JPS645732Y2 - - Google Patents

Info

Publication number
JPS645732Y2
JPS645732Y2 JP17819884U JP17819884U JPS645732Y2 JP S645732 Y2 JPS645732 Y2 JP S645732Y2 JP 17819884 U JP17819884 U JP 17819884U JP 17819884 U JP17819884 U JP 17819884U JP S645732 Y2 JPS645732 Y2 JP S645732Y2
Authority
JP
Japan
Prior art keywords
refrigerant
ice
heat exchanger
refrigeration circuit
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17819884U
Other languages
Japanese (ja)
Other versions
JPS6193774U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17819884U priority Critical patent/JPS645732Y2/ja
Publication of JPS6193774U publication Critical patent/JPS6193774U/ja
Application granted granted Critical
Publication of JPS645732Y2 publication Critical patent/JPS645732Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 a 産業上の利用分野 この考案は、補助冷凍回路を備えた、ホツトガ
スを用いて除氷する自動製氷機に関するものであ
る。
[Detailed Description of the Invention] a. Field of Industrial Application This invention relates to an automatic ice maker that is equipped with an auxiliary refrigeration circuit and removes ice using hot gas.

b 従来の技術 従来、除氷時にホツトガスを蒸発器に流して除
氷を行う自動製氷機においては、圧縮機からの吐
出ガス冷媒がホツトガス弁を介して直接蒸発器に
送られ、そのガス冷媒の凝縮潜熱により除氷を行
い、蒸発器で凝縮した液冷媒は、直接圧縮機に吸
入されていた。そのため、圧縮機内で液圧縮を起
したり、潤滑不良によつて圧縮機の破損等が生じ
ていた。また、圧縮機に吸入された液冷媒が圧縮
機内に寝込み、冷媒不足を生じることにより循環
する冷媒量が減少し、そのため除氷に長時間を要
していた。
b. Prior Art Conventionally, in an automatic ice maker that de-ices by flowing hot gas into an evaporator during deicing, the gas refrigerant discharged from the compressor is sent directly to the evaporator via the hot gas valve, and the gas refrigerant is The liquid refrigerant was de-icing using latent heat of condensation, and the liquid refrigerant condensed in the evaporator was directly sucked into the compressor. As a result, liquid compression occurs within the compressor, and damage to the compressor occurs due to poor lubrication. In addition, the liquid refrigerant sucked into the compressor stays in the compressor, resulting in a refrigerant shortage, which reduces the amount of refrigerant that circulates, and therefore requires a long time to remove ice.

c 考案が解決しようとする問題点 上述のように従来の自動製氷機には、圧縮機が
破損したり、除氷時間に長時間を要するといつた
問題点があつた。
C. Problems to be solved by the invention As mentioned above, conventional automatic ice making machines had problems such as damage to the compressor and long deicing times.

d 問題点を解決するための手段 この考案の自動製氷機は、氷を生成する冷凍回
路Aに、冷媒の凝縮潜熱を蓄熱媒体に蓄熱させる
媒体加熱用熱交換器10と冷媒の蒸発潜熱により
製氷水を予冷する製氷水冷却用熱交換器13とが
組み込まれている補助冷凍回路Bを設け、さら
に、除氷時に蒸発器1内で凝縮した冷媒を蓄熱媒
体からの熱で蒸発させる冷媒加熱用熱交換器16
を蒸発器1と第1の圧縮機2との間に設けたもの
である。
d Means for Solving the Problems The automatic ice maker of this invention includes a refrigeration circuit A that generates ice, a medium heating heat exchanger 10 that stores the latent heat of condensation of the refrigerant in a heat storage medium, and a heat exchanger 10 that stores the latent heat of condensation of the refrigerant in a heat storage medium, and makes ice using the latent heat of evaporation of the refrigerant. An auxiliary refrigeration circuit B is provided which incorporates an ice-making water cooling heat exchanger 13 that pre-cools water, and a refrigerant heating circuit that evaporates the refrigerant condensed in the evaporator 1 during deicing using heat from the heat storage medium. heat exchanger 16
is provided between the evaporator 1 and the first compressor 2.

e 作用 製氷時には、冷凍回路Aを循環する冷媒の蒸発
潜熱により蒸発器1は冷却され、蒸発器1が取り
付けられている製氷部には、補助冷凍回路Bで予
冷された製氷水が氷結される。また、製氷時に
は、補助冷凍回路Bに組み込まれた媒体加熱用熱
交換器10により蓄熱タンク11内の蓄熱媒体
に、補助冷凍回路B内の冷媒の凝縮潜熱が吸収蓄
熱される。除氷時には、冷凍回路A内の冷媒は、
第1の圧縮機2からバイパス配管8を通つて蒸発
器1に送られ、その冷媒の凝縮潜熱により製氷部
に生成された氷は除去される。蒸発器1内で液状
に相変化した冷媒は、冷媒加熱用熱交換器16に
送られ、そこで蓄熱媒体から蒸発潜熱を奪つて再
びガス状に相変化し、その状態で第1の圧縮機2
に戻される。
e Effect When making ice, the evaporator 1 is cooled by the latent heat of vaporization of the refrigerant circulating in the refrigeration circuit A, and the ice-making water pre-cooled in the auxiliary refrigeration circuit B is frozen in the ice-making section to which the evaporator 1 is attached. . Further, during ice making, the latent heat of condensation of the refrigerant in the auxiliary refrigeration circuit B is absorbed and stored in the heat storage medium in the heat storage tank 11 by the medium heating heat exchanger 10 incorporated in the auxiliary refrigeration circuit B. During deicing, the refrigerant in refrigeration circuit A is
The ice is sent from the first compressor 2 to the evaporator 1 through the bypass pipe 8, and the ice generated in the ice making section is removed by the latent heat of condensation of the refrigerant. The refrigerant that has changed into a liquid state in the evaporator 1 is sent to the refrigerant heating heat exchanger 16, where it takes away the latent heat of vaporization from the heat storage medium and changes into a gaseous state again. In this state, the first compressor 2
will be returned to.

f 実施例 以下、この考案の一実施例を図について説明す
る。図はこの考案の一実施例を示す冷凍回路図で
あつて、この自動製氷機は、製氷部に冷熱を供給
する冷凍回路Aと、製氷部に供給される製氷水を
予冷し蓄熱媒体を加熱する補助冷凍回路Bとを備
えている。冷凍回路Aには、例えばカツプ状に形
成された製氷部(図示せず)に取り付けられた蒸
発器1が組み込まれている。蒸発器1は低圧・低
温ガス冷媒を高圧・高温ガスにする第1の圧縮機
2と除氷用三方弁3を介して接続されている。第
1の圧縮機2は凝縮器4と冷媒配管を介して接続
されており、この凝縮器4により高圧・高温ガス
冷媒の熱量は高温熱源側に放出され、冷媒は高
圧・高温液状に相変化する。凝縮器4は、後述す
る気液熱交換器5を介して冷媒を低圧・低温にす
る第1の膨張弁6と接続されている。この第1の
膨張弁6は蒸発器1と冷媒配管を介して接続され
ており、低圧・低温の冷媒は、蒸発器1内で一定
の低圧下で低温熱源側に相当する製氷部から蒸発
潜熱を吸収して、低圧・低温ガスに変化するよう
になつている。また、第1の圧縮機2と凝縮器4
との間と、第1の膨張弁6と蒸発器1との間のそ
れぞれの冷媒配管は、ホツトガス二方弁7付きの
バイパス配管8で直結されている。
f. Example Hereinafter, an example of this invention will be described with reference to the drawings. The figure is a refrigeration circuit diagram showing an embodiment of this invention, and this automatic ice maker includes a refrigeration circuit A that supplies cold heat to the ice making section, and a refrigeration circuit A that precools ice making water supplied to the ice making section and heats a heat storage medium. It is equipped with an auxiliary refrigeration circuit B. The refrigeration circuit A includes an evaporator 1 attached to, for example, a cup-shaped ice making section (not shown). The evaporator 1 is connected via a three-way deicing valve 3 to a first compressor 2 that converts a low-pressure, low-temperature gas refrigerant into a high-pressure, high-temperature gas. The first compressor 2 is connected to a condenser 4 via refrigerant piping, and the condenser 4 releases the heat of the high-pressure, high-temperature gas refrigerant to the high-temperature heat source, and the refrigerant undergoes a phase change into a high-pressure, high-temperature liquid state. do. The condenser 4 is connected to a first expansion valve 6 that lowers the pressure and temperature of the refrigerant via a gas-liquid heat exchanger 5, which will be described later. This first expansion valve 6 is connected to the evaporator 1 via a refrigerant pipe, and the low-pressure, low-temperature refrigerant is heated under constant low pressure in the evaporator 1 from the ice-making section corresponding to the low-temperature heat source side. It absorbs water and turns into low-pressure, low-temperature gas. In addition, the first compressor 2 and the condenser 4
The refrigerant pipes between the first expansion valve 6 and the evaporator 1 are directly connected by a bypass pipe 8 equipped with a two-way hot gas valve 7.

補助冷凍回路Bには、第1の圧縮機2と同じ作
用をする第2の圧縮機9が組み込まれている。第
2の圧縮機9は冷媒を高圧・高温ガスから高圧・
高温液に相変化させる媒体加熱用熱交換器10
(以下媒体熱交換器と略称する。)と接続されてい
る。この媒体熱交換器10は、蓄熱作用をする例
えば水等の蓄熱媒体が入つた蓄熱タンク11の内
側に設けられている。冷媒は、媒体熱交換器10
を通過することにより、その凝縮潜熱が蓄熱媒体
に吸収されて、液状に相変化するようになつてい
る。この媒体熱交換器10の作用は前記凝縮器4
と同じである。媒体熱交換器10は第1の膨張弁
6と同じ作用をする第2の膨張弁12を介して製
氷水冷却用熱交換器13(以下製氷水熱交換器と
略称する。)と接続されている。この製氷水熱交
換器13は、製氷水タンク14の内側に設けられ
ており、前記蒸発器1と同じ作用をするようにな
つている。冷媒はその製氷水熱交換器13内を通
過するときに蒸発し、そのときの蒸発潜熱は製氷
水から奪われるので、製氷水は冷却されることに
なる。この予冷された製氷水は、次のサイクルの
製氷水として製氷水配管15を介して、前記蒸発
器1によつて冷却される図示しない製氷部に送ら
れるようになつている。製氷水熱交換器13は気
液熱交換器5を介して第2の圧縮機9と接続され
ている。
The auxiliary refrigeration circuit B includes a second compressor 9 that has the same function as the first compressor 2. The second compressor 9 converts the refrigerant from high-pressure and high-temperature gas to high-pressure and high-temperature gas.
Heat exchanger 10 for heating a medium for phase change to high temperature liquid
(hereinafter abbreviated as medium heat exchanger). This medium heat exchanger 10 is provided inside a heat storage tank 11 containing a heat storage medium, such as water, which acts as a heat storage. The refrigerant is transferred to the medium heat exchanger 10
By passing through the medium, the latent heat of condensation is absorbed by the heat storage medium, and the phase changes to a liquid state. The function of this medium heat exchanger 10 is that the condenser 4
is the same as The medium heat exchanger 10 is connected to an ice making water cooling heat exchanger 13 (hereinafter abbreviated as ice making water heat exchanger) via a second expansion valve 12 which has the same function as the first expansion valve 6. There is. This ice-making water heat exchanger 13 is provided inside the ice-making water tank 14 and has the same function as the evaporator 1. The refrigerant evaporates when passing through the ice-making water heat exchanger 13, and the latent heat of vaporization at that time is taken away from the ice-making water, so that the ice-making water is cooled. This pre-cooled ice-making water is sent as ice-making water for the next cycle via an ice-making water pipe 15 to an ice-making section (not shown) where it is cooled by the evaporator 1. The ice-making water heat exchanger 13 is connected to the second compressor 9 via the gas-liquid heat exchanger 5.

冷凍回路Aと補助冷凍回路Bとの両回路に渡つ
て設けられている気液熱交換器5は、その内で冷
凍回路A内の高圧・高温液冷媒と、補助冷凍回路
B内の低圧・低温ガス冷媒とを互いに熱交換する
ようになつている。熱交換の結果、冷凍回路A内
の液冷媒のエンタルピは低下し、補助冷凍回路B
内のガス冷媒のエンタルピは増大する。
The gas-liquid heat exchanger 5, which is provided across both the refrigeration circuit A and the auxiliary refrigeration circuit B, exchanges high-pressure and high-temperature liquid refrigerant in the refrigeration circuit A and low-pressure and high-temperature liquid refrigerant in the auxiliary refrigeration circuit B. It is designed to exchange heat with a low-temperature gas refrigerant. As a result of heat exchange, the enthalpy of the liquid refrigerant in refrigeration circuit A decreases, and the enthalpy of the liquid refrigerant in refrigeration circuit B decreases.
The enthalpy of the gas refrigerant inside increases.

除氷用三方弁3の一方の出口は冷媒加熱用熱交
換器16(以下冷媒熱交換器と略称する。)の一
端部と接続されている。冷媒熱交換器16は蓄熱
タンク11の内側に設けられており、除氷時にこ
の冷媒熱交換器16内を蒸発器1内で凝縮液化し
た冷媒が通過するときには、その冷媒は、蓄熱タ
ンク11内の蓄熱媒体から熱を奪い、蒸発してガ
ス冷媒となつている。冷媒熱交換器16の他端部
は第1の圧縮機2に続く冷媒配管と接続されてい
る。なお、図中、符号17は蓄熱媒体温度セン
サ、符号18は製氷水温度センサをそれぞれ示し
ており、それ等の信号は、第2の圧縮機9に送ら
れるようになつている。そして、蓄熱媒体の異常
過熱、製氷水の凍結は、それ等の信号により制御
される第2の圧縮機9の断続運転で防止されてい
る。
One outlet of the three-way deicing valve 3 is connected to one end of a refrigerant heating heat exchanger 16 (hereinafter referred to as refrigerant heat exchanger). The refrigerant heat exchanger 16 is provided inside the heat storage tank 11, and when the refrigerant condensed and liquefied in the evaporator 1 passes through the refrigerant heat exchanger 16 during deicing, the refrigerant is transferred to the inside of the heat storage tank 11. The refrigerant absorbs heat from the heat storage medium and evaporates to become a gas refrigerant. The other end of the refrigerant heat exchanger 16 is connected to a refrigerant pipe following the first compressor 2 . In the figure, reference numeral 17 indicates a heat storage medium temperature sensor, and reference numeral 18 indicates an ice-making water temperature sensor, and their signals are sent to the second compressor 9. Abnormal overheating of the heat storage medium and freezing of the ice-making water are prevented by intermittent operation of the second compressor 9 controlled by these signals.

上記のように構成された自動製氷機において、
製氷時には、冷凍回路A内の冷媒は、矢印Cに示
すように、第1の圧縮機2、凝縮器4、気液熱交
換器5、第1の膨張弁6、蒸発器1、第1の圧縮
機2の順で循環して流れる。そして、冷媒が蒸発
器1内を流れるときに、冷媒は低圧下で蒸発し、
そのときの蒸発潜熱が、製氷部に循環散布されて
いる製氷水を氷結する。製氷時において、補助冷
凍回路B内の冷媒は、矢印Dに示すように、第2
の圧縮機9、媒体熱交換器10、第2の膨張弁1
2、製氷水熱交換器13、気液熱交換器5、第2
の圧縮機9の順で循環して流れる。この冷媒は、
媒体熱交換器10で高圧・高温ガスから高圧・高
温液に相変化し、そのときの凝縮潜熱は蓄熱タン
ク11内の蓄熱媒体を蓄熱・加温する。さらに、
この冷媒が第2の膨張弁12を介して製氷水熱交
換器13内に入ると、冷媒は低圧下で蒸発し、そ
のときの蒸発潜熱で次の製氷サイクルで使用され
る製氷水が予冷される。引き続き、冷媒は、気液
熱交換器5に送られるが、この気液熱交換器5内
では、冷凍回路A内の高圧・高温液冷媒と熱交換
される。その結果、補助冷凍回路B内のガス冷媒
のエンタルピが上がることになり、それは媒体熱
交換器10内での冷媒の放熱能力を高めることに
なり、蓄熱媒体の温度上昇に寄与することにな
る。一方、冷凍回路A内の液冷媒のエンタルピが
下がることになるが、それは蒸発器1での吸熱能
力を高めることになり、製氷部での氷結時間の短
縮に寄与することになる。
In the automatic ice maker configured as above,
During ice making, the refrigerant in the refrigeration circuit A flows through the first compressor 2, the condenser 4, the gas-liquid heat exchanger 5, the first expansion valve 6, the evaporator 1, and the first It circulates and flows in the order of compressor 2. Then, when the refrigerant flows through the evaporator 1, the refrigerant evaporates under low pressure,
The latent heat of vaporization at that time freezes the ice-making water that is circulated and distributed in the ice-making section. During ice making, the refrigerant in the auxiliary refrigeration circuit B flows through the second refrigerant as shown by arrow D.
compressor 9, medium heat exchanger 10, second expansion valve 1
2, ice-making water heat exchanger 13, gas-liquid heat exchanger 5, second
It circulates and flows through the compressor 9 in this order. This refrigerant is
The medium heat exchanger 10 causes a phase change from high-pressure, high-temperature gas to high-pressure, high-temperature liquid, and the latent heat of condensation at that time stores and heats the heat storage medium in the heat storage tank 11 . moreover,
When this refrigerant enters the ice-making water heat exchanger 13 through the second expansion valve 12, it evaporates under low pressure, and the latent heat of vaporization at that time pre-cools the ice-making water used in the next ice-making cycle. Ru. Subsequently, the refrigerant is sent to the gas-liquid heat exchanger 5, where it exchanges heat with the high-pressure, high-temperature liquid refrigerant in the refrigeration circuit A. As a result, the enthalpy of the gas refrigerant in the auxiliary refrigeration circuit B increases, which increases the heat dissipation ability of the refrigerant in the medium heat exchanger 10, contributing to an increase in the temperature of the heat storage medium. On the other hand, the enthalpy of the liquid refrigerant in the refrigeration circuit A will decrease, but this will increase the heat absorption capacity in the evaporator 1 and contribute to shortening the freezing time in the ice making section.

冷凍回路A内の冷媒の循環により、周知の方法
に従つて製氷部に氷が十分生成した後、今度はホ
ツトガス二方弁7を開き、かつ除氷用三方弁3を
冷媒熱交換器16側に開くことにより、製氷部の
氷は剥離して除氷される。ホツトガス二方弁7を
開くことにより、冷凍回路A内の冷媒は、矢印E
に示すように、第1の圧縮機2、蒸発器1、冷媒
熱交換器16、第1の圧縮機2の順で循環して流
れる。除氷時には、第1の圧縮機2からの高圧・
高温ガス冷媒は、相変化せずそのままの状態で蒸
発器1に流入し、その蒸発器1内で、凝縮潜熱を
放出し、液状に相変化する。その熱は製氷部に生
成されている氷の接触面を融解する。こうして、
液化した冷媒は、引き続き除氷用三方弁3を通つ
て冷媒熱交換器16に送られる。冷媒熱交換器1
6内では、冷媒は、製氷時に蓄熱された蓄熱媒体
により加熱され、蒸発してガス状に相変化し、こ
のガス状の冷媒が第1の圧縮機2に戻される。そ
して、上記の冷媒の循環は、氷が製氷部から完全
に剥離し、貯氷部(図示せず)に落下するまで続
けられる。
After ice is sufficiently generated in the ice making section by circulating the refrigerant in the refrigeration circuit A according to a well-known method, the hot gas two-way valve 7 is opened, and the three-way deicing valve 3 is connected to the refrigerant heat exchanger 16 side. By opening the ice making section, the ice in the ice making section is peeled off and removed. By opening the hot gas two-way valve 7, the refrigerant in the refrigeration circuit A is
As shown in the figure, the air circulates through the first compressor 2, the evaporator 1, the refrigerant heat exchanger 16, and the first compressor 2 in this order. During deicing, high pressure from the first compressor 2
The high-temperature gas refrigerant flows into the evaporator 1 as it is without changing its phase, releases latent heat of condensation within the evaporator 1, and changes its phase into a liquid state. The heat melts the contact surface of the ice forming in the ice making section. thus,
The liquefied refrigerant is then sent to the refrigerant heat exchanger 16 through the three-way deicing valve 3. Refrigerant heat exchanger 1
In the compressor 6 , the refrigerant is heated by the heat storage medium stored during ice making, evaporates and changes its phase into a gaseous state, and this gaseous refrigerant is returned to the first compressor 2 . The above-mentioned circulation of the refrigerant is continued until the ice is completely peeled off from the ice making section and falls into the ice storage section (not shown).

なお、上記実施例では媒体熱交換器10、製氷
水熱交換器13ともタンク11,14の内側に設
けたが、タンク11,14の外側に設けてもよ
い。また、蓄熱媒体として水を用いた場合につい
て説明したが、ブラインであつてもよく、蓄熱で
きるものであればあえて限定するものではない。
In the above embodiment, both the medium heat exchanger 10 and the ice-making water heat exchanger 13 are provided inside the tanks 11 and 14, but they may be provided outside the tanks 11 and 14. Further, although the case where water is used as the heat storage medium has been described, brine may be used, and there is no particular limitation as long as it can store heat.

g 考案の効果 以上説明したようにこの考案によれば、冷凍回
路Aを有する自動製氷機に、製氷水を予冷する補
助冷凍回路Bを設けたことにより、氷結時間の短
縮が図られ、製氷能力は増大する。また、補助冷
凍回路B内の冷媒の凝縮潜熱を蓄熱タンク11内
の蓄熱媒体に蓄熱させ、この熱を、除氷時におけ
る蒸発器1内で凝縮した冷媒の蒸発潜熱に利用し
たことにより、除氷時における第1の圧縮機2へ
の液バツクは防止され、第1の圧縮機2の破損の
発生、循環する冷媒量の減少に伴なう除氷の長時
間化等を防ぐことができる。
g. Effects of the invention As explained above, according to this invention, by providing an auxiliary refrigeration circuit B for pre-cooling ice-making water to an automatic ice-making machine having a refrigeration circuit A, the freezing time can be shortened, and the ice-making capacity can be reduced. increases. In addition, the latent heat of condensation of the refrigerant in the auxiliary refrigeration circuit B is stored in the heat storage medium in the heat storage tank 11, and this heat is used as the latent heat of evaporation of the refrigerant condensed in the evaporator 1 during deicing. Liquid backflow to the first compressor 2 during ice conditions is prevented, and it is possible to prevent damage to the first compressor 2 and prolongation of deicing due to a decrease in the amount of circulating refrigerant. .

また、上記実施例のように冷凍回路Aと補助冷
凍回路Bとの両回路に渡つて、冷凍回路A内の液
冷媒のエンタルピが低下し、補助冷凍回路B内の
ガス冷媒のエンタルピが増大する位置に気液熱交
換器5を設けたことにより、蒸発器1での吸熱能
力が高くなり、製氷部での氷結時間はさらに短縮
される。一方、媒体加熱用熱交換器10での放熱
能力も高くなり、この熱量は除氷時における蒸発
器1で凝縮した冷媒の蒸発に有効利用される。
Further, as in the above embodiment, across both the refrigeration circuit A and the auxiliary refrigeration circuit B, the enthalpy of the liquid refrigerant in the refrigeration circuit A decreases, and the enthalpy of the gas refrigerant in the auxiliary refrigeration circuit B increases. By providing the gas-liquid heat exchanger 5 at this position, the heat absorption capacity of the evaporator 1 is increased, and the freezing time in the ice making section is further shortened. On the other hand, the heat dissipation capacity of the medium heating heat exchanger 10 also increases, and this amount of heat is effectively used for evaporating the refrigerant condensed in the evaporator 1 during deicing.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの考案の一実施例を示す冷凍回路図であ
る。 1……蒸発器、2……第1の圧縮機、3……除
氷用三方弁、4……凝縮器、5……気液熱交換
器、6……第1の膨張弁、7……ホツトガス二方
弁、9……第2の圧縮機、10……媒体加熱用熱
交換器、11……蓄熱タンク、12……第2の膨
張弁、13……製氷水冷却用熱交換器、14……
製氷水タンク、16……冷媒加熱用熱交換器。
The figure is a refrigeration circuit diagram showing an embodiment of this invention. DESCRIPTION OF SYMBOLS 1... Evaporator, 2... First compressor, 3... Three-way valve for deicing, 4... Condenser, 5... Gas-liquid heat exchanger, 6... First expansion valve, 7... ... Hot gas two-way valve, 9 ... Second compressor, 10 ... Heat exchanger for heating medium, 11 ... Heat storage tank, 12 ... Second expansion valve, 13 ... Heat exchanger for cooling ice making water , 14...
Ice making water tank, 16... Heat exchanger for heating refrigerant.

Claims (1)

【実用新案登録請求の範囲】 1 第1の圧縮機2と凝縮器4と第1の膨張弁6
と蒸発器1とが順次冷媒配管を介して接続され
て構成されている冷凍回路Aと、 前記第1の圧縮機2と前記凝縮器4との間
と、前記第1の膨張弁6と前記蒸発器1との間
とを弁7を介して接続しており、除氷時に高
圧・高温ガス冷媒が流れるバイパス配管8と、 前記蒸発器1の出口より除氷用三方弁3を介
して接続され、熱が蓄熱される蓄熱媒体が入つ
ている蓄熱タンク11に設けられており、除氷
時に前記蒸発器1内で凝縮した冷媒を蒸発させ
る冷媒加熱用熱交換器16と、 前記蓄熱タンク11に設けられており、製氷
時に冷媒の凝縮潜熱により前記蓄熱媒体を加熱
する媒体加熱用熱交換器10と第2の膨張弁1
2と製氷水タンク14に設けられており、冷媒
の蒸発潜熱により製氷水を冷却する製氷水冷却
用熱交換器13と第2の圧縮機9とが順次冷媒
配管を介して接続されて構成されている補助冷
凍回路Bとを備えていることを特徴とする自動
製氷機。 2 冷凍回路Aの高圧・高温液冷媒と補助冷凍回
路B内の低圧・低温ガス冷媒との熱交換を可能
にする気液熱交換器5を、冷凍回路A内では凝
縮器4と第1の膨張弁6との間に、補助冷凍回
路Bでは製氷水冷却用熱交換器13と第2の圧
縮機9との間に位置させて設けた実用新案登録
請求の範囲第1項記載の自動製氷機。
[Claims for Utility Model Registration] 1. First compressor 2, condenser 4, and first expansion valve 6
and an evaporator 1 are sequentially connected via refrigerant piping, a refrigeration circuit A configured with It is connected to the evaporator 1 via a valve 7, and is connected to a bypass pipe 8 through which high-pressure and high-temperature gas refrigerant flows during deicing, and the outlet of the evaporator 1 is connected via a three-way deicing valve 3. a heat exchanger 16 for heating a refrigerant, which is installed in a heat storage tank 11 containing a heat storage medium in which heat is stored, and evaporates the refrigerant condensed in the evaporator 1 during deicing; A medium heating heat exchanger 10 and a second expansion valve 1 are provided in
2 and the ice-making water tank 14, an ice-making water cooling heat exchanger 13 that cools the ice-making water using the latent heat of vaporization of the refrigerant, and a second compressor 9 are sequentially connected via refrigerant piping. An automatic ice maker characterized in that it is equipped with an auxiliary refrigeration circuit B. 2. In the refrigeration circuit A, the gas-liquid heat exchanger 5, which enables heat exchange between the high-pressure and high-temperature liquid refrigerant in the refrigeration circuit A and the low-pressure and low-temperature gas refrigerant in the auxiliary refrigeration circuit B, is connected to the condenser 4 and the first The automatic ice making device according to claim 1 of the utility model registration claim is provided between the expansion valve 6 and the ice making water cooling heat exchanger 13 and the second compressor 9 in the auxiliary refrigeration circuit B. Machine.
JP17819884U 1984-11-26 1984-11-26 Expired JPS645732Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17819884U JPS645732Y2 (en) 1984-11-26 1984-11-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17819884U JPS645732Y2 (en) 1984-11-26 1984-11-26

Publications (2)

Publication Number Publication Date
JPS6193774U JPS6193774U (en) 1986-06-17
JPS645732Y2 true JPS645732Y2 (en) 1989-02-13

Family

ID=30735761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17819884U Expired JPS645732Y2 (en) 1984-11-26 1984-11-26

Country Status (1)

Country Link
JP (1) JPS645732Y2 (en)

Also Published As

Publication number Publication date
JPS6193774U (en) 1986-06-17

Similar Documents

Publication Publication Date Title
RU2738989C2 (en) Improved thawing by reversible cycle in vapor compression refrigeration systems, based on material with phase transition
JP3882056B2 (en) Refrigeration air conditioner
CN106440452A (en) Cold storage device and heat storage device
JPH0320570A (en) Cooling system and air-cooling method
KR100796452B1 (en) Heat pump and demist method
JPH05296503A (en) Ice heat storage device
JPS645732Y2 (en)
JP5448482B2 (en) Automatic ice machine
JPS645731Y2 (en)
JPS6363833B2 (en)
JP2000121107A (en) Ice storage system
JPS5826511B2 (en) Defrosting device for refrigerators
JPH0737867B2 (en) Defroster for dual cryogenic refrigerator
KR102101393B1 (en) Combined cold-hot heat storage system
JPH0643658Y2 (en) Ice machine
JP4348765B2 (en) Dual refrigeration equipment
JPH0749301Y2 (en) Latent heat regenerator
JP3097971U (en) Refrigeration equipment
JP3132908B2 (en) Ice storage device
JPH04227447A (en) Icemaker
JPH0213910Y2 (en)
JP2638973B2 (en) Refrigeration equipment
JPS6024380B2 (en) Absorption chiller control device
JP3082803B2 (en) Water subcooler
JP2005090880A (en) Ice making machine