JP2684275B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body

Info

Publication number
JP2684275B2
JP2684275B2 JP3332463A JP33246391A JP2684275B2 JP 2684275 B2 JP2684275 B2 JP 2684275B2 JP 3332463 A JP3332463 A JP 3332463A JP 33246391 A JP33246391 A JP 33246391A JP 2684275 B2 JP2684275 B2 JP 2684275B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
nitride sintered
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3332463A
Other languages
Japanese (ja)
Other versions
JPH05139841A (en
Inventor
景久 濱崎
光弘 船木
一實 三宅
泰伸 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3332463A priority Critical patent/JP2684275B2/en
Publication of JPH05139841A publication Critical patent/JPH05139841A/en
Application granted granted Critical
Publication of JP2684275B2 publication Critical patent/JP2684275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は曲げ強さが大きくかつ靭
性が高い窒化珪素質焼結体に関し、特にエンジン部品、
擦動部品等に用いるのに適した、曲げ強さが大きくかつ
靭性が高い窒化珪素質焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having a high bending strength and a high toughness, and particularly to engine parts,
The present invention relates to a silicon nitride sintered body having a large bending strength and a high toughness, which is suitable for use in rubbing parts and the like.

【0002】[0002]

【従来の技術】セラミックス高温構造材料の一つである
窒化珪素( Si 3 N 4 )は、高温下で充分な強度を有し
化学的に安定で熱衝撃にも強い材料として注目されるセ
ラミックス材料の一つであるが、従来の製造法によって
得られる窒化珪素質焼結体の曲げ強さや靭性は、実際の
セラミックス部品として使用するのに充分ではなかっ
た。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ), which is one of the ceramics high-temperature structural materials, has attracted attention as a material that has sufficient strength at high temperatures, is chemically stable, and is resistant to thermal shock. However, the bending strength and toughness of the silicon nitride sintered body obtained by the conventional manufacturing method were not sufficient for use as an actual ceramic part.

【0003】そこで、窒化珪素質焼結体の曲げ強さ、靭
性等を向上させる目的で、種々の研究がなされている。
例えば、特開平3−8771号には、特定の直径とアスペク
ト比を有する柱状晶を含む窒化珪素質焼結体が開示され
ている。しかしながら、使用される窒化珪素粉末の平均
粒径は0.5 μmを超える大きさであるので、焼結性が十
分でなく、実際のセラミック部品として使用するのに充
分な靭性は得られていない。
Therefore, various studies have been conducted for the purpose of improving the bending strength, toughness, etc. of the silicon nitride sintered body.
For example, JP-A-3-8771 discloses a silicon nitride sintered body containing columnar crystals having a specific diameter and aspect ratio. However, since the silicon nitride powder used has an average particle size of more than 0.5 μm, the sinterability is not sufficient, and sufficient toughness for use as an actual ceramic part has not been obtained.

【0004】[0004]

【発明が解決しようとする課題】また、特開平3−8772
号には、曲げ強さと靭性を向上させる手段として、平均
粒径0.1 〜0.5 μmの窒化珪素粉末と平均粒径0.5 〜0.
7 μmの窒化珪素粉末と焼結助剤とを配合して、大型粒
子と小型粒子の個数の比が特定された窒化珪素質焼結体
を製造する方法が開示されている。
[Patent Document 1] Japanese Patent Application Laid-Open No. 3-8772
As a means for improving bending strength and toughness, a silicon nitride powder having an average particle size of 0.1 to 0.5 μm and an average particle size of 0.5 to 0.
A method for producing a silicon nitride sintered body in which a ratio of the numbers of large particles and small particles is specified by mixing 7 μm of silicon nitride powder and a sintering aid is disclosed.

【0005】しかしながら、この方法では、原料として
平均粒径0.5 〜0.7 μm程度の比較的に大きな窒化珪素
粉末を用いているので焼結性に劣り、そのために焼結に
際して焼結助剤を多めに配合している。その結果、焼結
助剤が窒化珪素の粒界に低融点のガラス相 (粒界相) を
生成し、曲げ強さや靭性が損なわれることが多い。
However, in this method, since a relatively large silicon nitride powder having an average particle size of 0.5 to 0.7 μm is used as a raw material, the sinterability is poor, and therefore a large amount of sintering aid is used during sintering. It is compounded. As a result, the sintering aid often forms a low-melting glass phase (grain boundary phase) at the grain boundaries of silicon nitride, often impairing bending strength and toughness.

【0006】従って本発明の目的は、上記問題点を解消
し、曲げ強さと靭性に優れた窒化珪素質焼結体を提供す
ることである。
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride sintered body which is excellent in bending strength and toughness.

【0007】[0007]

【課題を解決するための手段】以上の目的に鑑み鋭意研
究の結果、本発明者等は、平均粒径が小さく、かつ比表
面積の異なる窒化珪素粉末を混合すれば、焼結の際の結
晶の成長に差がつき、得られる窒化珪素質焼結体の曲げ
強さ及び靭性が向上することを発見し、本発明を完成し
た。
As a result of earnest research in view of the above objects, the inventors of the present invention have found that if silicon nitride powders having a small average particle size and different specific surface areas are mixed, the crystals at the time of sintering are crystallized. It was discovered that there is a difference in the growth of the above, and the bending strength and toughness of the obtained silicon nitride sintered body are improved, and the present invention was completed.

【0008】すなわち、本発明の窒化珪素質焼結体は、
比表面積が12〜8m 2 /gで平均粒径が0.40〜0.45μmの
窒化珪素粉末と前記窒化珪素粉末より比表面積が大きく
平均粒径が小さい窒化珪素粉末と焼結助剤とを所定の重
量比で配合し、この原料粉末を成形し、1900℃以上で焼
結して得られる窒化珪素質焼結体であって、SEM観察
から求められる直径が3〜10μmでアスペクト比10〜20
のβ−針状晶を直径が1μm以下でアスペクト比3〜5
のβ−結晶が取り囲む組織構造を有することを特徴とす
る。
That is, the silicon nitride sintered body of the present invention is
A silicon nitride powder having a specific surface area of 12 to 8 m 2 / g and an average particle diameter of 0.40 to 0.45 μm, a silicon nitride powder having a specific surface area larger than that of the silicon nitride powder and a small average particle diameter, and a sintering aid are given in predetermined weights. A silicon nitride sintered body obtained by mixing the raw material powders at a ratio of 1900 ° C. or higher and sintering the raw material powder at a temperature of 1900 ° C. or higher.
Β-acicular crystals with a diameter of 1 μm or less and an aspect ratio of 3 to 5
.Beta.-crystal has a surrounding structure.

【0009】以下、本発明を詳しく説明する。本発明の
窒化珪素質焼結体を得るための原料の窒化珪素粉末とし
ては、比表面積(BET)が12〜8m 2 /gの窒化珪素粉
末(以下粉末Aという)と粉末Aより比表面積が大きい
窒化珪素粉末(以下粉末Bという)を用いる。
Hereinafter, the present invention will be described in detail. As a raw material silicon nitride powder for obtaining the silicon nitride sintered body of the present invention, a specific surface area of silicon nitride powder having a specific surface area (BET) of 12 to 8 m 2 / g (hereinafter referred to as powder A) and powder A A large silicon nitride powder (hereinafter referred to as powder B) is used.

【0010】上述の粉末Aの平均粒径は0.40〜0.45μm
であり、粉末Bの平均粒径は粉末Aの平均粒径よりさら
に小さい。このように平均粒径が小さい粉末を原料とす
るので、後述するように焼結助剤の添加量が比較的少な
くとも、十分な曲げ強さ及び靭性を有する焼結体が得ら
れる。なお、粉末の比表面積と平均粒径とは必ずしも定
量的な相関関係を有するわけではないが、一般に粉末の
比表面積が大きくなるほど、その平均粒径は小さくなる
傾向がある。
The average particle size of powder A is 0.40 to 0.45 μm.
And the average particle size of the powder B is smaller than the average particle size of the powder A. Since a powder having a small average particle diameter is used as a raw material in this way, a sintered body having a sufficient bending strength and toughness with a relatively small amount of the sintering additive added can be obtained as described later. Although the specific surface area of the powder and the average particle diameter do not necessarily have a quantitative correlation, generally, the larger the specific surface area of the powder, the smaller the average particle diameter tends to be.

【0011】粉末Aと粉末Bとの配合比(重量比)は7
5:25 〜50:50 とするのが好ましい。
The mixing ratio (weight ratio) of powder A and powder B is 7
It is preferably 5:25 to 50:50.

【0012】上記の窒化珪素粉末に添加する焼結助剤と
しては、Y2 3 、Al2 3 、MgO等が挙げられるが、
2 3 及びAl2 3 を用いることが好ましい。
Examples of the sintering aid added to the above silicon nitride powder include Y 2 O 3 , Al 2 O 3 and MgO.
It is preferable to use Y 2 O 3 and Al 2 O 3 .

【0013】焼結助剤としてY2 3 及びAl2 3 の両
方を用いる場合、Y2 3 の添加量は、1.5 〜3.5 重量
%、Al2 3 の添加量は0.1 〜1.0 重量%、残部を実質
的に窒化珪素とするのがよい。
When both Y 2 O 3 and Al 2 O 3 are used as sintering aids, the amount of Y 2 O 3 added is 1.5 to 3.5% by weight, and the amount of Al 2 O 3 added is 0.1 to 1.0% by weight. %, The balance is preferably substantially silicon nitride.

【0014】次に、上記の原料から窒化珪素質焼結体を
製造する方法について説明する。
Next, a method for producing a silicon nitride sintered body from the above raw materials will be described.

【0015】まず、上記の粉末Aと粉末Bとを所定の割
合で配合し、所定量の焼結助剤及び溶媒を添加し、ボー
ルミル等で湿式混合し乾燥後所定の形状に成形する。成
形法については、金型プレス又は冷間静水圧プレス(C
IP)等を用いた公知の方法を用いることができる。
First, the powder A and the powder B are blended in a predetermined ratio, a predetermined amount of a sintering aid and a solvent are added, wet mixed with a ball mill or the like, dried and molded into a predetermined shape. Molding methods include die press or cold isostatic press (C
A known method using IP) or the like can be used.

【0016】次いで、得られた成形体を、不活性ガス
下、例えば窒素ガス下焼結する。焼結温度は1900℃以上
とする。焼結温度が1900℃未満であると、充分な曲げ強
さ及び靭性が得られない。
Next, the obtained compact is sintered under an inert gas, for example, nitrogen gas. Sintering temperature is 1900 ℃ or higher. If the sintering temperature is lower than 1900 ° C, sufficient bending strength and toughness cannot be obtained.

【0017】上述のようにして得られる本発明の窒化珪
素質焼結体は、SEM観察から求められる直径が3〜10
μmでアスペクト比10〜20のβ−針状晶(以下単にβ−
針状晶という)と直径が1μm以下でアスペクト比3〜
5のβ−結晶(以下単にβ−結晶という)とを含み、細
長いβ−針状晶を微細なβ−結晶で取り囲む組織構造を
有する。このように、アスペクト比が大きく直径が大き
な針状晶とアスペクト比が小さく微細な結晶との組合せ
が、本発明の大きな特徴の一つである。
The silicon nitride sintered body of the present invention obtained as described above has a diameter of 3 to 10 determined by SEM observation.
β-acicular crystals with an aspect ratio of 10 to 20 at μm (hereinafter simply referred to as β-
Needle-like crystals) with a diameter of 1 μm or less and an aspect ratio of 3 to
And β-crystal of No. 5 (hereinafter simply referred to as β-crystal), and has a structure structure in which elongated β-acicular crystals are surrounded by fine β-crystals. As described above, the combination of needle-like crystals with a large aspect ratio and a large diameter and fine crystals with a small aspect ratio is one of the major features of the present invention.

【0018】[0018]

【作用】本発明の窒化珪素質焼結体が大きな曲げ強さと
高い靭性を有するのは必ずしも明らかではないが、比表
面積の異なる窒化珪素粉末を混合し、1900℃以上で焼結
することにより、焼結の際に各結晶の成長方向や形状の
発達に差異が生じ、細長いβ−針状晶の成長が促され、
上述の組織構造を有する窒化珪素質焼結体が得られるも
のと考えられる。また、本発明で用いる特定の範囲の比
表面積を窒化珪素粉末はいずれも比較的小さい粒径を有
するので、焼結助剤の添加量を軽減することができる。
これにより、焼結して得られる窒化珪素質焼結体の曲げ
強さや靭性は一層向上することになる。
It is not always clear that the silicon nitride sintered material of the present invention has large bending strength and high toughness, but by mixing silicon nitride powders having different specific surface areas and sintering at 1900 ° C. or higher, Differences occur in the growth direction and shape development of each crystal during sintering, the growth of elongated β-needle crystals is promoted,
It is considered that the silicon nitride sintered body having the above-mentioned texture structure can be obtained. Further, since the silicon nitride powders each having a specific surface area within a specific range used in the present invention have a relatively small particle size, the addition amount of the sintering aid can be reduced.
Thereby, the bending strength and toughness of the silicon nitride sintered body obtained by sintering are further improved.

【0019】[0019]

【実施例】以下、本発明の実施例を説明するが、本発明
はこれらに限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0020】実施例1〜8、比較例1〜10 窒化珪素粉末A (宇部興産(株)製、比表面積(BE
T):10m 2 /g) と窒化珪素粉末B (宇部興産(株)
製、比表面積(BET):15m 2 /g) とを表1に示す配
合比(重量比)となるようにとり、さらにY2 3 を2.
5 重量%とAl2 3 を1.0 重量%となるように添加し(
但し窒化珪素粉末A、窒化珪素粉末B、Y2 3 及びAl
2 3 との合計量を100 重量%とする) 、エタノールを
加え、16時間のボールミル湿式混合を行なった。なお、
窒化珪素粉末A及びBをSEM写真に撮影し、平均粒径
を測定したところ、それぞれ0.4 μm程度及び0.4 μm
以下であった。
Examples 1 to 8 and Comparative Examples 1 to 10 Silicon nitride powder A (manufactured by Ube Industries, Ltd., specific surface area (BE
T): 10 m 2 / g) and silicon nitride powder B (Ube Industries, Ltd.)
And specific surface area (BET): 15 m 2 / g) so that the compounding ratio (weight ratio) shown in Table 1 is obtained, and further Y 2 O 3 is added to 2.
Add 5 wt% and Al 2 O 3 to 1.0 wt% (
However, silicon nitride powder A, silicon nitride powder B, Y 2 O 3 and Al
The total amount of 2 O 3 and 100% by weight) and ethanol were added and ball mill wet mixing was performed for 16 hours. In addition,
SEM photographs of the silicon nitride powders A and B were taken, and the average particle size was measured to be about 0.4 μm and 0.4 μm respectively.
It was below.

【0021】得られた各混合物をロータリーエバポレー
タにより乾燥し、金型プレスにより55 x 35 x 6 mm の
大きさに成形した。
Each of the obtained mixtures was dried by a rotary evaporator and molded into a size of 55 × 35 × 6 mm by a die press.

【0022】上記の各成形体を、表1に示すように、19
50℃、1900℃又は1800℃で、9気圧の窒素ガス雰囲気下
で4時間焼結してテストピースを得た。
As shown in Table 1, each of the above moldings was
A test piece was obtained by sintering at 50 ° C., 1900 ° C. or 1800 ° C. under a nitrogen gas atmosphere of 9 atm for 4 hours.

【0023】得られたテストピースについてJIS R
1601に準拠して、三点曲げ強度と破壊靭性を測定した。
結果を表1に示す。粉末Aと粉末Bの配合比と、焼結体
の曲げ強さ及び破壊靭性との関係を、焼結温度ごとに図
1〜図3に示す。図1は焼結温度が1950℃の場合、図2
は1900℃の場合、図3は1800℃の場合を示す。
Regarding the obtained test piece, JIS R
According to 1601, the three-point bending strength and fracture toughness were measured.
Table 1 shows the results. The relationship between the mixing ratio of the powder A and the powder B and the bending strength and fracture toughness of the sintered body is shown in FIGS. 1 to 3 for each sintering temperature. Fig. 1 shows the case where the sintering temperature is 1950 ℃.
Shows the case of 1900 ° C, and Fig. 3 shows the case of 1800 ° C.

【0024】また、実施例3、5と比較例1、3、4、
6及び9で得られたテストピースを走査型電子顕微鏡
(SEM)により500 〜2000倍の倍率で撮影し、その写
真からβ−針状晶及びβ−結晶の直径及びアスペクト比
を測定した。なお、一部の焼結体については、長さも測
定した。結果を表2に示す。
Further, Examples 3, 5 and Comparative Examples 1, 3, 4,
The test pieces obtained in 6 and 9 were photographed with a scanning electron microscope (SEM) at a magnification of 500 to 2000 times, and the diameter and aspect ratio of β-acicular crystals and β-crystals were measured from the photographs. The length of some of the sintered bodies was also measured. Table 2 shows the results.

【0025】 表1 原料配合比 焼結体特性 (粉末B/ 焼結温度 曲げ強さρ 破壊靭性 K ic 例No. 粉末A) (℃) (kgf/ mm 2) (MPa m 1/2 ) 実施例1 10/90 1950 105 8.0 実施例2 10/90 1900 110 6.6 実施例3 25/75 1950 120 9.8 実施例4 25/75 1900 122 8.1 実施例5 50/50 1950 120 9.8 実施例6 50/50 1900 123 8.4 実施例7 75/25 1950 100 7.9 実施例8 75/25 1900 107 6.2 比較例1 100/0 1950 76 5.2 比較例2 100/0 1900 79 4.2 比較例3 100/0 1800 67 3.9 比較例4 0/100 1950 60 6.0 比較例5 0/100 1900 71 4.2 比較例6 0/100 1800 63 4.4 比較例7 10/90 1800 69 4.4 比較例8 25/75 1800 76 4.1 比較例9 50/50 1800 78 3.7 比較例10 75/25 1800 75 3.7 Table 1Raw material mixture ratio Sintered body characteristics (Powder B / Sintering temperature Bending strength ρ Fracture toughness KI c  Example No. Powder A) (℃) (kgf / mm 2)  (MPa m 1/2 ) Example 1 10/90 1950 105 8.0 Example 2 10/90 1900 110 6.6 Example 3 25/75 1950 120 9.8 Example 4 25/75 1900 122 8.1 Example 5 50/50 1950 120 9.8 Example 6 50 / 50 1900 123 8.4 Example 7 75/25 1950 100 7.9 Example 8 75/25 1900 107 6.2 Comparative Example 1 100/0 1950 76 5.2 Comparative Example 2 100/0 1900 79 4.2 Comparative Example 3 100/0 1800 67 3.9 Comparative Example 4 0/100 1950 60 6.0 Comparative Example 5 0/100 1900 71 4.2 Comparative Example 6 0/100 1800 63 4.4 Comparative Example 7 10/90 1800 69 4.4 Comparative Example 8 25/75 1800 76 4.1 Comparative Example 9 50/50 1800 78 3.7 Comparative example 10 75/25 1800 75 3.7

【0026】 表2 β−針状晶 β−結晶 直径 アスペクト比 直径 アスペクト比 長さ 例No. (μm) (μm) (μm) 実施例3 3 〜10 10 〜20 <1 3〜5 実施例5 3 〜10 10 〜20 <1 3〜5 比較例1 5 〜10 3 〜5 <1 <3 比較例3 (β−針状晶なし) <1 <3 2〜3 比較例4 5 〜10 3 〜5 <1 <3 比較例6 (β−針状晶なし) <1 <3 2〜3 比較例9 (β−針状晶なし) <1 <3 2〜3 Table 2 β-Needles β-Crystal Diameter Aspect Ratio Diameter Diameter Aspect Ratio Length Example No. (μm) (μm) (μm) Example 3 3 to 10 10 to 20 <1 3 to 5 Example 5 3 to 10 10 to 20 <1 3 to 5 Comparative Example 1 5 to 10 3 to 5 <1 <3 Comparative Example 3 (β− No needle crystals) <1 <3 2 to 3 Comparative example 4 5 to 10 3 to 5 <1 <3 Comparative example 6 (no β-needle crystals) <1 <3 2 to 3 Comparative example 9 (β-needle (No crystals) <1 <3 2-3

【0027】表1から明らかなように、本発明の実施例
1〜8の窒化珪素質焼結体は比較例1〜10に比し、曲げ
強さ及び破壊靭性がともに優れていることがわかる。
As is clear from Table 1, the silicon nitride sintered bodies of Examples 1 to 8 of the present invention are superior to Comparative Examples 1 to 10 in both bending strength and fracture toughness. .

【0028】表2から明らかなように、本発明の方法に
より得た実施例3及び5の窒化珪素質焼結体は本発明で
規定された結晶構造を有していることがわかる。
As is apparent from Table 2, the silicon nitride sintered bodies of Examples 3 and 5 obtained by the method of the present invention have the crystal structure defined by the present invention.

【0029】さらに、図1〜図3から明らかなように、
曲げ強さ及び破壊靭性は、焼結温度が1900℃以上で、良
好であることがわかる。
Further, as is clear from FIGS. 1 to 3,
It can be seen that the bending strength and fracture toughness are good at a sintering temperature of 1900 ° C or higher.

【0030】[0030]

【発明の効果】上記の通り、本発明の窒化珪素質焼結体
は、大きな強度とともに高い靭性を有する。また本発明
によれば、焼結助剤の添加量を少なくすることができる
ので、得られる焼結体は大きい曲げ強さと高い靭性を有
する。
As described above, the silicon nitride sintered body of the present invention has high strength and high toughness. Further, according to the present invention, the addition amount of the sintering aid can be reduced, so that the obtained sintered body has high bending strength and high toughness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】窒化珪素質原料粉末の配合比と、1950℃で焼結
した窒化珪素質焼結体の曲げ強さ及び破壊靭性との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the compounding ratio of silicon nitride raw material powder and the bending strength and fracture toughness of a silicon nitride sintered body sintered at 1950 ° C.

【図2】窒化珪素質粉末原料の配合比と、1900℃で焼結
した窒化珪素質焼結体の曲げ強さ及び破壊靭性との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the compounding ratio of silicon nitride powder raw materials and the bending strength and fracture toughness of a silicon nitride sintered body sintered at 1900 ° C.

【図3】窒化珪素質粉末原料の配合比と、1800℃で焼結
した窒化珪素質焼結体の曲げ強さ及び破壊靭性との関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the compounding ratio of the silicon nitride powder raw material and the bending strength and fracture toughness of the silicon nitride sintered body sintered at 1800 ° C.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 比表面積が12〜8m 2 /gで平均粒径が0.
40〜0.45μmの窒化珪素粉末と前記窒化珪素粉末より比
表面積が大きく平均粒径が小さい窒化珪素粉末と焼結助
剤とを所定の重量比で配合し、この原料粉末を成形し、
1900℃以上で焼結して得られる窒化珪素質焼結体であっ
て、SEM観察から求められる直径が3〜10μmでアス
ペクト比10〜20のβ−針状晶を直径が1μm以下でアス
ペクト比3〜5のβ−結晶が取り囲む組織構造を有する
ことを特徴とする窒化珪素質焼結体。
1. A specific surface area of 12 to 8 m 2 / g and an average particle size of 0.
40 to 0.45 μm silicon nitride powder, a silicon nitride powder having a larger specific surface area and a smaller average particle diameter than the silicon nitride powder, and a sintering aid are mixed in a predetermined weight ratio, and the raw material powder is molded,
A silicon nitride-based sintered body obtained by sintering at 1900 ° C. or higher, in which β-acicular crystals having a diameter of 3 to 10 μm and an aspect ratio of 10 to 20 determined by SEM observation have an aspect ratio of 1 μm or less and an aspect ratio of 10 to 20 μm. A silicon nitride-based sintered body having a texture structure surrounded by 3 to 5 β-crystals.
【請求項2】 請求項1に記載の窒化珪素質焼結体にお
いて、前記焼結助剤がY2 3 及びAl2 3 であること
を特徴とする窒化珪素質焼結体。
2. The silicon nitride sintered body according to claim 1, wherein the sintering aid is Y 2 O 3 and Al 2 O 3 .
【請求項3】 請求項2に記載の窒化珪素質焼結体にお
いて、前記窒化珪素粉末の合計量を基準として前記Y2
3 が1.5 〜3.5 重量%であり、かつ前記Al2 3 が0.
1 〜1.0 重量%であることを特徴とする窒化珪素質焼結
体。
3. The silicon nitride sintered body according to claim 2, wherein the Y 2 is based on the total amount of the silicon nitride powder.
O 3 is the 1.5 to 3.5 wt%, and the Al 2 O 3 is 0.
A silicon nitride-based sintered body characterized by being 1 to 1.0% by weight.
JP3332463A 1991-11-21 1991-11-21 Silicon nitride sintered body Expired - Fee Related JP2684275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332463A JP2684275B2 (en) 1991-11-21 1991-11-21 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332463A JP2684275B2 (en) 1991-11-21 1991-11-21 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH05139841A JPH05139841A (en) 1993-06-08
JP2684275B2 true JP2684275B2 (en) 1997-12-03

Family

ID=18255258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332463A Expired - Fee Related JP2684275B2 (en) 1991-11-21 1991-11-21 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2684275B2 (en)

Also Published As

Publication number Publication date
JPH05139841A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JPH06100370A (en) Silicon nitride sintered compact and its production
JP2002097005A5 (en)
JPH06219839A (en) Heat-resistant silicon nitride ceramic and preparation thereof
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
KR970009988B1 (en) HIGH CORROSION - RESISTANT Ñß-SLALON SINTER AND PRODUCTION THEREOF
JP2684275B2 (en) Silicon nitride sintered body
JP3617076B2 (en) Silicon nitride sintered body and method for producing the same
JP3208181B2 (en) Silicon nitride based sintered body
JPH09268069A (en) Highly heat conductive material and its production
JP3290685B2 (en) Silicon nitride based sintered body
JP2001206774A (en) Silicon nitride sintered compact
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JP2661761B2 (en) Silicon nitride sintered body and method for producing the same
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2723170B2 (en) Superplastic silicon nitride sintered body
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
US5110772A (en) Fabrication of dense SI3 N4 ceramics using CaO-TiO2 SiO.sub.2
JP3106208B2 (en) Silicon nitride sintered body and method for producing the same
JP2668437B2 (en) Silicon nitride based sintered body comprising sialon nucleus-containing particles and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees