JP2002012475A - Method of manufacturing highly thermo conductive silicon nitride material - Google Patents
Method of manufacturing highly thermo conductive silicon nitride materialInfo
- Publication number
- JP2002012475A JP2002012475A JP2000190835A JP2000190835A JP2002012475A JP 2002012475 A JP2002012475 A JP 2002012475A JP 2000190835 A JP2000190835 A JP 2000190835A JP 2000190835 A JP2000190835 A JP 2000190835A JP 2002012475 A JP2002012475 A JP 2002012475A
- Authority
- JP
- Japan
- Prior art keywords
- firing
- silicon nitride
- thermal conductivity
- nitride material
- vol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高い熱伝導率を有
する窒化ケイ素材料の製造方法に係り、更に詳細には、
成形時の加圧方向に制限を受けず、高熱伝導率を実現し
得る窒化ケイ素焼成体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride material having a high thermal conductivity.
The present invention relates to a method for producing a silicon nitride fired body that can realize high thermal conductivity without being restricted by a pressing direction at the time of molding.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
窒化ケイ素材料において高い熱伝導率を実現しようとす
るときは、窒化ケイ素粉末に窒化ケイ素単結晶等の核発
生物質を添加し、押出成形やシート成形等のような加圧
方向につき一定の方向性(一方向)を有する成形を行っ
た後に焼成する、熱伝導率の向上方法が行われている
(特開平9−165265号公報等)。しかしながら、
上述のような押出成形などを行わない場合、成形体中の
窒化ケイ素粉末や結晶はランダムに配向しており、各結
晶の向きが一方向ではないので、焼成条件や製造条件に
よっては、窒化ケイ素結晶の成長がお互いに干渉し合っ
て配向成長が妨げられるために、熱伝導率向上に有利な
結晶成長が望めない。2. Description of the Related Art
When trying to achieve high thermal conductivity in silicon nitride materials, a nucleating substance such as silicon nitride single crystal is added to silicon nitride powder and a certain directionality is applied to the pressing direction such as extrusion molding or sheet molding. A method of improving the thermal conductivity has been performed in which a molding having (one direction) is performed and then firing is performed (Japanese Patent Application Laid-Open No. Hei 9-165265). However,
If the above-mentioned extrusion molding or the like is not performed, the silicon nitride powder and crystals in the molded body are randomly oriented, and the direction of each crystal is not one direction. Since crystal growth interferes with each other and hinders the oriented growth, crystal growth that is advantageous for improving thermal conductivity cannot be expected.
【0003】また、従来の方法で熱伝導率を向上させる
には、窒化ケイ素粉末の種類(α型やβ型等)や結晶成
長を促進させる焼結助剤の種類(MgO、CaO、Al
2O 3、Y2O3、Nd2O3、Yb2O3、HfO、
Sc2O3、CeO2、ZrO2、SiO2、Cr2O
3、AlN等)を適宜選択し、成形後1気圧〜300気
圧の窒素雰囲気中で1700〜2200℃の焼成を行っ
たり、熱間ガス圧焼成を用いた2段階焼成が行われてい
るが、上述のように結晶をランダム配向にした場合で
は、得られる熱伝導率は120〜130w/mkが限度
である。Further, the thermal conductivity is improved by a conventional method.
Includes the type of silicon nitride powder (α-type, β-type, etc.)
Types of sintering aids (MgO, CaO, Al
2O 3, Y2O3, Nd2O3, Yb2O3, HfO,
Sc2O3, CeO2, ZrO2, SiO2, Cr2O
3, AlN, etc.) as appropriate, and 1 atm.
Firing at 1700-2200 ° C in a nitrogen atmosphere with high pressure
Or two-stage firing using hot gas pressure firing
However, when the crystal is randomly oriented as described above,
Means that the thermal conductivity obtained is limited to 120-130 w / mk
It is.
【0004】更に、窒化ケイ素結晶や単結晶ウィスカー
の添加を行うことも従来から行われている(特開平11
−60338号公報)が、従来の窒化ケイ素結晶や単結
晶ウィスカーでは、結晶内部に結晶欠陥が存在している
ため、十分な熱伝導率の向上は図れない。Further, addition of a silicon nitride crystal or a single crystal whisker has been conventionally performed (Japanese Patent Laid-Open No.
However, conventional silicon nitride crystals and single crystal whiskers cannot sufficiently improve the thermal conductivity because crystal defects are present inside the crystals.
【0005】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、成形時の加圧方向に制限されず、ほぼ等方的な加圧
による成形であっても高い熱伝導率を実現し得る、窒化
ケイ素材料の製造方法を提供することにある。The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object the purpose of the present invention is not limited to the pressing direction at the time of molding, and the pressure is almost isotropic. An object of the present invention is to provide a method for producing a silicon nitride material that can achieve high thermal conductivity even in molding.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意検討を重ねた結果、焼成工程を所定の
2段階工程に区分し、結晶成長を制御することにより、
上記目的が達成されることを見出し、本発明を完成する
に至った。Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have divided the firing process into predetermined two-stage processes and controlled the crystal growth.
The inventors have found that the above-mentioned object is achieved, and have completed the present invention.
【0007】即ち、本発明の高熱伝導窒化ケイ素材料の
製造方法は、窒化ケイ素粉末を含有する原料粉末を成形
して成形体を得、第1焼成として、得られた成形体を、
9〜9.9気圧の窒素雰囲気中1850〜1950℃で
4〜8時間低圧焼成し、次いで、第2焼成として、10
0〜1000気圧の窒素雰囲気中2000〜2200℃
で4〜48時間熱間ガス圧焼成することを特徴とする。That is, according to the method for producing a silicon nitride material having high thermal conductivity of the present invention, a raw material powder containing silicon nitride powder is molded to obtain a molded product.
Low-pressure sintering at 1850 to 1950 ° C. for 4 to 8 hours in a nitrogen atmosphere of 9 to 9.9 atm.
2000 to 2200 ° C in a nitrogen atmosphere of 0 to 1000 atm
And hot gas pressure firing for 4 to 48 hours.
【0008】また、本発明の高熱伝導性窒化ケイ素材料
の製造方法の好適形態は、(焼成体体積/成形体体積)
×100を焼成密度比(vol%)と規定したとき、上
記第1焼成後の焼成密度比が91〜95vol%であ
り、上記第2焼成後の焼成密度比が98.5〜99.9
vol%であることを特徴とする。A preferred embodiment of the method for producing a silicon nitride material having high thermal conductivity according to the present invention is (volume of fired body / volume of molded body)
When x100 is defined as a firing density ratio (vol%), the firing density ratio after the first firing is 91 to 95 vol%, and the firing density ratio after the second firing is 98.5 to 99.9.
vol%.
【0009】更に、本発明の製造方法の他の好適形態
は、更に、上記第2焼成の後に、該第2焼成の焼成温度
と同等〜200℃高い温度及び同等圧力〜100気圧高
い圧力で、熱間ガス圧焼成による熱処理を行うことを特
徴とする。Further, in another preferred embodiment of the production method of the present invention, after the second baking, a temperature higher than the firing temperature of the second firing by 200 ° C. and a pressure higher by the same pressure to 100 atm higher, It is characterized by performing heat treatment by hot gas pressure firing.
【0010】更にまた、本発明の製造方法の更に他の好
適形態は、溶融ケイ素と窒素ガスの反応により作製した
内部欠陥の少ない高純度窒化ケイ素単結晶を、上記原料
粉末に添加することを特徴とし、この場合、上記高純度
窒化ケイ素単結晶を3.0%以下の割合で添加すること
が望ましい。[0010] Still another preferred embodiment of the production method of the present invention is characterized in that a high-purity silicon nitride single crystal having few internal defects produced by a reaction between molten silicon and nitrogen gas is added to the raw material powder. In this case, it is desirable to add the high-purity silicon nitride single crystal at a ratio of 3.0% or less.
【0011】また、本発明の熱発生部品は、上述の如き
製造方法により得られた高熱伝導窒化ケイ素材料を用い
て成ることを特徴とする。Further, the heat generating component of the present invention is characterized by using a high thermal conductive silicon nitride material obtained by the above-described manufacturing method.
【0012】[0012]
【作用】本発明においては、焼成工程を、低圧焼成に係
る第1焼成と熱間ガス圧焼成に係る第2焼成との2段階
に区分した。よって、窒化ケイ素結晶が一度に成長する
ことはなく、第1焼成で初期発生した結晶が第2焼成で
優先的に成長することになり、熱伝導率向上に有効な選
択粒成長を容易に実現することができる。In the present invention, the firing process is divided into two stages, a first firing relating to low pressure firing and a second firing relating to hot gas pressure firing. Therefore, the silicon nitride crystal does not grow at once, and the crystal initially generated in the first baking grows preferentially in the second baking, so that selective grain growth effective for improving the thermal conductivity can be easily realized. can do.
【0013】また、第2焼成の後に所定の熱処理工程を
付加することも可能であり、これにより、選択粒成長を
より促進することができるため、2段階焼成のみの場合
よりも、得られる窒化ケイ素材料の熱伝導率を向上でき
る。更に、本発明においては、選択粒成長をより促進さ
せる核として、欠陥の少ない窒化ケイ素単結晶を用いる
ことが可能であり、これにより、かかる核を基点として
発生した窒化ケイ素結晶にも欠陥がなくなるので、有意
な熱伝導率の向上が実現できる。また、核の作用により
結晶が早く成長することから、結晶同士のぶつかり合い
(干渉)も少ない状態となり、焼成密度も向上する。It is also possible to add a predetermined heat treatment step after the second baking, whereby the selective grain growth can be further promoted. The thermal conductivity of the silicon material can be improved. Further, in the present invention, it is possible to use a silicon nitride single crystal having a small number of defects as a nucleus for further promoting selective grain growth, so that a silicon nitride crystal generated based on such a nucleus has no defects. Therefore, a significant improvement in thermal conductivity can be realized. In addition, since crystals grow faster by the action of nuclei, collision (interference) between the crystals is reduced, and the firing density is improved.
【0014】なお、一般に、窒化ケイ素材料は、環境状
態での安定性があり、毒性もなく、強度・靱性もアルミ
ナ(Al2O3)や窒化アルミニウム(AlN)に比べ
て高いが、本発明により得られる窒化ケイ素材料は、更
に熱伝導性にも優れるため、Al2O3やAlNが使用
される強度・靱性を要求される部材や部品であって、高
い熱伝導性をも要求される熱伝導部品や熱発生部品に有
効に用いられる。In general, a silicon nitride material is stable under environmental conditions, has no toxicity, and has higher strength and toughness than alumina (Al 2 O 3 ) and aluminum nitride (AlN). The silicon nitride material obtained by the method is further excellent in thermal conductivity, so that it is a member or component that requires strength and toughness using Al 2 O 3 or AlN, and also requires high thermal conductivity. It is effectively used for heat conduction parts and heat generation parts.
【0015】[0015]
【発明の実施の形態】以下、本発明の製造方法について
詳細に説明する。なお、本明細書において、「%」は特
記しない限り質量百分率を表す。上述の如く、本発明の
高熱伝導窒化ケイ素の製造方法では、窒化ケイ素粉末を
含有する原料粉末を成形し、この成形体を所定の第1焼
成及び第2焼成で焼成し、更に所要に応じて所定の熱処
理を施すことにより、高い熱伝導率を有する窒化ケイ素
材料、具体的には窒化ケイ素焼成体を得る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention will be described below in detail. In addition, in this specification, "%" represents a mass percentage unless otherwise specified. As described above, in the method for producing high thermal conductive silicon nitride of the present invention, a raw material powder containing silicon nitride powder is formed, and the formed body is fired in predetermined first firing and second firing, and further, if necessary. By performing a predetermined heat treatment, a silicon nitride material having a high thermal conductivity, specifically, a silicon nitride fired body is obtained.
【0016】ここで、窒化ケイ素粉末としては、特に限
定されるものではないが、熱伝導率及び強度・靱性の点
からβ型窒化ケイ素粉末を用いることが好ましく、ま
た、純度としては99.9%以上の高純度のものを使用
することが望ましい。原料粉末としては、上述のような
窒化ケイ素粉末を含有していれば十分であるが、これ以
外にも金属酸化物、例えばマグネシア(MgO)、カル
シア(CaO)、アルミナ(Al2O3)、イットリア
(Y2O3)、酸化ネオジウム(Nd 2O3)、酸化イ
ッテルビウム(Yb2O3)、酸化ハフニウム(Hf
O)、酸化スカンジウム(Sc2O3)、セリア(Ce
O2)、ジルコニア(ZrO2)、シリカ(Si
O2)、酸化クロム(Cr2O3)又は窒化アルミニウ
ム(AlN)、及びこれらの任意の混合物などの焼結助
剤を添加することができる。なお、本発明においては、
Y2O3−Nd2O3系、Y2O3−Nd2O3−Mg
O系及びMg2O4−ZrO2−Yb2O3系の焼結助
剤を好適に用いることができる。Here, the silicon nitride powder is particularly limited.
Although not specified, thermal conductivity and strength / toughness
It is preferable to use β-type silicon nitride powder from
In addition, high purity of 99.9% or more is used.
It is desirable to do. As the raw material powder, as described above
It is sufficient to contain silicon nitride powder.
Metal oxides such as magnesia (MgO), cal
Shea (CaO), alumina (Al2O3), Yttria
(Y2O3), Neodymium oxide (Nd 2O3), Oxidation
Ytterbium (Yb2O3), Hafnium oxide (Hf
O), scandium oxide (Sc2O3), Ceria (Ce)
O2), Zirconia (ZrO)2), Silica (Si
O2), Chromium oxide (Cr2O3) Or aluminum nitride
(AlN) and sintering aids such as any mixture thereof
Agents can be added. In the present invention,
Y2O3-Nd2O3System, Y2O3-Nd2O3-Mg
O-based and Mg2O4-ZrO2-Yb2O3System sintering aid
An agent can be suitably used.
【0017】また、本発明においては、上記原料粉末
に、内部欠陥の少ない高純度窒化ケイ素単結晶を結晶成
長の核として添加することができる。この核の作用によ
って焼成中に結晶が早く成長することから、結晶同士の
干渉(ぶつかり合い)が少ない状態となり、均質な焼成
体が得られ、焼成密度も向上する。更に、この核を基点
として発生した窒化ケイ素結晶には欠陥が殆ど存在しな
いので、熱伝導率も更に向上する。かかる高純度窒化ケ
イ素単結晶の添加割合は、原料粉末に対し3.0%以下
とすることが好ましく、3.0%を超えると結晶同士の
干渉が激しくなり、得られる窒化ケイ素材料の熱伝導率
が低下することがある。なお、上述の内部欠陥の少ない
高純度窒化ケイ素は、例えば、溶融ケイ素と窒素ガスの
反応により得ることができる。In the present invention, a high-purity silicon nitride single crystal having few internal defects can be added to the raw material powder as a nucleus for crystal growth. Since the crystal grows quickly during the firing by the action of the nucleus, interference (collision) between the crystals is reduced, a homogeneous fired body is obtained, and the firing density is improved. Furthermore, since the silicon nitride crystal generated from the nucleus has almost no defects, the thermal conductivity is further improved. The addition ratio of such a high-purity silicon nitride single crystal is preferably 3.0% or less with respect to the raw material powder, and if it exceeds 3.0%, interference between the crystals becomes severe, and the thermal conductivity of the obtained silicon nitride material becomes high. The rate may decrease. The high-purity silicon nitride having few internal defects described above can be obtained, for example, by reacting molten silicon with nitrogen gas.
【0018】原料粉末の成形法は、特に限定されるもの
ではなく、押出成形やシート成形などのような一方向に
加圧する手法を採用することもできるが、本発明におい
ては、静水圧プレス法のような等方加圧による成形法を
採用することが好ましい。本発明では、以下に説明する
2段階の焼成を採用しているため、結晶や粉末を一定方
向に配向させなくとも、得られる窒化ケイ素材料の熱伝
導率を有意に向上できる。また、かかる等方加圧による
成形法によれば、均質高密度の焼成体が得られ、この結
果、熱伝導率を更に向上することもできる。The method for molding the raw material powder is not particularly limited, and a method of pressing in one direction, such as extrusion molding or sheet molding, may be employed. It is preferable to adopt a molding method by isotropic pressure as described above. In the present invention, since the two-stage firing described below is employed, the thermal conductivity of the obtained silicon nitride material can be significantly improved without aligning the crystal or powder in a certain direction. Further, according to the forming method by the isotropic pressing, a fired body having a uniform and high density can be obtained, and as a result, the thermal conductivity can be further improved.
【0019】次に、焼成工程につき説明する。本発明に
おいて、上記原料粉末から得られる成形体は、低圧焼成
に係る第1焼成と熱間ガス圧焼成に係る第2焼成との2
段階の焼成に供される。まず、第1焼成は、得られた成
形体を、9〜9.9気圧の窒素雰囲気中1850〜19
50℃で4〜8時間焼成することにより行われ、主とし
て、成形体中に窒化ケイ素結晶を初期発生させる機能を
果たすとともに、上述のように高純度窒化ケイ素単結晶
の核が添加されている場合には、この核を基点とした迅
速な結晶成長のきっかけを作る役割を果たす。Next, the firing step will be described. In the present invention, the compact obtained from the raw material powder is formed by a first baking related to low pressure baking and a second baking related to hot gas pressure baking.
It is subjected to a stage firing. First, in the first firing, the obtained molded body was placed in a nitrogen atmosphere of 9 to 9.9 atm for 1850 to 19 atm.
This is carried out by firing at 50 ° C. for 4 to 8 hours, mainly performing the function of initially generating silicon nitride crystals in the molded body, and adding the core of high-purity silicon nitride single crystal as described above. Plays a role in triggering rapid crystal growth based on this nucleus.
【0020】第1焼成における焼成圧力が上述の範囲を
逸脱すると、十分な初期粒成長が進行しなかったり、粒
子全体の粗大化が進行してしまう。また、焼成温度が1
850℃未満では、初期粒成長が進行せず、1950℃
を超えると、微細粒子も粗大化してしまい強度が低下す
る。更に、焼成時間が4時間未満では、初期粒成長が進
行せず、8時間を超えると、微細粒子も粗大化してしま
い強度が低下する。If the firing pressure in the first firing deviates from the above-mentioned range, sufficient initial grain growth does not proceed, or the entire grains become coarse. When the firing temperature is 1
If the temperature is lower than 850 ° C., the initial grain growth does not proceed,
If it exceeds, the fine particles are also coarsened and the strength is reduced. Furthermore, if the firing time is less than 4 hours, the initial grain growth does not proceed, and if it exceeds 8 hours, the fine particles are coarsened and the strength is reduced.
【0021】なお、この第1焼成により成形体は収縮す
るが、(焼成体体積/成形体体積)×100=焼成密度
比(vol%)と規定すると、本発明においては、第1
焼成後の焼成密度比が91〜95vol%になることが
好ましい。かかる焼成密度比が、上述の範囲を逸脱する
と、初期粒成長が十分には成長せず、熱伝導度が向上し
ないことがあり、好ましくない。Although the compact is shrunk by the first baking, if the ratio of (calcined body volume / molded body volume) × 100 = calcined density ratio (vol%) is defined in the present invention,
It is preferable that the firing density ratio after firing be 91 to 95 vol%. If the sintering density ratio deviates from the above range, the initial grain growth does not grow sufficiently, and the thermal conductivity may not be improved, which is not preferable.
【0022】次に、第2焼成は、100〜1000気圧
の窒素雰囲気中2000〜2200℃で4〜48時間熱
間ガス圧焼成(HIP)することにより行われ、主とし
て、第1焼成で初期発生した結晶を優先的に成長させ、
熱伝導率向上に有効な選択粒成長を容易に実現する機能
を果たす。Next, the second firing is performed by hot gas pressure firing (HIP) at 2000 to 2200 ° C. for 4 to 48 hours in a nitrogen atmosphere of 100 to 1000 atm. Crystal grown preferentially,
It functions to easily realize selective grain growth effective for improving thermal conductivity.
【0023】第2焼成における焼成圧力が100気圧未
満では、焼結が十分に進行しない場合があり、1000
気圧を超えると、微細粒子も粗大化するため強度の低下
を招く。また、焼成温度が2000℃未満では、選択粒
成長が進行し過ぎてしまって結晶同士の干渉により熱伝
導率が低下してしまい、2200℃を超えると微細粒子
も粗大化するため、強度の低下を招く。更に、焼成時間
が4時間未満では、焼結が十分に進行しない場合があ
り、48時間を超えると、選択粒成長が進行し過ぎてし
まって結晶同士の干渉により熱伝導率が低下してしま
う。。また、本発明においては、第2焼成後の焼成密度
比が98.5〜99.9vol%であることが好まし
く、焼成密度比が、上述の範囲を逸脱すると、空孔が多
くなり過ぎ、強度及び熱伝導性が低下してしまうことが
り、好ましくない。If the firing pressure in the second firing is less than 100 atm, the sintering may not proceed sufficiently,
When the pressure exceeds the atmospheric pressure, the fine particles are also coarsened, so that the strength is reduced. If the sintering temperature is lower than 2000 ° C., the selective grain growth proceeds excessively, and the thermal conductivity decreases due to the interference between crystals. If the firing temperature exceeds 2200 ° C., the fine particles are coarsened. Invite. Furthermore, if the sintering time is less than 4 hours, sintering may not proceed sufficiently. If the sintering time exceeds 48 hours, the selective grain growth proceeds too much and the thermal conductivity decreases due to interference between crystals. . . Further, in the present invention, the firing density ratio after the second firing is preferably 98.5 to 99.9 vol%. If the firing density ratio deviates from the above range, the number of pores becomes too large, and the strength increases. In addition, thermal conductivity may be reduced, which is not preferable.
【0024】なお、本発明の製造方法では、上述のよう
な2段階焼成を行えば所期の効果が得られるが、第2焼
成の後に、第2焼成の焼成温度と同等〜200℃高い温
度及び同等圧力〜100気圧高い圧力で、熱間ガス圧焼
成による熱処理を行うことが可能である。かかる熱処理
工程を付加することにより、上述の選択粒成長をより促
進することができるため、一般には、第1焼成及び第2
焼成の2段階焼成のみの場合よりも、得られる窒化ケイ
素材料の熱伝導率を向上できる。但し、焼成条件や焼成
助剤などの選定により、2段階焼成終了時に粒成長が十
分に進んでいるときには、効果がなく却って低熱伝導率
になることがある。In the manufacturing method of the present invention, the desired effect can be obtained by performing the two-stage firing as described above. However, after the second firing, a temperature higher than the firing temperature of the second firing by 200 ° C. Further, it is possible to perform heat treatment by hot gas pressure firing at a pressure higher by an equivalent pressure to 100 atm. By adding such a heat treatment step, the above-described selective grain growth can be further promoted.
The thermal conductivity of the obtained silicon nitride material can be improved as compared with the case of only two-stage firing. However, when the grain growth is sufficiently advanced at the end of the two-stage firing due to the selection of the firing conditions, the firing aid, and the like, there is no effect and the thermal conductivity may be rather lowered.
【0025】図1は、上述した焼成工程の一例を示す焼
成パターン図である。同図において、第1焼成では、1
時間当たり400〜800℃の昇温速度で目標とする1
900℃まで上昇させる途中(符号(a))で、昇温速
度を3段階に変化させている。そして、目標温度到達後
には、9気圧のN2ガス雰囲気中で4時間加熱保持し、
その後に冷却している。また、第2焼成では、目標とす
る2000℃まで1時間当たり400〜600℃の昇温
速度で一気に上昇させ(符号(b))、300気圧のN
2ガス雰囲気中で4時間加熱保持した後に冷却する。更
に、第2焼成に続く熱処理工程は、窒化ケイ素結晶の選
択粒成長を促進する工程であり、1時間当たり400〜
600℃の昇温速度で2200℃まで一気に上昇させ
(符号(c))、次いで、300気圧のN2ガス雰囲気
中で4〜48時間加熱保持した後に冷却する。FIG. 1 is a firing pattern diagram showing an example of the above firing process. In the figure, in the first firing, 1
Target 1 at a heating rate of 400 to 800 ° C per hour
In the course of raising the temperature to 900 ° C. (symbol (a)), the heating rate is changed in three stages. Then, after reaching the target temperature, it is heated and held in a 9 atm N 2 gas atmosphere for 4 hours,
Then cool down. In the second baking, the temperature is raised at a stretch at a rate of 400 to 600 ° C. per hour to the target 2000 ° C. (sign (b)), and N 2 at 300 atm is applied.
After heating and holding in a two- gas atmosphere for 4 hours, it is cooled. Further, the heat treatment step subsequent to the second baking is a step of promoting selective grain growth of silicon nitride crystals, and is 400 to 400 hours / hour.
The temperature is raised at a stretch of 600 ° C. to 2200 ° C. (symbol (c)), followed by heating and holding in an N 2 gas atmosphere at 300 atm for 4 to 48 hours, followed by cooling.
【0026】図1の焼成パターンにおいて、第1焼成の
昇温速度を変化させることは(符号(a))、初期粒成
長制御の点で有効であるが、本発明の製造方法の必須要
件ではないことは言うまでもない。また、図1の焼成パ
ターンにおいては、第1焼成及び第2焼成の後に冷却を
行っているが、かかる冷却は本製造方法の必須要件では
なく、例えば、第2焼成の後、同一のHIP焼成炉にお
いて冷却を行うことなく、熱処理工程に移行することも
可能である。In the firing pattern of FIG. 1, it is effective to change the heating rate of the first firing (symbol (a)) in terms of controlling the initial grain growth, but it is an essential requirement of the manufacturing method of the present invention. Needless to say, there is nothing. In the firing pattern of FIG. 1, cooling is performed after the first firing and the second firing. However, such cooling is not an essential requirement of the present manufacturing method. For example, after the second firing, the same HIP firing is performed. It is also possible to shift to the heat treatment step without cooling in the furnace.
【0027】[0027]
【実施例】以下、本発明を実施例及び比較例により更に
詳細説明するが、本発明はこれら実施例に限定されるも
のではない。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
【0028】(実施例1)β型窒化ケイ素粉末と、1.
0mol%Y2O3−1.0mol%Nd2O3の焼成
助剤と、溶媒(エタノール等)をボールミルにて48時
間混合粉砕した後、Si溶融N2ガス合成方法で別途作
製しておいた高純度窒化ケイ素単結晶を約0.1%添加
し、再度ボールミルにて48時間混合粉砕し、乾燥、篩
い分けを行って原料粉末を作製した。次いで、得られた
原料粉末を所定形状に金型成形し、静水圧プレスで固め
た後、上記図1に示した焼成パターンに従って、第1焼
成としてN2雰囲気中1900℃、9気圧で4時間の加
熱保持を行い、冷却し、次いで、第2焼成としてN2雰
囲気中2000℃、300気圧で4時間の熱間ガス圧焼
成加熱保持を行い、冷却した後、同じ熱間ガス圧焼成炉
で2200℃、300気圧、12時間の熱処理をした後
に冷却し、本例の窒化ケイ素材料の試験片を取り出し
た。なお、第1焼成後の焼成密度比は93.2vol%
であり、第2焼成後の焼成密度比は99.2vol%で
あった。Example 1 β-type silicon nitride powder;
A sintering aid of 0 mol% Y 2 O 3 -1.0 mol% Nd 2 O 3 and a solvent (such as ethanol) are mixed and pulverized by a ball mill for 48 hours, and then separately prepared by a Si molten N 2 gas synthesis method. About 0.1% of the obtained high-purity silicon nitride single crystal was added, mixed and pulverized again with a ball mill for 48 hours, dried and sieved to prepare a raw material powder. Then, the raw material powder obtained by molding into a predetermined shape, after solidified by isostatic pressing, in accordance with firing patterns shown in FIG 1, N 2 atmosphere 1900 ° C. As a first firing for 4 hours at 9 atm And then cooled, followed by hot gas pressure firing and holding for 4 hours at 2000 ° C. and 300 atm in N 2 atmosphere as a second firing, and after cooling, in the same hot gas pressure firing furnace. After heat treatment at 2200 ° C. and 300 atm for 12 hours, the sample was cooled and a test piece of the silicon nitride material of this example was taken out. The firing density ratio after the first firing was 93.2 vol%.
And the firing density ratio after the second firing was 99.2 vol%.
【0029】得られた試験片を用い、レーザーフラッシ
ュ法により熱伝導率を3点で測定したところ、熱伝導率
の最低値は144w/mk、最高値は149w/mkで
あり、平均値は147w/mkであった。得られた結果
を焼成条件などとともに、表1に示す。Using the obtained test piece, the thermal conductivity was measured at three points by a laser flash method. The minimum value of the thermal conductivity was 144 w / mk, the maximum value was 149 w / mk, and the average value was 147 w / mk. / Mk. Table 1 shows the obtained results together with the firing conditions and the like.
【0030】(実施例2)第2焼成後の熱処理時間を延
長した以外は、実施例1と同様の操作を繰り返し、本例
の窒化ケイ素材料を得た。なお、第1焼成後の焼成密度
比は92.5vol%であり、第2焼成後の焼成密度比
は99.4vol%であった。熱伝導率測定の結果及び
焼成条件等を表1に示す。Example 2 The same operation as in Example 1 was repeated, except that the heat treatment time after the second baking was extended, to obtain a silicon nitride material of this example. The firing density ratio after the first firing was 92.5 vol%, and the firing density ratio after the second firing was 99.4 vol%. Table 1 shows the results of the thermal conductivity measurement and the firing conditions.
【0031】(実施例3)高純度窒化ケイ素単結晶を添
加せず、第2焼成後の熱処理時間を延長した以外は、実
施例1と同様の操作を繰り返し、本例の窒化ケイ素材料
を得た。なお、第1焼成後の焼成密度比は92.4vo
l%であり、第2焼成後の焼成密度比は98.4vol
%であった。熱伝導率測定の結果及び焼成条件等を表1
に示す。Example 3 The same operation as in Example 1 was repeated except that the high-purity silicon nitride single crystal was not added and the heat treatment time after the second baking was extended to obtain the silicon nitride material of this example. Was. The firing density ratio after the first firing was 92.4 vo.
1%, and the firing density ratio after the second firing is 98.4 vol.
%Met. Table 1 shows the results of thermal conductivity measurement and firing conditions.
Shown in
【0032】(実施例4)高純度窒化ケイ素単結晶を添
加しなかった以外は、実施例1と同様の操作を繰り返
し、本例の窒化ケイ素材料を得た。第1焼成後の焼成密
度比は92.6vol%であり、第2焼成後の焼成密度
比は99.0vol%であった。熱伝導率測定の結果及
び焼成条件等を表1に示す。Example 4 The same operation as in Example 1 was repeated except that the high-purity silicon nitride single crystal was not added, to obtain a silicon nitride material of this example. The firing density ratio after the first firing was 92.6 vol%, and the firing density ratio after the second firing was 99.0 vol%. Table 1 shows the results of the thermal conductivity measurement and the firing conditions.
【0033】(実施例5)表1に示すように、Y2O3
−Nd2O3系焼成助剤を増量し、高純度窒化ケイ素単
結晶を添加せず、第1焼成時間を延長し、熱処理時間を
短縮した以外は、実施例1と同様の操作を繰り返し、本
例の窒化ケイ素材料を得た。第1焼成後の焼成密度比は
92.4vol%であり、第2焼成後の焼成密度比は9
9.4vol%であった。熱伝導率測定の結果を表1に
併記する。Example 5 As shown in Table 1, Y 2 O 3
Increasing the amount of -nd 2 O 3 based fired aid, without the addition of high-purity silicon nitride single crystal, extending the first firing time, except for shortening the heat treatment time, the same procedure as in Example 1, A silicon nitride material of this example was obtained. The firing density ratio after the first firing is 92.4 vol%, and the firing density ratio after the second firing is 9
It was 9.4 vol%. Table 1 also shows the results of the thermal conductivity measurement.
【0034】(実施例6)Y2O3−Nd2O3系焼成
助剤を減量し、高純度窒化ケイ素単結晶を添加した以外
は、実施例5と同様の操作を繰り返し、本例の窒化ケイ
素材料を得た。第1焼成後の焼成密度比は94.2vo
l%であり、第2焼成後の焼成密度比は99.3vol
%であった。熱伝導率測定の結果及び焼成条件等を表1
に示す。Example 6 The same operation as in Example 5 was repeated except that the amount of the Y 2 O 3 —Nd 2 O 3 based sintering aid was reduced and a high-purity silicon nitride single crystal was added. A silicon nitride material was obtained. The firing density ratio after the first firing is 94.2 vo
1%, and the firing density ratio after the second firing is 99.3 vol.
%Met. Table 1 shows the results of thermal conductivity measurement and firing conditions.
Shown in
【0035】(実施例7)Y2O3−Nd2O3系焼成
助剤を減量し、熱処理時間を延長した以外は、実施例5
と同様の操作を繰り返し、本例の窒化ケイ素材料を得
た。第1焼成後の焼成密度比は91.4vol%であ
り、第2焼成後の焼成密度比は98.9vol%であっ
た。熱伝導率測定の結果及び焼成条件等を表1に示す。Example 7 Example 5 was repeated except that the amount of the Y 2 O 3 —Nd 2 O 3 based sintering aid was reduced and the heat treatment time was extended.
The same operation as described above was repeated to obtain the silicon nitride material of this example. The firing density ratio after the first firing was 91.4 vol%, and the firing density ratio after the second firing was 98.9 vol%. Table 1 shows the results of the thermal conductivity measurement and the firing conditions.
【0036】(実施例8)高純度窒化ケイ素単結晶を添
加し、第1焼成温度を上昇した以外は、実施例7と同様
の操作を繰り返し、本例の窒化ケイ素材料を得た。第1
焼成後の焼成密度比は94.9vol%であり、第2焼
成後の焼成密度比は99.9vol%であった。熱伝導
率測定の結果及び焼成条件等を表1に示す。Example 8 The same operation as in Example 7 was repeated, except that the high-purity silicon nitride single crystal was added and the first firing temperature was raised, to obtain a silicon nitride material of this example. First
The firing density ratio after the firing was 94.9 vol%, and the firing density ratio after the second firing was 99.9 vol%. Table 1 shows the results of the thermal conductivity measurement and the firing conditions.
【0037】(実施例9)第1焼成時間を延長した以外
は、実施例8と同様の操作を繰り返し、本例の窒化ケイ
素材料を得た。第1焼成後の焼成密度比は94.8vo
l%であり、第2焼成後の焼成密度比は99.9vol
%であった。熱伝導率測定の結果及び焼成条件等を表1
に示す。Example 9 The same operation as in Example 8 was repeated, except that the first firing time was extended, to obtain a silicon nitride material of this example. The firing density ratio after the first firing is 94.8 vo
1%, and the firing density ratio after the second firing is 99.9 vol.
%Met. Table 1 shows the results of thermal conductivity measurement and firing conditions.
Shown in
【0038】(比較例1)Y2O3−Nd2O3系焼成
助剤の代わりに0.5mol%Y2O3−0.5mol
%Nd2O3−2.0mol%MgOを用い、高純度窒
化ケイ素単結晶を添加せず、表1に示すように、焼成条
件を変えた焼成工程を1段階のみとし、第2焼成及び熱
処理を行わなかった以外は、実施例1と同様の操作を繰
り返し、本例の窒化ケイ素材料を得た。なお、第1焼成
後の焼成密度比は97.0vol%であった。熱伝導率
測定の結果を表1に併記する。Comparative Example 1 0.5 mol% of Y 2 O 3 -0.5 mol instead of Y 2 O 3 —Nd 2 O 3 -based sintering aid
% Nd 2 O 3 -2.0 mol% MgO, high purity silicon nitride single crystal was not added, and as shown in Table 1, the sintering process was changed to only one stage, and the second sintering and heat treatment were performed. The same operation as in Example 1 was repeated except that was not performed, to obtain a silicon nitride material of this example. The firing density ratio after the first firing was 97.0 vol%. Table 1 also shows the results of the thermal conductivity measurement.
【0039】(比較例2)0.5mol%Y2O3−
0.5mol%Nd2O3−2.0mol%MgO系焼
成助剤の代わりに0.5%Mg2O4−0.9%ZrO
2−4.0%Yb2O3を用い、高純度窒化ケイ素単結
晶を添加した以外は、比較例1と同様の操作を繰り返
し、本例の窒化ケイ素材料を得た。また、第1焼成後の
焼成密度比は97.4vol%であった。熱伝導率測定
の結果及び焼成条件等を表1に示す。Comparative Example 2 0.5 mol% Y 2 O 3 −
Instead of 0.5 mol% Nd 2 O 3 -2.0 mol% MgO-based sintering aid, 0.5% Mg 2 O 4 -0.9% ZrO
With 2 -4.0% Yb 2 O 3, except that the addition of silicon of high purity nitride single crystal, repeating the same operation as in Comparative Example 1, to obtain a silicon nitride material of the present embodiment. The firing density ratio after the first firing was 97.4 vol%. Table 1 shows the results of the thermal conductivity measurement and the firing conditions.
【0040】(比較例3)Y2O3−Nd2O3系焼成
助剤の代わりに0.5mol%Y2O3−0.5mol
%Nd2O3−2.0mol%MgOを用い、表1に示
すように、焼成条件を変えた焼成工程を1段階とした以
外は、実施例1と同様の操作を繰り返し、本例の窒化ケ
イ素材料を得た。第1焼成後の焼成密度比は97.2v
ol%であった。熱伝導率測定の結果を表1に併記す
る。Comparative Example 3 0.5 mol% of Y 2 O 3 -0.5 mol instead of Y 2 O 3 —Nd 2 O 3 type sintering aid
% Nd 2 O 3 -2.0 mol% MgO, and as shown in Table 1, the same operation as in Example 1 was repeated except that the sintering process was changed to one step under different sintering conditions. A silicon material was obtained. The firing density ratio after the first firing is 97.2v
ol%. Table 1 also shows the results of the thermal conductivity measurement.
【0041】(比較例4〜6)比較例4〜6は、第2焼
成を行っておらず、従来の窒化ケイ素材料焼成プロセス
の熱間ガス圧焼成条件を採用したものであり、焼成助剤
としては0.5mol%Y2O3−0.5mol%Nd
2O3を用いた。また、比較例4及び5については、窒
化ケイ素結晶を添加しなかったが、比較例6について
は、市販されている窒化ケイ素結晶を添加した。各例の
焼成条件等を表1に示すとともに、得られた各例の窒化
ケイ素材料の熱伝導率測定の結果を表1に併記する。第
1焼成後の焼成密度比は、比較例4では96.0vol
%、比較例5では97.4vol%、比較例6では9
6.2vol%であった。なお、比較例4〜6における
熱伝導率の測定結果は、平均値ではなく最高値を示して
いる。(Comparative Examples 4 to 6) In Comparative Examples 4 to 6, the second firing was not performed, and the hot gas pressure firing conditions of the conventional silicon nitride material firing process were employed. Is 0.5 mol% Y 2 O 3 -0.5 mol% Nd
2 O 3 was used. In Comparative Examples 4 and 5, no silicon nitride crystal was added. In Comparative Example 6, a commercially available silicon nitride crystal was added. Table 1 shows the firing conditions and the like of each example, and Table 1 also shows the results of measuring the thermal conductivity of the obtained silicon nitride material of each example. The firing density ratio after the first firing was 96.0 vol in Comparative Example 4.
%, 97.4 vol% in Comparative Example 5, 9% in Comparative Example 6.
6.2 vol%. In addition, the measurement result of the thermal conductivity in Comparative Examples 4 to 6 shows not the average value but the maximum value.
【0042】[0042]
【表1】 [Table 1]
【0043】(実施例10)上述のような本発明の製法
により作製した窒化ケイ素材料の平板(熱伝導率110
w/mk、128w/mk及び146w/mk、図2参
照)、及び従来法によって作製した平板(49w/m
k)について、表2に示すように、#600砥粒仕上げ
を行い、荷重490N、速度0.5m/s及びエンジン
オイル5W30SJ中の条件下で、pin−onタイプ
の摩擦・摩耗試験機により動摩擦試験を行った。得られ
た結果を図2に示す。Example 10 A flat plate of silicon nitride material (thermal conductivity 110) manufactured by the method of the present invention as described above was used.
w / mk, 128 w / mk and 146 w / mk, see FIG. 2), and a flat plate (49 w / m
For k), as shown in Table 2, a # 600 abrasive grain finish was performed, and under a load of 490 N, a speed of 0.5 m / s, and an engine oil of 5W30SJ, dynamic friction was measured with a pin-on type friction / wear tester. The test was performed. FIG. 2 shows the obtained results.
【0044】[0044]
【表2】 [Table 2]
【0045】図2より明らかなように、熱伝導率が高く
なるに従って動摩擦係数の低下が認められた。これによ
り、本発明の製造方法により得られた熱伝導率に優れる
窒化ケイ素材料においては、摩擦時に生ずる発熱が除去
されることによる油膜保持効果が現れていることが推察
される。このことから、本発明の高熱伝導率窒化ケイ素
材料については、熱発生部品、具体的には、発生する熱
を放熱する部品、例えば、自動車用エンジン部品、半導
体基板やガスタービン燃焼筒等での活用が考えられ、ま
た、発熱を伴う部品、例えば、乾式での摩擦が発生する
OA機器のブシュ等への活用も考えられる。As is clear from FIG. 2, a decrease in the coefficient of kinetic friction was observed as the thermal conductivity increased. Thus, it is presumed that the silicon nitride material having excellent thermal conductivity obtained by the production method of the present invention has an oil film retaining effect due to removal of heat generated during friction. From this, regarding the high thermal conductivity silicon nitride material of the present invention, a heat generating component, specifically, a component that dissipates the generated heat, for example, an automobile engine component, a semiconductor substrate, a gas turbine combustion cylinder, etc. Utilization is also conceivable, and it is also conceivable to use components that generate heat, for example, bushings of OA equipment that generates dry friction.
【0046】[0046]
【発明の効果】以上説明してきたように、本発明によれ
ば、焼成工程を所定の2段階工程に区分し、結晶成長を
制御することとしたため、成形時の加圧方向に制限され
ず、ほぼ等方的な加圧による成形であっても高い熱伝導
率を実現し得る、窒化ケイ素材料の製造方法を提供する
ことができる。As described above, according to the present invention, the firing step is divided into predetermined two-step steps to control the crystal growth. It is possible to provide a method for producing a silicon nitride material, which can realize high thermal conductivity even by molding by substantially isotropic pressure.
【図1】本発明の製造方法おける焼成工程の一例を示す
焼成パターン図である。FIG. 1 is a firing pattern diagram showing an example of a firing step in a manufacturing method of the present invention.
【図2】窒化ケイ素材料の熱伝導率と動摩擦係数の関係
を示すグラフである。FIG. 2 is a graph showing the relationship between the thermal conductivity of silicon nitride material and the coefficient of dynamic friction.
Claims (7)
形して成形体を得、 第1焼成として、得られた成形体を、9〜9.9気圧の
窒素雰囲気中1850〜1950℃で4〜8時間低圧焼
成し、 次いで、第2焼成として、100〜1000気圧の窒素
雰囲気中2000〜2200℃で4〜48時間熱間ガス
圧焼成する、ことを特徴とする高熱伝導窒化ケイ素材料
の製造方法。1. A molded body is obtained by molding a raw material powder containing silicon nitride powder. As a first firing, the obtained molded body is heated at 1850 to 1950 ° C. in a nitrogen atmosphere of 9 to 9.9 atm. Low-pressure sintering for 8 to 8 hours, followed by hot gas pressure sintering at 2000 to 2200 ° C. for 4 to 48 hours in a nitrogen atmosphere of 100 to 1000 atm as a second sintering, producing a silicon nitride material having high thermal conductivity. Method.
焼成密度比(vol%)と規定したとき、上記第1焼成
後の焼成密度比が91〜95vol%であり、上記第2
焼成後の焼成密度比が98.5〜99.9vol%であ
ることを特徴とする請求項1記載の高熱伝導窒化ケイ素
材料の製造方法。2. When (volume of fired body / volume of molded body) × 100 is defined as a fired density ratio (vol%), the fired density ratio after the first firing is 91 to 95 vol%, and the fired density ratio is 91 to 95 vol%.
The method for producing a silicon nitride material having a high thermal conductivity according to claim 1, wherein a firing density ratio after firing is 98.5 to 99.9 vol%.
の焼成温度と同等〜200℃高い温度及び同等圧力〜1
00気圧高い圧力で、熱間ガス圧焼成による熱処理を行
うことを特徴とする請求項1又は2記載の高熱伝導率窒
化ケイ素材料の製造方法。3. After the second baking, a temperature higher by 200 ° C. and a pressure equal to 200 ° C.
3. The method for producing a silicon nitride material having a high thermal conductivity according to claim 1, wherein the heat treatment is performed by hot gas pressure firing at a pressure higher by 00 atm.
した内部欠陥の少ない高純度窒化ケイ素単結晶を、上記
原料粉末に添加することを特徴とする請求項1〜3のい
ずれか1つの項に記載の高熱伝導窒化ケイ素材料の製造
方法。4. The method according to claim 1, wherein a high-purity silicon nitride single crystal having few internal defects produced by a reaction between molten silicon and nitrogen gas is added to the raw material powder. A method for producing a high thermal conductive silicon nitride material as described above.
以下の割合で添加することを特徴とする請求項4記載の
高熱伝導率窒化ケイ素材料の製造方法。5. The high-purity silicon nitride single crystal is 3.0%
The method for producing a silicon nitride material having a high thermal conductivity according to claim 4, wherein the silicon nitride material is added in the following ratio.
特徴とする請求項1〜5のいずれか1つの項に記載の高
熱伝導窒化ケイ素材料の製造方法。6. The method for producing a silicon nitride material having high thermal conductivity according to claim 1, wherein the molding is performed by isotropic pressing.
の製造方法により得られた高熱伝導窒化ケイ素材料を用
いて成ることを特徴とする熱発生部品。7. A heat-generating component comprising a high thermal conductive silicon nitride material obtained by the method according to claim 1. Description:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000190835A JP2002012475A (en) | 2000-06-26 | 2000-06-26 | Method of manufacturing highly thermo conductive silicon nitride material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000190835A JP2002012475A (en) | 2000-06-26 | 2000-06-26 | Method of manufacturing highly thermo conductive silicon nitride material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002012475A true JP2002012475A (en) | 2002-01-15 |
Family
ID=18690237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000190835A Pending JP2002012475A (en) | 2000-06-26 | 2000-06-26 | Method of manufacturing highly thermo conductive silicon nitride material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002012475A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021225158A1 (en) * | 2020-05-07 | 2021-11-11 | Agc株式会社 | Method for producing ceramic sintered body, and ceramic sintered body |
-
2000
- 2000-06-26 JP JP2000190835A patent/JP2002012475A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021225158A1 (en) * | 2020-05-07 | 2021-11-11 | Agc株式会社 | Method for producing ceramic sintered body, and ceramic sintered body |
CN115551818A (en) * | 2020-05-07 | 2022-12-30 | Agc株式会社 | Method for producing ceramic sintered body and ceramic sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5444387B2 (en) | Semiconductor device heat sink | |
JPH1171168A (en) | Alumina-based sintered ceramic material and its production | |
US5508240A (en) | Aluminum nitride sintered body and method for manufacturing the same | |
US6187706B1 (en) | Silicon nitride sintered body and method of producing the same | |
JP2002012475A (en) | Method of manufacturing highly thermo conductive silicon nitride material | |
CN109694254A (en) | A method of compact silicon nitride ceramics are prepared using single sintering aid is normal pressure-sintered | |
JPH09183666A (en) | High heat conductivity silicon nitride sintered compact and its production | |
JP3537241B2 (en) | Method for producing silicon nitride sintered body | |
JP2759288B2 (en) | Method for producing aluminum oxide sintered body | |
JPH05279129A (en) | Low-thermally conductive ceramic and its production | |
JPH07330436A (en) | Silicon nitride heat resistant member and its production | |
JPH11278921A (en) | Engine part and its production | |
JP5289184B2 (en) | Method for producing high thermal conductivity silicon nitride sintered body | |
JP2684275B2 (en) | Silicon nitride sintered body | |
JP3185340B2 (en) | Method for producing aluminum titanate-based ceramic member | |
JP3667145B2 (en) | Silicon nitride sintered body | |
JP3653533B2 (en) | Silicon nitride composite material and method for producing the same | |
JPH04280871A (en) | Silicon nitride sintered product and production thereof | |
JPH02233560A (en) | High-strength calcined sialon-based compact | |
JP2801447B2 (en) | Method for producing silicon nitride based sintered body | |
JPH03131571A (en) | Production of silicon nitride ceramics having high strength | |
JP2000095569A (en) | High heat conductivity silicon nitride sintered compact and its production | |
JPH11278943A (en) | Ceramic sintered body with low thermal conductivity | |
JPS63307166A (en) | Sintered silicon carbide | |
JPH035372A (en) | Production of silicon nitride sintered compact |