JPH0359369A - Defrosting device in two-dimensional cryogenic refrigerator - Google Patents

Defrosting device in two-dimensional cryogenic refrigerator

Info

Publication number
JPH0359369A
JPH0359369A JP19340189A JP19340189A JPH0359369A JP H0359369 A JPH0359369 A JP H0359369A JP 19340189 A JP19340189 A JP 19340189A JP 19340189 A JP19340189 A JP 19340189A JP H0359369 A JPH0359369 A JP H0359369A
Authority
JP
Japan
Prior art keywords
liquefied gas
defrosting
air
heat exchanger
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19340189A
Other languages
Japanese (ja)
Other versions
JPH0737867B2 (en
Inventor
Shozo Tomita
富田 昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI NIPPON SEIKI SEISAKUSHO KK
Original Assignee
NISHI NIPPON SEIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI NIPPON SEIKI SEISAKUSHO KK filed Critical NISHI NIPPON SEIKI SEISAKUSHO KK
Priority to JP19340189A priority Critical patent/JPH0737867B2/en
Publication of JPH0359369A publication Critical patent/JPH0359369A/en
Publication of JPH0737867B2 publication Critical patent/JPH0737867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a defrosting device without reducing refrigerating efficiency by a method wherein liquefied gas is cooled in the evaporator of a low temperature unit to guide the cooled liquefied gas into an air/liquefied gas heat exchanger and cool air in a freezing chamber while the liquefied gas is supplied to a re-evaporating coil for defrosting to evaporate it and the hot gas is guided into the air/liquefied gas heat exchanger to effect defrosting. CONSTITUTION:During cooling operation, a liquefied gas circulating pump 20 circulates liquefied gas through a cooling circuit consisting of a heat receiver 22 and an air/ liquefied gas heat exchanger 24. According to this circulation, the liquefied gas, cooled in a low-temperature refrigerant side evaporator 12, is guided to the air/liquefied gas heat exchanger 24 to cool air in a freezing chamber 26 by heat exchange due to the sensitive heat. On the other hand, during defrosting operation, the liquefied gas circulating pump 20 circulates the liquefied gas through a defrosting circuit consisting of an evaporating coil 29 for defrosting and the air/liquefied gas heat exchanger 24. According to this circulation, the liquefied gas is evaporated in a heated re-evaporating coil 29 for defrosting while the evaporated hot gas is guided into the air/liquefied gas heat exchanger 24 to condense it whereby defrosting may be effected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、−50℃乃至−60℃以下の極低温用の二元
式冷凍機の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a binary type refrigerator for extremely low temperatures of -50°C to -60°C or lower.

(従来の技術) 二元式極低温冷凍機の従来例を第2図に示す。(Conventional technology) A conventional example of a binary type cryogenic refrigerator is shown in Fig. 2.

この冷7i!機は、R22(化学式CHCIFz)のよ
うな臨界温度の高い高温冷媒を使用する高温部Aと、R
13(化学式CCIF3)のような臨界温度の低い低温
冷媒を使用する低温部Bとから構成される。
This cold 7i! The machine has a high temperature section A that uses a high temperature refrigerant with a high critical temperature such as R22 (chemical formula CHCIFz), and a high temperature section A that uses a high temperature refrigerant such as R22 (chemical formula CHCIFz)
13 (chemical formula: CCIF3), which uses a low-temperature refrigerant with a low critical temperature.

まずに1・、脇部Aについて説明すると、高温冷媒は、
高温冷媒側圧縮機lで圧縮されたのち、χZ、温冷媒側
抽分離器2で油を分離回収されつつ高温冷媒側凝縮器3
に供給されて液化される。そしてこの液化した高温冷媒
は、高温冷媒側ドライヤ4を経て高温冷媒側膨張弁5に
供給されると、ここで急激に減圧されて高温冷媒gI4
A発器6で気化したのら、丙び高温冷媒側圧縮機lに戻
される。
First of all, 1. To explain side part A, the high temperature refrigerant is
After being compressed by the high temperature refrigerant side compressor 1, the oil is separated and recovered by the hot refrigerant side extraction separator 2 and then transferred to the high temperature refrigerant side condenser 3.
It is supplied to and liquefied. Then, this liquefied high-temperature refrigerant is supplied to the high-temperature refrigerant-side expansion valve 5 via the high-temperature refrigerant side dryer 4, where it is rapidly depressurized and the high-temperature refrigerant gI4
After being vaporized in the A generator 6, it is returned to the high temperature refrigerant side compressor 1.

次に低温部Bについて説明すると、低温冷媒は、低温冷
媒側圧縮機7で圧縮されたのち、低温冷媒側蒸発器奏8
で油分を分離回収しつつ低温冷媒側蒸発器9に供給され
て液化される。そしてこの液化した冷媒は、低温冷媒側
ドライヤlOを経て低温冷媒側膨張弁11に供給され、
低温冷媒側蒸発器12で気化したのち、再び低温冷媒側
圧1i!417に戻される。
Next, to explain the low temperature section B, the low temperature refrigerant is compressed by the low temperature refrigerant side compressor 7, and then the low temperature refrigerant is compressed by the low temperature refrigerant side evaporator 8.
While the oil is separated and recovered, it is supplied to the low-temperature refrigerant side evaporator 9 and liquefied. This liquefied refrigerant is then supplied to the low-temperature refrigerant-side expansion valve 11 via the low-temperature refrigerant-side dryer lO,
After being vaporized in the low-temperature refrigerant side evaporator 12, the low-temperature refrigerant side pressure becomes 1i again! 417.

ここで、高温部Aの高温冷媒側蒸発器6と低温部Bの低
温冷媒側凝縮器9は、異種冷媒熱交換器15を形威し、
高温冷媒の蒸発の潜熱により低温冷媒を冷却して凝縮す
る。
Here, the high temperature refrigerant side evaporator 6 of the high temperature section A and the low temperature refrigerant side condenser 9 of the low temperature section B form a dissimilar refrigerant heat exchanger 15,
The latent heat of evaporation of the high temperature refrigerant cools and condenses the low temperature refrigerant.

低温部Bの低温冷媒側蒸発器12は冷凍庫14内に設け
、これにより庫内の空気を冷却する。
The low-temperature refrigerant side evaporator 12 of the low-temperature section B is provided inside the freezer 14, thereby cooling the air inside the refrigerator.

13はガス貯溜タンクで運転停止中気化した冷媒を貯溜
し、装置の破損及び冷媒の漏洩を防止するためのもので
ある。
Reference numeral 13 denotes a gas storage tank that stores the refrigerant vaporized during the shutdown to prevent damage to the device and leakage of the refrigerant.

しかして、低温冷媒側蒸発器12のコイル表面には、冷
凍庫14の空気の水分が氷結して霜が発生するので、こ
れを除去する必要がある。
As a result, moisture in the air in the freezer 14 freezes on the coil surface of the low-temperature refrigerant side evaporator 12 to form frost, which must be removed.

ところで、二元式冷凍機では除霜すべき蒸発器12の冷
媒の臨界温度が低いから、ホットガス方式はガス圧が高
くなり過ぎ使用できない、そこで、従来は電熱ヒータで
加熱したり散水して霜を溶かしていた。
By the way, in a binary type refrigerator, the critical temperature of the refrigerant in the evaporator 12 to be defrosted is low, so the hot gas method cannot be used because the gas pressure becomes too high. It was melting the frost.

(発明が解決しようとする課題) しかし、ヒータや散水による場合、冷凍庫内の温度上昇
を伴うため、冷凍効率が低下し、極低温を維持し難いと
いう問題があった。
(Problems to be Solved by the Invention) However, when using a heater or water sprinkling, the temperature inside the freezer increases, resulting in a decrease in refrigeration efficiency and a problem in that it is difficult to maintain an extremely low temperature.

本発明は、これらの点に鑑み、冷凍効率を低下しない二
元式極低温冷凍機の霜取り装置を提供することを目的と
する。
In view of these points, an object of the present invention is to provide a defrosting device for a binary cryogenic refrigerator that does not reduce refrigeration efficiency.

(課題を解決するための手段) かかる目的を遠戚するために、本発明は、以下のように
構成する。
(Means for Solving the Problems) In order to achieve this objective, the present invention is configured as follows.

すなわち、本発明は、臨界温度が高い高温冷媒と低い低
温冷媒を用いる二元式極低温冷凍機において、低温冷媒
側蒸発器に受熱器を熱交換可能に連結し、そして液化ガ
ス循環ポンプの送出側を、前記受熱器の入口と霜取用再
蒸発コイルの入口とに切替可能に接続して前記低温冷媒
よりも臨界温度の高い液化ガスを供給し、受熱器の出口
は、霜取用P4蒸発コイルの出口と共に空気・液化ガス
熱交換器の入口に接続し、また、前記空気・液化ガス熱
交換器の出口は、液化ガス受液器を経て前記液化ガス循
環ポンプの吸入側に接続し、しかして前記霜取用再蒸発
コイルには加熱手段を付設して成るものである。
That is, the present invention provides a binary cryogenic refrigerator that uses a high-temperature refrigerant with a high critical temperature and a low-temperature refrigerant with a low critical temperature, in which a heat receiver is connected to an evaporator on the low-temperature refrigerant side for heat exchange, and a liquefied gas circulation pump is connected to a The side of the heat receiver is switchably connected to the inlet of the heat receiver and the inlet of the re-evaporation coil for defrosting to supply liquefied gas having a higher critical temperature than the low temperature refrigerant, and the outlet of the heat receiver is connected to the inlet of the defrosting re-evaporation coil. The outlet of the evaporator coil is connected to the inlet of the air/liquefied gas heat exchanger, and the outlet of the air/liquefied gas heat exchanger is connected to the suction side of the liquefied gas circulation pump via the liquefied gas receiver. Therefore, the defrosting re-evaporation coil is provided with a heating means.

(作用) このように構成する本発明では、冷却運転中は、液化ガ
ス循環ポンプ20が、液化ガスを、受熱器22及び空気
・液化ガス熱交換器24からなる冷却回路を循環する。
(Function) In the present invention configured as described above, during the cooling operation, the liquefied gas circulation pump 20 circulates the liquefied gas through the cooling circuit including the heat receiver 22 and the air/liquefied gas heat exchanger 24.

これにより、低温冷媒側蒸発器12で冷却された液化ガ
スが空気・液化ガス熱交換器24に導かれ、ここで顕熱
による熱交換により冷凍庫26内の空気を冷却する。
Thereby, the liquefied gas cooled by the low-temperature refrigerant side evaporator 12 is guided to the air/liquefied gas heat exchanger 24, where the air in the freezer 26 is cooled by heat exchange using sensible heat.

一方、霜取り運転中は、液化ガス循環ポンプ20が液化
ガスを、霜取用蒸発コイル29と空気・液化ガス熱交換
器24からなる霜取り回路を循環する。
On the other hand, during the defrosting operation, the liquefied gas circulation pump 20 circulates the liquefied gas through the defrosting circuit including the defrosting evaporator coil 29 and the air/liquefied gas heat exchanger 24 .

これにより、液化ガスは加熱された霜取用再蒸発コイル
29内で気化し、そのホットガスが空気・液化ガス熱交
換器24に導かれて凝縮し、霜を取る。
As a result, the liquefied gas is vaporized in the heated re-evaporation coil 29 for defrosting, and the hot gas is led to the air/liquefied gas heat exchanger 24 and condensed to remove defrost.

(実施例) 第1図は1本発明実施例の配管図である。(Example) FIG. 1 is a piping diagram of one embodiment of the present invention.

この実施例は、第2図で示した前記従来例に、本発明に
かかる新規な構成部分を加えたものである。従って、第
2図と同様の部分には、同一符合を付してその説明は省
略する。
This embodiment is obtained by adding a new component according to the present invention to the conventional example shown in FIG. Therefore, the same parts as in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

第1図において、20は液化ガス循環ポンプ、21は冷
却用電磁弁、22は低温部Bの低温冷媒側蒸発器12と
熱の授受を行う受熱器で、これら蒸発器12及び受熱器
22により熱交換器23を構成する。
In FIG. 1, 20 is a liquefied gas circulation pump, 21 is a cooling solenoid valve, and 22 is a heat receiver that exchanges heat with the low-temperature refrigerant side evaporator 12 of the low-temperature section B. A heat exchanger 23 is configured.

熱交換効率を高めるため2重管を使用し、その内側の管
を低温冷媒側蒸発器12となし、2重管の外側部分を受
熱器22とすれば、管壁を通して効率良く熱交換できる
。2重管の代りに、2重態りの細管を大径管内に挿入し
た構造のものを用いてもよい、その場合も低温冷媒は細
い管に流がす、熱交換器23の外周は断熱材で覆い外気
を鑑断する。
If a double tube is used to increase heat exchange efficiency, and the inner tube is used as the low-temperature refrigerant side evaporator 12, and the outer portion of the double tube is used as the heat receiver 22, heat can be efficiently exchanged through the tube wall. Instead of a double pipe, a structure in which a double thin tube is inserted into a large-diameter pipe may be used. In that case, the low-temperature refrigerant flows through the thin pipe, and the outer periphery of the heat exchanger 23 is made of heat insulating material. Cover it with a cloth and check the outside air.

24は空気・液化ガス熱交換器、25は液化ガス受液器
である。
24 is an air/liquefied gas heat exchanger, and 25 is a liquefied gas receiver.

そして、これら各構成要素を順次配管して冷却回路を形
成するとともに、空気・液化ガス熱交換器24を冷凍庫
26内に配置する。
Then, each of these components is sequentially piped to form a cooling circuit, and the air/liquefied gas heat exchanger 24 is placed in the freezer 26.

27は霜取用電磁弁、28は一方向弁、29は蓄熱タン
ク30に埋設した霜取用再蒸発コイル、31は一方向弁
であり、これらを順次直列接続する。そして、これら直
列接続したものを、液化ガス循環ポンプ20の送出側と
、空気・液化ガス熱交換器23の入口側との間に並列接
続し、これらにより霜取回路を形成する。
27 is a defrosting solenoid valve, 28 is a one-way valve, 29 is a defrosting reevaporation coil buried in the heat storage tank 30, and 31 is a one-way valve, which are connected in series in sequence. These serially connected devices are connected in parallel between the delivery side of the liquefied gas circulation pump 20 and the inlet side of the air/liquefied gas heat exchanger 23, thereby forming a defrost circuit.

そして、冷却回路及び霜取回路に二元式冷却器の高温冷
媒と同じ液化ガスR22を充填する。
Then, the cooling circuit and the defrosting circuit are filled with liquefied gas R22, which is the same as the high-temperature refrigerant of the binary cooler.

また、蓄熱タンク30の底部に、蓄熱タンク加熱コイル
32を設け、この蓄熱タンク加熱コイル32を高温部A
の高温冷媒側油分離器2と高温冷媒側凝縮器3との間に
介在する。これにより高温冷媒の凝縮熱の一部を利用し
て、蓄熱タンク30を加熱する。なお、蓄熱タンク30
を加熱する手段は、」−記のコイル32に代えて電気ヒ
ータなどを用いてもよい。
Further, a heat storage tank heating coil 32 is provided at the bottom of the heat storage tank 30, and this heat storage tank heating coil 32 is connected to the high temperature section A.
It is interposed between the oil separator 2 on the high temperature refrigerant side and the condenser 3 on the high temperature refrigerant side. Thereby, the heat storage tank 30 is heated using a part of the heat of condensation of the high-temperature refrigerant. In addition, the heat storage tank 30
As a means for heating the coil 32, an electric heater or the like may be used instead of the coil 32 described in "-".

次に、このように構成する本発明実施例の冷却運転・動
作について説明する。
Next, the cooling operation and operation of the embodiment of the present invention configured as described above will be explained.

冷却運転のときには、高温部Aの高温冷媒側圧縮器l、
および低温部Bの低温冷媒側圧縮器7をそれぞれ運転す
る。また、冷却用電磁弁21を開くとともに、霜取用電
磁弁27を閉じ、液化ガス循環ポンプ20を運転する。
During cooling operation, the high temperature refrigerant side compressor l of the high temperature section A,
and the low-temperature refrigerant side compressor 7 of the low-temperature section B are operated. Further, while opening the cooling solenoid valve 21, the defrosting solenoid valve 27 is closed, and the liquefied gas circulation pump 20 is operated.

これにより、液化ガス受液器25内の液化ガスは、ポン
プ20.@磁弁21、受熱器22.熱交換器24、およ
び受液器25の順に冷却回路を循環する。
As a result, the liquefied gas in the liquefied gas receiver 25 is transferred to the pump 20. @ Solenoid valve 21, heat receiver 22. The heat exchanger 24 and the liquid receiver 25 are circulated through the cooling circuit in this order.

従って、この液化ガスは、熱交換器23を構成する受熱
器22で一60℃以下に冷却されたのち空気・液化ガス
熱交換器24において空気と熱交換が行われて冷凍庫2
6内を冷却する。なお、この冷j□は液化ガスの顕然で
行われるため、液化ガスはノに発しない。
Therefore, this liquefied gas is cooled down to -60°C or less in the heat receiver 22 constituting the heat exchanger 23, and then heat exchanged with air in the air/liquefied gas heat exchanger 24, and then transferred to the freezer 2.
6. Cool the inside. Note that since this cooling is performed with the liquefied gas present, the liquefied gas is not emitted.

この冷却運転期間中は、高温部Aの高温冷媒側圧li1
機lで圧縮された冷媒が、蓄熱タンク加熱コイル32に
おいて凝縮する際に、蓄熱タンク30を暖める。
During this cooling operation period, the high temperature refrigerant side pressure li1 of the high temperature section A is
When the refrigerant compressed in the heat storage tank 1 condenses in the heat storage tank heating coil 32, the heat storage tank 30 is warmed.

次に、霜取り運転の場合について説明する。Next, the case of defrosting operation will be explained.

この霜取り運転のときには、高温部Aの高温冷媒側圧m
mi、および低温部Bの低温冷媒側圧縮!j17の運転
をそれぞれ停止する。そして、冷却運転の場合とは逆に
、冷却用電磁弁21を閉じて霜取用電磁弁27を開き、
液化ガス循環ポンプ20は運転を続ける。
During this defrosting operation, the high temperature refrigerant side pressure m of the high temperature section A is
mi, and compression on the low temperature refrigerant side of low temperature section B! Stop the operation of each j17. Then, contrary to the cooling operation, the cooling solenoid valve 21 is closed and the defrosting solenoid valve 27 is opened.
The liquefied gas circulation pump 20 continues to operate.

これにより、液化ガス受液器25内の液化ガスは、ポン
プ20、電磁弁27.一方向弁28、コイル29、一方
向弁31.熱交換1124、および受液器25の順に、
霜取回路を循環する。
As a result, the liquefied gas in the liquefied gas receiver 25 is transferred to the pump 20, the solenoid valve 27. One-way valve 28, coil 29, one-way valve 31. In this order, the heat exchanger 1124 and the liquid receiver 25,
Circulate through the defrost circuit.

ここで液化ガスは、霜取用再蒸発コイル29を通過する
際に蓄熱タンク30より暖められて気化し、このホント
ガスは空気・液化ガス熱交換器24を通過する際に凝縮
して液化するので、その凝縮熱で空気・液化ガス熱交換
器24の表面に付着する霜を溶かす。
Here, the liquefied gas is heated by the heat storage tank 30 and vaporized when passing through the defrosting re-evaporation coil 29, and this real gas is condensed and liquefied when passing through the air/liquefied gas heat exchanger 24. Therefore, the condensation heat melts the frost adhering to the surface of the air/liquefied gas heat exchanger 24.

このような循環サイクルを繰り返しているうちに、空気
・液化ガス熱交換器24の温度が徐々に上背してくるの
で、その温度がおよそ20℃位に達して除′111が終
了すると、これを検出して属地り運転からね却運転に自
動的に切換わる。
As this circulation cycle is repeated, the temperature of the air/liquefied gas heat exchanger 24 gradually rises, so when the temperature reaches approximately 20°C and the removal '111 is completed, this The system detects this and automatically switches from on-the-spot driving to neglecting driving.

(発明の効果) 以にのように本発明では、熱伝導のすぐれた液体状の液
化ガスを低温部の蒸発器で冷却し、この冷却した液化ガ
スを空気・液化ガス熱交換器に導き、顕熱による熱交換
により冷凍庫内の空気を冷却するようにした。
(Effects of the Invention) As described above, in the present invention, a liquid liquefied gas with excellent heat conduction is cooled in an evaporator in a low temperature section, and this cooled liquefied gas is guided to an air/liquefied gas heat exchanger. The air inside the freezer is cooled by heat exchange using sensible heat.

従って、本発明では、空気・液化ガス熱交換器における
単位面積あたりの冷却効率を向上できるとともに、熱交
換器の構造が簡易かつその機械的強度が小さくてもよい
という利点がある。
Therefore, the present invention has the advantage that the cooling efficiency per unit area of the air/liquefied gas heat exchanger can be improved, and that the structure of the heat exchanger is simple and its mechanical strength may be small.

また、未発明では、霜取用再蒸発コイルに液化ガスを供
給して気化し、このホットガスを着霜した空気・液化ガ
ス熱交換器に導いて凝縮させ、霜を取る。
Further, in the uninvention, liquefied gas is supplied to a defrosting re-evaporation coil to be vaporized, and this hot gas is guided to a frosted air/liquefied gas heat exchanger to be condensed and defrosted.

従って、本発明では、ホットガス方式により着霜したコ
イルの内部から加熱するので冷凍庫内の温度上昇が少な
く、しかも短時間で霜を取ることができ、冷凍効率及び
除霜効率が格段に向上する。
Therefore, in the present invention, since the frosted coil is heated from inside using the hot gas method, the temperature rise inside the freezer is small, and moreover, the frost can be removed in a short time, and the freezing efficiency and defrosting efficiency are significantly improved. .

(応用例) 本発明は、液化天然ガスのガス化に伴う冷却能力を利用
した冷凍機の霜取り装置にも応用できる。
(Application example) The present invention can also be applied to a defrosting device for a refrigerator that utilizes the cooling capacity associated with the gasification of liquefied natural gas.

この場合は、−100℃近い液化天然ガスを蒸発器に供
給してガス化したうえで送出するが、蒸発器に外気が触
れて霜を生ずるので、この蒸発器を前記実施例の低温冷
媒側蒸発器と同様に受熱器に熱交換可能に連結し、この
受熱器に接続する空気・液化ガス熱交換器により外気を
冷却するよう構成する。
In this case, liquefied natural gas close to -100°C is supplied to the evaporator, gasified, and then sent out. However, since the outside air comes into contact with the evaporator and causes frost, this evaporator is connected to the low-temperature refrigerant side of the above example. Like the evaporator, it is connected to a heat receiver for heat exchange, and is configured to cool outside air by an air/liquefied gas heat exchanger connected to the heat receiver.

そうすることにより、前記実施例と同様に着霜峙には、
空気・液化ガス熱交換器にホットガスを供給して除霜で
き、液化天然ガスの蒸発器を外側からヒータ等で加熱除
霜する方法に比較し、冷凍庫の温度上昇が少なく極低温
を良く維持することができる。
By doing so, similarly to the above embodiment, frost formation can be prevented by
Defrosting can be done by supplying hot gas to the air/liquefied gas heat exchanger, and compared to the method of heating and defrosting the liquefied natural gas evaporator from the outside with a heater, the temperature rise in the freezer is small and extremely low temperatures are maintained well. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図本発明実施例の配管図、第2図は従来装置の配管
図である。 A・・・高温部、B・・・低温部、 6・・・高温冷媒側蒸発器、 9・・・低温冷媒側凝縮器、 12・・・低温冷奴側蒸発器、 20・・・液化ガス循環ポンプ、 21・・・冷却用電磁弁、22・・・受熱器、24・・
・空気・液化ガス熱交換器、 25・・・液化ガス受液器、26・・・冷凍庫。 27・・・霜取用電磁弁。 29・・・霜取用再蒸発コイル、 30・・・蓄熱タンク。
FIG. 1 is a piping diagram of an embodiment of the present invention, and FIG. 2 is a piping diagram of a conventional device. A... High temperature section, B... Low temperature section, 6... High temperature refrigerant side evaporator, 9... Low temperature refrigerant side condenser, 12... Low temperature cold tofu side evaporator, 20... Liquefied gas Circulation pump, 21... Solenoid valve for cooling, 22... Heat receiver, 24...
・Air/liquefied gas heat exchanger, 25...Liquefied gas receiver, 26...Freezer. 27... Solenoid valve for defrosting. 29...Re-evaporation coil for defrosting, 30... Heat storage tank.

Claims (1)

【特許請求の範囲】 臨界温度が高い高温冷媒と低い低温冷媒を用いる二元式
極低温冷凍機において、 低温冷媒側蒸発器に受熱器を熱交換可能に連結し、そし
て液化ガス循環ポンプの送出側を、前記受熱器の入口と
霜取用再蒸発コイルの入口とに切替可能に接続して前記
低温冷媒よりも臨界温度の高い液化ガスを供給し、受熱
器の出口は、霜取用再蒸発コイルの出口と共に空気・液
化ガス熱交換器の入口に接続し、また、前記空気・液化
ガス熱交換器の出口は、液化ガス受液器を経て前記液化
ガス循環ポンプの吸入側に接続し、 しかして前記霜取用再蒸発コイルには加熱手段を付設し
て成る霜取り装置。
[Scope of Claims] In a binary cryogenic refrigerator using a high-temperature refrigerant with a high critical temperature and a low-temperature refrigerant with a low critical temperature, a heat receiver is connected to an evaporator on the low-temperature refrigerant side for heat exchange, and a liquefied gas circulation pump is provided. The side of the heat receiver is switchably connected to the inlet of the heat receiver and the inlet of the re-evaporation coil for defrosting to supply liquefied gas having a higher critical temperature than the low-temperature refrigerant, and the outlet of the heat receiver is connected to the inlet of the re-evaporation coil for defrosting. The outlet of the evaporator coil is connected to the inlet of the air/liquefied gas heat exchanger, and the outlet of the air/liquefied gas heat exchanger is connected to the suction side of the liquefied gas circulation pump via the liquefied gas receiver. , The defrosting device comprises a heating means attached to the defrosting re-evaporation coil.
JP19340189A 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator Expired - Fee Related JPH0737867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19340189A JPH0737867B2 (en) 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19340189A JPH0737867B2 (en) 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH0359369A true JPH0359369A (en) 1991-03-14
JPH0737867B2 JPH0737867B2 (en) 1995-04-26

Family

ID=16307336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19340189A Expired - Fee Related JPH0737867B2 (en) 1989-07-26 1989-07-26 Defroster for dual cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH0737867B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048661A (en) * 2001-12-12 2003-06-25 엘지이노텍 주식회사 Cooling apparatus for semiconductor chip
KR100846409B1 (en) * 2005-12-13 2008-07-16 후지쯔 가부시끼가이샤 Electronic apparatus including removable dust catcher
JP2010181093A (en) * 2009-02-05 2010-08-19 Toyo Eng Works Ltd Defrosting device in carbon dioxide circulation cooling system
CN104075486A (en) * 2013-03-26 2014-10-01 株式会社信佑综合能量 Apparatus for dual heat pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048661A (en) * 2001-12-12 2003-06-25 엘지이노텍 주식회사 Cooling apparatus for semiconductor chip
KR100846409B1 (en) * 2005-12-13 2008-07-16 후지쯔 가부시끼가이샤 Electronic apparatus including removable dust catcher
JP2010181093A (en) * 2009-02-05 2010-08-19 Toyo Eng Works Ltd Defrosting device in carbon dioxide circulation cooling system
CN104075486A (en) * 2013-03-26 2014-10-01 株式会社信佑综合能量 Apparatus for dual heat pump
CN104075486B (en) * 2013-03-26 2018-02-23 株式会社信佑综合能量 Binary heat pump assembly

Also Published As

Publication number Publication date
JPH0737867B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
JP5934257B2 (en) Flash (frost) defrost system
KR20010037714A (en) Refrigeration system of refrigerator with two evaporators
JP5261066B2 (en) Refrigerator and refrigerator
US4176526A (en) Refrigeration system having quick defrost and re-cool
KR100669257B1 (en) Apparatus and method for freeze-drying using heat pump system
JPH0359369A (en) Defrosting device in two-dimensional cryogenic refrigerator
KR20210108186A (en) Refrigerator System for both refrigeration and freezing
KR102123354B1 (en) Vacuum-freeze drying system using heat storage
JP2004324902A (en) Freezing refrigerator
JP2007051788A (en) Refrigerating device
RU2708761C1 (en) Refrigerating and/or freezing device
KR102382796B1 (en) Brine indirect cooling system for freezing chamber and refrigerating chamber
KR20150054092A (en) The defrost system for a cold storage wairhouse
CN210892383U (en) Double-evaporator experimental type freeze dryer defrosting system
KR0182726B1 (en) Defrosting apparatus for independent refrigerating type refrigerator
KR20120047009A (en) A defroster of refrigeration cycle
KR200399136Y1 (en) Refrigeration and freezer through the release of liquid refrigerant air
KR0136083Y1 (en) Refrigeration cycle apparatus
KR102411307B1 (en) A dual refrigeration device for low-temperature storage of pharmaceuticals.
KR102101393B1 (en) Combined cold-hot heat storage system
CN214841905U (en) Refrigerator with cold and warm dual-purpose function
CN218544877U (en) Carbon dioxide refrigerating and heating and negative-pressure defrosting water recovery integrated system of freeze dryer
JPH10311614A (en) Heat storage type cooling device
CN110849040B (en) Heat exchanger assembly of refrigerator and refrigerator with same
KR100442500B1 (en) Refrigerating cycle system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees