JPH0737867B2 - Defroster for dual cryogenic refrigerator - Google Patents

Defroster for dual cryogenic refrigerator

Info

Publication number
JPH0737867B2
JPH0737867B2 JP19340189A JP19340189A JPH0737867B2 JP H0737867 B2 JPH0737867 B2 JP H0737867B2 JP 19340189 A JP19340189 A JP 19340189A JP 19340189 A JP19340189 A JP 19340189A JP H0737867 B2 JPH0737867 B2 JP H0737867B2
Authority
JP
Japan
Prior art keywords
liquefied gas
temperature refrigerant
heat
defrosting
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19340189A
Other languages
Japanese (ja)
Other versions
JPH0359369A (en
Inventor
昭三 富田
Original Assignee
株式会社西日本精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西日本精機製作所 filed Critical 株式会社西日本精機製作所
Priority to JP19340189A priority Critical patent/JPH0737867B2/en
Publication of JPH0359369A publication Critical patent/JPH0359369A/en
Publication of JPH0737867B2 publication Critical patent/JPH0737867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、−50℃乃至−60℃以下の極低温用の二元式冷
凍機の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a binary refrigerator for cryogenic temperatures of -50 ° C to -60 ° C or less.

(従来の技術) 二元式極低温冷凍機の従来例を第2図に示す。(Prior Art) A conventional example of a binary type cryogenic refrigerator is shown in FIG.

この冷凍機は、R22(化学式CHClF2)のような臨界温度
の高い高温冷媒を使用する高温部Aと、R13(化学式CCl
F3)のような臨界温度の低い低温冷媒を使用する低温部
Bとから構成される。
This refrigerator has a high temperature part A that uses a high temperature refrigerant having a high critical temperature such as R22 (chemical formula CHClF 2 ) and R13 (chemical formula CClF 2).
And a low temperature part B using a low temperature refrigerant having a low critical temperature such as F 3 ).

まず高温部Aについて説明すると、高温冷媒は、高温冷
媒側圧縮機1で圧縮されたのち、高温冷媒側油分離器2
で油を分離回収されつつ高温冷媒側凝縮器3に供給され
て液化される。そして、この液化した高温冷媒は、高温
冷媒側ドライヤ4を経て高温冷媒側膨張弁5に供給され
ると、ここで急激に減圧されて高温冷媒側蒸発器6で気
化したのち、再び高温冷媒側圧縮機1に戻される。
First, the high temperature portion A will be described. After the high temperature refrigerant is compressed by the high temperature refrigerant side compressor 1, the high temperature refrigerant side oil separator 2 is compressed.
While the oil is separated and collected in this way, it is supplied to the high temperature refrigerant side condenser 3 and liquefied. When the liquefied high-temperature refrigerant is supplied to the high-temperature refrigerant-side expansion valve 5 via the high-temperature refrigerant-side dryer 4, it is depressurized suddenly here and vaporized in the high-temperature refrigerant-side evaporator 6 and then again on the high-temperature refrigerant side. Returned to the compressor 1.

次に低温部Bについて説明すると、低温冷媒は、低温冷
媒側圧縮機7で圧縮されたのち、低温冷媒側油分離器8
で油分を分離回収しつつ低温冷媒側凝縮器9に供給され
て液化される。そして、この液化した冷媒は、低温冷媒
側ドライヤ10を経て低温冷媒側膨張弁11に供給され、低
温冷媒側蒸発器12で気化したのち、再び低温冷媒側圧縮
機7に戻される。
Next, the low temperature section B will be described. After the low temperature refrigerant is compressed by the low temperature refrigerant side compressor 7, the low temperature refrigerant side oil separator 8
At the same time, the oil is separated and collected and is supplied to the low temperature refrigerant side condenser 9 and liquefied. The liquefied refrigerant is supplied to the low-temperature refrigerant-side expansion valve 11 via the low-temperature refrigerant-side dryer 10, vaporized in the low-temperature refrigerant-side evaporator 12, and then returned to the low-temperature refrigerant-side compressor 7 again.

ここで、高温部Aの高温冷媒側蒸発器6と低温部Bの低
温冷媒側凝縮器9は、異種冷媒熱交換器15を形成し、高
温冷媒の蒸発の潜熱により低温冷媒を冷却して凝縮す
る。
Here, the high temperature refrigerant side evaporator 6 of the high temperature part A and the low temperature refrigerant side condenser 9 of the low temperature part B form a different refrigerant heat exchanger 15, and cool and condense the low temperature refrigerant by latent heat of evaporation of the high temperature refrigerant. To do.

低温部Bの低温冷媒側蒸発器12は冷凍庫14内に設け、こ
れにより庫内の空気を冷却する。
The low temperature refrigerant side evaporator 12 of the low temperature section B is provided in the freezer 14, and thereby cools the air in the freezer.

13はガス貯溜タンクで運転停止中気化した冷媒を貯溜
し、装置の破損及び冷媒の漏洩を防止するためのもので
ある。
Reference numeral 13 is a gas storage tank for storing the vaporized refrigerant during operation stoppage to prevent damage to the device and leakage of the refrigerant.

しかして、低温冷媒側蒸発器12のコイル表面には、冷凍
庫14の空気の水分が氷結して霜が発生するので、これを
除去する必要がある。
Then, since the moisture of the air in the freezer 14 is frozen to generate frost on the coil surface of the low temperature refrigerant side evaporator 12, it is necessary to remove it.

ところで、二元式冷凍機では除霜すべき蒸発器12の冷媒
の臨界温度が低いから、ホットガス方式はガス圧が高く
なり過ぎ使用できない。そこで、従来は電熱ヒータで加
熱したり散水して霜を溶かしていた。
By the way, in the binary refrigerator, since the critical temperature of the refrigerant of the evaporator 12 to be defrosted is low, the gas pressure of the hot gas system becomes too high and cannot be used. Therefore, conventionally, the frost is melted by heating with an electric heater or sprinkling water.

(発明が解決しようとする課題) しかし、ヒータや散水による場合、冷凍庫内の温度上昇
を伴うため、冷凍効率が低下し、極低温を維持し難いと
いう問題があった。
(Problems to be Solved by the Invention) However, in the case of using a heater or water sprinkling, there is a problem that refrigeration efficiency is lowered and it is difficult to maintain an extremely low temperature because the temperature inside the freezer is increased.

本発明は、これらの点に鑑み、冷凍効率を低下しない二
元式低温冷凍機の霜取り装置を提供することを目的とす
る。
In view of these points, an object of the present invention is to provide a defroster for a binary low-temperature refrigerator that does not reduce refrigeration efficiency.

(課題を解決するための手段) かかる目的を達成するために、本発明は、以下のように
構成する。
(Means for Solving the Problems) In order to achieve this object, the present invention is configured as follows.

すなわち、本発明は、臨界温度が高い高温冷媒と低い低
温冷媒を用いる二元式極低温冷凍機において、低温冷媒
側蒸発器に受熱器を熱交換可能に連結し、そして液化ガ
ス循環ポンプの送出側を、前記受熱器の入口と霜取用再
蒸発コイルの入口とに切替可能に接続して前記低温冷媒
よりも臨界温度の高い液化ガスを供給し、受熱器の出口
は、霜取用再蒸発コイルの出口と共に空気・液化ガス熱
交換器の入口に接続し、また、前記空気・液化ガス熱交
換器の出口は、液化ガス受液器を経て前記液化ガス循環
ポンプの吸入側に接続し、しかして前記霜取用再蒸発コ
イルには加熱手段を付設して成るものである。
That is, the present invention, in a binary type cryogenic refrigerator using a high temperature refrigerant having a high critical temperature and a low temperature refrigerant having a low critical temperature, a heat receiver is heat-exchangeably connected to the low temperature refrigerant side evaporator, and the liquefied gas circulation pump is delivered. The side is switchably connected to the inlet of the heat receiver and the inlet of the defrosting re-evaporation coil to supply liquefied gas having a critical temperature higher than that of the low-temperature refrigerant, and the outlet of the heat receiver is The outlet of the evaporation coil is connected to the inlet of the air / liquefied gas heat exchanger, and the outlet of the air / liquefied gas heat exchanger is connected to the suction side of the liquefied gas circulation pump via the liquefied gas receiver. However, a heating means is attached to the defrosting re-evaporation coil.

(作用) このように構成する本発明では、冷却運転中は、液化ガ
ス循環ポンプ20が、液化ガスを、受熱器22及び空気・液
化ガス熱交換器24からなる冷却回路を循環する。
(Operation) In the present invention thus configured, during the cooling operation, the liquefied gas circulation pump 20 circulates the liquefied gas in the cooling circuit including the heat receiver 22 and the air / liquefied gas heat exchanger 24.

これにより、低温冷媒側蒸発器12で冷却された液化ガス
が空気・液化ガス熱交換器24に導かれ、ここで顕熱によ
る熱交換により冷凍庫26内の空気を冷却する。
As a result, the liquefied gas cooled in the low-temperature refrigerant side evaporator 12 is guided to the air / liquefied gas heat exchanger 24, where the air in the freezer 26 is cooled by heat exchange by sensible heat.

一方、霜取り運転中は、液化ガス循環ポンプ20が液化ガ
スを、霜取用蒸発コイル29と空気・液化ガス熱交換器24
からなる霜取り回路を循環する。
On the other hand, during the defrosting operation, the liquefied gas circulation pump 20 supplies the liquefied gas to the defrosting evaporation coil 29 and the air / liquefied gas heat exchanger 24.
Circulating the defrost circuit consisting of.

これにより、液化ガスは加熱された霜取用再蒸発コイル
29内で気化し、そのホットガスが空気・液化ガス熱交換
器24に導かれて凝縮し、霜を取る。
As a result, the liquefied gas is heated by the re-evaporation coil for defrosting.
It vaporizes in 29 and its hot gas is guided to the air / liquefied gas heat exchanger 24 to condense and remove frost.

(実施例) 第1図は、本発明実施例の配管図である。(Example) FIG. 1 is a piping diagram of an example of the present invention.

この実施例は、第2図に示した前記従来例に、本発明に
かかる新規な構成部分を加えたものである。従って、第
2図と同様の部分には、同一符号を付してその説明は省
略する。
This embodiment is obtained by adding a novel constituent part according to the present invention to the conventional example shown in FIG. Therefore, the same parts as those in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted.

第1図において、20は液化ガス循環ポンプ、21は冷却用
電磁弁、22は低温部Bの低温冷媒側蒸発器12と熱の授受
を行う受熱器で、これら蒸発器12及び受熱器22により熱
交換器23を構成する。
In FIG. 1, 20 is a liquefied gas circulation pump, 21 is a cooling solenoid valve, 22 is a heat receiver for exchanging heat with the low temperature refrigerant side evaporator 12 of the low temperature part B, and these evaporators 12 and 22 The heat exchanger 23 is configured.

熱交換効率を高めるため2重管を使用し、その内側の管
を低温冷媒側蒸発器12となし、2重管の外側部分を受熱
器22とすれば、管壁を通して効率良く熱交換できる。2
重管の代りに、2本以上の細管を大径管内に挿入した構
造のものを用いてもよい。その場合も低温冷媒は細い管
に流す。熱交換器23の外周は断熱材で覆い外気を遮断す
る。
If a double pipe is used to increase the heat exchange efficiency, the inner pipe is the low-temperature refrigerant side evaporator 12, and the outer portion of the double pipe is the heat receiver 22, heat can be efficiently exchanged through the pipe wall. Two
Instead of the heavy pipe, a structure in which two or more thin pipes are inserted into a large diameter pipe may be used. Also in that case, the low-temperature refrigerant is caused to flow through the thin tube. The outer periphery of the heat exchanger 23 is covered with a heat insulating material to block the outside air.

24は空気・液化ガス熱交換器、25は液化ガス受液器であ
る。
24 is an air / liquefied gas heat exchanger, and 25 is a liquefied gas receiver.

そして、これら各構成要素を順次配管して冷却回路を形
成するとともに、空気・液化ガス熱交換器24を冷凍庫26
内に配置する。
Then, these components are sequentially piped to form a cooling circuit, and the air / liquefied gas heat exchanger 24 is connected to the freezer 26.
Place it inside.

27は霜取用電磁弁、28は一方向弁、29は蓄熱タンク30に
埋設した霜取用再蒸発コイル、31は一方向弁であり、こ
れらを順次直列接続する。そして、これら直列接続した
ものを、液化ガス循環ポンプ20の送出側と、空気・液化
ガス熱交換器23の入口側との間に並列接続し、これらに
より霜取回路を形成する。
Reference numeral 27 is a defrosting solenoid valve, 28 is a one-way valve, 29 is a defrosting re-evaporation coil buried in the heat storage tank 30, and 31 is a one-way valve, which are sequentially connected in series. Then, those connected in series are connected in parallel between the delivery side of the liquefied gas circulation pump 20 and the inlet side of the air / liquefied gas heat exchanger 23, thereby forming a defrosting circuit.

そして、冷却回路及び霜取回路に二元式冷却器の高温冷
媒と同じ液化ガスR22を充填する。
Then, the cooling circuit and the defrosting circuit are filled with the same liquefied gas R22 as the high-temperature refrigerant of the binary cooler.

また、蓄熱タンク30の底部に、蓄熱タンク加熱コイル32
を設け、この蓄熱タンク加熱コイル32を高温部Aの高温
冷媒側油分離器2と高温冷媒側凝縮器3との間に介在す
る。これにより高温冷媒の凝縮熱の一部を利用して、蓄
熱タンク30を加熱する。なお、蓄熱タンク30を加熱する
手段は、上記のコイル32に代えて電気ヒータなどを用い
てもよい。
Further, at the bottom of the heat storage tank 30, the heat storage tank heating coil 32
The heat storage tank heating coil 32 is interposed between the high temperature refrigerant side oil separator 2 and the high temperature refrigerant side condenser 3 of the high temperature section A. Thus, the heat storage tank 30 is heated by utilizing a part of the heat of condensation of the high temperature refrigerant. The means for heating the heat storage tank 30 may use an electric heater or the like instead of the coil 32.

次に、このように構成する本発明実施例の冷却運転動作
について説明する。
Next, the cooling operation operation of the embodiment of the present invention thus configured will be described.

冷却運転のときには、高温部Aの高温冷媒側圧縮器1、
および低温部Bの低温冷媒側圧縮器7をそれぞれ運転す
る。また、冷却用電磁弁21を開くとともに、霜取用電磁
弁27を閉じ、液化ガス循環ポンプ20を運転する。
During the cooling operation, the high temperature refrigerant side compressor 1 in the high temperature portion A,
And the low temperature refrigerant side compressor 7 of the low temperature part B is operated, respectively. Also, the cooling solenoid valve 21 is opened, the defrosting solenoid valve 27 is closed, and the liquefied gas circulation pump 20 is operated.

これにより、液化ガス受液器25内の液化ガスは、ポンプ
20、電磁弁21、受熱器22、熱交換器24、および受液器25
の順に冷却回路を循環する。
As a result, the liquefied gas in the liquefied gas receiver 25 is pumped.
20, solenoid valve 21, heat receiver 22, heat exchanger 24, and liquid receiver 25
The cooling circuit is circulated in this order.

従って、この液化ガスは、熱交換器23を構成する受熱器
22で−60℃以下に冷却されたのち空気・液化ガス熱交換
器24において空気と熱交換が行われて冷凍庫26内を冷却
する。なお、この冷却は液化ガスの顕熱で行われるた
め、液化ガスは蒸発しない。
Therefore, this liquefied gas is the heat receiver that constitutes the heat exchanger 23.
After being cooled to -60 ° C or less at 22, heat is exchanged with air in the air / liquefied gas heat exchanger 24 to cool the inside of the freezer 26. Since this cooling is performed by the sensible heat of the liquefied gas, the liquefied gas does not evaporate.

この冷却運転期間中は、高温部Aの高温冷媒側圧縮機1
で圧縮された冷媒が、蓄熱タンク加熱コイル32において
凝縮する際に、蓄熱タンク30を暖める。
During this cooling operation period, the high temperature refrigerant side compressor 1 in the high temperature portion A is
When the refrigerant compressed by is condensed in the heat storage tank heating coil 32, the heat storage tank 30 is warmed.

次に、霜取り運転の場合について説明する。Next, the case of the defrosting operation will be described.

この霜取り運転のときには、高温部Aの高温冷媒側圧縮
機1、および低温部Bの低温冷媒側圧縮機7の運転をそ
れぞれ停止する。そして、冷却運転の場合とは逆に、冷
却用電磁弁21を閉じて霜取用電磁弁27を開き、液化ガス
循環ポンプ20は運転を続ける。
During the defrosting operation, the operation of the high temperature refrigerant side compressor 1 in the high temperature portion A and the operation of the low temperature refrigerant side compressor 7 in the low temperature portion B are stopped. Contrary to the case of the cooling operation, the cooling electromagnetic valve 21 is closed and the defrosting electromagnetic valve 27 is opened, and the liquefied gas circulation pump 20 continues to operate.

これにより、液化ガス受液器25内の液化ガスは、ポンプ
20、電磁弁27、一方向弁28、コイル29、一方向弁31、熱
交換機24、および受液機25の順に、霜取回路を循環す
る。
As a result, the liquefied gas in the liquefied gas receiver 25 is pumped.
The solenoid valve 27, the one-way valve 28, the coil 29, the one-way valve 31, the heat exchanger 24, and the liquid receiver 25 are circulated through the defrosting circuit in this order.

ここで液化ガスは、霜取用再蒸発コイル29を通過する際
に蓄熱タンク30より暖められて気化し、このホットガス
は空気・液化ガス熱交換器24を通過する際に凝縮して液
化するので、その凝縮熱で空気・液化ガス熱交換器24の
表面に付着する霜を溶かす。
Here, the liquefied gas is heated and vaporized by the heat storage tank 30 when passing through the defrosting re-evaporation coil 29, and this hot gas is condensed and liquefied when passing through the air / liquefied gas heat exchanger 24. Therefore, the condensation heat melts the frost adhering to the surface of the air / liquefied gas heat exchanger 24.

このような循環サイクルを繰り返しているうちに、空気
・液化ガス熱交換器24の温度が徐々に上昇してくるの
で、その温度がおよそ20℃位に達して除霜が終了する
と、これを検出して霜取り運転から冷却運転に自動的に
切換わる。
While repeating such a circulation cycle, the temperature of the air / liquefied gas heat exchanger 24 gradually rises, so when the temperature reaches about 20 ° C and defrosting ends, this is detected. Then, the defrosting operation is automatically switched to the cooling operation.

(発明の効果) 以上のように本発明では、熱伝導のすぐれた液体状の液
化ガスを低温部の蒸発器で冷却し、この冷却した液化ガ
スを空気・液化ガス熱交換器に導き、顕熱による熱交換
により冷凍庫内の空気を冷却するようにした。
(Effects of the Invention) As described above, in the present invention, the liquid liquefied gas having excellent heat conduction is cooled by the evaporator in the low temperature section, and the cooled liquefied gas is guided to the air / liquefied gas heat exchanger, The air in the freezer is cooled by heat exchange with heat.

従って、本発明では、空気・液化ガス熱交換器における
単位面積あたりの冷却効率を向上できるとともに、熱交
換器の構造が簡易かつその機械的強度が小さくてもよい
という利点がある。
Therefore, the present invention has the advantages that the cooling efficiency per unit area in the air / liquefied gas heat exchanger can be improved and that the structure of the heat exchanger can be simple and its mechanical strength can be small.

また、本発明では、霜取用再蒸発コイルに液化ガスを供
給して気化し、このホットガスを着霜した空気・液化ガ
ス熱交換器に導いて凝縮させ、霜を取る。
Further, in the present invention, liquefied gas is supplied to the defrosting re-evaporation coil to be vaporized, and this hot gas is guided to the frosted air / liquefied gas heat exchanger to be condensed and defrosted.

従って、本発明では、ホットガス方式により着霜したコ
イルの内部から加熱するので冷凍庫内の温度上昇が少な
く、しかも短時間で霜を取ることができ、冷凍効率及び
除霜効率が格段に向上する。
Therefore, in the present invention, since the frosted coil is heated from the inside by the hot gas method, the temperature rise in the freezer is small, and frost can be removed in a short time, and the refrigeration efficiency and the defrosting efficiency are significantly improved. .

(応用例) 本発明は、液化天然ガスのガス化に伴う冷却能力を利用
した冷凍機の霜取り装置にも応用できる。
(Application example) The present invention can also be applied to a defroster for a refrigerator utilizing the cooling capacity associated with the gasification of liquefied natural gas.

この場合は、−100℃近い液化天然ガスを蒸発器に供給
してガス化したうえで送出するが、蒸発器に外気が触れ
て霜を生ずるので、この蒸発器を前記実施例の低温冷媒
側蒸発器と同様に受熱器に熱交換可能に連結し、この受
熱器に接続する空気・液化ガス熱交換器により外気を冷
却するよう構成する。
In this case, liquefied natural gas close to −100 ° C. is supplied to the evaporator to be gasified and then sent out. However, since the outside air comes into contact with the evaporator to cause frost, this evaporator is connected to the low temperature refrigerant side of the embodiment. Like the evaporator, the heat exchanger is connected to the heat receiver so that heat can be exchanged, and the air / liquefied gas heat exchanger connected to the heat receiver is used to cool the outside air.

そうすることにより、前記実施例と同様に着霜時には、
空気・液化ガス熱交換器にホットガスを供給して除霜で
き、液化天然ガスの蒸発器を外側からヒータ等で加熱除
霜する方法に比較し、冷凍庫の温度上昇が少なく極低温
を良く維持することができる。
By doing so, at the time of frost formation as in the above embodiment,
Compared to the method in which hot gas is supplied to the air / liquefied gas heat exchanger to defrost it, and the liquefied natural gas evaporator is heated and defrosted from the outside with a heater, etc. can do.

【図面の簡単な説明】[Brief description of drawings]

第1図本発明実施例の配管図、第2図は従来装置の配管
図である。 A…高温部、B…低温部、6…高温冷媒側蒸発器、9…
低温冷媒側凝縮器、12…低温冷媒側蒸発器、20…液化ガ
ス循環ポンプ、21…冷却用電磁弁、22…受熱器、24…空
気・液化ガス熱交換器、25…液化ガス受液器、26…冷凍
庫、27…霜取用電磁弁、29…霜取用再蒸発コイル、30…
蓄熱タンク。
FIG. 1 is a piping diagram of an embodiment of the present invention, and FIG. 2 is a piping diagram of a conventional device. A ... high temperature part, B ... low temperature part, 6 ... high temperature refrigerant side evaporator, 9 ...
Low temperature refrigerant side condenser, 12 ... Low temperature refrigerant side evaporator, 20 ... Liquefied gas circulation pump, 21 ... Cooling solenoid valve, 22 ... Heat receiver, 24 ... Air / liquefied gas heat exchanger, 25 ... Liquefied gas receiver , 26 ... Freezer, 27 ... Defrosting solenoid valve, 29 ... Defrosting re-evaporating coil, 30 ...
Heat storage tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】臨界温度が高い高温冷媒と低い低温冷媒を
用いる二元式極低温冷凍機において、 低温冷媒側蒸発器に受熱器を熱交換可能に連結し、そし
て液化ガス循環ポンプの送出側を、前記受熱器の入口と
霜取用再蒸発コイルの入口とに切替可能に接続して前記
低温冷媒よりも臨界温度の高い液化ガスを供給し、受熱
器の出口は、霜取用再蒸発コイルの出口と共に空気・液
化ガス熱交換器の入口に接続し、また、前記空気・液化
ガス熱交換器の出口は、液化ガス受液器を経て前記液化
ガス循環ポンプの吸入側に接続し、 しかして前記霜取用再蒸発コイルには加熱手段を付設し
て成る霜取り装置。
1. A binary cryogenic refrigerator using a high-temperature refrigerant having a high critical temperature and a low-temperature refrigerant having a low critical temperature, wherein a heat receiver is connected to a low-temperature refrigerant side evaporator so that heat can be exchanged, and a delivery side of a liquefied gas circulation pump. , Is switchably connected to the inlet of the heat receiver and the inlet of the defrosting re-evaporation coil to supply a liquefied gas having a critical temperature higher than that of the low-temperature refrigerant, and the outlet of the heat receiver is used for defrosting re-evaporation. The outlet of the coil is connected to the inlet of the air / liquefied gas heat exchanger, and the outlet of the air / liquefied gas heat exchanger is connected to the suction side of the liquefied gas circulation pump via the liquefied gas receiver. Therefore, the defrosting device is provided with a heating means attached to the defrosting re-evaporation coil.
JP19340189A 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator Expired - Fee Related JPH0737867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19340189A JPH0737867B2 (en) 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19340189A JPH0737867B2 (en) 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH0359369A JPH0359369A (en) 1991-03-14
JPH0737867B2 true JPH0737867B2 (en) 1995-04-26

Family

ID=16307336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19340189A Expired - Fee Related JPH0737867B2 (en) 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH0737867B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048661A (en) * 2001-12-12 2003-06-25 엘지이노텍 주식회사 Cooling apparatus for semiconductor chip
JP4493611B2 (en) * 2005-12-13 2010-06-30 富士通株式会社 Electronics
JP5312075B2 (en) * 2009-02-05 2013-10-09 株式会社東洋製作所 Defrost equipment in carbon dioxide circulation and cooling system
KR101262927B1 (en) * 2013-03-26 2013-05-13 주식회사 신우종합에너지 Apparatus for dual heat pump

Also Published As

Publication number Publication date
JPH0359369A (en) 1991-03-14

Similar Documents

Publication Publication Date Title
KR0132344B1 (en) Passive defrost systme using waste heat and passive defrost method and heat pump
JP5934257B2 (en) Flash (frost) defrost system
US5669222A (en) Refrigeration passive defrost system
US20140130532A1 (en) Refrigeration system utilizing natural circulation of heat to carry out defrosting thereof
JP5261066B2 (en) Refrigerator and refrigerator
JP3882056B2 (en) Refrigeration air conditioner
CN106225358A (en) Cold storage hot gas defrosting refrigeration system and heat accumulating type steam defrosting heat pump system
KR101619016B1 (en) Refrigeration apparatus having defrosting cycle by hot gas
KR20100027353A (en) Refrigerating and freezing apparatus
JPH08193771A (en) Freezing cycle
JP2004324902A (en) Freezing refrigerator
KR101551645B1 (en) The defrost system for a cold storage wairhouse
JPH0737867B2 (en) Defroster for dual cryogenic refrigerator
RU2708761C1 (en) Refrigerating and/or freezing device
JP2004333092A (en) Freezer/refrigerator
CN210892383U (en) Double-evaporator experimental type freeze dryer defrosting system
JPS5826511B2 (en) Defrosting device for refrigerators
JPH01114639A (en) Heat pipe type heat storage water tank device
KR102101393B1 (en) Combined cold-hot heat storage system
CN219264688U (en) Cold storage air cooler steam defrosting device
KR0126728Y1 (en) A refrigerator
CN110849040B (en) Heat exchanger assembly of refrigerator and refrigerator with same
KR0136083Y1 (en) Refrigeration cycle apparatus
KR20210059213A (en) Ultra Energy Efficiency System using waste energy from heat pump for cold storeroom
JPS645732Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees