JPS6363833B2 - - Google Patents
Info
- Publication number
- JPS6363833B2 JPS6363833B2 JP6113882A JP6113882A JPS6363833B2 JP S6363833 B2 JPS6363833 B2 JP S6363833B2 JP 6113882 A JP6113882 A JP 6113882A JP 6113882 A JP6113882 A JP 6113882A JP S6363833 B2 JPS6363833 B2 JP S6363833B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- evaporation
- condenser
- cold air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 42
- 238000001704 evaporation Methods 0.000 claims description 25
- 230000008020 evaporation Effects 0.000 claims description 25
- 238000010257 thawing Methods 0.000 claims description 24
- 238000001816 cooling Methods 0.000 claims description 22
- 238000005192 partition Methods 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims 2
- 238000000034 method Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 235000013305 food Nutrition 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000013611 frozen food Nutrition 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Defrosting Systems (AREA)
Description
【発明の詳細な説明】
低沸点の液化溶媒を、膨張弁から蒸発器の低圧
の蒸発管内に注入して蒸発させ、その際、循環冷
気より多量の蒸発熱を奪取して、これを冷却した
後、圧縮機をもつて高圧に圧縮するとともに、凝
縮器において冷却し、再び液化して循環させるよ
うにした冷却装置を使用したエアーカーテン式冷
蔵ケース等においては、エアーカーテン中へ常に
若干の外気が混入して、使用中蒸発器に空気中の
水分が次第に着霜し、冷却能力が低下するので、
何等かの手段で、この霜を除去する必要がある。[Detailed description of the invention] A liquefied solvent with a low boiling point is injected into the low-pressure evaporation tube of the evaporator through an expansion valve and evaporated, and at this time, a large amount of evaporation heat is taken from the circulating cold air to cool it. In air curtain type refrigerated cases, etc., which use a cooling device that uses a compressor to compress the air to high pressure, cool it in a condenser, liquefy it again, and circulate it, a small amount of outside air is always allowed to flow into the air curtain. The moisture in the air gradually forms frost on the evaporator during use, reducing its cooling capacity.
This frost must be removed by some means.
このような冷蔵ケース等においては、従来は、
通常、蒸発器の風路の風上に電気ヒーターを設
け、定期的に冷媒の循環を中断するとともに、ヒ
ータにより循環冷気を温めて、霜を溶解除去して
いた。 In such refrigerated cases, etc., conventionally,
Normally, an electric heater is installed upwind of the evaporator's air path, and the circulation of the refrigerant is periodically interrupted, and the heater warms the circulating cold air to melt and remove frost.
そのため、除霜期間中は、ヒータによる熱と、
冷却の中断とにより、ケース内の温度が急上昇す
るため、収納食品の品質が劣化し、また除霜のた
めの電力を必要とするとともに、除霜終了後は、
一旦上昇した食品とケース内温度を、所定温度ま
で低下させるために、通常の保冷運転時よりも多
量の電力を必要とするという欠点があつた。 Therefore, during the defrosting period, the heat from the heater and
Due to the interruption of cooling, the temperature inside the case rises rapidly, which deteriorates the quality of stored food.Also, electricity is required for defrosting, and after defrosting is completed,
The disadvantage is that in order to lower the temperature of the food and the inside of the case, which has once risen, to a predetermined temperature, a larger amount of electric power is required than during normal cold storage operation.
本発明は、ケース内に2個の蒸発器を設け、こ
れらを交互に冷却用に使用し、着霜した蒸発器
は、圧縮器より吐出する高温の冷媒ガスの気化潜
熱により除霜するとともに、冷媒ガスを液化さ
せ、除霜終了後は、冷媒ガスを通常の冷却サイク
ルのように、凝縮器を通過させて、冷却に使用中
の蒸発器には、常に完全に液化した冷媒を供給
し、除霜中においても、ケース内の冷却を中断し
ないようにすることにより、上述の欠点を除去
し、かつ、冷媒の有する熱により、除霜中の蒸発
器より溶出する水が、冷却装置の低温部分を通過
する際に氷結することを防止し、もつてこの水
は、ケース外へ円滑に排出させうるようにした冷
却方法とその装置に関するもので、以下添付の図
面に基いて具体的に説明する。 In the present invention, two evaporators are provided in the case, and these are used alternately for cooling, and the frosted evaporator is defrosted by the latent heat of vaporization of the high-temperature refrigerant gas discharged from the compressor. The refrigerant gas is liquefied, and after defrosting, the refrigerant gas is passed through the condenser as in a normal cooling cycle, and the evaporator used for cooling is always supplied with completely liquefied refrigerant. By not interrupting the cooling inside the case even during defrosting, the above-mentioned drawbacks are eliminated, and the heat of the refrigerant allows water eluted from the evaporator during defrosting to reach the low temperature of the cooling device. This article relates to a cooling method and device that prevents the water from freezing when passing through the case and allows the water to be smoothly discharged out of the case.The following is a detailed explanation based on the attached drawings. do.
第1図は、本発明装置を使用したエアーカーテ
ン式冷凍食品陳列ケースを示すもので、1は、断
熱構造とした上面開口する外箱、2は、その内部
に設けた上面開口する陳列箱、3a,3bは、そ
れぞれ外箱1と陳列箱2の間の前部と後部に設け
た仕切板、4a,4bは、それぞれ陳列箱2と前
方仕切板3aの間、および後方仕切板3bの間に
形成された循環冷気風路、5a,5bは、それぞ
れ外箱1と前方仕切板3aの間、および後方仕切
板3bの間に形成されたバイパス風路、6a,6
bは、それぞれ仕切板4a,4bの上端に設けた
風路切替えシヤツタ、7a,7bは、それぞれ冷
気風路4a,4bの上端において互に対向する吸
吹口、8はエアーカーテン、9は、冷気循環用の
正逆回転可能の送風器、10は、外箱1の下面後
部に設置した圧縮機、11は、外箱1の後面に設
置した凝縮器、12a,12bは、それぞれ冷気
風路4a,4bの下部に設置した下記するような
蒸発器、13a,13bは、陳列箱2の底板の前
部と後部に設けた、両蒸発器12a,12bの排
水装置、14a,14bは、それぞれ排水装置1
3a,13bに給熱するための蛇行状に屈曲する
冷媒管、15a,15bは、それぞれ排水装置1
3a,13bの過冷を防止する断熱材、16は排
水管である。 FIG. 1 shows an air curtain type frozen food display case using the device of the present invention, in which 1 is an outer box with an insulating structure and an opening on the top, 2 is a display box with an opening on the top provided inside the outer box, 3a and 3b are partition plates provided at the front and rear parts between the outer box 1 and the display box 2, respectively; 4a and 4b are partition plates provided between the display box 2 and the front partition plate 3a, and between the rear partition plate 3b, respectively. Circulating cold air passages 5a and 5b formed in the above are bypass air passages 6a and 6 formed between the outer box 1 and the front partition plate 3a and between the rear partition plate 3b, respectively.
7a and 7b are air-flow switching shutters provided at the upper ends of the partition plates 4a and 4b, respectively; 7a and 7b are suction ports facing each other at the upper ends of the cold air air paths 4a and 4b, respectively; 8 is an air curtain; and 9 is a cold air switch. A blower capable of forward and reverse rotation for circulation; 10 is a compressor installed at the rear of the bottom of the outer box 1; 11 is a condenser installed at the rear of the outer box 1; 12a and 12b are cold air channels 4a, respectively. , 4b, 13a and 13b are drainage devices for both evaporators 12a and 12b, and 14a and 14b are drainage devices, respectively. Device 1
The meandering refrigerant pipes 15a and 15b for supplying heat to the drain device 1
A heat insulating material 3a and 13b prevents overcooling, and 16 is a drain pipe.
前方の蒸発器12aは、第2図に示すように、
蛇行状に屈曲する蒸発管17aと、これに平行を
なすように屈曲する除霜管18aを、多数のフイ
ン19aをもつて結合して形成され、同様に後方
の蒸発器12bも、蒸発管17bと除霜管18b
と多数のフイン(図示せず)により形成され、両
蒸発器12a,12bの要所には、それぞれ温度
センサー20a,20bが設置されている。 The front evaporator 12a, as shown in FIG.
It is formed by connecting an evaporator tube 17a bent in a meandering manner and a defrost tube 18a bent parallel to the evaporator tube 18a with a large number of fins 19a. and defrost pipe 18b
and a large number of fins (not shown), and temperature sensors 20a and 20b are installed at key points of both evaporators 12a and 12b, respectively.
第3図と第4図は、本発明装置の構成を示す配
管図で、図中の太線は、冷媒の通過経路を示すも
のである。 FIG. 3 and FIG. 4 are piping diagrams showing the configuration of the apparatus of the present invention, and the thick lines in the figures indicate the path through which the refrigerant passes.
圧縮器10の吐出口に接続された高圧ガス管2
1は、電磁弁22aを介して、凝縮器11の入口
に接続され、かつバイパス管23により、電磁弁
22aを介して、凝縮器11の出口に接続され、
凝縮器11の出口は、分岐管24a,24bをも
つて、それぞれ前後両排水装置13a,13bの
冷媒管14a,14bを経て、前後両蒸発器12
a,12bの除霜管18a,18bに接続されて
いる。 High pressure gas pipe 2 connected to the discharge port of the compressor 10
1 is connected to the inlet of the condenser 11 via the solenoid valve 22a, and is connected to the outlet of the condenser 11 by the bypass pipe 23 via the solenoid valve 22a,
The outlet of the condenser 11 has branch pipes 24a and 24b, and passes through refrigerant pipes 14a and 14b of the front and rear drainage devices 13a and 13b, respectively, to the front and rear evaporators 12.
It is connected to defrosting pipes 18a and 18b of a and 12b.
前方の除霜管18aの出口は、連絡管25aに
より、電磁弁26aと膨張弁27aを介して、後
方の蒸発器12bの蒸発管17bの入口に接続さ
れ、後方の除霜管18bの出口は、連絡管25b
により、電磁弁26bと膨張弁27bを介して、
前方の蒸発器12bの蒸発管17aの入口に接続
されている。 The outlet of the front defrost pipe 18a is connected to the inlet of the evaporator pipe 17b of the rear evaporator 12b by a communication pipe 25a via a solenoid valve 26a and an expansion valve 27a, and the outlet of the rear defrost pipe 18b is , connecting pipe 25b
Through the solenoid valve 26b and the expansion valve 27b,
It is connected to the inlet of the evaporation pipe 17a of the front evaporator 12b.
両蒸発管17a,17bの出口は、低圧ガス管
28をもつて圧縮機10の吸込口に接続されてい
る。 The outlets of both evaporation pipes 17a, 17b are connected to the suction port of the compressor 10 through a low pressure gas pipe 28.
第1図及び第3図は、前方の蒸発器12aが除
霜中で、かつ後方の蒸発器12bが冷却中の状態
を示し、電磁弁22b,26aは開き、電磁弁2
2a,26bは閉じており、冷気は、矢印で示す
ように循環する。 1 and 3 show a state in which the front evaporator 12a is defrosting and the rear evaporator 12b is cooling, the solenoid valves 22b and 26a are open, and the solenoid valve 2
2a and 26b are closed, and cold air circulates as shown by the arrows.
この時、冷媒は、図示のように、圧縮機10→
前方冷媒管14a→前方除霜管18a→電磁弁2
6a→膨張弁27a→後方蒸発管17b→圧縮機
10のように循環し、圧縮機10において圧縮さ
れ、高温高圧となつた冷媒ガスは、直接冷媒管1
4aを通過して排水装置13aを温め、前方蒸発
器12aより溶出する水の氷結を防止する。その
後、この冷媒ガスは、前方除霜管18aを通過す
る間に、前方蒸発器12aの着霜を溶解除去する
とともに、自らは冷却されて液化する。 At this time, the refrigerant is transferred to the compressor 10→
Front refrigerant pipe 14a → front defrost pipe 18a → solenoid valve 2
6a→expansion valve 27a→rear evaporation pipe 17b→compressor 10, and the refrigerant gas that has been compressed in the compressor 10 and becomes high temperature and high pressure is directly passed through the refrigerant pipe 1.
4a to warm the drainage device 13a and prevent the water eluted from the front evaporator 12a from freezing. Thereafter, while passing through the front defrosting pipe 18a, this refrigerant gas dissolves and removes the frost on the front evaporator 12a, and is itself cooled and liquefied.
そして、電磁弁26aを通過し、膨張弁27a
より後方の蒸発器12bの蒸発管17bに注入さ
れて気化し、周囲より多量の気化熱を奪つて、蒸
発器12bを通過する循環気を冷却した後、圧縮
機10へ戻つて、上述のように循環する。 Then, it passes through the solenoid valve 26a and expands into the expansion valve 27a.
The circulating air is injected into the evaporator pipe 17b of the evaporator 12b located further back and vaporized, and after taking away a large amount of vaporization heat from the surroundings and cooling the circulating air passing through the evaporator 12b, it is returned to the compressor 10, and as described above. circulates.
この冷気は、冷気風路4bを経て、後方の吸吹
口7bより前方の吸吹口7aに向つて流れて、エ
アーカーテン8を形成し、外気が混入して温度が
上昇した循環気は、バイパス風路5aを経て、蒸
発器12bに戻つて循環し、ケース内を冷却す
る。 This cold air flows from the rear suction port 7b to the front suction port 7a through the cold air path 4b, forming an air curtain 8, and the circulating air whose temperature has increased due to mixing with outside air is transferred to the bypass air. It circulates through the passage 5a and returns to the evaporator 12b to cool the inside of the case.
前方の蒸発器12aの除霜が進行して温度が上
昇し、たとえば、+5℃になると、これを温度セ
ンサー20aが検知して、第4図に示すように、
自動的に電磁弁22aが開くとともに電磁弁22
bは閉じ、高温変圧の冷媒ガスは、凝縮器11を
経て、通常の冷却装置と同様放熱液化し、前方の
除霜管18aに通過して、除霜を完了させ、上述
同様に圧縮機10に戻る。 When the defrosting of the front evaporator 12a progresses and the temperature rises to, for example, +5°C, the temperature sensor 20a detects this and as shown in FIG.
The solenoid valve 22a automatically opens and the solenoid valve 22
b is closed, and the high-temperature, transformed refrigerant gas passes through the condenser 11, liquefies heat with heat dissipation as in a normal cooling device, passes through the front defrosting pipe 18a, completes defrosting, and returns to the compressor 10 as described above. Return to
除霜完了後、送風機9を逆転させ、かつ両シヤ
ツタ6a,6bを90°回転させて、風向と風路を
切替えるとともに、電磁弁22b,26bを開い
て、電磁弁22a,26aを閉じれば、上述同様
に、上記運転中に着霜した後方の蒸発器12bを
除霜するとともに、除霜の完了した前方の蒸発器
12aは、循環気を冷却する。 After defrosting is completed, the blower 9 is reversed and both shutters 6a, 6b are rotated 90 degrees to switch the wind direction and air path, and the solenoid valves 22b, 26b are opened and the solenoid valves 22a, 26a are closed. As described above, the rear evaporator 12b that has been frosted during the above operation is defrosted, and the front evaporator 12a, which has been completely defrosted, cools the circulating air.
なお、送風機9の回転方向切替えと、両シヤツ
タ6a,6bの90゜回転、および電磁弁26a,
26bの開閉切替えは、タイマ等を使用して、容
易に自動的に同期して行わせることができ、また
回転式シヤツタ6a,6bに代えて、スライド式
とすることもできる。 In addition, switching the rotation direction of the blower 9, rotating both shutters 6a, 6b by 90 degrees, and solenoid valves 26a,
The opening and closing of the shutters 26b can be easily and automatically synchronized using a timer or the like, and a sliding type can be used instead of the rotary shutters 6a and 6b.
上述のように、本発明においては、一方の蒸発
器を除霜中、他方の蒸発器が冷却作用を行い、一
般の冷蔵ケースのように、除霜中の冷却作用の中
断がないので、常にケース内を低温に保持するこ
とができ、ケース内の食品の品質保持が極めて良
好である。 As mentioned above, in the present invention, while one evaporator is defrosting, the other evaporator performs the cooling action, and unlike in a general refrigeration case, there is no interruption of the cooling action during defrosting. The inside of the case can be kept at a low temperature, and the quality of the food inside the case is maintained extremely well.
また、除霜と排水の氷結防止のために電気ヒー
タ等を使用せず、冷媒のもつ替熱と顕熱を利用し
て、液化冷媒が低温となるので、その分だけ、冷
却効果が良好となり、消費電力は、従来の装置に
比して少くてすむ。 In addition, for defrosting and preventing freezing of wastewater, we do not use electric heaters, etc., and instead use the refrigerant's alternative heat and sensible heat to lower the liquefied refrigerant to a lower temperature, which improves the cooling effect. , power consumption is lower than conventional devices.
また、本装置によれば、頻繁に除霜しうるの
で、着霜量が少く、そのためフイン19aのピツ
チを狭くしても、着霜により冷気の循環が阻害さ
れることがなく、従つて蒸発器12a,12bを
小型にすることができ、ケース内の蒸発器を2個
としても、蒸発器の専有容積が従来一般の装置に
比して増加することはない。 In addition, according to this device, since the defrosting can be carried out frequently, the amount of frost formation is small. Therefore, even if the pitch of the fins 19a is narrowed, the circulation of cold air is not obstructed by frost formation, and therefore evaporation is prevented. The evaporators 12a and 12b can be made smaller, and even if there are two evaporators in the case, the dedicated volume of the evaporators does not increase compared to conventional devices.
第1図は、本発明装置を具備する冷凍食品陳列
ケースの中央縦断右側面図、第2図は、蒸発器の
一例を示す正面図、第3図及び第4図は、本発明
装置の冷却装置の配管図で、第3図は、左方の蒸
発器の除霜初期の状態を示し、第4図は、同じく
除霜終期の状態を示す。
1…外箱、2…陳列箱、3…仕切板、4…冷気
風路、5…バイパス風路、6…シヤツタ、7…吸
吹口、8…エアーカーテン、9…送風器、10…
圧縮機、11…凝縮器、12…蒸発器、13…排
水装置、14…冷媒管、15…断熱材、16…排
水管、17…蒸発管、18…除霜管、19…フイ
ン、20…温度センサー、21…高圧ガス管、2
2…電磁弁、23…バイパス管、24…分岐管、
25…連絡管、26…電磁弁、27…膨張弁、2
8…低圧ガス管。
FIG. 1 is a central longitudinal sectional right view of a frozen food display case equipped with the device of the present invention, FIG. 2 is a front view showing an example of an evaporator, and FIGS. 3 and 4 are cooling of the device of the present invention. In the piping diagram of the apparatus, FIG. 3 shows the state of the left evaporator at the initial stage of defrosting, and FIG. 4 similarly shows the state at the end of defrosting. 1...Outer box, 2...Display box, 3...Partition plate, 4...Cold air air path, 5...Bypass air path, 6...Shutter, 7...Suction opening, 8...Air curtain, 9...Blower, 10...
Compressor, 11...Condenser, 12...Evaporator, 13...Drainage device, 14...Refrigerant pipe, 15...Insulating material, 16...Drainage pipe, 17...Evaporation pipe, 18...Defrosting pipe, 19...Fin, 20... Temperature sensor, 21...High pressure gas pipe, 2
2... Solenoid valve, 23... Bypass pipe, 24... Branch pipe,
25...Communication pipe, 26...Solenoid valve, 27...Expansion valve, 2
8...Low pressure gas pipe.
Claims (1)
圧の蒸発管内に注入して蒸発させ、その際蒸発器
を通過する循環冷気より蒸発熱を奪取してこれを
冷却し、気化した冷媒を、圧縮機をもつて高圧に
圧縮した後、凝縮器において冷却液化して循環さ
せるようにした、エアーカーテン式冷蔵ケース等
において、 蒸発器を2個とし、一方の蒸発器をもつてケー
ス内を冷却する間に、他方の着霜した蒸発器を、
圧縮機をもつて圧縮した高温の冷媒ガスをもつて
大部分除霜し、ついで、凝縮器を通過して液化し
た冷媒をもつて完全除霜するように、両蒸発器を
交互に切替え使用することを特徴とするエアーカ
ーテン式冷蔵ケース等の冷却方法。 2 低沸点の液化冷媒を、膨張弁から蒸発器の低
圧の蒸発管内に注入して蒸発させ、その際蒸発器
を通過する循環冷気より蒸発熱を奪取してこれを
冷却し、気化した冷媒を、圧縮機をもつて高圧に
圧縮した後、凝縮器において冷却液化して循環さ
せるようにした、エアーカーテン式冷蔵ケース等
において、 蒸発器を2個とし、一方の蒸発器をもつてケー
ス内を冷却する間に、他方の着霜した蒸発器を、
圧縮機をもつて圧縮した高温の冷媒ガスをもつて
大部分除霜し、ついで、凝縮器を通過して液化し
た冷媒をもつて完全除霜するように、両蒸発器を
交互に切替え使用し、かつ液化冷媒の有する熱に
より、ケースの排水装置を加熱することを特徴と
するエアーカーテン式冷蔵ケース等の冷却方法。 3 低沸点の液化冷媒を、膨張弁から蒸発器の低
圧の蒸発管内に注入して蒸発させ、その際、蒸発
器を通過する循環冷気より蒸発熱を奪取してこれ
を冷却し、気化した冷媒を、圧縮機をもつて高圧
に圧縮した後、凝縮器において冷却液化して循環
させるようにした、エアーカーテン式冷蔵ケース
等において、 ケースの外箱とその内方の陳列箱の間を、仕切
板をもつて冷気風路とバイパス風路に仕切り、仕
切板の中間に正逆回転可能の送風器を設けて、両
風路を前後に2分し、前方の冷気風路と後方のバ
イパス風路とを同時に、または前方のバイパス風
路と後方の冷気風路とを、同時に閉塞する風路切
替え装置を設けた冷気循環装置と、 電磁弁により、冷媒通路切替可能のバイパス管
を並設した凝縮器と、 前後両冷気風路に配設した両蒸発管に、それぞ
れフインを介して除霜管を並設して、各除霜管の
入口を、凝縮器の出口に接続するとともに、同じ
く出口を、他方の蒸発管の入口に、電磁弁と膨張
弁を介して接続し、両蒸発管の出口を圧縮器の吸
込口に接続して、両電磁弁の切替え開閉により、
冷媒が両蒸発管を交互に通過するようにし、要所
に温度センサーを装着した1対の蒸発器と、 除霜初期においては、冷媒が上記バイパス管を
通過し、除霜中の蒸発器に装着した温度センサー
の検知温度が、所定温度より上昇した時に、冷媒
が凝縮器を通過するように切替える自動切替装置 とにより構成され、除霜終了後、送風器を逆転
させ、かつ冷気循環装置の風路を切替えるととも
に、両蒸発器の電磁弁を切替えるようにしたこと
を特徴とするエアーカーテン式冷蔵ケース等の冷
却装置。 4 低沸点の液化冷媒を、膨張弁から蒸発器の低
圧の蒸発管内に注入して蒸発させ、その際、蒸発
器を通過する循環冷気より蒸発熱を奪取してこれ
を冷却し、気化した冷媒を、圧縮機をもつて高圧
に圧縮した後、凝縮器において冷却液化して循環
させるようにした、エアーカーテン式冷蔵ケース
等において、 ケースの外箱とその内方の陳列箱の間を、仕切
板をもつて冷気風路とバイパス風路に仕切り、仕
切板の中間に正逆回転可能の送風器を設けて、両
風路を前後に2分し、前方の冷気風路と後方のバ
イパス風路とを同時に、または前方のバイパス風
路と後方の冷気風路とを、同時に閉塞する風路切
替え装置を設けた冷気循環装置と、 電磁弁により、冷媒通路切替可能のバイパス管
を並設した凝縮器と、 前後両冷気風路に配設した両蒸発管に、それぞ
れフインを介して除霜管を並設して、各除霜管の
入口を、凝縮器の出口に接続するとともに、同じ
く出口を、他方の蒸発管の入口に、電磁弁と膨張
弁を介して接続し、両蒸発管の出口を圧縮器の吸
込口に接続して、両電磁弁の切替え開閉により、
冷媒が両蒸発管を交互に通過するようにし、要所
に温度センサーを装着した1対の蒸発器と、 入口を凝縮器の出口に接続した冷媒管を備え
る、陳列箱の底板の前部と後部に設けた1対の排
水装置と、 前後両冷気風路に配設した両蒸発管に、それぞ
れフインを介して除霜管を並設して、各除霜管の
入口を、排水装置の各冷媒管に接続するととも
に、同じく出口を、他方の蒸発管の入口に、電磁
弁と膨張弁を介して接続し、両蒸発管の出口を圧
縮器の吸込口に接続して、両電磁弁の切替え開閉
により、冷媒が両蒸発管を交互に通過するように
し、要所に温度センサーを装着した1対の蒸発器
と、 除霜初期においては、冷媒が上記バイパス管を
通過し、除霜中の蒸発器に装着した温度センサー
の検知温度が、所定温度より上昇した時に、冷媒
が凝縮器を通過するように切替える自動切替装置 とにより構成され、除霜終了後、送風器を逆転さ
せ、かつ冷気循環装置の風路を切替えるととも
に、両蒸発器の電磁弁を切替えるようにしたこと
を特徴とするエアーカーテン式冷蔵ケース等の冷
却装置。[Claims] 1. A liquefied refrigerant with a low boiling point is injected from an expansion valve into a low-pressure evaporation pipe of an evaporator and evaporated, and at this time, the heat of evaporation is taken from the circulating cold air passing through the evaporator to cool it. In an air curtain type refrigerating case, etc., in which the vaporized refrigerant is compressed to high pressure using a compressor, then cooled and liquefied in a condenser and circulated, there are two evaporators, and one evaporator While cooling the inside of the case with
Both evaporators are switched and used alternately so that most of the defrost is carried out using the high-temperature refrigerant gas compressed by the compressor, and then the liquefied refrigerant passes through the condenser and is completely defrosted. A cooling method for an air curtain type refrigerated case, etc., characterized by the following. 2. A liquefied refrigerant with a low boiling point is injected into the low-pressure evaporation pipe of the evaporator through an expansion valve and evaporated. At that time, the heat of evaporation is taken from the circulating cold air passing through the evaporator to cool it, and the evaporated refrigerant is In air curtain type refrigerated cases, etc., in which the air is compressed to high pressure using a compressor, then cooled and liquefied in a condenser and circulated, two evaporators are used, and one evaporator is used to internally cool the inside of the case. During cooling, the other frosted evaporator
Both evaporators are switched and used alternately so that most of the defrost is carried out using the high-temperature refrigerant gas compressed by the compressor, and then the liquefied refrigerant that passes through the condenser is completely defrosted. , and a method for cooling an air curtain type refrigerated case, etc., characterized in that a drainage device of the case is heated by the heat of the liquefied refrigerant. 3 A liquefied refrigerant with a low boiling point is injected into the low-pressure evaporation tube of the evaporator through the expansion valve and evaporated. At this time, the heat of evaporation is taken from the circulating cold air passing through the evaporator to cool it, and the refrigerant is vaporized. In air curtain type refrigerated cases, etc., in which the liquid is compressed to high pressure using a compressor, then cooled and liquefied in a condenser and circulated, a partition is installed between the outer case of the case and the display box inside. A plate is used to divide the cold air path and a bypass air path, and a blower that can rotate forward and backward is installed between the partition plates to divide both air paths into two parts, the front cold air path and the rear bypass air path. A cold air circulation system equipped with an air passage switching device that simultaneously blocks the front bypass air passage and the rear cold air air passage, and a bypass pipe that can switch refrigerant passages using a solenoid valve are installed side by side. Defrost pipes are installed in parallel to the condenser and both evaporation pipes arranged in the front and rear cold air channels through fins, and the inlet of each defrost pipe is connected to the outlet of the condenser, and the same The outlet is connected to the inlet of the other evaporation pipe via a solenoid valve and an expansion valve, and the outlet of both evaporation pipes is connected to the suction port of the compressor, and by switching the opening and closing of both the solenoid valves,
The refrigerant passes through both evaporation pipes alternately, and there is a pair of evaporators equipped with temperature sensors at key points.In the early stages of defrosting, the refrigerant passes through the bypass pipe and is sent to the evaporator during defrosting. It consists of an automatic switching device that switches the refrigerant to pass through the condenser when the temperature detected by the installed temperature sensor rises above a predetermined temperature. A cooling device for an air curtain type refrigerated case, etc., characterized by switching the air path and switching the solenoid valves of both evaporators. 4 A liquefied refrigerant with a low boiling point is injected into the low-pressure evaporation tube of the evaporator through the expansion valve and evaporated. At this time, the heat of evaporation is taken from the circulating cold air passing through the evaporator to cool it, and the refrigerant is vaporized. In air curtain type refrigerated cases, etc., in which the liquid is compressed to high pressure using a compressor, then cooled and liquefied in a condenser and circulated, a partition is installed between the outer case of the case and the display box inside. A plate is used to divide the cold air path and a bypass air path, and a blower that can rotate forward and backward is installed between the partition plates to divide both air paths into two parts, the front cold air path and the rear bypass air path. A cold air circulation system equipped with an air passage switching device that simultaneously blocks the front bypass air passage and the rear cold air air passage, and a bypass pipe that can switch refrigerant passages using a solenoid valve are installed side by side. Defrost pipes are installed in parallel with the condenser and both evaporation pipes arranged in the front and rear cold air channels through fins, and the inlet of each defrost pipe is connected to the outlet of the condenser, and the same The outlet is connected to the inlet of the other evaporation pipe via a solenoid valve and an expansion valve, and the outlet of both evaporation pipes is connected to the suction port of the compressor, and by switching the opening and closing of both the solenoid valves,
The front part of the bottom plate of the display box is equipped with a pair of evaporators with temperature sensors installed at key points so that the refrigerant passes through both evaporation pipes alternately, and a refrigerant pipe whose inlet is connected to the outlet of the condenser. A pair of drainage devices installed at the rear and both evaporation pipes installed in the front and rear cold air channels are connected to defrost pipes through fins, and the inlet of each defrost pipe is connected to the drainage device. In addition to connecting to each refrigerant pipe, the outlet is also connected to the inlet of the other evaporator pipe via a solenoid valve and an expansion valve, and the outlet of both evaporator pipes is connected to the suction port of the compressor, and both solenoid valves are connected. By opening and closing the switch, the refrigerant passes through both evaporation pipes alternately.A pair of evaporators are equipped with temperature sensors at key points.At the beginning of defrosting, the refrigerant passes through the bypass pipe, It consists of an automatic switching device that switches the refrigerant to pass through the condenser when the temperature detected by the temperature sensor attached to the evaporator inside rises above a predetermined temperature.After defrosting is completed, the blower is reversed. A cooling device for an air curtain type refrigerator case, etc., characterized in that the air path of the cold air circulation device is switched, and the solenoid valves of both evaporators are also switched.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6113882A JPS58178176A (en) | 1982-04-14 | 1982-04-14 | Method and device for cooling air curtain type refrigerating case, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6113882A JPS58178176A (en) | 1982-04-14 | 1982-04-14 | Method and device for cooling air curtain type refrigerating case, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58178176A JPS58178176A (en) | 1983-10-19 |
JPS6363833B2 true JPS6363833B2 (en) | 1988-12-08 |
Family
ID=13162424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6113882A Granted JPS58178176A (en) | 1982-04-14 | 1982-04-14 | Method and device for cooling air curtain type refrigerating case, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58178176A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194270A (en) * | 1984-03-16 | 1985-10-02 | 株式会社岡村製作所 | Cooling device for air curtain type refrigerated case, etc. |
JPH06105147B2 (en) * | 1986-11-18 | 1994-12-21 | 三洋電機株式会社 | Low temperature showcase |
JPS63129288A (en) * | 1986-11-18 | 1988-06-01 | 三洋電機株式会社 | Low-temperature showcase |
JPH01125987U (en) * | 1988-02-23 | 1989-08-28 | ||
JPH0419432Y2 (en) * | 1988-07-20 | 1992-05-01 | ||
JP2017026159A (en) * | 2013-12-04 | 2017-02-02 | 三菱電機株式会社 | Heat pump device |
WO2021070434A1 (en) * | 2019-10-07 | 2021-04-15 | アンプレックス株式会社 | Body-mounted cooling device |
-
1982
- 1982-04-14 JP JP6113882A patent/JPS58178176A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58178176A (en) | 1983-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4964281A (en) | Low-temperature showcase | |
JP2774486B2 (en) | Refrigerator and operation control method thereof | |
US20090293508A1 (en) | Refrigerator including high capacity ice maker | |
JP2008514895A (en) | Reverse Peltier defrost system | |
JP2000121233A (en) | Freezer/refrigerator | |
KR20030075802A (en) | Refrigerator | |
JP2011231956A (en) | Refrigerator-freezer | |
JPH0454157B2 (en) | ||
KR100796452B1 (en) | Heat pump and demist method | |
JPS6363833B2 (en) | ||
JP2007127302A (en) | Refrigeration unit | |
JP2547703B2 (en) | Refrigeration equipment | |
JP2000146400A (en) | Refrigerator | |
WO2020175824A1 (en) | Method for controlling refrigerator | |
JPS60194270A (en) | Cooling device for air curtain type refrigerated case, etc. | |
JPS5824774A (en) | Refrigerator | |
KR20150054448A (en) | Apparatus for circuiting of refrigerant, heat pump and ice-maker including the same | |
JP3430160B2 (en) | refrigerator | |
JP3567108B2 (en) | refrigerator | |
JP2003130535A (en) | Refrigerator | |
JP3495956B2 (en) | refrigerator | |
JP3098908B2 (en) | refrigerator | |
JPS6365273A (en) | Low-temperature showcase | |
JPH04227447A (en) | Icemaker | |
JPS5813971A (en) | Refrigerator |