumulator provided on the suction side of each compressor (11), (21).

【0049】また、(2)は室外熱交換器(12)のガ
ス管と室内熱交換器(32),(32)のガス管とを各
圧縮機(11),(21)の吐出側又は吸入側に交互に
連通させるよう切換える四路切換弁であって、該四路切
換弁(2)が図中実線側に切換わったときには室外熱交
換器(12)が凝縮器、室内熱交換器(32),(32
)が蒸発器として機能して室内で冷房運転を行う一方、
四路切換弁(2)が図中破線側に切換わったときには室
外熱交換器(12)が蒸発器、室内熱交換器(32),
(32)が凝縮器として機能して室内で暖房運転を行う
ようになされている。
In addition, (2) connects the gas pipes of the outdoor heat exchanger (12) and the gas pipes of the indoor heat exchangers (32), (32) to the discharge side of each compressor (11), (21) or It is a four-way switching valve that switches to alternately communicate with the suction side, and when the four-way switching valve (2) switches to the solid line side in the figure, the outdoor heat exchanger (12) is switched to the condenser and the indoor heat exchanger. (32), (32
) functions as an evaporator and performs cooling operation indoors,
When the four-way selector valve (2) switches to the broken line side in the figure, the outdoor heat exchanger (12) switches to the evaporator, the indoor heat exchanger (32),
(32) functions as a condenser and performs heating operation indoors.

【0050】さらに、該水熱交換器(22)のガス管と
各圧縮機(11),(21)の吸入管とをバイパス接続
する分岐路(25)と、水熱交換器(22)のガス管を
上記第2圧縮機(21)の吐出管と分岐路(25)とに
択一的に連通させる水側切換弁(26)とが設けられて
いる。該水側切換弁(26)は四路切換弁のうちの3つ
のポ―トを利用しており、水側切換弁(26)が図中実
線側に切換わったときには水熱交換器(22)のガス管
が分岐路(25)側つまり各圧縮機(11),(21)
の吸入側に連通し、水熱交換器(22)が蒸発器として
機能する一方、水側切換弁(26)が図中破線側に切換
わったときには水熱交換器(22)のガス管が第2圧縮
機(21)の吐出管に連通し、水熱交換器(22)が凝
縮器として機能するようになされている。なお、(C3
 )は水側切換弁(26)のデッドポ―ト側の配管に介
設されたキャピラリチュ―ブである。
Furthermore, a branch line (25) bypass-connecting the gas pipe of the water heat exchanger (22) and the suction pipe of each compressor (11), (21), and A water side switching valve (26) is provided for selectively communicating the gas pipe with the discharge pipe of the second compressor (21) and the branch path (25). The water side switching valve (26) uses three ports of the four-way switching valve, and when the water side switching valve (26) switches to the solid line side in the figure, the water heat exchanger (22) ) gas pipe is on the branch path (25) side, that is, each compressor (11), (21)
The water heat exchanger (22) functions as an evaporator, while the gas pipe of the water heat exchanger (22) is connected to the suction side of the water heat exchanger (22) when the water side switching valve (26) is switched to the broken line side in the figure. The water heat exchanger (22) is connected to the discharge pipe of the second compressor (21) and functions as a condenser. In addition, (C3
) is a capillary tube installed in the pipe on the dead port side of the water side switching valve (26).

【0051】さらに、第1圧縮機(11)及び第2圧縮
機(21)の吐出管同士を接続するバイパス路(3)が
設けられていて、該バイパス路(3)には第2圧縮機(
21)の吐出管側から第1圧縮機(11)の吐出管側へ
の冷媒流通のみを許容する逆止弁(4)が介設されてい
る。
Furthermore, a bypass passage (3) is provided that connects the discharge pipes of the first compressor (11) and the second compressor (21). (
A check valve (4) is provided that allows refrigerant to flow only from the discharge pipe side of the first compressor (11) to the discharge pipe side of the first compressor (11).

【0052】すなわち、室外熱交換器(12)及び水熱
交換器(22)が凝縮器として機能する際、水熱交換器
(22)における凝縮温度が高く圧力が高くなった場合
、第2圧縮機(21)の吐出ガスを室外熱交換器(12
)側に逃がすことにより、放熱量を分配しうるようにな
されている。
That is, when the outdoor heat exchanger (12) and the water heat exchanger (22) function as condensers, if the condensation temperature in the water heat exchanger (22) becomes high and the pressure becomes high, the second compression The discharge gas from the machine (21) is transferred to the outdoor heat exchanger (12).
) side, the amount of heat dissipated can be distributed.

【0053】ここで、空気調和装置には、蓄熱媒体とし
ての水又は水溶液のスラリ―状の氷化物を貯留するため
の蓄氷槽(5)が配置されていて、該蓄氷槽(5)と水
熱交換器(22)との間は、水循環路(51)により水
又は水溶液の循環可能に接続されている。該水循環路(
51)は、蓄氷槽(5)の底部から水熱交換器(22)
に水等を供給する往管路(51A)と、水熱交換器(2
2)から蓄氷槽(5)の上部に水等のスラリ―状の氷化
物を戻す復管路(51B)とからなっており、往管路(
51A)に介設されたポンプ(52)により、水循環路
(51)内で蓄氷槽(5)の水又は水溶液を強制循環さ
せるようになされている。
[0053] Here, the air conditioner is provided with an ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution as a heat storage medium, and the ice storage tank (5) and the water heat exchanger (22) are connected by a water circulation path (51) so that water or an aqueous solution can be circulated therebetween. The water circulation path (
51) is a water heat exchanger (22) from the bottom of the ice storage tank (5).
an outgoing pipe (51A) that supplies water, etc. to the water heat exchanger (2
It consists of a return pipe (51B) that returns frozen material in the form of slurry such as water from 2) to the top of the ice storage tank (5), and an outbound pipe (51B)
The water or aqueous solution in the ice storage tank (5) is forced to circulate within the water circulation path (51) by a pump (52) installed in the ice storage tank (51A).

【0054】なお、水循環路(51)の往管路(51A
)のポンプ(52)の下流側には、水循環路(51)の
水又は水溶液中の氷結物やゴミ等の固体物を除去するス
トレ―ナ(53)が介設され、さらに、該ストレ―ナ(
53)の下流側には、水熱交換器(22)に供給される
水等を予熱する予熱熱交換器(6)が介設されている。 一方、冷媒回路(1)の液ラインには、液冷媒の一部を
水側電動膨張弁(23)をバイパスさせて予熱熱交換器
(6)に流通させる予熱バイパス路(61)が設けられ
いて、該予熱バイパス路(61)の予熱熱交換器(6)
の下流側には、冷媒の減圧機能及び流量制御機能を有す
る予熱電動膨張弁(62)が介設されている。該予熱電
動膨張弁(62)と水側電動膨張弁(23)とにより、
予熱バイパス路(61)の冷媒流量を調節するとともに
、水熱交換器(22)の製氷運転時における冷媒の減圧
をも行うようになされている。
[0054] Note that the outgoing pipe (51A) of the water circulation route (51)
) A strainer (53) is provided downstream of the pump (52) for removing solid matter such as frozen matter or dust from the water or aqueous solution in the water circulation path (51). Na(
A preheating heat exchanger (6) that preheats water and the like supplied to the water heat exchanger (22) is provided downstream of the water heat exchanger (53). On the other hand, the liquid line of the refrigerant circuit (1) is provided with a preheating bypass passage (61) that allows a part of the liquid refrigerant to bypass the water side electric expansion valve (23) and flow to the preheating heat exchanger (6). and a preheating heat exchanger (6) of the preheating bypass path (61).
A preheating electric expansion valve (62) having a refrigerant pressure reduction function and a flow rate control function is provided on the downstream side of the refrigerant. With the preheating electric expansion valve (62) and the water side electric expansion valve (23),
The refrigerant flow rate in the preheating bypass passage (61) is adjusted, and the pressure of the refrigerant is also reduced during the ice-making operation of the water heat exchanger (22).

【0055】そして、上記水循環路(51)の復管路(
51B)において、水熱交換器(22)の下流側には、
復管路(51B)の水等を冷却して水熱交換器(22)
で過冷却された水等の過冷却状態を解消させる過冷却解
消部としての再冷却器(8)が設けられ、さらに、該再
冷却器(8)と水熱交換器(22)との間には、復管路
(51B)の凍結が水熱交換器(22)まで進展するの
を阻止するための凍結進展防止部としての保温熱交換器
(7)が設けられている。
[0055] Then, the return pipe (
51B), on the downstream side of the water heat exchanger (22),
The water in the return pipe (51B) is cooled and transferred to the water heat exchanger (22).
A recooler (8) is provided as a supercooling eliminating section that eliminates the supercooled state of water, etc. that has been supercooled in the water. is provided with a heat-retaining heat exchanger (7) as a freeze progress prevention unit for preventing freezing of the return pipe (51B) from progressing to the water heat exchanger (22).

【0056】また、上記冷媒回路(1)の第2圧縮機(
21)の吐出管から保温熱交換器(7)にホットガスを
バイパスして流通させた後吸入側に戻す保温バイパス路
(71)が設けられている。一方、冷媒回路(1)の液
ラインから圧縮機(11),(21)の吸入側となる分
岐路(25)に冷媒をバイパスさせるための再冷却バイ
パス路(81)が設けられていて、該再冷却バイパス路
(81)には、再冷却キャピラリチュ―ブ(C4 )と
再冷却器(8)とが順次上流側から介設されている。
[0056] Furthermore, the second compressor (
A heat-retaining bypass passage (71) is provided for bypassing and circulating hot gas from the discharge pipe 21) to the heat-retaining heat exchanger (7) and returning it to the suction side. On the other hand, a recooling bypass path (81) is provided for bypassing the refrigerant from the liquid line of the refrigerant circuit (1) to the branch path (25) that becomes the suction side of the compressors (11), (21), A recooling capillary tube (C4) and a recooler (8) are sequentially provided in the recooling bypass path (81) from the upstream side.

【0057】すなわち、再冷却器(8)において、再冷
却キャピラリチュ―ブ(C4)で減圧された低温冷媒と
の熱交換により、水熱交換器(22)で過冷却された水
等を再冷却し、その過冷却状態を解消させてスラリ―状
に氷化させ、復管路(51B)を介してスラリ―状の氷
化物を蓄氷槽(5)まで循環させる一方、保温熱交換器
(7)において、比較的高温の液冷媒との熱交換により
復管路(51B)を加熱して、上記再冷却器(8)や復
管路(51B)で水等の過冷却解消により生じた氷化物
が復管路(51B)の管壁に付着して凍結が水熱交換器
(22)まで進展するのを防止するようになされている
That is, in the recooler (8), the water etc. supercooled in the water heat exchanger (22) is regenerated by heat exchange with the low temperature refrigerant whose pressure has been reduced in the recooling capillary tube (C4). The supercooled state is removed, the slurry is frozen, and the frozen slurry is circulated to the ice storage tank (5) via the return pipe (51B). In (7), the return pipe (51B) is heated by heat exchange with a relatively high-temperature liquid refrigerant, and the supercooling of water, etc. is eliminated in the recooler (8) and the return pipe (51B). This is to prevent frozen products from adhering to the pipe wall of the return pipe (51B) and from progressing to the water heat exchanger (22).

【0058】ここで、本発明の特徴として、冷媒回路(
1)の第2圧縮機(21)の吐出管と水熱交換器(22
)の液管とを接続するホットガスバイパス路(91)が
設けられていて、該ホットガスバイパス路(91)には
通路を開閉するホットガス開閉弁(92)が介設されて
いる。すなわち、ホットガス開閉弁(92)が閉じてい
るときには、水熱交換器(22)に各電動膨張弁(23
),(62)で減圧された低温冷媒のみを流通させる一
方、ホットガス開閉弁(92)が開いたときには水熱交
換器(22)に第2圧縮機(21)から吐出されるホッ
トガスを混入させるようになされている。
Here, as a feature of the present invention, the refrigerant circuit (
1) of the second compressor (21) and the water heat exchanger (22)
A hot gas bypass passage (91) is provided which connects the hot gas bypass passage (91) to the liquid pipe (91), and a hot gas opening/closing valve (92) for opening and closing the passage is interposed in the hot gas bypass passage (91). That is, when the hot gas on-off valve (92) is closed, each electric expansion valve (23) is connected to the water heat exchanger (22).
), (62) to circulate only the low-temperature refrigerant decompressed, while when the hot gas on-off valve (92) opens, the hot gas discharged from the second compressor (21) is sent to the water heat exchanger (22). It is designed to be mixed in.

【0059】また、空気調和装置には、各種センサ類が
設置されていて、(Thw)は復管路(51B)の水熱
交換器(22)出口に配置され、水熱交換器(22)出
口における水等の温度を検出する水温検出手段としての
温度センサ、(Pe)は冷媒回路(1)の水熱交換器(
22)のガス管側に配置され、製氷運転時における低圧
側圧力値から水熱交換器(22)における冷媒の蒸発圧
力相当飽和温度(蒸発温度)を検出する蒸発温度検出手
段としての圧力センサである。そして、上記各センサ(
Thw)及び(Pe)は、装置の運転を制御するコント
ロ―ラ(図示せず)に信号線で接続されていて、該コン
トロ―ラにより、各センサ(Thw),(Pe)の信号
に応じて空気調和装置の運転を制御するようになされて
いる。
[0059] Various sensors are installed in the air conditioner, and (Thw) is placed at the outlet of the water heat exchanger (22) of the return pipe (51B). A temperature sensor (Pe) serves as a water temperature detection means for detecting the temperature of water, etc. at the outlet, and (Pe) is a water heat exchanger (
22) is arranged on the gas pipe side, and is a pressure sensor as an evaporation temperature detection means that detects the saturation temperature (evaporation temperature) corresponding to the evaporation pressure of the refrigerant in the water heat exchanger (22) from the low pressure side pressure value during ice making operation. be. And each of the above sensors (
Thw) and (Pe) are connected by signal lines to a controller (not shown) that controls the operation of the device, and the controller controls the signals according to the signals from each sensor (Thw) and (Pe). It is designed to control the operation of the air conditioner.

【0060】空気調和装置の運転時、室内で冷房運転を
行うときには、四路切換弁(2)が図中実線側に切換え
られる。そして、水側切換弁(26)が図中実線側に切
換えられているときには、各圧縮機(11),(21)
からの吐出冷媒がいずれも室外熱交換器(12)で凝縮
された後、各室内熱交換器(32),(32)で蒸発す
ることにより、室内の冷房を行う。また、水側切換弁(
26)が図中破線側に切換えられているときには、第1
圧縮機(11)の吐出冷媒が室外熱交換器(12)に流
れる一方、第2圧縮機(21)の吐出冷媒は水熱交換器
(22)に流れ、それぞれ凝縮された後各室内熱交換器
(32),(32)で蒸発するように循環する。
[0060] When the air conditioner is operated to perform cooling operation indoors, the four-way selector valve (2) is switched to the solid line side in the figure. When the water side switching valve (26) is switched to the solid line side in the figure, each compressor (11), (21)
After the refrigerant discharged from the refrigerant is condensed in the outdoor heat exchanger (12), it is evaporated in each of the indoor heat exchangers (32) and (32), thereby cooling the room. In addition, the water side switching valve (
26) is switched to the broken line side in the figure, the first
The refrigerant discharged from the compressor (11) flows to the outdoor heat exchanger (12), while the refrigerant discharged from the second compressor (21) flows to the water heat exchanger (22), and after being condensed, the refrigerant is transferred to each indoor heat exchanger. The liquid is circulated through the vessels (32) and (32) to evaporate it.

【0061】また、夜間等の電力が安価なときには、蓄
氷槽(5)に冷熱を蓄える蓄冷熱運転が行われる。すな
わち、四路切換弁(2)及び水側切換弁(26)を図中
実線側に切換え、各室内電動膨張弁(33),(33)
を閉じて、各圧縮機(11),(21)の吐出冷媒を室
外熱交換器(12)で凝縮させた後水側電動膨張弁(2
3)(又は予熱電動膨張弁(62))で減圧して水熱交
換器(22)で蒸発させることにより、蓄氷槽(5)の
水又は水溶液を過冷却して蓄氷槽(5)の水等を氷化し
、冷熱を蓄えるようになされている。
[0061] Furthermore, when electricity is cheap, such as at night, a cold storage heat operation is performed in which cold heat is stored in the ice storage tank (5). That is, the four-way switching valve (2) and the water side switching valve (26) are switched to the solid line side in the figure, and each indoor electric expansion valve (33), (33)
is closed and the refrigerant discharged from each compressor (11), (21) is condensed in the outdoor heat exchanger (12), and then the water side electric expansion valve (2) is closed.
3) (or the preheating electric expansion valve (62)) and evaporates it in the water heat exchanger (22), thereby supercooling the water or aqueous solution in the ice storage tank (5) and turning it into an ice storage tank (5). It is designed to freeze water, etc., and store cold energy.

【0062】そのとき、上記コントロ―ラにより水熱交
換器(22)の凍結防止制御が行われる。まず、請求項
1の発明に係る制御内容について、図3のフロ―チャ―
トに基づき説明するに、ステップS1 で、上記温度セ
ンサ(Thw)により検出される出口水温の値Twoを
入力し、ステップS2 で、出口水温の変化ΔTwoを
、ΔTwo=Two−Two′(ただし、Two′は前
回サンプリング時における出口水温の値)から求める。 そして、ステップS3 で、A=ΔTwo/Δtとして
(ただし、Δtはサンプリング間隔)、出口水温の上昇
変化値Aを求める。
[0062] At this time, the above-mentioned controller performs antifreeze control of the water heat exchanger (22). First, regarding the control content according to the invention of claim 1, the flowchart of FIG.
To explain based on the above, in step S1, the value Two of the outlet water temperature detected by the temperature sensor (Thw) is input, and in step S2, the change ΔTwo in the outlet water temperature is calculated as ΔTwo=Two−Two′ (however, Two' is determined from the value of the outlet water temperature at the time of the previous sampling. Then, in step S3, an increase change value A of the outlet water temperature is determined by setting A=ΔTwo/Δt (where Δt is the sampling interval).

【0063】次に、ステップS4 で、この上昇変化値
Aの値が予め設定された所定の基準値Ao よりも大き
いか否かを判別し、出口水温の上昇変化値Aが基準値A
o 以下であれば、水等の凍結の虞れはないと判断して
ステップS5 に進み、出口水温の値Twoの更新を行
った後、ステップS6 でメインの制御ル―チンに戻る
一方、出口水温の上昇変化値Aが基準値Ao よりも大
きいときには、ステップS7 に移行し、水熱交換器(
22)の内部の水等が部分的に凍結していると判定する
。さらに、ステップS8 で、一定時間の間上記ホット
ガス開閉弁(92)を開いてホットガスを水熱交換器(
22)に導入する水熱交換器(22)の解凍運転を行う
Next, in step S4, it is determined whether or not the value of this increase change value A is larger than a predetermined reference value Ao set in advance, and the increase change value A of the outlet water temperature is determined to be greater than the reference value Ao.
o If it is below, it is determined that there is no risk of freezing of the water, etc., and the process proceeds to step S5, where the outlet water temperature value Two is updated, and then the process returns to the main control routine in step S6. When the water temperature increase change value A is larger than the reference value Ao, the process moves to step S7, and the water heat exchanger (
22) It is determined that the water etc. inside is partially frozen. Furthermore, in step S8, the hot gas on-off valve (92) is opened for a certain period of time to transfer the hot gas to the water heat exchanger (
A thawing operation of the water heat exchanger (22) introduced into the water heat exchanger (22) is performed.

【0064】上記フロ―において、ステップS7 の制
御により、水熱交換器(22)の内部の水等が部分的に
凍結していると判定する判定手段(101A)が構成さ
れている。
In the above flow, the control in step S7 constitutes a determining means (101A) that determines that the water, etc. inside the water heat exchanger (22) is partially frozen.

【0065】したがって、請求項1の発明では、蓄氷槽
(5)の水等を水循環路(51)に循環させて水熱交換
器(22)で過冷却した後、水等の過冷却状態を解消さ
せてスラリ―状の氷化物を生成する製氷時、温度センサ
(水温検出手段)(Thw)で検出される水熱交換器(
22)の出口水温の上昇変化値Aが所定の基準値Ao 
よりも大きくなると、判定手段(101A)により、水
熱交換器(22)の内部の水等が部分的に凍結している
と判定される。
Therefore, in the invention of claim 1, after the water etc. in the ice storage tank (5) is circulated through the water circulation path (51) and supercooled in the water heat exchanger (22), the water etc. is in a supercooled state. During ice making, the water heat exchanger (Thw) detects temperature sensor (water temperature detection means) (Thw).
22) The increase change value A of the outlet water temperature is the predetermined reference value Ao.
If it becomes larger than this, the determining means (101A) determines that the water, etc. inside the water heat exchanger (22) is partially frozen.

【0066】ここで、図5に示すように、水熱交換器(
22)内部で水等の凍結物が生じた場合(図中の時刻t
s のとき)、水等の凝固熱が発生するために水温が上
昇し、特に、氷化物が管壁に付着する等してそれが核に
なり氷の結晶が成長すると、凍結が拡大するので、水熱
交換器(22)の出口水温の値Twoは急激に上昇する
。 したがって、予め部分的な凍結が生じるときの出口水温
の上昇直線の傾きから所定の基準値Ao を設定してお
くことにより、出口水温の上昇変化値Aから水熱交換器
(22)全体が凍結に至るまでに部分的な凍結状態を検
知することができ、また、そのことにより、有効な凍結
防止手段を講ずることが可能となるのである。
Here, as shown in FIG. 5, the water heat exchanger (
22) When frozen substances such as water occur inside (time t in the diagram)
s), the water temperature rises due to the generation of heat of solidification of water, etc., and especially when frozen substances adhere to the pipe wall and become nuclei and grow ice crystals, freezing expands. , the value Two of the outlet water temperature of the water heat exchanger (22) increases rapidly. Therefore, by setting a predetermined reference value Ao in advance from the slope of the straight line of increase in the outlet water temperature when partial freezing occurs, the entire water heat exchanger (22) can be frozen from the increase change value A of the outlet water temperature. It is possible to detect a partially frozen state before this occurs, and thereby it becomes possible to take effective antifreeze measures.

【0067】なお、請求項1の発明では、水熱交換器(
22)で水等を過冷却するための冷却装置は、上記第1
実施例のような空気調和装置の冷媒回路(1)に限定さ
れるものではなく、例えばサ―モモジュ―ルのような直
接伝熱管を冷却するようなものを利用することも可能で
ある。
Furthermore, in the invention of claim 1, the water heat exchanger (
22) The cooling device for supercooling water etc. is the cooling device for supercooling water etc.
The present invention is not limited to the refrigerant circuit (1) of an air conditioner as in the embodiment, but it is also possible to use a circuit that directly cools heat transfer tubes, such as a thermo module.

【0068】次に、請求項2の発明に係る制御内容につ
いて、図4に基づき説明するに、ステップP1 で、上
記温度センサ(Thw)により検出される水熱交換器(
22)の出口水温の値Twoと、上記圧力センサ(Pe
)で検出される水熱交換器(22)における冷媒の蒸発
温度Te とを入力し、ステップP2 で、両者の差T
d を、式Td =Two−Te により算出する。次
に、ステップP3 で、前回サンプリングとの差ΔTd
 を、式  ΔTd =Td −Td ′から求めて(
ただし、Td ′は前回のサンプリング時の出口水温と
蒸発温度との差)、さらに、ステップP4 で、B=Δ
Td /Δtから出口水温と蒸発温度との差の増大変化
値Bを求める。
Next, the control contents according to the invention of claim 2 will be explained based on FIG. 4. In step P1, the water heat exchanger (Thw) detected by the temperature sensor (Thw)
22) outlet water temperature value Two and the pressure sensor (Pe
) and the evaporation temperature Te of the refrigerant in the water heat exchanger (22) detected in step P2.
d is calculated by the formula Td = Two-Te. Next, in step P3, the difference ΔTd from the previous sampling
is obtained from the formula ΔTd = Td − Td ′ (
However, Td' is the difference between the outlet water temperature and the evaporation temperature during the previous sampling), and in step P4, B=Δ
An increase change value B of the difference between the outlet water temperature and the evaporation temperature is determined from Td/Δt.

【0069】そして、ステップP5 で、上記で求めた
増大変化値Bが予め設定された所定の基準値Bo より
も大きいか否かを判別して、増大変化値Bが基準値Bo
 以下であれば、水等の凍結はないものと判断してステ
ップP6 に進んで、出口水温と蒸発温度との差Td 
の更新を行った後、ステップP7 で、メインの制御ル
―チンに戻る。一方、上記ステップP5 の判別で、増
大変化値Bが基準値Bo よりも大きいときには、ステ
ップP8 に移行して、水熱交換器(22)内部の水等
の部分的な凍結状態であると判定し、さらに、ステップ
P9 で、水熱交換器(22)に圧縮機(21)のホッ
トガスを導入する解凍運転制御を実施する。
Then, in step P5, it is determined whether the increased change value B obtained above is larger than a predetermined reference value Bo, and the increased change value B is determined as the reference value Bo.
If it is below, it is determined that there is no freezing of water, etc., and the process proceeds to step P6, where the difference Td between the outlet water temperature and the evaporation temperature is
After updating, the process returns to the main control routine in step P7. On the other hand, if the increase change value B is larger than the reference value Bo in the determination in step P5 above, the process moves to step P8, and it is determined that the water inside the water heat exchanger (22) is partially frozen. Further, in step P9, thawing operation control is performed to introduce hot gas from the compressor (21) into the water heat exchanger (22).

【0070】上記フロ―において、ステップP8 の制
御により、出口水温と蒸発温度との差の増大変化値Bが
所定の基準値Bo 以上のときに、水熱交換器(22)
内部の水等が部分的に凍結していると判定する判定手段
(101B)が構成されている。
In the above flow, by the control in step P8, when the increase change value B of the difference between the outlet water temperature and the evaporation temperature is greater than or equal to the predetermined reference value Bo, the water heat exchanger (22)
A determining means (101B) is configured to determine that the water or the like inside is partially frozen.

【0071】したがって、請求項2の発明では、水熱交
換器(22)で水等を冷却する冷却装置が空気調和装置
(冷凍装置)の冷媒回路(1)である場合、温度センサ
(Thw)で検出される水熱交換器(22)の出口水温
と圧力センサ(蒸発温度検出手段)(Pe)で検出され
る水熱交換器(22)の蒸発温度との差の増大変化値B
が基準値Bo よりも大きいときに、判定手段(101
B)により、水熱交換器(22)内部の水等が部分的に
凍結していると判定される。すなわち、図5の時刻ts
 に示すように、水熱交換器(22)内部で水等が凍結
すると、水熱交換器(22)の出口水温の値Twoが急
激に上昇する一方、水熱交換器(22)における冷媒の
蒸発温度は急激に低下するので、両者の差Td は、両
者の変化が加算されて急激に増大することになる。した
がって、この出口水温と蒸発温度との差の増大変化値B
について、水等の部分的凍結が生じるときのデ―タから
所定の基準値Bo を予め設定しておくことで、差の増
大変化値Bが基準値Bo を越えたときに、水熱交換器
(22)内部で水等が部分的に凍結していることを正確
に検知することができるのである。
Therefore, in the invention of claim 2, when the cooling device that cools water etc. with the water heat exchanger (22) is the refrigerant circuit (1) of an air conditioner (refrigeration device), the temperature sensor (Thw) Increase change value B of the difference between the outlet water temperature of the water heat exchanger (22) detected by the water heat exchanger (22) and the evaporation temperature of the water heat exchanger (22) detected by the pressure sensor (evaporation temperature detection means) (Pe)
is larger than the reference value Bo, the determination means (101
Based on B), it is determined that the water, etc. inside the water heat exchanger (22) is partially frozen. That is, time ts in FIG.
As shown in the figure, when water etc. freezes inside the water heat exchanger (22), the value Two of the outlet water temperature of the water heat exchanger (22) increases rapidly, while the refrigerant temperature in the water heat exchanger (22) increases rapidly. Since the evaporation temperature decreases rapidly, the difference Td between the two increases rapidly by adding the changes in both. Therefore, the increase change value B of the difference between this outlet water temperature and the evaporation temperature
By setting a predetermined reference value Bo in advance from data when water, etc. partially freezes, when the difference increase change value B exceeds the reference value Bo, the water heat exchanger (22) It is possible to accurately detect that water or the like is partially frozen inside.

【0072】次に、請求項3の発明に係る第2実施例に
ついて説明する。図6は第2実施例における空気調和装
置の構成を示し、本実施例では、上記図2に示す第1実
施例の構成に加えて、水循環路(51)の往管路(51
A)において、予熱熱交換器(6)とストレ―ナ(53
)との間には、水等の流量を検出する流量検出手段とし
ての流量計(Fm)が設置されている。その他の構成は
上記第1実施例と同様である。
Next, a second embodiment according to the third aspect of the invention will be described. FIG. 6 shows the configuration of an air conditioner in a second embodiment. In this embodiment, in addition to the configuration of the first embodiment shown in FIG.
In A), the preheating heat exchanger (6) and the strainer (53
) A flow meter (Fm) is installed as a flow rate detection means for detecting the flow rate of water or the like. The other configurations are the same as those of the first embodiment.

【0073】ここで、コントロ―ラによる凍結防止のた
めの制御内容について、図7のフロ―チャ―トに基づき
説明するに、ステップR1 で、上記圧力センサ(Pe
)で検出される水熱交換器(22)における冷媒の蒸発
温度Te と、温度センサ(Thw)で検出される水熱
交換器(22)の出口水温の値Twoと、流量計(Fm
)で検出される水等の流量Fw とを入力し、ステップ
R2 で、上記出口水温Twoと蒸発温度Te との差
Td を算出して、ステップR3 で、この差値Td 
及び流量Fw について、前回のサンプリングによる値
Td ′及びFw ′からの変化値ΔTd 及びΔFw
 を算出した後、ステップR4 で、B=ΔTd /Δ
t,C=ΔFw /Δtに基づき、上記差値Td と流
量Fw の変化値B及びCを求める。
[0073] Here, the contents of the control for preventing freezing by the controller will be explained based on the flowchart of Fig. 7. In step R1, the pressure sensor (Pe
) The evaporation temperature Te of the refrigerant in the water heat exchanger (22) detected by the water heat exchanger (22), the value Two of the outlet water temperature of the water heat exchanger (22) detected by the temperature sensor (Thw), and the flow meter (Fm
) is input, and in step R2, the difference Td between the outlet water temperature Two and the evaporation temperature Te is calculated, and in step R3, this difference value Td is input.
and the flow rate Fw, the change values ΔTd and ΔFw from the values Td ′ and Fw ′ due to the previous sampling
After calculating, in step R4, B=ΔTd/Δ
Based on t, C=ΔFw/Δt, the change values B and C of the difference value Td and the flow rate Fw are determined.

【0074】そして、ステップR5 で、上記で求めた
出口水温と蒸発温度との差の変化値Bが予め設定された
基準値B1 よりも大きいか否か、つまり増大変化が基
準値B1 よりも大きいか否かを判別し、B>B1 で
なければ水熱交換器(22)の凍結の虞れはないと判断
して、ステップR6 で出口水温の値Twoの更新を行
った後、ステップR7 でメインの制御ル―チンに戻る
。一方、上記ステップR5 の判別で、B>B1 の場
合には、さらに、ステップR8 で流量の変化値Cが予
め設定された所定の基準値−Co よりも小さいか否か
、つまり流量の減少変化が所定値よりも大きいか否かを
判別して、C<−Co でなければステップR6 に進
んで流量の値Fw を更新した後上記ステップR7 に
進み、C<−Co であれば、ステップR9 に進んで
、水熱交換器(22)内部の水等が部分的に凍結してい
ると判定し、さらに、ステップR10で、上記第1実施
例のようなホットガスの混入等による解凍運転を行う。
Then, in step R5, it is determined whether the change value B of the difference between the outlet water temperature and the evaporation temperature obtained above is larger than a preset reference value B1, that is, the increase change is larger than the reference value B1. If B>B1, it is determined that there is no risk of freezing of the water heat exchanger (22), and the outlet water temperature value Two is updated in step R6, and then in step R7. Return to main control routine. On the other hand, in the case of B>B1 in the determination in step R5, it is further determined in step R8 whether or not the flow rate change value C is smaller than a predetermined reference value -Co, that is, the flow rate decrease change. is larger than a predetermined value, and if C<-Co, proceed to step R6, update the flow rate value Fw, and then proceed to step R7, and if C<-Co, proceed to step R9. In step R10, it is determined that the water inside the water heat exchanger (22) is partially frozen, and further, in step R10, a thawing operation is performed by mixing hot gas etc. as in the first embodiment. conduct.

【0075】上記フロ―において、ステップR5 ,R
8 からR9に移行する制御により、上記請求項1又は
2の発明において、水等の流量の減少変化をも加味して
水熱交換器(22)内部が部分的に凍結していると判定
する判定手段(101A又は101B)が構成されてい
る。
In the above flow, steps R5 and R
In the invention according to claim 1 or 2, by the control that shifts from 8 to R9, it is determined that the inside of the water heat exchanger (22) is partially frozen, taking into account the decrease in the flow rate of water, etc. A determining means (101A or 101B) is configured.

【0076】したがって、請求項3の発明では、上記請
求項1又は2の発明に加えて、判定手段(101A又は
101B)により、流量計(流量検出手段)(Fm)で
検出される水循環路(51)の水等の流量の減少変化を
も加味して、水熱交換器(22)内部の水等の部分的な
凍結状態が検知される。すなわち、上記第5図の時刻t
s に示すように、水熱交換器(22)内部で水等の氷
化物が生じて管壁に付着すると、管壁部から凍結が始ま
るので、水等の流量が急激に減少する。また、シェルエ
ンドチュ―ブタイプの熱交換器では、細管の一つが凍結
することもありうる。したがって、流量の減少変化をも
加味して水熱交換器(22)の凍結の虞れを予測するこ
とにより、水熱交換器(22)の全面的凍結を有効に予
防しうる手段を講ずることが可能になるのである。
Therefore, in the invention of claim 3, in addition to the invention of claim 1 or 2, the determination means (101A or 101B) determines whether the water circulation path ( 51), a partial frozen state of the water, etc. inside the water heat exchanger (22) is detected, taking into account the decrease in the flow rate of the water, etc. in the water heat exchanger (22). That is, at time t in FIG.
As shown in s, when frozen substances such as water are generated inside the water heat exchanger (22) and adhere to the tube walls, freezing starts from the tube walls, and the flow rate of water etc. decreases rapidly. Additionally, in shell end tube type heat exchangers, one of the tubes may freeze. Therefore, it is necessary to take measures to effectively prevent the water heat exchanger (22) from completely freezing by predicting the risk of freezing of the water heat exchanger (22) by taking into account changes in the decrease in flow rate. becomes possible.

【0077】特に、出口水温と蒸発温度との差の増大変
化の基準値については、上記第1実施例の図4のフロ―
チャ―トにおける基準値Bo よりも本実施例における
基準値B1 を小さく設定することができる。つまり、
後のステップでさらに流量による判断を加味することで
、出口水温と蒸発温度との差の増大変化については厳し
く判断するようにしても、凍結の虞れがないのに凍結予
防をすることによる製氷効率の悪化を招くことがなく、
より正確な判定をすることができるのである。
In particular, regarding the reference value of the increase change in the difference between the outlet water temperature and the evaporation temperature, the flowchart in FIG. 4 of the first embodiment is used.
The reference value B1 in this embodiment can be set smaller than the reference value Bo in the chart. In other words,
By taking into consideration the flow rate in a later step, even if the increase in the difference between the outlet water temperature and the evaporation temperature is judged more strictly, ice making by preventing freezing even when there is no risk of freezing. without causing deterioration in efficiency,
This allows for more accurate judgments.

【0078】なお、上記第2実施例では、請求項2の発
明を引用した請求項3の発明について説明したが、請求
項1の発明を引用した場合にも、同様に適用することが
できることは明らかである。
[0078] In the above second embodiment, the invention of claim 3 which cited the invention of claim 2 was explained, but it can be similarly applied to the case where the invention of claim 1 is cited. it is obvious.

【0079】次に、請求項4の発明に係る第3実施例に
ついて説明する。図8は本実施例における水熱交換器(
22)出口付近の構造を示し、水循環路(51)の復管
路(51B)の水熱交換器(22)出口側の一部には、
透明な樹脂材料によって形成された検知用配管(51a
)が設けられており、該検知用配管(51a)に、水等
の光透過率を非接触で検出する非接触センサとしての透
過率センサ(Ls )が配設されている。該透過率セン
サ(Ls )は、各々上記検知用配管(51a)に相対
向して取付けられた発光素子(Ls1)と受光素子(L
s2)とを備えていて、発光素子(Ls1)から発光さ
れた光が検知用配管(51a)及び配管内を流れる水等
によって透過損失を受けた後受光素子(Ls1)に達す
る光量を比較することにより、水等の凍結状態を検知す
るようにしている。すなわち、図9に示すように、配管
内がまったく凍結していないときの透過率をεo とし
たとき、水等の一部が凍結すると光透過率εが低下して
設定値εs に達したときに水等が凍結したと判断する
ようになされている。図10は光透過率εに基づく凍結
防止制御の内容を示し、ステップT1 で、光透過率ε
のデ―タを読み込み、ステップT2 で、前回までの3
回測定における光透過率のデ―タε1 ,ε2 ,ε3
 の平均値εm (εm =(ε1 +ε2 +ε3 
)/3を算出し、ステップT3 で、ステップT1 で
検出した現在の光透過率値εが、ステップT2 で算出
した過去3回の測定値の平均値εmに定数α(0<α<
1)を乗じたものよりも小さいか否かを判別し、ε<α
・εm になるまではステップT4 に移行して、ε1
 =ε,ε2 =ε1 ,ε3 =ε2 と、測定値の
更新を行った後、ステップT5 で、メイン制御ル―チ
ンに戻る。
Next, a third embodiment according to the fourth aspect of the invention will be described. Figure 8 shows the water heat exchanger (
22) Showing the structure near the outlet, a part of the water heat exchanger (22) outlet side of the return line (51B) of the water circulation line (51) includes:
Detection piping (51a) formed of a transparent resin material
), and a transmittance sensor (Ls) as a non-contact sensor for detecting the light transmittance of water or the like in a non-contact manner is provided in the detection pipe (51a). The transmittance sensor (Ls) includes a light-emitting element (Ls1) and a light-receiving element (Ls), which are respectively attached to the detection pipe (51a) facing each other.
s2), and compares the amount of light emitted from the light emitting element (Ls1) that reaches the light receiving element (Ls1) after undergoing transmission loss due to the detection piping (51a) and water flowing inside the piping. By doing so, it is possible to detect the frozen state of water, etc. In other words, as shown in Figure 9, when the transmittance when the inside of the pipe is not frozen at all is εo, when some of the water etc. freezes, the light transmittance ε decreases and reaches the set value εs. It is determined that water, etc. has frozen. FIG. 10 shows the contents of antifreeze control based on the light transmittance ε. In step T1, the light transmittance ε
Read the data, and in step T2, the previous 3
Light transmittance data in multiple measurements ε1, ε2, ε3
The average value εm (εm = (ε1 +ε2 +ε3
)/3, and in step T3, the current light transmittance value ε detected in step T1 is set to the average value εm of the past three measured values calculated in step T2 with a constant α (0<α<
1), and determine whether it is smaller than the product multiplied by ε<α
・Proceed to step T4 until εm is reached, and ε1
After updating the measured values as follows: =ε, ε2 =ε1, ε3 =ε2, the process returns to the main control routine at step T5.

【0080】一方、上記ステップT3 の判別で、ε<
α・εm になると、ステップT6 に移行して、水熱
交換器(22)が凍結したと判定し、ステップT7 で
、上記第1,第2実施例と同様に水熱交換器(22)の
凍結状態を解消するための解凍運転を行う。
On the other hand, in the determination at step T3 above, ε<
When α·εm is reached, the process proceeds to step T6, where it is determined that the water heat exchanger (22) has frozen, and in step T7, the water heat exchanger (22) is frozen, as in the first and second embodiments. Perform thawing operation to remove the frozen state.

【0081】上記フロ―において、ステップT6 の制
御により、請求項4の発明にいう判定手段(101C)
が構成されている。
In the above flow, the determination means (101C) according to the invention of claim 4 is controlled by step T6.
is configured.

【0082】したがって、請求項4の発明では、光透過
率センサ(Ls )等の非接触センサで検出される水熱
交換器(22)出口における水等の光透過率εの変化に
基づき水等の凍結状態に関連する情報が検知され、判定
手段(101C)により、この情報に基づいて水等の凍
結が判定される。そのとき、通常の温度センサで水等の
凍結状態を検知しようとすると、センサの検知部を水等
の流れに晒すので、センサや配線等により水の流れが乱
され、過冷却状態が解消することがある。ここで、本発
明では、非接触センサにより水等の凍結に関連する情報
を検知するようにしているので、水等の過冷却状態に対
する影響を与えることなく、凍結状態に関連する情報が
得られ、検知精度の向上を図ることができるのである。
Therefore, in the invention of claim 4, water, etc. Information related to the frozen state of the water is detected, and the determination means (101C) determines whether the water or the like is frozen based on this information. At that time, if you try to detect the frozen state of water, etc. with a normal temperature sensor, the detection part of the sensor will be exposed to the flow of water, etc., so the flow of water will be disturbed by the sensor, wiring, etc., and the supercooled state will disappear. Sometimes. Here, in the present invention, since information related to freezing of water, etc. is detected using a non-contact sensor, information related to the freezing state can be obtained without affecting the supercooled state of water, etc. , it is possible to improve detection accuracy.

【0083】なお、上記第3実施例では、光透過率εが
設定値εs 以下になったことで凍結と判定したが、本
発明は斯かる実施例に限定されるものではなく、光透過
率εの時間変化Δεから凍結を判定してもよい。図11
は上記第3実施例の変形例を示し、ステップQ1 で、
光透過率εのデ―タを読み込み、ステップQ2 で、光
透過率の時間変化Δεを、式  Δε=(ε−ε1 )
/Δt(ただし、ε1 は前回のサンプリングによるデ
―タ、Δtはサンプリングタイムである)に基づき算出
し、スフQ3 で、Δε<Δεo(Δεo は所定の設
定値)か否かを判別し、Δε<Δεo になるまでは、
ステップQ4 でデ―タの更新を行った後、ステップQ
5 でメイン制御ル―チンに戻る。一方、ステップQ3
 の判別でΔε<Δεoになると、ステップQ6 で、
水熱交換器(22)の凍結と判定し、ステップQ7 で
、解凍運転を行う。この変形例によっても、上記第3実
施例と同様に水等の過冷却状態を解消させることなく、
非接触センサによる凍結の検知を行って、検知精度の向
上を図ることができる。
[0083] In the third embodiment described above, freezing was determined when the light transmittance ε became equal to or less than the set value εs, but the present invention is not limited to such an embodiment, and the light transmittance Freezing may be determined based on the temporal change Δε of ε. Figure 11
shows a modification of the third embodiment, and in step Q1,
The data of the light transmittance ε is read, and in step Q2, the time change Δε of the light transmittance is calculated using the formula Δε=(ε−ε1)
/Δt (where ε1 is the data from the previous sampling and Δt is the sampling time), and in step Q3, it is determined whether Δε<Δεo (Δεo is a predetermined setting value) or not, and Δε Until <Δεo,
After updating the data in step Q4, step Q
5 returns to the main control routine. On the other hand, step Q3
If Δε<Δεo, then in step Q6,
It is determined that the water heat exchanger (22) is frozen, and a thawing operation is performed in step Q7. Also in this modification, the supercooled state of water etc. is not eliminated as in the third embodiment.
Freezing can be detected using a non-contact sensor to improve detection accuracy.

【0084】さらに、請求項4の発明における非接触セ
ンサは、上記第3実施例の光透過率センサ(Ls )に
限定されるものではない。実施例は省略するが、例えば
、超音波センサ、質量流量計、導電率計、静電容量セン
サ等の検知部を水循環路(51)の配管外側に取り付け
、超音波センサで検出される超音波の液中における速度
の変化、質量流量計により検出される水等の密度の変化
、導電率計で検出される水等の導電率の変化、静電容量
センサで検出される静電容量の変化等から凍結を検知す
るようにしてもよい。
Furthermore, the non-contact sensor according to the fourth aspect of the invention is not limited to the light transmittance sensor (Ls) of the third embodiment. Although an example is omitted, for example, a detection unit such as an ultrasonic sensor, a mass flow meter, a conductivity meter, a capacitance sensor, etc. is attached to the outside of the piping of the water circulation path (51), and the ultrasonic waves detected by the ultrasonic sensor are Changes in velocity in liquid, changes in density of water, etc. detected by a mass flow meter, changes in conductivity of water, etc. detected by a conductivity meter, changes in capacitance detected by a capacitance sensor Freezing may also be detected from the following.

【0085】次に、請求項5の発明について説明する。 上記各実施例において、図3ではステップS8 の制御
により、図4ではステップP9 の制御により、図7で
はステップR10の制御により、図10ではステップT
7の制御により、図11ではステップQ7 の制御によ
り、それぞれ水熱交換器(22)内部の水等の部分的な
凍結状態を解消するよう水熱交換器(22)の過冷却能
力を制御する冷却能力制御手段(102)が構成されて
いる。
Next, the invention of claim 5 will be explained. In each of the above embodiments, in FIG. 3 the control is performed in step S8, in FIG. 4 the control is performed in step P9, in FIG. 7 the control is performed in step R10, and in FIG.
7, and in FIG. 11, the supercooling capacity of the water heat exchanger (22) is controlled by the control of step Q7 so as to eliminate the partially frozen state of water, etc. inside the water heat exchanger (22). A cooling capacity control means (102) is configured.

【0086】すなわち、請求項5の発明では、上記請求
項1,2,3又は4の発明に加えて、判定手段(101
)により、水熱交換器(22)内部の水等が部分的に凍
結していると判定されたときには、例えば上記各実施例
における水熱交換器(22)へのホットガスの混入のよ
うに、冷却能力制御手段(102)により、水熱交換器
(22)による水等の過冷却能力が小さくなるよう調節
されて、凍結が解消されるので、水熱交換器(22)の
全面的凍結による製氷効率の悪化や水熱交換器(22)
の破損を有効に防止することができる。
That is, in the invention of claim 5, in addition to the invention of claim 1, 2, 3 or 4, the determination means (101
), when it is determined that the water etc. inside the water heat exchanger (22) is partially frozen, for example, when hot gas is mixed into the water heat exchanger (22) in each of the above embodiments, , the cooling capacity control means (102) adjusts the supercooling capacity of water, etc. by the water heat exchanger (22) to be reduced, and the freezing is eliminated, so that the water heat exchanger (22) is completely frozen. Deterioration of ice making efficiency due to water heat exchanger (22)
damage can be effectively prevented.

【0087】次に、請求項6の発明に係る第4実施例に
ついて説明する。図12は第4実施例に係る製氷装置の
配管系統を示し、予熱熱交換器(6)に対する冷媒回路
(1)との接続以外は上記第1実施例における配管系統
と略共通の構成である。ただし、室内ユニット(図示せ
ず)は冷媒回路に接続されておらず、蓄氷槽(5)から
水等の冷却用媒体を介して冷房するようになされている
。つまり、第1管路(14)と第3管路(34)のみに
より、圧縮機(11),(21)からの吐出冷媒が熱源
側熱交換器(12)で凝縮した後、水側電動膨張弁(2
3)で膨張して水熱交換器(22)で蒸発するように循
環する冷媒回路を構成している。これにより、水循環路
(51)の水等を過冷却するようになされている。
Next, a fourth embodiment according to the sixth aspect of the invention will be described. FIG. 12 shows a piping system of an ice making apparatus according to a fourth embodiment, and the configuration is substantially the same as that of the piping system in the first embodiment, except for the connection between the preheating heat exchanger (6) and the refrigerant circuit (1). . However, the indoor unit (not shown) is not connected to the refrigerant circuit, and is cooled via a cooling medium such as water from the ice storage tank (5). In other words, only through the first pipe line (14) and the third pipe line (34), the refrigerant discharged from the compressors (11), (21) is condensed in the heat source side heat exchanger (12), and then the water side electric Expansion valve (2
3) constitutes a refrigerant circuit in which the refrigerant is circulated so as to be expanded and evaporated in the water heat exchanger (22). This supercools the water, etc. in the water circulation path (51).

【0088】なお、本実施例及び以下の各実施例では圧
縮機を2台設けているが、請求項6以下の発明において
、圧縮機の構成は各実施例に限定されるものではなく、
圧縮機は1台であってもよい。
[0088] Although two compressors are provided in this embodiment and each of the following embodiments, the configuration of the compressor is not limited to each embodiment.
The number of compressors may be one.

【0089】ここで、水循環路(51)の予熱熱交換器
(6)の冷媒流通部の入口側は、予熱バイパス路(61
)を介して冷媒回路の熱源側電動膨張弁(13)の上流
側及び下流側液管と接続されており、上記予熱バイパス
路(61)の復管路(61b)には予熱開閉弁(63)
が介設され、往管路(61a)には冷媒の逆流を阻止す
るための逆止弁(64)が介設されている。また、吐出
ラインから予熱バイパス路(61)の往管路(61a)
の逆止弁(64)下流側に吐出冷媒をバイパスするため
のホットガスバイパス路(91)がホットガス開閉弁(
92)を介して設けられており、開閉弁(92)が開か
れたときには、予熱熱交換器(6)に吐出冷媒が導入さ
れるようになされている。上記予熱バイパス路(61)
、ホットガスバイパス路(91)及びホットガス開閉弁
(92)により、請求項6の発明にいうバイパス手段(
105)が構成されている。
Here, the inlet side of the refrigerant flow section of the preheating heat exchanger (6) of the water circulation path (51) is connected to the preheating bypass path (61).
) is connected to the upstream and downstream liquid pipes of the heat source side electric expansion valve (13) of the refrigerant circuit, and the preheating on/off valve (63) is connected to the return pipe line (61b) of the preheating bypass line (61). )
is interposed therein, and a check valve (64) for preventing backflow of refrigerant is interposed in the outgoing pipe line (61a). Also, from the discharge line to the outgoing pipe line (61a) of the preheating bypass line (61)
A hot gas bypass passage (91) for bypassing the discharged refrigerant downstream of the check valve (64) is connected to the hot gas on-off valve (64).
92), and when the on-off valve (92) is opened, the discharged refrigerant is introduced into the preheating heat exchanger (6). The above preheating bypass path (61)
, the hot gas bypass path (91) and the hot gas on-off valve (92), the bypass means (
105) is configured.

【0090】ここで、上記バイパス手段(105)の構
成は上記実施例に限定されるものではなく、例えば予熱
熱交換器(6)のガス側を直接吐出ラインに接続してお
き、製氷運転時にも予熱熱交換器(6)に吐出冷媒を導
入する一方、解凍運転時には、熱源側熱交換器(12)
のガス側を吸入ラインに切換えることにより、予熱熱交
換器(6)側の冷媒流量を増大させて加熱能力を増大さ
せるようにしてもよい。
[0090] Here, the configuration of the bypass means (105) is not limited to the above embodiment; for example, the gas side of the preheating heat exchanger (6) is directly connected to the discharge line, and the bypass means (105) is connected directly to the discharge line. The discharged refrigerant is also introduced into the preheating heat exchanger (6), while during thawing operation, the heat source side heat exchanger (12)
The heating capacity may be increased by increasing the refrigerant flow rate on the preheating heat exchanger (6) side by switching the gas side of the refrigerant to the suction line.

【0091】なお、各圧縮機(11),(21)の油戻
し管(RT1 ),(RT2 )に関する回路や、保温
熱交換器(7)、再冷却器(8)に関する回路は省略さ
れているが、上記第1実施例の図2に示す回路と同様で
ある。
[0091] Note that the circuits related to the oil return pipes (RT1) and (RT2) of each compressor (11) and (21), and the circuits related to the thermal insulation heat exchanger (7) and recooler (8) are omitted. However, it is similar to the circuit shown in FIG. 2 of the first embodiment.

【0092】通常の製氷運転時には、上記ホットガスバ
イパス路(91)のホットガス開閉弁(92)を閉じ、
予熱バイパス路(61)の予熱開閉弁(63)を開いて
、熱源側熱交換器(12)で凝縮された液冷媒を熱源側
電動膨張弁(13)上流側から予熱熱交換器(6)に導
入した後、熱源側電動膨張弁(13)の下流側に戻すこ
とにより、水熱交換器(22)に供給される水等を予熱
して氷核を融解するようにしている。
During normal ice-making operation, the hot gas on-off valve (92) of the hot gas bypass path (91) is closed;
The preheating on/off valve (63) of the preheating bypass passage (61) is opened, and the liquid refrigerant condensed in the heat source side heat exchanger (12) is transferred from the upstream side of the heat source side electric expansion valve (13) to the preheating heat exchanger (6). After being introduced into the water, the ice is returned to the downstream side of the electric expansion valve (13) on the heat source side, thereby preheating the water and the like supplied to the water heat exchanger (22) and melting the ice cores.

【0093】上記製氷装置における製氷運転時、四路切
換弁(2)を図中実線側に切換え、熱源側熱交換器(1
2)のガス管を吐出ラインに連通させるよう制御する。 すなわち、吐出冷媒を熱源側熱交換器(12)で凝縮さ
せて、水側電動膨張弁(23)で減圧し、水熱交換器(
22)で蒸発させて圧縮機(11),(21)に戻すこ
とにより、水循環路(51)の水等を水熱交換器(22
)で過冷却してスラリ―状の氷化物を生成する。
During ice making operation in the above ice making apparatus, the four-way switching valve (2) is switched to the solid line side in the figure, and the heat source side heat exchanger (1
2) The gas pipe is controlled to be connected to the discharge line. That is, the discharged refrigerant is condensed in the heat source side heat exchanger (12), the pressure is reduced in the water side electric expansion valve (23), and the water heat exchanger (
By evaporating the water in the water circulation path (51) and returning it to the compressors (11) and (21), the water is transferred to the water heat exchanger (22).
) to produce a slurry-like frozen product.

【0094】また、この製氷運転中に上記第1〜第3実
施例で説明したような各センサにより、水熱交換器(2
2)の凍結状態が検出されたときには、四路切換弁(2
)を図中破線側に切換えて熱源側熱交換器(12)のガ
ス管を吸入ラインに連通させて蒸発器とするとともに、
水側電動膨張弁(23)で水熱交換器(22)への冷媒
流量を減ずるよう調節しながら、ホットガスバイパス路
(91)のホットガス開閉弁(92)を開くように制御
する。このとき、水側電動膨張弁(23)の開度調節と
圧縮機(11),(21)の容量調節とによって水熱交
換器(22)の冷却温度を水等の凝固点以上にするよう
にしている。
Also, during this ice-making operation, the water heat exchanger (2
2) is detected, the four-way selector valve (2) is detected to be frozen.
) to the side of the broken line in the figure and connect the gas pipe of the heat source side heat exchanger (12) to the suction line to function as an evaporator.
The water side electric expansion valve (23) is controlled to reduce the flow rate of refrigerant to the water heat exchanger (22), and the hot gas on/off valve (92) of the hot gas bypass path (91) is controlled to be opened. At this time, the cooling temperature of the water heat exchanger (22) is made to be higher than the freezing point of water, etc. by adjusting the opening of the water side electric expansion valve (23) and adjusting the capacity of the compressors (11) and (21). ing.

【0095】すなわち、吐出冷媒を予熱熱交換器(6)
に導入した後、熱源側電動膨張弁(13)及び水側電動
膨張弁(23)で減圧して熱源側熱交換器(12)及び
水熱交換器(22)で蒸発させ、圧縮機(11),(2
1)に戻すよう循環させることにより、水熱交換器(2
2)に流入する冷媒で水等を冷却しながら、その上流の
予熱熱交換器(6)で高温に加熱した水等を水熱交換器
(22)に流入させて水熱交換器(22)の凍結を融解
させる。この制御により、請求項6の発明にいう解凍運
転制御手段が構成されている。
That is, the discharged refrigerant is preheated by the heat exchanger (6).
After being introduced into the compressor (11), the pressure is reduced by the heat source side electric expansion valve (13) and the water side electric expansion valve (23), and the heat source side heat exchanger (12) and water heat exchanger (22) evaporate the air. ), (2
By circulating it back to water heat exchanger (2)
2) while cooling the water etc. with the refrigerant flowing into the water heat exchanger (22), the water etc. heated to a high temperature in the preheating heat exchanger (6) upstream thereof flows into the water heat exchanger (22). Thaw the frozen. This control constitutes the thawing operation control means according to the invention of claim 6.

【0096】なお、冬期には、水側電動膨張弁(26)
を図中破線側に切換え、水熱交換器(22)を凝縮器と
して機能させることにより、蓄氷槽(5)に暖熱を蓄熱
し、この温水を利用して室内の暖房を行いうるようにな
されている。
[0096] In winter, the water side electric expansion valve (26)
By switching to the dashed line side in the figure and making the water heat exchanger (22) function as a condenser, warm heat can be stored in the ice storage tank (5) and this warm water can be used to heat the room. is being done.

【0097】したがって、請求項6の発明では、製氷運
転時には、熱源側熱交換器(12)が凝縮器となり、水
熱交換器(22)が蒸発器となるよう冷媒が循環する冷
凍サイクルで運転が行われ、水熱交換器(22)でスラ
リ―状の氷化物が生成される。一方、製氷運転中に凍結
検出手段(例えば上記第1〜第3実施例における温度セ
ンサ,光透過率センサ,超音波センサ等)により水熱交
換器(22)の凍結状態が検知されたときには、解凍運
転制御手段により、ホットガス開閉弁(92)を開いて
予熱熱交換器(6)の加熱能力を増大させるようバイパ
ス手段(105)が制御される。
Therefore, in the invention of claim 6, during ice making operation, the operation is performed in a refrigeration cycle in which the refrigerant is circulated so that the heat source side heat exchanger (12) functions as a condenser and the water heat exchanger (22) functions as an evaporator. is carried out, and a slurry-like frozen product is produced in the water heat exchanger (22). On the other hand, when the freezing state of the water heat exchanger (22) is detected by the freezing detection means (for example, the temperature sensor, light transmittance sensor, ultrasonic sensor, etc. in the above-mentioned first to third embodiments) during the ice-making operation, The thawing operation control means controls the bypass means (105) to open the hot gas on-off valve (92) and increase the heating capacity of the preheating heat exchanger (6).

【0098】すなわち、水熱交換器(22)で水等を冷
却しながらその上流側の予熱熱交換器(6)で水等を高
温に加熱するようにしているので、水熱交換器(22)
を直接加熱する場合に比べて、水熱交換器(22)の出
口水温をそれほど上昇させることがなく、熱ロスを抑制
して運転効率の向上を図ることができる。そのとき、冷
媒回路側では、熱源側熱交換器(12)を凝縮器として
機能させるよう冷凍サイクルが切換えられるので、予熱
熱交換器(6)でホットガスを導入して加熱能力を増大
させた分は熱源側熱交換器(12)の蒸発能力で相殺さ
れ、冷媒の循環による熱移動が円滑に行われる。
That is, while the water heat exchanger (22) cools the water, etc., the water heat exchanger (6) on the upstream side heats the water to a high temperature. )
Compared to the case where the water is heated directly, the temperature of the water at the outlet of the water heat exchanger (22) does not increase much, and it is possible to suppress heat loss and improve operational efficiency. At that time, on the refrigerant circuit side, the refrigeration cycle is switched so that the heat source side heat exchanger (12) functions as a condenser, so hot gas is introduced into the preheating heat exchanger (6) to increase heating capacity. This is offset by the evaporation capacity of the heat source-side heat exchanger (12), and heat transfer due to refrigerant circulation is performed smoothly.

【0099】ここで、請求項9の発明のごとく、解凍運
転の間、水側電動膨張弁(23)を閉じるようにしても
よく、そのときにも、水熱交換器(22)を凝縮器にし
て直接解凍する場合に比べて、管壁付近の温度がそれほ
ど上昇しないので、解凍の終了後製氷運転に復帰したと
きに、製氷への立ち上がりが速いという効果がある。た
だし、図21の破線に示すように、水側電動膨張弁(2
3)を閉じた場合の水熱交換器(22)出口の水温低下
は水熱交換器(22)の解凍熱量Q1 に相当する温度
低下だけであるのに対し、水熱交換器(22)で水等を
冷却した場合、同図の実線に示すように、水熱交換器(
22)での吸熱Q2 に相当する温度低下が加わる。し
たがって、解凍運転中に水熱交換器(22)で適度に冷
却することにより、圧縮機(11),(21)の入力及
び全蒸発器の吸熱による熱量Q3 は同じでも、水熱交
換器(22)出口の水温Twoの温度上昇を抑制するこ
とができ、その分熱ロスが低減するのである。
Here, as in the invention of claim 9, the water side electric expansion valve (23) may be closed during the thawing operation, and at that time, the water heat exchanger (22) may be closed as well. Compared to direct thawing, the temperature near the tube wall does not rise as much, so when ice-making operation is resumed after thawing, the ice-making operation can be started more quickly. However, as shown by the broken line in Figure 21, the water side electric expansion valve (2
3), the water temperature at the outlet of the water heat exchanger (22) decreases only by a temperature drop corresponding to the thawing heat amount Q1 of the water heat exchanger (22). When cooling water, etc., a water heat exchanger (
A temperature drop corresponding to the endotherm Q2 in 22) is added. Therefore, by appropriately cooling the water heat exchanger (22) during the thawing operation, even though the input heat of the compressors (11) and (21) and the heat absorbed by all the evaporators Q3 are the same, the water heat exchanger (22) 22) It is possible to suppress the temperature rise of the water temperature Two at the outlet, and the heat loss is reduced accordingly.

【0100】また、請求項10又は11の発明のごとく
、解凍運転開始時には水側電動膨張弁(23)を閉じ、
水熱交換器(22)出口の水温Twoが所定温度以上に
なったとき、又は一定時間が経過したときに、水側電動
膨張弁(23)を開くようにした場合、解凍運転の時間
を短縮しうるとともに、熱ロスを低減することができ、
著効が得られることになる。
[0100] Also, according to the invention of claim 10 or 11, when starting the thawing operation, the water side electric expansion valve (23) is closed;
If the water-side electric expansion valve (23) is opened when the water temperature Two at the outlet of the water heat exchanger (22) reaches a predetermined temperature or higher, or when a certain period of time has elapsed, the thawing operation time will be shortened. In addition to reducing heat loss,
It will be effective.

【0101】なお、上記解凍運転制御手段による解凍運
転は、図15〜図20に示すような条件が成立したとき
に停止して製氷運転に復帰すると判断することができる
。ここで、図15の(a)は流量センサで検出される水
循環路(51)の水等の流量fが凍結前の値fo に戻
ったとき(図中の時刻to )に解凍運転を停止する例
、図15の(b)は流量fの時間変化df/dtが凍結
前の値「0」に戻ったとき(図中の時刻to )に解凍
運転を停止する例である。図16の(a)は、水熱交換
器(22)の上流側と下流側に設置した2つの水圧セン
サで検出される水圧p1 ,p2 の差圧Δpが凍結前
の値Δpo になったとき(図中の時刻to )に解凍
運転を停止する例、図16の(b)は水圧p1 ,p2
 の差圧Δpの時間変化dΔp/dtが凍結前の値「0
」になったとき(図中の時刻to )に解凍運転を停止
する例である。図17は、過冷却解消部である再冷却器
(8)に設置された温度センサで検出される出口水温T
が凍結前の値To に復帰したとき(図中の時刻to 
)に解凍運転を停止する例である。図18の(a)は、
水熱交換器(22)の入口水温T1 と再冷却器(8)
の出口水温T2 との温度差ΔTが凍結前の値ΔTo 
になったとき(図中の時刻to )に解凍運転を停止す
る例、図18の(b)は温度差ΔTの時間変化dΔT/
dtが凍結前の値「0」になったとき(図中の時刻to
 )に解凍運転を停止する例である。図19の(a)は
、水熱交換器(22)出口側に設置された光透過率セン
サで検出される光透過率εが凍結前の値εo になった
とき(図中の時刻to )に解凍運転を停止する例、図
19の(b)は、光透過率の時間変化dε/dtが凍結
前の値「0」になったとき(図中の時刻to )に解凍
運転を停止する例である。図20の(a)は、再冷却器
(8)の出口側に設置された光透過率センサで検出され
る光透過率ε′が凍結前の値ε′o になったとき(図
中の時刻to )に解凍運転を停止する例、図20の(
b)は光透過率ε′の時間変化dε′/dtが凍結前の
値「0」になったとき(図中の時刻to )に解凍運転
を停止する例である。
[0101] The thawing operation by the thawing operation control means can be determined to be stopped and the ice-making operation to be resumed when the conditions shown in Figs. 15 to 20 are satisfied. Here, (a) in FIG. 15 shows that the thawing operation is stopped when the flow rate f of water, etc. in the water circulation path (51) detected by the flow sensor returns to the value fo before freezing (time to in the figure). For example, (b) in FIG. 15 is an example in which the thawing operation is stopped when the time change df/dt of the flow rate f returns to the pre-freezing value "0" (time to in the figure). (a) in FIG. 16 shows when the differential pressure Δp between the water pressures p1 and p2 detected by two water pressure sensors installed on the upstream and downstream sides of the water heat exchanger (22) reaches the pre-freezing value Δpo. An example of stopping the defrosting operation at (time to in the figure), (b) in Fig. 16 shows water pressures p1 and p2.
The time change dΔp/dt of the differential pressure Δp of
'' (time to in the figure), the thawing operation is stopped. Figure 17 shows the outlet water temperature T detected by the temperature sensor installed in the recooler (8), which is the supercooling elimination section.
returns to the value before freezing (time to in the figure).
) is an example of stopping the defrosting operation. (a) of FIG. 18 is
Inlet water temperature T1 of water heat exchanger (22) and recooler (8)
The temperature difference ΔT from the outlet water temperature T2 is the value ΔTo before freezing.
(b) in FIG. 18 shows an example in which the thawing operation is stopped when the temperature difference ΔT reaches (time to in the figure) dΔT/
When dt reaches the value "0" before freezing (time to
) is an example of stopping the defrosting operation. (a) in FIG. 19 shows the time when the light transmittance ε detected by the light transmittance sensor installed on the exit side of the water heat exchanger (22) reaches the value εo before freezing (time to in the figure). An example of stopping the thawing operation at , (b) in FIG. 19 shows that the thawing operation is stopped when the time change in light transmittance dε/dt reaches the pre-freezing value "0" (time to in the figure). This is an example. FIG. 20(a) shows the state when the light transmittance ε′ detected by the light transmittance sensor installed on the exit side of the recooler (8) reaches the value ε′o before freezing ( An example of stopping the defrosting operation at time to ) is shown in FIG. 20 (
b) is an example in which the thawing operation is stopped when the time change dε'/dt of the light transmittance ε' reaches the pre-freezing value "0" (time to in the figure).

【0102】特に、凍結状態の解消を上記のようなセン
サの検出値に基づき判断することにより、解凍運転を必
要以上に行うことによる熱ロスを抑制することができ、
運転効率の向上を図ることができる。
[0102] In particular, by determining whether the frozen state is resolved based on the detected value of the sensor as described above, it is possible to suppress heat loss caused by performing the thawing operation more than necessary.
Operational efficiency can be improved.

【0103】次に、請求項7の発明に係る第5実施例に
ついて説明する。図13は第5実施例に係る空気調和装
置の配管系統を示し、冷媒回路(1)と製氷装置の予熱
熱交換器(6)との接続関係を除いて上記第1実施例に
おける構成(図2参照)と略同様の構成をしている。そ
して、冷媒回路(1)と予熱熱交換器(6)との間には
、上記第4実施例(図12参照)と同様の予熱バイパス
路(61)、予熱開閉弁(63)、逆止弁(64)、ホ
ットガスバイパス路(91)及びホットガス開閉弁(9
2)が設けられている。なお、各圧縮機(11),(2
1)の油戻し管(RT1 ),(RT2 )や、保温熱
交換器(7),再冷却器(8)と冷媒回路(1)との接
続配管は省略されているが、上記図2に示すと同様であ
る。
Next, a fifth embodiment according to the seventh aspect of the invention will be described. FIG. 13 shows a piping system of an air conditioner according to a fifth embodiment, and shows the configuration of the first embodiment except for the connection relationship between the refrigerant circuit (1) and the preheating heat exchanger (6) of the ice making device. 2) has almost the same configuration. And, between the refrigerant circuit (1) and the preheating heat exchanger (6), there is a preheating bypass passage (61) similar to the fourth embodiment (see FIG. 12), a preheating on/off valve (63), and a check valve. Valve (64), hot gas bypass path (91) and hot gas on/off valve (9
2) is provided. In addition, each compressor (11), (2
Although the oil return pipes (RT1) and (RT2) in 1) and the connecting piping between the heat insulating heat exchanger (7), recooler (8) and refrigerant circuit (1) are omitted, they are shown in Figure 2 above. It is the same as shown.

【0104】そして、夜間等には、ホットガス開閉弁(
92)を閉じ、四路切換弁(2)の切換えを図中実線側
にして、室外熱交換器(12)で凝縮された冷媒を水熱
交換器(22)で蒸発させて製氷を行う一方、室外熱交
換器(12)下流側の液冷媒の一部を予熱熱交換器(6
)側にバイパスして水熱交換器(22)に供給される水
等の氷核を融解するようにしている。また、製氷運転中
に水熱交換器(22)が凍結状態となり、凍結検知手段
(上記各実施例のような温度センサ,超音波センサ等)
により水熱交換器(22)の凍結が検知されると、水側
電動膨張弁(23)の開度を調節しながら、ホットガス
開閉弁(92)を開くとともに、四路切換弁(2)の切
換えを図中実線側にして室外電動膨張弁(13)を閉じ
、吐出冷媒を予熱熱交換器(6)で凝縮した後各室内熱
交換器(32),(32)及び水熱交換器(22)で蒸
発させ、圧縮機(11),(21)に戻すことにより、
水熱交換器(22)で水等を冷却しながら予熱熱交換器
(6)で水等を加熱し、水熱交換器(22)の凍結を解
消するようにしている。この制御により、請求項7の発
明にいう解凍運転制御手段が構成されている。なお、解
凍運転を停止するときは、上記図15〜図20に示すよ
うな方法で判断するようになされている。
[0104] At night, etc., the hot gas on-off valve (
92) is closed and the four-way switching valve (2) is set to the solid line side in the figure, the refrigerant condensed in the outdoor heat exchanger (12) is evaporated in the water heat exchanger (22) to make ice. , a part of the liquid refrigerant on the downstream side of the outdoor heat exchanger (12) is transferred to the preheating heat exchanger (6).
) side to melt ice nuclei such as water that is supplied to the water heat exchanger (22). In addition, the water heat exchanger (22) becomes frozen during ice-making operation, and the freeze detection means (temperature sensor, ultrasonic sensor, etc. as in each of the above embodiments)
When freezing of the water heat exchanger (22) is detected by The outdoor motorized expansion valve (13) is closed by switching to the solid line side in the figure, and after condensing the discharged refrigerant in the preheating heat exchanger (6), each indoor heat exchanger (32), (32) and water heat exchanger By evaporating it in (22) and returning it to the compressors (11) and (21),
The water and the like are cooled by the water heat exchanger (22) while the water and the like are heated by the preheating heat exchanger (6) to thaw out the freezing of the water heat exchanger (22). This control constitutes the thawing operation control means according to the seventh aspect of the invention. Note that when the thawing operation is to be stopped, the determination is made using the method shown in FIGS. 15 to 20 above.

【0105】したがって、請求項7の発明では、製氷運
転時には、室外熱交換器(12)が凝縮器として、水熱
交換器(22)が蒸発器として機能するように冷媒が循
環して、水熱交換器(22)で水循環路(51)の水等
を過冷却することにより、スラリ―状の氷化物が生成さ
れる。そのとき、凍結検知手段により水熱交換器(22
)の凍結が検知されると、解凍運転制御手段により、水
側電動膨張弁(23)の開度を調節しながら、ホットガ
ス開閉弁(92)が開かれるとともに、各室内熱交換器
(32),(32)及び水熱交換器(22)が蒸発器と
なるよう四路切換弁(2)が切換えられるので、水循環
路(51)では、上記請求項6の発明と同様に、水熱交
換器(22)で冷媒による冷却を行いながら予熱熱交換
器(6)で水等を加熱することにより、熱ロスを低減し
ながら水熱交換器(22)の解凍が行われる。
Therefore, in the invention of claim 7, during ice making operation, the refrigerant is circulated so that the outdoor heat exchanger (12) functions as a condenser and the water heat exchanger (22) functions as an evaporator. By supercooling the water, etc. in the water circulation path (51) with the heat exchanger (22), a slurry-like frozen product is generated. At that time, the water heat exchanger (22
) is detected, the thawing operation control means opens the hot gas on-off valve (92) while adjusting the opening degree of the water-side electric expansion valve (23), and also opens the hot gas on-off valve (92). ), (32) and the water heat exchanger (22) serve as evaporators, the water circulation path (51) is configured to operate the water heat exchanger (22) as an evaporator. By heating water or the like in the preheating heat exchanger (6) while performing cooling with a refrigerant in the exchanger (22), the water heat exchanger (22) is thawed while reducing heat loss.

【0106】そして、冷媒回路(1)側では、室内熱交
換器(32),(32)が蒸発器となるので、冷媒を利
用した室内の直接冷房が可能となる。
[0106] On the refrigerant circuit (1) side, the indoor heat exchangers (32) and (32) function as evaporators, making it possible to directly cool the room using the refrigerant.

【0107】なお、第5実施例においても、第4実施例
と同様に、冬期には水熱交換器(22)が凝縮器となる
冷凍サイクルで運転を行うことにより、蓄氷槽(5)に
暖熱を蓄えることも可能である。
[0107] In the fifth embodiment, as in the fourth embodiment, the ice storage tank (5) is It is also possible to store heat in the

【0108】次に、請求項8の発明に係る第6実施例に
ついて説明する。図14は第6実施例に係る空気調和装
置の配管系統を示し、上記第5実施例(図13参照)の
構成に加えて、各室内熱交換器(32),(32)のガ
ス側配管を吐出ラインと吸入ラインとに択一的に連通さ
せるための室内切換機構である室内四路切換弁(36)
が配設されており、四路切換弁(2)は請求項8の発明
にいう室外切換機構である。なお、(C5 ),(C6
 )は各々四路切換弁(2),室内四路切換弁(36)
のデッドポ―ト側に介設されたキャピラリチュ―ブであ
る。
Next, a sixth embodiment according to the eighth aspect of the invention will be described. FIG. 14 shows a piping system of an air conditioner according to a sixth embodiment. In addition to the configuration of the fifth embodiment (see FIG. 13), the gas side piping of each indoor heat exchanger (32), An indoor four-way switching valve (36) that is an indoor switching mechanism for selectively communicating the air with the discharge line and the suction line.
is provided, and the four-way switching valve (2) is an outdoor switching mechanism according to the invention of claim 8. In addition, (C5), (C6
) are respectively four-way switching valve (2) and indoor four-way switching valve (36).
This is a capillary tube installed on the dead port side of the

【0109】そして、夜間等には、各四路切換弁(2)
,(26),(36)の切換えを図中実線側にして、ホ
ットガス開閉弁(92)を閉じ、各圧縮機(11),(
21)からの吐出冷媒を各室内熱交換器(32),(3
2)及び室外熱交換器(12)で凝縮させた後水側電動
膨張弁(23)で減圧し、水熱交換器(22)で蒸発さ
せることにより、水熱交換器(22)で水循環路(51
)の水等を過冷却してスラリ―状の氷化物を生成するよ
うになされている。
[0109] At night, etc., each four-way switching valve (2)
, (26), and (36) are set to the solid line side in the figure, the hot gas on-off valve (92) is closed, and each compressor (11), (
The refrigerant discharged from 21) is transferred to each indoor heat exchanger (32), (3
2) and after being condensed in the outdoor heat exchanger (12), the pressure is reduced by the water side electric expansion valve (23), and the water is evaporated in the water heat exchanger (22). (51
) is supercooled to produce a slurry-like frozen product.

【0110】また、製氷運転中に水熱交換器(22)が
凍結したときには、水側電動膨張弁(23)の開度を調
節しながら、ホットガス開閉弁(92)を開くとともに
、四路切換弁(2)及び室内四路切換弁(36)をいず
れも図中破線側に切換えて、圧縮機(11),(21)
からの吐出冷媒が予熱熱交換器(6)で凝縮され、各電
動膨張弁(13),(33),(33)で減圧された後
、室外熱交換器(12)、各室内熱交換器(32),(
32)及び水熱交換器(22)で蒸発して、圧縮機(1
1),(21)に吸入されるよう循環させることにより
、水熱交換器(22)上流側の予熱熱交換器(6)で水
等を加熱して、水熱交換器(22)の凍結を融解するよ
うにしている。この制御により、請求項8の発明にいう
解凍運転制御手段が構成されている。
[0110] When the water heat exchanger (22) freezes during ice-making operation, the hot gas on-off valve (92) is opened while adjusting the opening degree of the water-side electric expansion valve (23), and the four-way Both the switching valve (2) and the indoor four-way switching valve (36) are switched to the broken line side in the figure, and the compressors (11), (21)
The refrigerant discharged from the is condensed in the preheating heat exchanger (6) and reduced in pressure by each electric expansion valve (13), (33), (33), and then transferred to the outdoor heat exchanger (12) and each indoor heat exchanger. (32), (
32) and the water heat exchanger (22), and the compressor (1
1) and (21), the water, etc. is heated in the preheating heat exchanger (6) on the upstream side of the water heat exchanger (22), and the water, etc., is heated and frozen in the water heat exchanger (22). I'm trying to melt it. This control constitutes the thawing operation control means according to the eighth aspect of the invention.

【0111】したがって、請求項8の発明では、製氷運
転時には、例えば室外熱交換器(12)及び各室内熱交
換器(32),(32)を凝縮器として機能させるよう
各四路切換弁(2),(36)の切換えが制御され、圧
縮機(11),(21)からの吐出冷媒が室外熱交換器
(12)及び各室内熱交換器(32),(32)で凝縮
され、水熱交換器(22)で蒸発するように循環して、
水循環路(51)の水等が水熱交換器(22)で過冷却
され、製氷が行われる。そのとき、凍結検知手段により
水熱交換器(22)の凍結状態が検知されると、解凍運
転制御手段により、ホットガス開閉弁(92)を開くと
ともに、室外熱交換器(12)、各室内熱交換器(32
),(32)及び水熱交換器(22)がいずれも蒸発器
になるよう四路切換弁(2)及び室内四路切換弁(36
)の切換えが制御されるとともに、予熱熱交換器(6)
の加熱能力が増大するようバイパス手段(105)が制
御されるので、水循環路(51)側では、上記請求項6
の発明と同様の作用によって、熱ロスを低減しながら水
熱交換器(22)の解凍が行われる。
Therefore, in the invention of claim 8, during the ice-making operation, each of the four-way switching valves ( 2) and (36) are controlled, and the refrigerant discharged from the compressors (11) and (21) is condensed in the outdoor heat exchanger (12) and each indoor heat exchanger (32) and (32), Circulate to evaporate in the water heat exchanger (22),
Water, etc. in the water circulation path (51) is supercooled in the water heat exchanger (22), and ice is made. At that time, when the freezing state of the water heat exchanger (22) is detected by the freezing detection means, the thawing operation control means opens the hot gas on-off valve (92), and the outdoor heat exchanger (12) and each indoor Heat exchanger (32
), (32) and the water heat exchanger (22) are all evaporators.
) is controlled, and the switching of the preheating heat exchanger (6) is controlled.
Since the bypass means (105) is controlled to increase the heating capacity of the water circulation path (51),
The water heat exchanger (22) is thawed while reducing heat loss by the same action as in the invention of the above.

【0112】一方、冷媒回路(1)側では、圧縮機(1
1),(21)からの吐出冷媒が予熱熱交換器(6)で
凝縮され、各熱交換器(12),(32),(32),
(22)で蒸発するよう循環するので、室外熱交換器(
12)及び室内熱交換器(32),(32)を蒸発器と
して利用することができる。したがって、請求項7の発
明に比べ、予熱熱交換器(6)の凝縮能力を向上させる
ことができ、よって、著効を発揮することができる。
On the other hand, on the refrigerant circuit (1) side, the compressor (1
The refrigerant discharged from 1), (21) is condensed in the preheating heat exchanger (6), and the refrigerant is transferred to each heat exchanger (12), (32), (32),
(22) to evaporate, so the outdoor heat exchanger (
12) and indoor heat exchangers (32), (32) can be used as evaporators. Therefore, compared to the invention of claim 7, the condensing capacity of the preheating heat exchanger (6) can be improved, and therefore, significant effects can be exhibited.

【0113】なお、上記各実施例と同様に、冬期等にお
いては、四路切換弁(2)を図中破線側に室内四路切換
弁(36)を図中実線側に切換えて、暖房運転を行うと
ともに、水側四路切換弁(26)を図中破線側に切換え
、夜間等に蓄氷槽(5)に暖熱を蓄えることが可能であ
る。特に、暖房運転中に室外熱交換器(13)が着霜し
たときには、四路切換弁(2)を図中実線側に、水側四
路切換弁(26)を図中実線側に切換え、水側電動膨張
弁(23)を開いて、室外熱交換器(13)及び各室内
熱交換器(32),(32)を凝縮器とし、水熱交換器
(22)を蒸発器として、室内の暖房を行いながら室外
熱交換器(13)の着霜を融解する正サイクルデフロス
トを行うことができる。
[0113] Similarly to the above embodiments, in winter, etc., the four-way switching valve (2) is switched to the broken line side in the figure and the indoor four-way switching valve (36) is switched to the solid line side in the figure to perform heating operation. At the same time, by switching the water side four-way switching valve (26) to the side shown by the broken line in the figure, it is possible to store warm heat in the ice storage tank (5) at night. In particular, when the outdoor heat exchanger (13) is frosted during heating operation, the four-way switching valve (2) is switched to the solid line side in the figure, and the water side four-way switching valve (26) is switched to the solid line side in the figure. The water side electric expansion valve (23) is opened, and the outdoor heat exchanger (13) and each indoor heat exchanger (32), (32) are used as a condenser, and the water heat exchanger (22) is used as an evaporator. It is possible to carry out a forward cycle defrost operation to melt frost on the outdoor heat exchanger (13) while heating the outdoor heat exchanger (13).

【0114】[0114]

【発明の効果】以上説明したように、請求項1の発明に
よれば、蓄氷槽の水又は水溶液を水循環路に循環させて
水熱交換器で過冷却するようにした製氷装置において、
水熱交換器出口における水等の温度を検出し、この出口
水温の上昇変化が所定値以上になったときに水熱交換器
内部の水等が部分的に凍結していると判定するようにし
たので、凝固熱の発生による出口水温の上昇から水熱交
換器内部の部分的な凍結を正確に検知することができ、
よって、水熱交換器の全面的な凍結に対する有効な予防
措置を講ずることが可能となる。
As explained above, according to the invention of claim 1, in an ice making apparatus in which water or an aqueous solution in an ice storage tank is circulated through a water circulation path and supercooled by a water heat exchanger,
The temperature of the water, etc. at the outlet of the water heat exchanger is detected, and when the increase in the outlet water temperature exceeds a predetermined value, it is determined that the water, etc. inside the water heat exchanger is partially frozen. As a result, partial freezing inside the water heat exchanger can be accurately detected from the rise in outlet water temperature due to the generation of solidification heat.
Therefore, it is possible to take effective preventive measures against complete freezing of the water heat exchanger.

【0115】請求項2の発明によれば、水熱交換器で冷
凍装置の冷媒回路の冷媒との熱交換により水等を過冷却
するようにした製氷装置において、水熱交換器の出口水
温と水熱交換器における冷媒の蒸発温度との差の増大変
化が所定値以上になったときに、水熱交換器の水等が部
分的に凍結していると判定するようにしたので、水熱交
換器内部の部分的凍結をより正確に検知することができ
る。
According to the invention of claim 2, in the ice making apparatus in which the water heat exchanger supercools water etc. by heat exchange with the refrigerant of the refrigerant circuit of the refrigeration system, the outlet water temperature of the water heat exchanger and When the increase in the difference between the evaporation temperature of the refrigerant in the water heat exchanger and the evaporation temperature of the refrigerant exceeds a predetermined value, it is determined that the water in the water heat exchanger is partially frozen. Partial freezing inside the exchanger can be detected more accurately.

【0116】請求項3の発明によれば、上記請求項1又
は2の発明において、水熱交換器における水等の流量の
減少変化をも加味して水熱交換器における水等の部分的
な凍結状態を判定するようにしたので、さらに正確な部
分的凍結の検知が可能となる。
According to the invention of claim 3, in the invention of claim 1 or 2, the partial reduction of water, etc. in the water heat exchanger is also taken into account the change in the flow rate of water, etc. in the water heat exchanger. Since the frozen state is determined, it becomes possible to detect partial freezing more accurately.

【0117】請求項4の発明によれば、上記請求項1又
は2の発明と同様の製氷装置において、水熱交換器出口
における水等の凍結に関連する情報を非接触センサによ
り検出し、該非接触センサで検出される情報量に基づき
水熱交換器内部の水又は水溶液が部分的に凍結している
と判定するようにしたので、水等の過冷却状態を解消す
ることなく高い精度で凍結状態を検知することができる
According to the invention of claim 4, in the ice making apparatus similar to the invention of claim 1 or 2, information related to freezing of water, etc. at the outlet of the water heat exchanger is detected by a non-contact sensor, Based on the amount of information detected by the contact sensor, it is determined that the water or aqueous solution inside the water heat exchanger is partially frozen, so it can be frozen with high accuracy without eliminating the supercooled state of water, etc. The state can be detected.

【0118】請求項5の発明によれば、上記請求項1,
2,3又は4の発明に加えて、水熱交換器における部分
的な凍結が生じたときには、凍結状態を解消するように
水熱交換器の過冷却能力を制御したので、水熱交換器の
全面的な凍結を有効に防止することができる。
According to the invention of claim 5, the above-mentioned claim 1,
In addition to inventions 2, 3, and 4, when partial freezing occurs in the water heat exchanger, the supercooling capacity of the water heat exchanger is controlled so as to eliminate the frozen state. Full-scale freezing can be effectively prevented.

【0119】請求項6の発明によれば、製氷装置の水循
環路の水熱交換器上流側に水等を予熱する予熱熱交換器
を設けるとともに、圧縮機、熱源側熱交換器、熱源側減
圧弁、製氷用減圧弁及び水熱交換器を順次接続してなる
冷媒回路を形成し、熱源側熱交換器を凝縮器と蒸発器と
に切換える切換機構と、予熱熱交換器に冷媒回路から冷
媒をバイパスするバイパス手段を設けておき、製氷運転
中に水熱交換器が凍結したときには、熱源側熱交換器を
蒸発器に切換え、予熱熱交換器の加熱能力を増大させて
、水熱交換器で水等を冷却しながら上流の予熱熱交換器
で水等を加熱するようにしたので、水熱交換器出口の水
温の上昇を抑制しながら速やかに水熱交換器の凍結を解
消させることができ、よって、運転効率の向上を図るこ
とができる。
According to the invention of claim 6, a preheating heat exchanger for preheating water, etc. is provided upstream of the water heat exchanger in the water circulation path of the ice making apparatus, and a compressor, a heat source side heat exchanger, and a heat source side decompression A refrigerant circuit is formed by sequentially connecting a valve, a pressure reducing valve for ice making, and a water heat exchanger, a switching mechanism that switches the heat source side heat exchanger to a condenser and an evaporator, and a refrigerant circuit that connects the refrigerant circuit to the preheating heat exchanger. If the water heat exchanger freezes during ice-making operation, the heat exchanger on the heat source side is switched to the evaporator, the heating capacity of the preheating heat exchanger is increased, and the water heat exchanger is Since the water is cooled by the upstream preheating heat exchanger while being heated by the upstream preheating heat exchanger, it is possible to quickly unfreeze the water heat exchanger while suppressing the rise in water temperature at the outlet of the water heat exchanger. Therefore, it is possible to improve operational efficiency.

【0120】請求項7の発明によれば、製氷装置の水循
環路の水熱交換器上流側に水等を予熱する予熱熱交換器
を設けるとともに、圧縮機、室外熱交換器、室外減圧弁
、室内減圧弁及び室内熱交換器を順次接続してなる冷媒
回路を形成する一方、冷媒回路の冷凍サイクルを切換え
る切換機構と、水熱交換器を製氷用減圧弁を介して冷媒
回路の液管及び吸入ラインに接続する製氷バイパス路と
、予熱熱交換器に冷媒回路から冷媒をバイパスするバイ
パス手段とを設けておき、製氷運転中に水熱交換器が凍
結したときには、室内熱交換器を蒸発器にするよう冷凍
サイクルを切換え、予熱熱交換器の加熱能力を増大させ
るようにしたので、上記請求項6の発明と同様に運転効
率の向上を図ることができるとともに、冷媒回路を直接
利用して室内の冷房を行うことができる。
According to the invention of claim 7, a preheating heat exchanger for preheating water, etc. is provided upstream of the water heat exchanger in the water circulation path of the ice making apparatus, and a compressor, an outdoor heat exchanger, an outdoor pressure reducing valve, A refrigerant circuit is formed by sequentially connecting an indoor pressure reducing valve and an indoor heat exchanger, while a switching mechanism for switching the refrigeration cycle of the refrigerant circuit and a water heat exchanger are connected to the liquid pipes and the water heat exchanger of the refrigerant circuit via an ice making pressure reducing valve. An ice-making bypass line connected to the suction line and a bypass means for bypassing the refrigerant from the refrigerant circuit are provided in the preheating heat exchanger, so that when the water heat exchanger freezes during ice-making operation, the indoor heat exchanger is connected to the evaporator. Since the refrigeration cycle is switched to increase the heating capacity of the preheating heat exchanger, it is possible to improve the operating efficiency similarly to the invention of claim 6, and also to directly utilize the refrigerant circuit. It is possible to cool the room.

【0121】請求項8の発明によれば、製氷装置の水循
環路の水熱交換器上流側に水等を予熱する予熱熱交換器
を設けるとともに、圧縮機、室外熱交換器、室外減圧弁
、室内減圧弁及び室内熱交換器を順次接続してなる冷媒
回路を形成する一方、室外熱交換器及び室内熱交換器を
凝縮器と蒸発器とに個別に切換える2つの切換機構と、
冷媒回路の冷凍サイクルを切換える切換機構と、水熱交
換器を製氷用減圧弁を介して冷媒回路の液管及び吸入ラ
インに接続する製氷バイパス路と、予熱熱交換器に冷媒
回路から冷媒をバイパスするバイパス手段とを設けてお
き、製氷運転中に水熱交換器が凍結したときには、室外
熱交換器及び室内熱交換器を蒸発器にするよう冷凍サイ
クルを切換え、予熱熱交換器の加熱能力を増大させるよ
うにしたので、上記請求項7の発明と同様に運転効率の
向上を図ることができるとともに、水熱交換器の解凍運
転時の加熱能力の向上を図ることができる。
According to the invention of claim 8, a preheating heat exchanger for preheating water, etc. is provided upstream of the water heat exchanger in the water circulation path of the ice making apparatus, and a compressor, an outdoor heat exchanger, an outdoor pressure reducing valve, two switching mechanisms that sequentially connect an indoor pressure reducing valve and an indoor heat exchanger to form a refrigerant circuit, while individually switching the outdoor heat exchanger and the indoor heat exchanger to a condenser and an evaporator;
A switching mechanism that switches the refrigeration cycle of the refrigerant circuit, an ice-making bypass path that connects the water heat exchanger to the liquid pipe and suction line of the refrigerant circuit via an ice-making pressure reducing valve, and a bypass passage for refrigerant from the refrigerant circuit to the preheating heat exchanger. If the water heat exchanger freezes during ice-making operation, the refrigeration cycle is switched so that the outdoor heat exchanger and indoor heat exchanger become evaporators, and the heating capacity of the preheating heat exchanger is reduced. Since it is made to increase, it is possible to improve the operating efficiency similarly to the invention of claim 7, and also to improve the heating capacity of the water heat exchanger during thawing operation.

【0122】請求項9の発明によれば、上記請求項6,
7又は8の発明において、解凍運転の間、製氷用減圧弁
を閉じるようにしたので、水熱交換器を凝縮器にして直
接解凍する場合に比べて、管壁付近の温度がそれほど上
昇せずに、解凍の終了後製氷運転に復帰したときに、製
氷への立ち上がりが早くなる利点が得られる。
According to the invention of claim 9, the above-mentioned claim 6,
In the invention of 7 or 8, the pressure reducing valve for ice making is closed during the thawing operation, so the temperature near the pipe wall does not rise as much as compared to the case where the water heat exchanger is used as a condenser for direct thawing. Another advantage is that when returning to ice-making operation after thawing, the start-up to ice-making is faster.

【0123】請求項10又は11の発明によれば、上記
請求項6,7又は8の発明において、解凍運転開始時に
は製氷用減圧弁を閉じ、水熱交換器出口の水温が所定温
度以上になったとき、又は一定時間が経過したときに、
製氷用減圧弁を開くようにしたので、解凍運転の時間を
短縮しうるとともに、熱ロスを低減することができ、よ
って、著効を発揮することができる。
According to the invention of claim 10 or 11, in the invention of claim 6, 7 or 8, the pressure reducing valve for ice making is closed at the start of the thawing operation, and the water temperature at the outlet of the water heat exchanger reaches a predetermined temperature or higher. or when a certain period of time has passed,
Since the pressure reducing valve for ice making is opened, the time for the thawing operation can be shortened, and heat loss can be reduced, so that significant effects can be exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】請求項1,2,3及び5の発明の構成を示す図
である。
FIG. 1 is a diagram showing the configuration of the invention according to claims 1, 2, 3, and 5.

【図2】第1実施例に係る空気調和装置の配管系統図で
ある。
FIG. 2 is a piping system diagram of the air conditioner according to the first embodiment.

【図3】第1実施例における請求項1の発明に係る制御
内容を示すフロ―チャ―ト図である。
FIG. 3 is a flowchart showing control details according to the invention of claim 1 in the first embodiment.

【図4】第1実施例における請求項2の発明に係る制御
内容を示すフロ―チャ―ト図である。
FIG. 4 is a flowchart showing control contents according to the invention of claim 2 in the first embodiment.

【図5】第1実施例における水熱交換器の出口水温、冷
媒の蒸発温度及び水等の流量の時間変化を示す特性図で
ある。
FIG. 5 is a characteristic diagram showing temporal changes in the outlet water temperature of the water heat exchanger, the evaporation temperature of the refrigerant, and the flow rate of water, etc. in the first embodiment.

【図6】第2実施例に係る空気調和装置の配管系統図で
ある。
FIG. 6 is a piping system diagram of an air conditioner according to a second embodiment.

【図7】第2実施例における制御内容を示すフロ―チャ
―ト図である。
FIG. 7 is a flowchart showing control details in a second embodiment.

【図8】第3実施例に係る非接触センサ取付部付近の構
造を示す断面図である。
FIG. 8 is a cross-sectional view showing a structure near a non-contact sensor mounting portion according to a third embodiment.

【図9】第3実施例における光透過率の時間変化特性を
示す特性図である。
FIG. 9 is a characteristic diagram showing the time-varying characteristics of light transmittance in the third example.

【図10】第3実施例における光透過率の低下による凍
結検知制御の内容を示すフロ―チャ―ト図である。
FIG. 10 is a flowchart showing the details of freeze detection control based on a decrease in light transmittance in the third embodiment.

【図11】第3実施例の変形例であって、光透過率の時
間変化による凍結検知制御の内容を示すフロ―チャ―ト
図である。
FIG. 11 is a modification of the third embodiment, and is a flowchart showing the contents of freeze detection control based on temporal changes in light transmittance.

【図12】第4実施例に係る製氷装置の配管系統図であ
る。
FIG. 12 is a piping system diagram of an ice making apparatus according to a fourth embodiment.

【図13】第5実施例に係る空気調和装置の配管系統図
である。
FIG. 13 is a piping system diagram of an air conditioner according to a fifth embodiment.

【図14】第6実施例に係る空気調和装置の配管系統図
である。
FIG. 14 is a piping system diagram of an air conditioner according to a sixth embodiment.

【図15】流量センサを利用して凍結終了時期を検知す
る方法を示す図である。
FIG. 15 is a diagram showing a method of detecting the end of freezing using a flow rate sensor.

【図16】水熱交換器の上下流側2箇所の圧力センサを
利用して凍結終了時期を検知する方法を示す図である。
FIG. 16 is a diagram illustrating a method of detecting the end of freezing using pressure sensors at two locations on the upstream and downstream sides of a water heat exchanger.

【図17】再冷却器下流側の温度センサを利用して凍結
終了時期を検知する方法を示す図である。
FIG. 17 is a diagram showing a method of detecting the end of freezing using a temperature sensor on the downstream side of the recooler.

【図18】水熱交換器上流側及び再冷却器下流側の温度
センサを利用して凍結終了時期を検知する方法を示す図
である。
FIG. 18 is a diagram showing a method of detecting the end of freezing using temperature sensors on the upstream side of the water heat exchanger and the downstream side of the recooler.

【図19】水熱交換器下流側の光透過率センサを利用し
て凍結終了時期を検知する方法を示す図である。
FIG. 19 is a diagram showing a method of detecting the end of freezing using a light transmittance sensor on the downstream side of the water heat exchanger.

【図20】再冷却器下流側の光透過率センサを利用して
凍結終了時期を検知する方法を示す図である。
FIG. 20 is a diagram showing a method of detecting the end of freezing using a light transmittance sensor on the downstream side of the recooler.

【図21】解凍運転時に水側電動膨張弁を開いたときと
閉じたときにおける水熱交換器出口の水温の変化を比較
するための図である。
FIG. 21 is a diagram for comparing changes in water temperature at the outlet of the water heat exchanger when the water-side electric expansion valve is opened and closed during thawing operation.

【符号の説明】[Explanation of symbols]

1    冷媒回路 2    四路切換弁(室外切換機構)5    蓄氷
槽 6    予熱熱交換器 11,21  圧縮機 12  室外熱交換器(熱源側熱交換器)13  室外
電動膨張弁(室外減圧弁,熱源側減圧弁)22  水熱
交換器 23  水側電動膨張弁(製氷用減圧弁)28  製氷
バイパス路 32  室内熱交換器 33  室内電動膨張弁(室内減圧弁)36  室内四
路切換弁(室内切換機構)51  水循環路 61  予熱バイパス路 91  ホットガスバイパス路 92  ホットガス開閉弁 101  判定手段 102  能力制御手段 105  バイパス手段 Thw  温度センサ(水温検出手段)Pe  圧力セ
ンサ(蒸発温度検出手段)Fm  流量計(流量検出手
段)
1 Refrigerant circuit 2 Four-way switching valve (outdoor switching mechanism) 5 Ice storage tank 6 Preheating heat exchanger 11, 21 Compressor 12 Outdoor heat exchanger (heat source side heat exchanger) 13 Outdoor electric expansion valve (outdoor pressure reducing valve, heat source side heat exchanger) side pressure reducing valve) 22 Water heat exchanger 23 Water side electric expansion valve (ice making pressure reducing valve) 28 Ice making bypass path 32 Indoor heat exchanger 33 Indoor electric expansion valve (indoor pressure reducing valve) 36 Indoor four-way switching valve (indoor switching mechanism ) 51 Water circulation path 61 Preheating bypass path 91 Hot gas bypass path 92 Hot gas on/off valve 101 Judgment means 102 Capacity control means 105 Bypass means Thw Temperature sensor (water temperature detection means) Pe Pressure sensor (evaporation temperature detection means) Fm Flow meter (flow rate detection means)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】  水又は水溶液のスラリ―状の氷化物を
貯溜するための蓄氷槽(5)と、冷却装置に接続され、
水又は水溶液を過冷却するための水熱交換器(22)と
、該水熱交換器(22)と上記蓄氷槽(5)との間で水
又は水溶液を強制循環させるための水循環路(51)と
を備えるとともに、上記水熱交換器(22)出口におけ
る水又は水溶液の温度を検出する水温検出手段(Thw
)と、該水温検出手段(Thw)の出力を受け、水又は
水容液の出口温度の上昇変化が所定値よりも大きいとき
、水熱交換器(22)内部の水又は水溶液が部分的に凍
結していると判定する判定手段(101A)とを備えた
ことを特徴とする製氷装置。
Claim 1: An ice storage tank (5) for storing frozen material in the form of a slurry of water or an aqueous solution, connected to a cooling device,
A water heat exchanger (22) for supercooling water or an aqueous solution, and a water circulation path (for forced circulation of water or an aqueous solution between the water heat exchanger (22) and the ice storage tank (5)). 51) and water temperature detection means (Thw) for detecting the temperature of the water or aqueous solution at the outlet of the water heat exchanger (22)
), and in response to the output of the water temperature detection means (Thw), when the increase in the outlet temperature of the water or aqueous liquid is larger than a predetermined value, the water or aqueous solution inside the water heat exchanger (22) partially An ice-making device characterized by comprising a determining means (101A) for determining that the ice-making device is frozen.
【請求項2】  水又は水溶液のスラリ―状の氷化物を
貯溜するための蓄氷槽(5)と、冷凍装置の冷媒回路(
1)に接続され、水又は水溶液を過冷却するための水熱
交換器(22)と、該水熱交換器(22)と上記蓄氷槽
(5)との間で水又は水溶液を強制循環させるための水
循環路(51)とを備えるとともに、上記水熱交換器(
22)出口における水又は水溶液の温度を検出する水温
検出手段(Thw)と、冷媒回路(1)の水熱交換器(
22)出口における冷媒の蒸発温度を検出する蒸発温度
検出手段(Pe)と、上記水温検出手段(Thw)及び
蒸発温度検出手段(Pe)の出力を受け、水又は水溶液
の出口温度と冷媒の蒸発温度との差の増大変化が所定値
よりも大きいとき、水熱交換器(22)内部の水又は水
溶液が部分的に凍結していると判定する判定手段(10
1B)とを備えたことを特徴とする製氷装置。
Claim 2: An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, and a refrigerant circuit (5) of a refrigeration system.
1) for supercooling the water or aqueous solution, and forced circulation of water or the aqueous solution between the water heat exchanger (22) and the ice storage tank (5). The water heat exchanger (
22) A water temperature detection means (Thw) for detecting the temperature of water or aqueous solution at the outlet, and a water heat exchanger (Thw) of the refrigerant circuit (1).
22) An evaporation temperature detection means (Pe) that detects the evaporation temperature of the refrigerant at the outlet, receives the outputs of the water temperature detection means (Thw) and the evaporation temperature detection means (Pe), and detects the outlet temperature of water or aqueous solution and the evaporation of the refrigerant. determining means (10) for determining that the water or aqueous solution inside the water heat exchanger (22) is partially frozen when the increase in the difference from the temperature is larger than a predetermined value;
1B).
【請求項3】  請求項1又は2記載の製氷装置におい
て、水熱交換器(22)に流れる水又は水溶液の流量を
検出する流量検出手段(Fm)を備え、判定手段(10
1A又は101B)は、水又は水溶液の流量の減少変化
をも加味して水熱交換器(22)内部の水又は水溶液が
部分的に凍結していると判定するものであることを特徴
とする製氷装置。
3. The ice making apparatus according to claim 1, further comprising a flow rate detection means (Fm) for detecting the flow rate of water or aqueous solution flowing into the water heat exchanger (22), and a determination means (10).
1A or 101B) is characterized in that it is determined that the water or aqueous solution inside the water heat exchanger (22) is partially frozen by taking into account a decrease in the flow rate of the water or aqueous solution. Ice making equipment.
【請求項4】  水又は水溶液のスラリ―状の氷化物を
貯溜するための蓄氷槽(5)と、冷却装置に接続され、
水又は水溶液を過冷却するための水熱交換器(22)と
、該水熱交換器(22)と上記蓄氷槽(5)との間で水
又は水溶液を強制循環させるための水循環路(51)と
を備えるとともに、上記水熱交換器(22)出口におけ
る水又は水溶液の凍結に関連する情報を水又は水溶液に
接触することなく検出する非接触センサと、該非接触セ
ンサで検出される情報量に基づき水熱交換器(22)内
部の水又は水溶液が部分的に凍結しているときを判定す
る判定手段(101C)とを備えたことを特徴とする製
氷装置。
4. An ice storage tank (5) for storing frozen material in the form of a slurry of water or an aqueous solution, connected to a cooling device,
A water heat exchanger (22) for supercooling water or an aqueous solution, and a water circulation path (for forced circulation of water or an aqueous solution between the water heat exchanger (22) and the ice storage tank (5)). 51) and a non-contact sensor that detects information related to freezing of water or aqueous solution at the outlet of the water heat exchanger (22) without contacting the water or aqueous solution, and information detected by the non-contact sensor. An ice-making apparatus comprising: determination means (101C) for determining whether water or aqueous solution inside the water heat exchanger (22) is partially frozen based on the amount of water or aqueous solution inside the water heat exchanger (22).
【請求項5】  請求項1,2,3又は4記載の製氷装
置において、判定手段(101)の出力を受け、水熱交
換器(22)内部の水又は水溶液の部分的な凍結状態を
解消するよう水熱交換器(22)の過冷却能力を制御す
る冷却能力制御手段(102)を備えた請求項1,2又
は3記載の製氷装置。
5. The ice making apparatus according to claim 1, 2, 3, or 4, wherein the partially frozen state of the water or aqueous solution inside the water heat exchanger (22) is released in response to the output of the determining means (101). 4. The ice making apparatus according to claim 1, further comprising a cooling capacity control means (102) for controlling the supercooling capacity of the water heat exchanger (22) so as to achieve the following.
【請求項6】  水又は水溶液のスラリ―状の氷化物を
貯溜するための蓄氷槽(5)と、水又は水溶液を過冷却
するための水熱交換器(22)と、該水熱交換器(22
)と上記蓄氷槽(5)との間で水又は水溶液を強制循環
させるための水循環路(51)と、該水循環路(51)
の水熱交換器(22)上流側に配設され、水熱交換器(
22)に供給される水又は水溶液を予熱する予熱熱交換
器(6)とを備え、圧縮機(11),(21)、熱源側
熱交換器(12)、熱源側減圧弁(13)、製氷用減圧
弁(23)及び上記水熱交換器(22)を順次接続して
なる冷媒回路と、上記熱源側熱交換器(12)のガス管
を吐出ラインと吸入ラインとに択一的に連通させるよう
切換える切換機構(2)と、上記予熱熱交換器(6)の
冷媒流通部に上記冷媒回路から水又は水溶液の加熱用冷
媒を導入するバイパス手段(105)とを備えるととも
に、上記水熱交換器(22)における製氷運転時、上記
水熱交換器(22)内部の水又は水溶液の凍結状態を検
出する凍結検出手段と、該凍結検出手段の出力を受け、
水熱交換器(22)内部が凍結したときには、上記熱源
側熱交換器(12)のガス管を吸入ラインに連通させる
よう上記切換機構(2)を切換えるとともに、上記予熱
熱交換器(6)の加熱能力を増大させるよう上記バイパ
ス手段(105)を制御する解凍運転制御手段とを備え
たことを特徴とする製氷装置。
6. An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, a water heat exchanger (22) for supercooling the water or an aqueous solution, and the water heat exchanger (22) for supercooling the water or the aqueous solution. Vessel (22
) and the ice storage tank (5), a water circulation path (51) for forced circulation of water or an aqueous solution, and the water circulation path (51).
The water heat exchanger (22) is arranged upstream of the water heat exchanger (22).
22), a preheating heat exchanger (6) for preheating the water or aqueous solution supplied to the compressor (11), (21), a heat source side heat exchanger (12), a heat source side pressure reducing valve (13), A refrigerant circuit is formed by sequentially connecting an ice-making pressure reducing valve (23) and the water heat exchanger (22), and a gas pipe of the heat source side heat exchanger (12) is selectively used as a discharge line or a suction line. It is equipped with a switching mechanism (2) for switching to communicate with the water, and a bypass means (105) for introducing a heating refrigerant such as water or an aqueous solution from the refrigerant circuit into the refrigerant flow section of the preheating heat exchanger (6). A freeze detection means for detecting a frozen state of water or aqueous solution inside the water heat exchanger (22) during ice making operation in the heat exchanger (22), and receiving an output of the freeze detection means;
When the inside of the water heat exchanger (22) freezes, the switching mechanism (2) is switched to connect the gas pipe of the heat source side heat exchanger (12) to the suction line, and the preheating heat exchanger (6) An ice-making apparatus comprising: a thawing operation control means for controlling the bypass means (105) to increase the heating capacity of the ice-making apparatus.
【請求項7】  水又は水溶液のスラリ―状の氷化物を
貯溜するための蓄氷槽(5)と、水又は水溶液を過冷却
するための水熱交換器(22)と、該水熱交換器(22
)と上記蓄氷槽(5)との間で水又は水溶液を強制循環
させるための水循環路(51)と、該水循環路(51)
の水熱交換器(22)上流側に配設され、水熱交換器(
22)に供給される水又は水溶液を予熱する予熱熱交換
器(6)とを備え、圧縮機(11),(21)、室外熱
交換器(12)、室外減圧弁(13)、室内減圧弁(3
3)及び室内熱交換器(32)を順次接続してなる冷媒
回路(1)と、該冷媒回路(1)の冷凍サイクルを正逆
切換える切換機構(2)と、上記水熱交換器(22)の
冷媒流通部の入口側を製氷用減圧弁(23)を介して冷
媒回路(1)の室外減圧弁(13)−室内減圧弁(33
)間の液管に、出口側を吸入ラインにそれぞれ接続する
製氷バイパス路(24)と、上記予熱熱交換器(6)の
冷媒流通部に上記冷媒回路(1)から水又は水溶液の加
熱用冷媒を導入するバイパス手段(105)とを備える
とともに、上記水熱交換器(22)における製氷運転時
、上記水熱交換器(22)内部の水又は水溶液の凍結状
態を検出する凍結検出手段と、該凍結検出手段の出力を
受け、水熱交換器(22)内部が凍結したときには、上
記室内熱交換器(32)が蒸発器になるよう切換機構(
2)を切換えるとともに、上記予熱熱交換器(6)の加
熱能力を増大させるよう上記バイパス手段(105)を
制御する解凍運転制御手段とを備えたことを特徴とする
製氷装置。
7. An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, a water heat exchanger (22) for supercooling the water or an aqueous solution, and the water heat exchanger (22) for supercooling the water or the aqueous solution. Vessel (22
) and the ice storage tank (5), a water circulation path (51) for forced circulation of water or an aqueous solution, and the water circulation path (51).
The water heat exchanger (22) is arranged upstream of the water heat exchanger (22).
22), a preheating heat exchanger (6) that preheats the water or aqueous solution supplied to the compressors (11), (21), an outdoor heat exchanger (12), an outdoor pressure reducing valve (13), and an indoor pressure reducing Valve (3
3) and an indoor heat exchanger (32) connected in sequence; a switching mechanism (2) for switching the refrigeration cycle of the refrigerant circuit (1) between forward and reverse; and the water heat exchanger (22). ) is connected to the outdoor pressure reducing valve (13) of the refrigerant circuit (1) - the indoor pressure reducing valve (33) via the ice making pressure reducing valve (23).
), an ice-making bypass path (24) connecting the outlet side to the suction line, and a refrigerant flow section of the preheating heat exchanger (6) for heating water or aqueous solution from the refrigerant circuit (1). a bypass means (105) for introducing a refrigerant, and a freeze detection means for detecting a frozen state of water or an aqueous solution inside the water heat exchanger (22) during ice making operation in the water heat exchanger (22); , upon receiving the output of the freeze detection means, a switching mechanism (
2) and thawing operation control means for controlling the bypass means (105) to increase the heating capacity of the preheating heat exchanger (6).
【請求項8】  水又は水溶液のスラリ―状の氷化物を
貯溜するための蓄氷槽(5)と、水又は水溶液を過冷却
するための水熱交換器(22)と、該水熱交換器(22
)と上記蓄氷槽(5)との間で水又は水溶液を強制循環
させるための水循環路(51)と、該水循環路(51)
の水熱交換器(22)上流側に配設され、水熱交換器(
22)に供給される水又は水溶液を予熱する予熱熱交換
器(6)とを備えるとともに、圧縮機(11),(21
)、室内熱交換器(12)、室外減圧弁(13)、室内
減圧弁(33)及び室内熱交換器(32)を順次接続し
てなる冷媒回路(1)と、上記室外熱交換器(12)及
び室内熱交換器(32)のガス管を吐出ラインと吸入ラ
インとに択一的に連通させるようそれぞれ切換える室外
切換機構(2)及び室内切換機構(36)と、上記水熱
交換器(22)の冷媒流通部の入口側を開閉機能を有す
る製氷用減圧弁(23)を介して冷媒回路(1)の室外
減圧弁(13)−室内減圧弁(33)間の液管に、出口
側を吸入ラインにそれぞれ接続する製氷用バイパス路(
24)と、上記予熱熱交換器(6)の冷媒流通部に上記
冷媒回路(1)から水又は水溶液の加熱用冷媒を導入す
るバイパス手段(105)とを備えるとともに、上記水
熱交換器(22)における製氷運転時、上記水熱交換器
(22)内部の水又は水溶液の凍結状態を検出する凍結
検出手段と、該凍結検出手段の出力を受け、水熱交換器
(22)内部が凍結したときには、上記室外熱交換器(
12)及び室内熱交換器(32)のガス管を吸入ライン
に連通させるよう各切換機構(2),(36)を切換え
るとともに、上記予熱熱交換器(6)の加熱能力を増大
させるよう上記バイパス手段(105)を制御する解凍
運転制御手段とを備えたことを特徴とする製氷装置。
8. An ice storage tank (5) for storing a slurry-like frozen product of water or an aqueous solution, a water heat exchanger (22) for supercooling the water or an aqueous solution, and the water heat exchanger (22) for supercooling the water or the aqueous solution. Vessel (22
) and the ice storage tank (5), a water circulation path (51) for forced circulation of water or an aqueous solution, and the water circulation path (51).
The water heat exchanger (22) is arranged upstream of the water heat exchanger (22).
22), and a preheating heat exchanger (6) for preheating the water or aqueous solution supplied to the compressor (11), (21).
), an indoor heat exchanger (12), an outdoor pressure reducing valve (13), an indoor pressure reducing valve (33), and an indoor heat exchanger (32) are sequentially connected to each other. 12) and an outdoor switching mechanism (2) and an indoor switching mechanism (36) that switch the gas pipes of the indoor heat exchanger (32) to selectively communicate with the discharge line and the suction line, respectively, and the water heat exchanger (22) to the liquid pipe between the outdoor pressure reducing valve (13) and the indoor pressure reducing valve (33) of the refrigerant circuit (1) via the ice making pressure reducing valve (23) having an opening/closing function on the inlet side of the refrigerant flow section; An ice-making bypass line that connects the outlet side to the suction line (
24) and a bypass means (105) for introducing a heating refrigerant such as water or an aqueous solution from the refrigerant circuit (1) into the refrigerant flow section of the preheating heat exchanger (6), and During the ice making operation in step 22), a freeze detection means detects the frozen state of the water or aqueous solution inside the water heat exchanger (22), and upon receiving the output of the freeze detection means, the inside of the water heat exchanger (22) freezes. When the above outdoor heat exchanger (
12) and the indoor heat exchanger (32) to communicate with the suction line, and at the same time, the switching mechanisms (2) and (36) are switched so that the gas pipes of the indoor heat exchanger (32) and the indoor heat exchanger (32) are switched, and the heating capacity of the preheating heat exchanger (6) is increased. An ice making apparatus comprising: a thawing operation control means for controlling a bypass means (105).
【請求項9】  請求項6,7又は8記載の製氷装置に
おいて、製氷用減圧弁(23)は流量調節機能を有する
ものであり、解凍運転制御手段は、解凍運転時に製氷用
減圧弁(23)を閉じるよう制御するものであることを
特徴とする製氷装置。
9. In the ice making apparatus according to claim 6, 7 or 8, the ice making pressure reducing valve (23) has a flow rate adjustment function, and the thawing operation control means controls the ice making pressure reducing valve (23) during the thawing operation. ) is controlled to close.
【請求項10】  請求項6,7又は8記載の製氷装置
において、水熱交換器(22)出口の水又は水溶液の温
度を検出する水温検出手段(Thw)を備え、製氷用減
圧弁(23)は流量調節機能を有するものであり、解凍
運転制御手段は、上記水温検出手段(Thw)の出力を
受け、解凍運転開始時に製氷用減圧弁(23)を閉じた
後、水熱交換器(22)出口の水又は水溶液の温度が所
定値以上になると製氷用減圧弁(23)を開くよう制御
するものであることを特徴とする製氷装置。
10. The ice making apparatus according to claim 6, 7 or 8, further comprising a water temperature detection means (Thw) for detecting the temperature of the water or aqueous solution at the outlet of the water heat exchanger (22), and an ice making pressure reducing valve (23). ) has a flow rate adjustment function, and the thawing operation control means receives the output of the water temperature detection means (Thw), closes the ice making pressure reducing valve (23) at the start of the thawing operation, and then closes the water heat exchanger (Thw). 22) An ice-making apparatus characterized in that the ice-making pressure reducing valve (23) is controlled to open when the temperature of the water or aqueous solution at the outlet reaches a predetermined value or higher.
【請求項11】  請求項6,7又は8記載の製氷装置
において、解凍運転制御手段により解凍運転が開始され
てからの経過時間を計測する計時手段を備え、製氷用減
圧弁(23)は流量調節機能を有するものであり、解凍
運転制御手段は、上記計時手段の出力を受け、解凍運転
開始時に製氷用減圧弁(23)を閉じた後、解凍運転開
始後の経過時間が一定時間以上になると製氷用減圧弁(
23)を開くよう制御するものであることを特徴とする
製氷装置。
11. The ice making apparatus according to claim 6, 7 or 8, further comprising a timer for measuring the elapsed time after the thawing operation is started by the thawing operation control means, and the ice making pressure reducing valve (23) is configured to control the flow rate. The thawing operation control means receives the output of the timing means, and after closing the ice making pressure reducing valve (23) at the start of the thawing operation, the thawing operation control means determines whether the elapsed time after the start of the thawing operation exceeds a certain period of time. Then, the pressure reducing valve for ice making (
23) An ice making device that is controlled to open.
JP3143562A 1990-06-14 1991-06-14 Ice making equipment Expired - Fee Related JP2789852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143562A JP2789852B2 (en) 1990-06-14 1991-06-14 Ice making equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-156271 1990-06-14
JP15627190 1990-06-14
JP3143562A JP2789852B2 (en) 1990-06-14 1991-06-14 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH04227447A true JPH04227447A (en) 1992-08-17
JP2789852B2 JP2789852B2 (en) 1998-08-27

Family

ID=26475263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143562A Expired - Fee Related JP2789852B2 (en) 1990-06-14 1991-06-14 Ice making equipment

Country Status (1)

Country Link
JP (1) JP2789852B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552367A (en) * 1991-08-21 1993-03-02 Kansai Electric Power Co Inc:The Temperature measure for ice heat accumulator
JPH0755209A (en) * 1993-08-13 1995-03-03 Nkk Corp Ice water slurry-supply apparatus
JP2019124387A (en) * 2018-01-15 2019-07-25 ダイキン工業株式会社 Ice making system and evaporation temperature control method used in the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155993U (en) * 1984-09-18 1986-04-15
JPH01210775A (en) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd Icing starting detecting device for vaporizer for ice-making
JPH01136830U (en) * 1988-03-10 1989-09-19
JPH01277183A (en) * 1988-04-28 1989-11-07 Takenaka Komuten Co Ltd Regeneration state detection device for ice regeneration equipment
JPH0289972A (en) * 1988-09-24 1990-03-29 Takenaka Komuten Co Ltd Ice-making apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155993U (en) * 1984-09-18 1986-04-15
JPH01210775A (en) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd Icing starting detecting device for vaporizer for ice-making
JPH01136830U (en) * 1988-03-10 1989-09-19
JPH01277183A (en) * 1988-04-28 1989-11-07 Takenaka Komuten Co Ltd Regeneration state detection device for ice regeneration equipment
JPH0289972A (en) * 1988-09-24 1990-03-29 Takenaka Komuten Co Ltd Ice-making apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552367A (en) * 1991-08-21 1993-03-02 Kansai Electric Power Co Inc:The Temperature measure for ice heat accumulator
JPH0755209A (en) * 1993-08-13 1995-03-03 Nkk Corp Ice water slurry-supply apparatus
JP2019124387A (en) * 2018-01-15 2019-07-25 ダイキン工業株式会社 Ice making system and evaporation temperature control method used in the same

Also Published As

Publication number Publication date
JP2789852B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JP2005249254A (en) Refrigerator-freezer
US6609390B1 (en) Two-refrigerant refrigerating device
WO2006114983A1 (en) Refrigeration cycle device
KR200377788Y1 (en) Refrigerator for drinking water
JPH04227447A (en) Icemaker
JP3895935B2 (en) Ice thermal storage air conditioner
JPS6363833B2 (en)
KR100662115B1 (en) Thermal storage airconditioner
JP3504188B2 (en) refrigerator
JP2795070B2 (en) Ice making equipment
JPH03271643A (en) Operation method of ice regenerating air-conditioning system
JP2014190641A (en) Air conditioner
JPH05126440A (en) Freezer
JP3132908B2 (en) Ice storage device
JPH04278156A (en) Ice making device for ice heat accumulation
JPS645732Y2 (en)
JPH04263763A (en) Ice making device
JPS645731Y2 (en)
JP3692171B2 (en) Supercooling water production equipment
JPH11325627A (en) Refrigerator
JPH0810098B2 (en) Ice making equipment
JPH07117329B2 (en) Ice making equipment
JPH02219959A (en) Regenerative air conditioner
JPS5869364A (en) Refrigerator
JP2002071170A (en) Heat storage refrigerating air-conditioning device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees