JP2002019017A - Copper foil with resin for laser beam boring and its production method - Google Patents

Copper foil with resin for laser beam boring and its production method

Info

Publication number
JP2002019017A
JP2002019017A JP2000210871A JP2000210871A JP2002019017A JP 2002019017 A JP2002019017 A JP 2002019017A JP 2000210871 A JP2000210871 A JP 2000210871A JP 2000210871 A JP2000210871 A JP 2000210871A JP 2002019017 A JP2002019017 A JP 2002019017A
Authority
JP
Japan
Prior art keywords
copper foil
resin
laser
manganese
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000210871A
Other languages
Japanese (ja)
Inventor
Yoji Mine
洋二 峯
Kentaro Yano
健太郎 矢野
Koji Sato
光司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000210871A priority Critical patent/JP2002019017A/en
Publication of JP2002019017A publication Critical patent/JP2002019017A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide copper foil with a resin capable of laser beam boring in order to enable the adoption of a copper direct method which can use a conventional infrastructure directly and reduce costs by cutting a process and a method for producing the copper foil. SOLUTION: In the copper foil with the resin for laser beam boring, a surface layer of manganese and/or a manganese alloy is formed on the surface on the laser beam irradiation side of the copper foil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザ穴あけ加工用
樹脂付き銅箔及びその製造方法に関する。
The present invention relates to a resin-coated copper foil for laser drilling and a method for producing the same.

【0002】[0002]

【従来の技術】携帯電話等の情報関連電子機器が急速に
普及している。特に、携帯電話の小型・軽量化、多機能
化が進むに伴い、それに使われるプリント配線板におい
ても高密度化が求められている。また、効率よく配線の
高密度化を行なうには、ビルドアップ基板が必須となっ
ている。
2. Description of the Related Art Information-related electronic devices such as mobile phones are rapidly spreading. In particular, as mobile phones have become smaller, lighter, and more multifunctional, printed wiring boards used therein have been required to have higher densities. In addition, a build-up substrate is indispensable for efficiently increasing the wiring density.

【0003】ビルドアップ基板の製造方法の一つとし
て、従来の積層プレス型のサブトラクティブ法を用いて
製造できる樹脂付き銅箔法がある。このビルドアップ基
板の製造方法としては、両面銅張積層板等を用いて、導
体層に配線パターンを形成し、内層とするか、複数枚を
絶縁層を挟んで積み重ね、内層とし、樹脂付き銅箔の銅
箔側が最表面になるように挟み、積層プレスを行なう。
または、内層には予め積層プレスされ、スルーホールメ
ッキを設けたものを樹脂付き銅箔で挟んで積層プレスす
る。積層された基板は内層への信号取り込みのためのス
ルーホール及びビアホールを形成して、電気的な接続が
行われる。このときのビアホール形成には樹脂付き銅箔
部分のレーザ加工が適用されており、設備価格が低く、
加工速度の速い炭酸ガスレーザが主流となっている。
As one method of manufacturing a build-up substrate, there is a resin-attached copper foil method which can be manufactured by using a conventional laminated press type subtractive method. As a method of manufacturing this build-up substrate, a wiring pattern is formed on a conductor layer using a double-sided copper-clad laminate or the like, and the inner layer is formed, or a plurality of sheets are stacked with an insulating layer interposed therebetween, and the inner layer is formed. The foil is sandwiched so that the copper foil side is the outermost surface, and a laminating press is performed.
Alternatively, the inner layer is subjected to laminating press in advance, and the one provided with through-hole plating is sandwiched between resin-coated copper foils and subjected to laminating press. The laminated substrate forms a through hole and a via hole for taking in a signal to an inner layer, and is electrically connected. Laser processing of the copper foil with resin is applied to the via hole formation at this time, the equipment price is low,
A carbon dioxide laser having a high processing speed is mainly used.

【0004】上述の炭酸ガスレーザを用いる工法として
は、大別してコンフォーマルマスク法と銅ダイレクト法
に分類できる。コンフォーマルマスク法は、ビア形成部
分の銅箔を予めエッチングにて除去し、残った銅箔部分
をマスクとし、レーザ加工を行なうもので、レーザ径を
大きくすることで、エネルギーの強いところで使用でき
るため、一般的に採用されている。しかしながら、銅箔
開口部周辺の樹脂部には熱がかかり、銅箔部分がオーバ
ーハングになって、穴断面が樽形となる傾向にあるた
め、その後工程の銅メッキ処理でメッキが均一に回ら
ず、導通不良を起こしたり、位置ずれを起こしたりする
という問題がある。それに加えて、エッチングによる開
口部の検査等が困難であり、エッチングによる銅箔開口
工程はコストアップ要因の一つである。
The above-mentioned methods using a carbon dioxide laser can be roughly classified into a conformal mask method and a copper direct method. In the conformal mask method, the copper foil in the via forming portion is removed in advance by etching, and the remaining copper foil portion is used as a mask and laser processing is performed. By increasing the laser diameter, it can be used in a place where the energy is strong. Therefore, it is generally adopted. However, heat is applied to the resin portion around the copper foil opening, and the copper foil portion tends to overhang and the hole cross section tends to be barrel-shaped. However, there is a problem that a conduction failure occurs and a position shift occurs. In addition, it is difficult to inspect the opening by etching and the like, and the copper foil opening step by etching is one of the factors for increasing the cost.

【0005】一方、銅ダイレクト法は銅箔と樹脂を一括
してレーザ穴あけするもので、銅箔開口の工程を削減で
き、プロセスの簡略化が図れる。この方法では、銅に炭
酸ガスレーザを直接照射し、穴あけ加工を行なわなけれ
ばならないが、銅の炭酸ガスレーザ波長域(10.6μm)で
の吸収率は極めて低く、穴あけ加工が困難である。そこ
で、例えば、特開平10-190236号にはレーザ吸収率を高
める処理として、レーザ感度の高い材料層の形成や着色
を考慮した結果、金属酸化物が好ましく、特にCuOXが好
適であることが開示されている。しかしながら、酸化物
層が表面にあるとメッキののりが悪かったり、絶縁層を
形成することになるため、実用的ではない。
On the other hand, in the copper direct method, a copper foil and a resin are collectively laser-drilled, so that the copper foil opening process can be reduced and the process can be simplified. In this method, copper must be directly irradiated with a carbon dioxide gas laser to perform drilling. However, the absorption rate of copper in the carbon dioxide laser wavelength region (10.6 μm) is extremely low, and drilling is difficult. Therefore, for example, Japanese Patent Application Laid-Open No. 10-190236 discloses that as a process for increasing the laser absorptivity, as a result of considering the formation and coloring of a material layer having high laser sensitivity, metal oxides are preferred, and CuO X is particularly preferred. It has been disclosed. However, if the oxide layer is on the surface, the plating will be poor and the insulating layer will be formed, which is not practical.

【0006】また、銅箔表面に黒化処理等の、適当な表
面粗さを付与する処理を施し、銅箔表面で多重反射を起
こさせ、吸収率を高める策が採られているが、銅箔を貫
通させるまでの熱を吸収する前に、表面の凹凸層が溶
融、消滅してしまい、吸収率向上の効果も期待できな
い。本発明者等の検討によれば、上述の表面粗さを付与
する黒化処理等の方法では、銅箔表面でレーザを吸収
し、表面の凹凸層が溶融した段階で、その効果はなくな
ってしまい、貫通できる銅箔の厚さが制限されてしまう
ことを確認した。
[0006] In addition, a measure is taken to increase the absorptivity by subjecting the copper foil surface to a treatment for imparting an appropriate surface roughness such as a blackening treatment to cause multiple reflection on the copper foil surface. Before absorbing the heat until the foil penetrates, the uneven layer on the surface melts and disappears, and the effect of improving the absorption rate cannot be expected. According to the study of the present inventors, in the method such as the blackening treatment for imparting the surface roughness described above, the laser is absorbed on the surface of the copper foil, and at the stage where the uneven layer on the surface is melted, the effect is lost. It was confirmed that the thickness of the copper foil that could be penetrated was limited.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者等
は、従来用いられているインフラをそのまま利用でき、
且つ樹脂付き銅箔の炭酸ガスレーザによる直接穴あけ加
工が可能となるような処理について鋭意検討を行なった
結果、銅箔のレーザ照射側の表面に本質的に銅よりもレ
ーザ吸収率の高い金属や合金でなる特別な層を形成させ
ることで、貫通できる銅箔の厚さを実用的なレベルまで
することができることを知見した。本発明の目的は、こ
れまでのインフラをそのまま使用でき、且つ工程削減に
よりコストダウンが図れる銅ダイレクト法の採用を可能
にするため、レーザ穴あけ加工が可能な樹脂付き銅箔及
びその製造方法を提供することにある。
Therefore, the present inventors can use the conventional infrastructure as it is,
In addition, as a result of intensive studies on the processing that allows direct drilling of copper foil with resin using a carbon dioxide laser, metals and alloys that have a higher laser absorption rate than copper on the laser irradiation side surface of the copper foil It has been found that the thickness of the copper foil that can be penetrated can be reduced to a practical level by forming a special layer consisting of An object of the present invention is to provide a resin-coated copper foil capable of laser drilling and a method of manufacturing the same in order to enable the adoption of a copper direct method that can use the existing infrastructure as it is and reduce costs by reducing the number of processes. Is to do.

【0008】[0008]

【問題を解決するための手段】本発明は上述した問題に
鑑みてなされたものであって、本発明の重要な特徴は銅
箔表面にマンガンまたはマンガン合金の何れか若しくは
両方でなる表面層を形成させることにある。即ち本発明
は、銅箔のレーザ照射側の表面にマンガンまたはマンガ
ン合金の何れか若しくは両方でなる表面層が形成されて
いるレーザ穴あけ加工用樹脂付き銅箔である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an important feature of the present invention is that a surface layer made of one or both of manganese and a manganese alloy is provided on a copper foil surface. To be formed. That is, the present invention is a resin-coated copper foil for laser drilling in which a surface layer made of one or both of manganese and a manganese alloy is formed on the surface of the copper foil on the laser irradiation side.

【0009】好ましくは、表面層の厚さが0.05μm〜3.
0μmであるレーザ穴あけ加工用樹脂付き銅箔である。
また本発明は、銅箔の表面に蒸着法によりマンガン層ま
たはマンガン合金層を形成させる工程を有するレーザ穴
あけ加工用樹脂付き銅箔の製造方法である。
Preferably, the thickness of the surface layer is 0.05 μm to 3.
This is a resin-coated copper foil having a diameter of 0 μm for laser drilling.
Further, the present invention is a method for producing a resin-coated copper foil for laser drilling, which comprises a step of forming a manganese layer or a manganese alloy layer on the surface of the copper foil by a vapor deposition method.

【0010】[0010]

【発明の実施の形態】以下に詳しく本発明を説明する。
上述のように本発明の重要な特徴は、銅箔表面にマンガ
ンまたはマンガン合金の何れか若しくは両方でなる表面
層を形成させることにある。マンガンは金属の中で電気
抵抗率が最も高く、マンガンまたはマンガン合金の何れ
か若しくは両方でなる表面層はレーザの吸収率が銅の約
10倍高い。このマンガンまたはマンガン合金の何れか若
しくは両方でなる表面層を形成させることで、表面層で
レーザを吸収し、熱伝導によって直下の銅を溶融・蒸発
させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below.
As described above, an important feature of the present invention is to form a surface layer made of one or both of manganese and a manganese alloy on a copper foil surface. Manganese has the highest electrical resistivity among metals, and the surface layer made of manganese or manganese alloy or both has a laser absorptivity that is about the same as copper.
10 times higher. By forming a surface layer made of one or both of manganese and a manganese alloy, laser can be absorbed by the surface layer, and copper beneath can be melted and evaporated by heat conduction.

【0011】そして、表面層の融点が銅の沸点である28
55Kよりも高い場合、銅の沸点に達しても、表面層は固
相のままで、蒸発が上手くいかず、銅箔を貫通できなか
ったり、穴形状が歪になったりする。そのため、金属ま
たは合金の何れか若しくは両方でなる表面層にはその融
点が銅の沸点である2855K以下のものを選択する必要が
ある。さらに、レーザ穴あけ加工の際のスプラッシュの
発生を抑制することを考えると、表面層の融点は銅の融
点より高い方が望ましい。すなわち、1356K以上が良
く、マンガンの融点は1517Kであり、表面層として好適
である。
The melting point of the surface layer is the boiling point of copper.
When the temperature is higher than 55K, even when the boiling point of copper is reached, the surface layer remains in a solid phase, the evaporation does not work well, the copper foil cannot be penetrated, or the hole shape becomes distorted. Therefore, it is necessary to select a surface layer made of one or both of a metal and an alloy having a melting point of 2855 K or less, which is the boiling point of copper. Further, considering the suppression of splash during laser drilling, it is desirable that the melting point of the surface layer be higher than the melting point of copper. That is, the melting point of manganese is 1356K or more and the melting point of manganese is 1517K, which is suitable as a surface layer.

【0012】以上のような理由から、銅箔の表面にマン
ガンまたはマンガン合金の何れか若しくは両方でなる表
面層を形成させることで、表面層でのレーザ吸収率を向
上させ、熱伝導により直下の銅を溶融・蒸発させて銅箔
を貫通させることができる。そのため、オーバーハング
による穴断面が樽形となるのを抑制し、その後工程の銅
メッキ処理でメッキが均一に回らず、導通不良を起こし
たり、位置ずれを起こしたりするという問題を抑制でき
る。なお、マンガン合金とはマンガンと銅の合金(固溶
体)でも良いし、原子%においてマンガンを主体(50%以
上)とし、別の元素を含むようなものでも良い。
For the above reasons, by forming a surface layer made of one or both of manganese and a manganese alloy on the surface of the copper foil, the laser absorptance in the surface layer is improved, and the heat conduction causes the laser layer to be directly underneath. Copper can be melted and evaporated to penetrate the copper foil. For this reason, it is possible to suppress the hole cross section due to the overhang from becoming barrel-shaped, and to suppress the problem that the plating does not turn uniformly in the subsequent copper plating process, causing a conduction failure or a displacement. Note that the manganese alloy may be an alloy of manganese and copper (solid solution), or may be an alloy mainly containing manganese (50% or more) in atomic% and containing another element.

【0013】また本発明では上述の表面層の厚さは薄す
ぎると、表面層がレーザを吸収し、銅箔へ熱拡散する前
に表面層が溶融・蒸発を起こし、銅箔を貫通するに十分
な温度上昇がないまま、表面層がなくなってしまい、本
発明の効果が失われる場合がある。このため表面層の厚
さは、0.05μm以上が望ましい。一方、表面層の厚さが
厚すぎると、後工程の処理や電気伝導性に悪影響を及ぼ
す。銅箔は穴あけ加工を施し、ビアとした後、配線パタ
ーンをエッチングにより形成するが、この際、表面層の
厚さが厚いと、表面層と銅のエッチング速度の差により
精密なパターンニングができ難い。具体的には、表面層
の厚さが3.0μmより大きいと、エッチング精度が著し
く悪くなる場合がある。また、穴あけ加工の後、予め表
面層を選択エッチングにより除去し、配線パターンを形
成しても良いが、選択エッチングを行なうにしても除去
する表面層の厚みは薄いほうが好ましい。従って、表面
層の厚さは0.05μm〜3.0μmが望ましく、更に好まし
くは、0.1μm〜1.5μmが好適な厚さである。
In the present invention, if the thickness of the above-mentioned surface layer is too small, the surface layer absorbs laser light and melts and evaporates before being thermally diffused into the copper foil. Without a sufficient temperature rise, the surface layer may disappear and the effect of the present invention may be lost. Therefore, the thickness of the surface layer is desirably 0.05 μm or more. On the other hand, if the thickness of the surface layer is too large, it adversely affects the treatment in the subsequent step and the electric conductivity. The copper foil is made by drilling and forming vias, and then the wiring pattern is formed by etching.In this case, if the surface layer is thick, precise patterning can be performed due to the difference in etching rate between the surface layer and copper. hard. Specifically, when the thickness of the surface layer is larger than 3.0 μm, the etching accuracy may be significantly deteriorated. Further, after drilling, the surface layer may be removed by selective etching in advance to form a wiring pattern. However, even if selective etching is performed, the thickness of the removed surface layer is preferably smaller. Therefore, the thickness of the surface layer is preferably 0.05 μm to 3.0 μm, and more preferably 0.1 μm to 1.5 μm.

【0014】ところで、レーザ穴あけ加工と上述の配線
パターンエッチングを考慮すると、本発明に用いる銅箔
はその厚さが、18μm以下のものが好ましく、更に好ま
しくは12μm以下が望ましい。また、銅箔のキャリアな
しのハンドリングを考えると、9μm以上が好ましい
が、キャリア付き銅箔として、キャリアとの間にマンガ
ン層またはマンガン合金層を形成させても良い。これを
転写させることで、レーザ照射面側に上述のマンガンま
たはマンガン合金を主体とする表面層を形成できる。な
お、本発明でいうレーザとは、その波長が0.6μm以上
のものが良く、YAGレーザや炭酸ガスレーザ等が好適で
ある。特に銅の炭酸ガスレーザ吸収率は極めて低いため
有効である。
In consideration of laser drilling and the above-described wiring pattern etching, the copper foil used in the present invention preferably has a thickness of 18 μm or less, more preferably 12 μm or less. Also, considering handling of a copper foil without a carrier, the thickness is preferably 9 μm or more. However, a manganese layer or a manganese alloy layer may be formed between the carrier and the copper foil with a carrier. By transferring this, a surface layer mainly composed of the above-mentioned manganese or manganese alloy can be formed on the laser irradiation surface side. The laser in the present invention preferably has a wavelength of 0.6 μm or more, and is preferably a YAG laser, a carbon dioxide laser or the like. In particular, copper is effective because the carbon dioxide laser absorption rate is extremely low.

【0015】次に、本発明の製造方法について説明す
る。先ず、銅箔表面にマンガン層またはマンガン合金層
を形成させる方法としては、物理蒸着法や、化学蒸着法
などの蒸着法で形成すると良い。この蒸着法としては、
例えば真空蒸着法、メッキ法、イオンプレーティング
法、スパッタリング法、CVD法等が挙げられるが、真空
蒸着法、イオンプレーティング法、スパッタリング法な
どの物理蒸着法は薄膜の制御が容易で、銅箔温度を比較
的低温に保てるため適している。特に、真空蒸着法は成
膜速度が速く、大量生産に向いており、多くの金属の成
膜に適用できるため、好適である。
Next, the manufacturing method of the present invention will be described. First, as a method for forming a manganese layer or a manganese alloy layer on the surface of a copper foil, it is preferable to form the layer by a physical vapor deposition method or a vapor deposition method such as a chemical vapor deposition method. As this vapor deposition method,
For example, a vacuum evaporation method, a plating method, an ion plating method, a sputtering method, a CVD method and the like can be mentioned, and a physical evaporation method such as a vacuum evaporation method, an ion plating method, and a sputtering method can easily control a thin film, and a copper foil can be used. Suitable for keeping the temperature relatively low. In particular, the vacuum evaporation method is suitable because it has a high film formation rate and is suitable for mass production and can be applied to film formation of many metals.

【0016】レーザ穴あけ加工を行なった後、表面層を
残したまま配線パターン形成のエッチング工程を行なっ
ても良いが、表面層の金属または合金と銅とのエッチン
グ速度が大きく異なり、精細なパターンニングができな
い場合がある。そのため、表面の金属または合金層をレ
ーザ穴あけ加工後、選択エッチングで除去し、配線パタ
ーンニングのためのエッチング工程を行なうと良い。
After the laser drilling process, an etching step for forming a wiring pattern may be performed while the surface layer is left. However, the etching rate of the metal or alloy on the surface layer differs greatly from copper, and fine patterning is performed. May not be possible. Therefore, the metal or alloy layer on the surface is preferably removed by selective etching after laser drilling, and an etching step for wiring patterning is performed.

【0017】[0017]

【実施例】以下、本発明を更に詳細に実施例を用いて説
明する。先ず、厚さ12μmの電解銅箔(1)のレーザ照射
側の表面となるシャイニー面側に、蒸着法として、スパ
ッタリング法により成膜速度0.5nm/secでマンガン層を
膜厚0.1μm、0.5μm、1.0μm、1.5μmとなるように
成膜し、表面層(2)を形成し、樹脂付き銅箔の素材とな
る銅とマンガンの積層体を得た。この積層体のマット面
側にエポキシ系樹脂(3)を付着させ、レーザ穴あけ加工
用樹脂付き銅箔(4)とした。この時の断面模式図を図1
として示す。次に、上述の樹脂付き銅箔を用いて170℃
×60min、300MPaの条件で積層ホットプレスを行いビル
ドアップ基板とした。
The present invention will be described in more detail with reference to the following examples. First, a manganese layer having a film thickness of 0.1 μm and 0.5 μm was formed on a shiny surface side, which is a laser irradiation side surface of a 12 μm thick electrolytic copper foil (1), by a sputtering method at a film formation rate of 0.5 nm / sec. , 1.0 μm, and 1.5 μm, to form a surface layer (2), thereby obtaining a laminate of copper and manganese as a material for a copper foil with resin. An epoxy resin (3) was adhered to the mat side of this laminate to obtain a copper foil (4) with a resin for laser drilling. FIG. 1 is a schematic sectional view at this time.
As shown. Next, using the above-mentioned resin-coated copper foil at 170 ° C.
Lamination hot pressing was performed under the conditions of × 60 min and 300 MPa to obtain a build-up substrate.

【0018】表面層の膜厚は断面の走査電子顕微鏡観察
により測定し、物質の同定は微小部エックス線回折とED
S定量分析により行なった。レーザ照射条件は炭酸ガス
レーザ(波長10.6μm)を用いて、直径100μmの穴を形
成した。レーザ加工性は穴のあきかたを定性的に評価
し、比較例として記す黒化処理した銅箔のものを基準と
した。穴の形状は断面を走査電子顕微鏡で観察した。穴
断面観察の結果、すべての試料においてオーバーハング
もなく、正常な穴形状を呈しており、レーザ加工性は良
好である。
The film thickness of the surface layer is measured by observing the cross section with a scanning electron microscope, and the substance is identified by microscopic X-ray diffraction and ED.
It was performed by S quantitative analysis. Laser irradiation conditions were such that a hole having a diameter of 100 μm was formed using a carbon dioxide laser (wavelength: 10.6 μm). The laser workability was qualitatively evaluated for the way the holes were made, and the blackened copper foil described as a comparative example was used as a reference. The cross section of the hole shape was observed with a scanning electron microscope. As a result of the hole cross-section observation, all the samples exhibited no overhang, exhibited a normal hole shape, and had good laser workability.

【0019】比較例として、表面処理をしていない樹脂
付き銅箔と表面に黒化処理を施したものを用いてビルド
アップ基板を作製した。共に銅箔を貫通させるために
は、大パワーのレーザが必要となり、その場合オーバー
ハングは大きく、レーザ加工性は劣る。特に表面処理を
していないビルドアップ基板ではオーバーハングが著し
く大きいことを確認した。
As a comparative example, a build-up substrate was manufactured using a resin-coated copper foil that had not been subjected to a surface treatment and a material that had undergone a blackening treatment on the surface. In order for both to penetrate the copper foil, a high-power laser is required, in which case the overhang is large and the laser workability is poor. In particular, it was confirmed that the overhang was remarkably large in the build-up substrate not subjected to the surface treatment.

【0020】以上のように、本発明の樹脂付き銅箔は、
レーザ加工性に優れているので、レーザ照射により直接
レーザ穴あけする、銅ダイレクト法に好適であることを
確認した。
As described above, the resin-coated copper foil of the present invention
Because of its excellent laser workability, it was confirmed that it was suitable for the copper direct method in which laser drilling was performed directly by laser irradiation.

【0021】[0021]

【発明の効果】本発明によれば、レーザ穴あけ加工が可
能な樹脂付き銅箔とその製造方法を提供することによ
り、これまでのインフラをそのまま使用でき、且つ工程
削減によりコストダウンが図れる銅ダイレクト法の採用
が可能となる。
According to the present invention, by providing a resin-coated copper foil capable of laser drilling and a method of manufacturing the same, it is possible to use the conventional infrastructure as it is and to reduce the cost by reducing the number of steps. Adoption of the law becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のレーザ穴あけ加工用樹脂付き銅箔の一
例を示す断面模式図である。
FIG. 1 is a schematic sectional view showing an example of a copper foil with resin for laser drilling according to the present invention.

【符号の説明】[Explanation of symbols]

1.銅箔、2.表面層、3.樹脂、4.レーザ穴あけ加
工用樹脂付き銅箔
1. 1. copper foil; 2. surface layer; Resin, 4. Copper foil with resin for laser drilling

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E351 AA01 BB01 BB23 BB24 BB32 BB35 BB49 CC01 DD04 DD18 DD21 GG01 4F100 AB14B AB14C AB17A AB31B AB31C AB33A AK01D AK53 AT00D BA04 BA07 BA10B EH66B EH66C GB43 JL01 JL02 4K029 AA02 BA02 BA21 BD03 CA05 DC03 DC04 GA03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E351 AA01 BB01 BB23 BB24 BB32 BB35 BB49 CC01 DD04 DD18 DD21 GG01 4F100 AB14B AB14C AB17A AB31B AB31C AB33A AK01D AK53 AT00D BA04 BA07 BA10B EH66B EH66A0203 DC04 GA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅箔のレーザ照射側の表面にマンガンま
たはマンガン合金の何れか若しくは両方でなる表面層が
形成されていることを特徴とするレーザ穴あけ加工用樹
脂付き銅箔。
1. A resin-coated copper foil for laser drilling, wherein a surface layer made of one or both of manganese and a manganese alloy is formed on the surface of the copper foil on the laser irradiation side.
【請求項2】 表面層の厚さが0.05μm〜3.0μmであ
ることを特徴とする請求項1に記載のレーザ穴あけ加工
用樹脂付き銅箔。
2. The copper foil with resin for laser drilling according to claim 1, wherein the thickness of the surface layer is 0.05 μm to 3.0 μm.
【請求項3】 銅箔の表面に蒸着法によりマンガン層ま
たはマンガン合金層を形成させる工程を有することを特
徴とするレーザ穴あけ加工用樹脂付き銅箔の製造方法。
3. A method for producing a resin-coated copper foil for laser drilling, comprising a step of forming a manganese layer or a manganese alloy layer on the surface of the copper foil by a vapor deposition method.
JP2000210871A 2000-07-12 2000-07-12 Copper foil with resin for laser beam boring and its production method Pending JP2002019017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210871A JP2002019017A (en) 2000-07-12 2000-07-12 Copper foil with resin for laser beam boring and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210871A JP2002019017A (en) 2000-07-12 2000-07-12 Copper foil with resin for laser beam boring and its production method

Publications (1)

Publication Number Publication Date
JP2002019017A true JP2002019017A (en) 2002-01-22

Family

ID=18707071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210871A Pending JP2002019017A (en) 2000-07-12 2000-07-12 Copper foil with resin for laser beam boring and its production method

Country Status (1)

Country Link
JP (1) JP2002019017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314568A (en) * 2003-04-21 2004-11-11 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed wiring board
JP2014053342A (en) * 2012-09-05 2014-03-20 Mitsui Mining & Smelting Co Ltd Manufacturing method of printed wiring board and the printed wiring board
CN109379846A (en) * 2018-10-09 2019-02-22 信丰迅捷兴电路科技有限公司 A kind of novel flexible circuit board double hollow out circuit manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314568A (en) * 2003-04-21 2004-11-11 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed wiring board
JP2014053342A (en) * 2012-09-05 2014-03-20 Mitsui Mining & Smelting Co Ltd Manufacturing method of printed wiring board and the printed wiring board
CN109379846A (en) * 2018-10-09 2019-02-22 信丰迅捷兴电路科技有限公司 A kind of novel flexible circuit board double hollow out circuit manufacturing method

Similar Documents

Publication Publication Date Title
US20040238209A1 (en) Multilayer wiring board, method of manufacturing the wiring board and substrate material for the wiring board
TWI766064B (en) Semi-additive process for printed circuit boards
CN110050516B (en) System, method and apparatus relating to superconducting printed circuit boards
US20090236130A1 (en) Multilayered printed circuit board and method of manufacturing the same
JP2008235801A (en) Multi-layer printed wiring board and manufacturing method therefor
JP4528204B2 (en) Method for manufacturing printed wiring board
JPH0734508B2 (en) Multilayer wiring board
JP2002019017A (en) Copper foil with resin for laser beam boring and its production method
JP2001226796A (en) Copper foil for laser drilling process, copper foil fitted with resin using same and their producing method
JP4582938B2 (en) Insulating sheet manufacturing method and wiring board manufacturing method
JP3154964B2 (en) Printed circuit board and its laser drilling method
JP2002019018A (en) Copper foil with resin for laser beam boring and its production method
TWI446845B (en) Method for forming blind via of circuit board by laser
JP2001253012A (en) Copper foil for laser perforation processing, copper foil with resin using the same and method for manufacturing them
KR100873666B1 (en) Method of processing double-sided core for printed circuit board
WO2020066074A1 (en) Multilayer wiring board manufacturing method
JPH10190235A (en) Manufacture of multilayer interconnection board
TWI260188B (en) Method for fabricating electrically conductive via of build-up type packaging substrate by laser drilling
JPH10190236A (en) Manufacture of multilayer interconnection board
JPH11186739A (en) Method for forming via hole of printed wiring board
JP3678562B2 (en) Printed wiring board and manufacturing method thereof
US6754951B2 (en) Method of drilling a circuit substrate
JP2000031638A (en) Formation of conductive through-hole in diamond plate, and the diamond plate
JPH10335828A (en) Multilayered wiring board and its manufacture
JPH1168291A (en) Printed wiring board and production thereof