JP2002011335A - Fine bubble supply apparatus - Google Patents
Fine bubble supply apparatusInfo
- Publication number
- JP2002011335A JP2002011335A JP2000198989A JP2000198989A JP2002011335A JP 2002011335 A JP2002011335 A JP 2002011335A JP 2000198989 A JP2000198989 A JP 2000198989A JP 2000198989 A JP2000198989 A JP 2000198989A JP 2002011335 A JP2002011335 A JP 2002011335A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- gas
- columnar space
- inlet
- supply device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Hydroponics (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、水質浄水、活性化
その他の目的で容存酸素量を増大させるべく液中に微細
な気泡を供給する微細気泡供給装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine bubble supply apparatus for supplying fine bubbles to a liquid in order to increase the amount of oxygen contained therein for water purification, activation and other purposes.
【0002】[0002]
【従来の技術】従来、水耕栽培における肥培液や、魚介
類養殖のための淡水や海水中に空気を供給してこれらの
液体中の容存酸素濃度を増大させ、動植物の育成を促進
させるばかりでなく、下水道処理水中等にエアレーショ
ンを行なって水中に酸素を供給し、生物酸化を促進させ
て水質を浄化させる方法が公知である。さらに、水質処
理液中に空気を吹き込むことにより固形分を分離除去さ
せ、また、ダムの底層水部分にこれを供給することによ
りその水質向上に対しても有効であることが知られてい
る。一般に、水中に気泡化した空気を溶解させるために
は気泡径がより微細であるほど気泡全体の表面積が大き
くなり、そのぶん気液接触面積が増して水中での溶解効
率を向上させる。2. Description of the Related Art Conventionally, air has been supplied to a fertilizer solution in hydroponics or fresh water or seawater for cultivation of fish and shellfish to increase the concentration of oxygen contained in these liquids to promote the growth of animals and plants. In addition, a method is known in which aeration is performed on sewage treated water or the like to supply oxygen to the water, thereby promoting biological oxidation and purifying the water quality. Further, it is known that the solid content is separated and removed by blowing air into the water treatment liquid, and it is also effective to improve the water quality by supplying it to the bottom water portion of the dam. Generally, in order to dissolve air that has become bubbles in water, the smaller the bubble diameter is, the larger the surface area of the whole bubbles is, and the gas-liquid contact area is increased to improve the dissolution efficiency in water.
【0003】水中でのエアレーションを行なう方法とし
て、従来、散気管による方法、エジェクタにより水中に
空気を噴射させる方法、羽根付き回転体を回転させて水
中を攪拌させることにより気泡を発生させる攪拌混合方
法、空気溶解加圧水を減圧して気泡を生じさせる方法、
超音波による方法等がある。散気方式では微細な細孔か
らコンプレッサ等により加圧空気を圧送させるが加圧状
態からの空気放出の際に体積膨張を生じるため数十ミク
ロン単位の微細な気泡を発生させることは困難であり、
また、早期に細孔の目づまりを生じさせてメンテナンス
作業やコストが高いものとなる。また、攪拌混合方法で
は微細気泡を効果的に生じさせるものではなく、また、
回転羽根の動力費がかかる。また、空気溶解加圧方式の
減圧方式やエジェクタ方式や超音波方式については装置
設備が大掛かりとなりまた高価であって簡易に導入する
ことが困難であった。Conventionally, a method of performing aeration in water includes a method using a diffuser tube, a method in which air is injected into water by an ejector, and a stirring and mixing method in which a rotating body with blades is rotated to agitate the water to generate bubbles. A method of generating air bubbles by depressurizing air-dissolved pressurized water,
There is a method using ultrasonic waves and the like. In the diffusion method, pressurized air is pumped from a fine pore by a compressor or the like, but it is difficult to generate fine bubbles of several tens of microns because volume expansion occurs when air is released from the pressurized state. ,
In addition, the clogging of the pores is caused at an early stage, so that maintenance work and cost are high. In addition, the stirring and mixing method does not effectively generate fine bubbles, and
Power cost for rotating blades is required. In addition, the decompression method, the ejector method, and the ultrasonic method of the air dissolving and pressurizing method require large-scale equipment and are expensive, and it is difficult to easily introduce them.
【0004】[0004]
【発明が解決しようとする課題】一方、特開2000−
447号において、図13に示すように、円筒管の接線
方向から水液を導入し、円筒管の一端側となる上端の気
体自吸管から空気を負圧自吸させるとともに連通口を介
して円筒管の他端側に円筒管の軸方向と直交する方向に
導出口を設け、微細気泡を発生させる装置が提案されて
いる。しかしながら、この装置では、接線方向から液体
を注入させ渦流、あるいは回転流を生じさせて筒の中心
部分を負圧とし、気体自吸管としてのパイプにビニール
チューブ等を長く延長させて端部を大気側に配置させ、
これを介して気体自吸管から外気を細い柱状として導入
させながら、取り込まれる外気を捩じ切るように小さく
カット(剪断)しつつ微細気泡を発生させるものである
からこの空気の導入口部分の口径をできるだけ小さく構
成することにより微細気泡を発生させる。すなわち、例
えばこの気体自吸管部分の直径を1ミリメートル程度で
形成させる必要があり、このため、外部に配置したパイ
プの外気取り込み側に塵埃が詰まったり、海辺に近い場
所では塩分が固着して長いビニールチューブ管内が早期
に目詰まりして実用性に欠けるという問題があった。ま
た、回転流により生じる円筒体の中心部分の空気の空洞
の柱の両端が円筒体の両端側すなわち、気体自吸管の取
り付け用壁に到達してそのキャビテーションにより、小
径の気体自吸管の周囲を摩損させついには破損から破壊
させるに至る点問題であった。On the other hand, Japanese Patent Application Laid-Open No. 2000-2000
In No. 447, as shown in FIG. 13, a water liquid is introduced from the tangential direction of the cylindrical pipe, air is negatively self-primed from the gas self-priming pipe at the upper end which is one end side of the cylindrical pipe, and the cylinder is connected through the communication port. A device has been proposed in which an outlet is provided at the other end of the tube in a direction perpendicular to the axial direction of the cylindrical tube to generate fine bubbles. However, in this device, a liquid is injected from the tangential direction to generate a vortex or a rotating flow to make the center of the cylinder a negative pressure, and a vinyl tube or the like is extended to a pipe serving as a gas self-priming pipe, and the end is exposed to the atmosphere. On the side,
Through this, the outside air is introduced from the gas self-priming tube as a thin columnar shape, and fine bubbles are generated while cutting (shearing) the taken-in outside air so as to twist the outside air. Is made as small as possible to generate fine bubbles. That is, for example, it is necessary to form the gas self-priming tube portion with a diameter of about 1 mm. For this reason, dust is clogged on the outside air intake side of the pipe arranged outside, and salt is fixed in a place close to the seaside and long. There was a problem that the inside of the vinyl tube was clogged at an early stage and lacked practicality. In addition, both ends of the column of the air cavity at the center of the cylindrical body generated by the rotating flow reach both ends of the cylindrical body, that is, the mounting wall of the gas self-priming pipe, and the cavitation causes the periphery of the small-diameter gas self-priming pipe to surround. It was a problem of wear and eventually breaking from breakage.
【0005】本発明は、上記従来の課題に鑑みてなされ
たものであり、その目的は、極めて簡単な構造で、製造
コスト及び運転稼働コスト、メンテナンスコストが安価
であり、故障しにくく耐久性に優れ、さらに、微細気泡
を確実に発生させ、しかも大きな吐出量を得て装置が配
置される対象液体中に微細気泡を供給し容存酸素量を増
大させ、しかも水流を生起させて効果的に水質浄化等を
実現させることのできる微細気泡供給装置を提供するこ
とである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object a very simple structure, low manufacturing costs, low operating costs, and low maintenance costs. Excellent, furthermore, it generates fine bubbles reliably, and also obtains a large discharge amount and supplies fine bubbles in the target liquid where the device is placed, increases the amount of oxygen stored, and effectively creates a water flow An object of the present invention is to provide a fine bubble supply device capable of realizing water purification or the like.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、内部に気液旋回可能な柱状空間Sを有す
る周壁部14と、周壁部の両端において内部を閉鎖する
ように固定された蓋部16と、を有し微細気泡が供給さ
れる対象液体L中に配置される旋回容器12を備え、周
壁部14には気液旋回円周100の接線方向に吹き出す
ように前記柱状空間Sに連通し少なくとも液体を柱状空
間内に導入させる導入口18を有するとともに、両方の
蓋部16には前記柱状空間の軸方向線上となる位置に気
液導出口22がそれぞれ設けられ、導入口18に接続さ
れて前記柱状空間内に少なくとも液体を加圧導入させる
流体供給装置24を備え、流体供給装置により柱状空間
内に少なくとも液体を接線方向に加圧導入しつつ旋回流
を生じさせて微細気泡を発生させ気液導出口22から同
時に液体とともに微細気泡210を対象液体L中に導出
してなる微細気泡供給装置10から構成される。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a peripheral wall portion 14 having a columnar space S inside which a gas-liquid swirl is possible, and fixed at both ends of the peripheral wall portion so as to close the interior. And a swirl container 12 which is disposed in the target liquid L to which fine bubbles are supplied, and has a peripheral wall portion 14 which has a columnar shape so as to blow out in a tangential direction of the gas-liquid swirl circumference 100. In addition to having an inlet 18 communicating with the space S and introducing at least the liquid into the columnar space, a gas-liquid outlet 22 is provided on each of the lids 16 at a position on the axial line of the columnar space. A fluid supply device connected to the port for pressurizing and introducing at least the liquid into the columnar space, and generating a swirling flow while pressurizing and introducing at least the liquid into the columnar space by the fluid supply device in a tangential direction; Fine Composed of gas-liquid outlet port 22 formed by derived target liquid L microbubbles 210 with liquid simultaneously from fine bubble supplying device 10 to generate bubbles.
【0007】柱状空間Sの形状は円柱形であるようにし
てもよい。The shape of the columnar space S may be cylindrical.
【0008】また、気液導出口22の総面積が導入口の
総面積よりも大きく設定される。Further, the total area of the gas-liquid outlet 22 is set larger than the total area of the inlet.
【0009】また、周壁部14内にはその柱状空間Sの
軸方向と交差するように連通開口50を有する整流板5
2が固定されてなることとしてもよい。A flow regulating plate 5 having a communication opening 50 in the peripheral wall portion 14 so as to intersect the axial direction of the columnar space S.
2 may be fixed.
【0010】また、旋回容器12には気体の吸込口(5
4)が設けられ、この吸込口に気体取り込み開口を地上
側に配置させた気体供給チューブ56が接続され、前記
導入口18からは対象液体Lが柱状空間S内に供給され
てなることとしてもよい。The swirl container 12 has a gas inlet (5).
4) is provided, a gas supply tube 56 having a gas intake opening disposed on the ground side is connected to the suction port, and the target liquid L is supplied from the introduction port 18 into the columnar space S. Good.
【0011】また、整流板52内を貫通する通路58を
設け、同通路の一端外部側を気体供給チューブ56に接
続させ、通路の他端側を連通開口50に開口させた吸込
口としてなるようにしてもよい。A passage 58 penetrating through the straightening plate 52 is provided, one end of which is connected to the gas supply tube 56, and the other end of the passage is formed as a suction opening which is opened to the communication opening 50. It may be.
【0012】また、流体供給装置24は対象液体Lを引
き込む引き込み管26と、引き込まれた対象液体を圧送
する圧送装置30と、気体を引き込まれた対象液体に混
合させる混合部(34)と、を備え、気体を混合させた
対象液体を導入口18から加圧導入させてなることとし
てもよい。The fluid supply device 24 includes a suction pipe 26 for drawing the target liquid L, a pressure feeding device 30 for pressure feeding the drawn target liquid, and a mixing section (34) for mixing gas with the drawn target liquid. The target liquid mixed with the gas may be introduced under pressure from the inlet 18.
【0013】また、気体供給チューブ56の一端開口5
6aは気液導出口22近縁に固定的に配置されてなるこ
ととしてもよい。Further, one end opening 5 of gas supply tube 56 is provided.
6a may be fixedly disposed near the gas-liquid outlet 22.
【0014】また、柱状空間を円柱形状でその場合の直
径と高さを一定とした場合、導入口と気液導出口は、直
径比で1.5〜2.0(但し、導入口の直径<柱状空間
の直径の3分の1)であることとしてもよい。When the columnar space is cylindrical and the diameter and height are constant, the inlet and the gas-liquid outlet are 1.5 to 2.0 in diameter ratio (however, the diameter of the inlet is <1/3 of the diameter of the columnar space).
【0015】[0015]
【発明の実施の形態】以下、添付図面を参照しつつ本発
明の好適な実施の形態について説明する。微細気泡供給
装置は例えば動植物育成用液、水質浄化用処理水、ダム
湖水等の対象液体中に旋回容器を配置させ、いわゆるマ
イクロバブルと称される微細気泡を発生させ、かつ該対
象液体中に直接微細気泡を充填供給して容存酸素量を大
きくし、動植物育成、生物酸化等を促進させるばかりで
なく、処理水の浄化、ダム湖水の活性化を促す微細気泡
供給手段である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. The microbubble supply device arranges a swirl container in a target liquid such as a plant and animal cultivation liquid, a water purification treatment water, a dam lake or the like, generates so-called microbubbles, and generates microbubbles in the target liquid. This is a means for supplying micro-bubbles that directly fills and supplies micro-bubbles to increase the amount of stored oxygen and promotes the growth of animals and plants, biological oxidation, etc., as well as the purification of treated water and the activation of dam lake water.
【0016】図1ないし図3は、本発明に係る微細気泡
供給装置の一構成要素である旋回容器12を示してい
る。図において、旋回容器12は、合成樹脂製等からな
る直方体状の容器体からなり、内部に気体と液体をとも
に旋回させ得る形状である円柱状の空間Sを有してある
程度の厚みを有する周壁部14と、周壁部14の両端に
おいて内部を閉鎖するように一体的に設けられた2個の
蓋部16と、を備えている。旋回容器の内部空間は気液
旋回が可能な形状の空間であれば良く、四角形、五角
形、六角形、その他の多角形柱体形状でも良い。好まし
くは実施形態のように円柱形であるほうが良い。また、
容器体の形状は直方体でなくとも円筒形、多角筒形状そ
の他の任意の形状でもよい。材質は耐水性の金属、合
金、セラミック、その他の材質としてもよいが製造容易
性及び製造コストの点から合成樹脂成型体の一体ものあ
るいは加工したものを用いるほうが好ましい。FIGS. 1 to 3 show a swirl container 12 which is one component of the fine bubble supply apparatus according to the present invention. In the figure, a swirling container 12 is formed of a rectangular parallelepiped container made of synthetic resin or the like, and has a cylindrical space S having a shape capable of swirling both gas and liquid therein, and a peripheral wall having a certain thickness. It has a portion 14 and two lid portions 16 integrally provided at both ends of the peripheral wall portion 14 so as to close the inside. The internal space of the swirling container may be a space capable of gas-liquid swirling, and may be a square, a pentagon, a hexagon, or another polygonal column. Preferably, the shape is cylindrical as in the embodiment. Also,
The shape of the container body is not limited to a rectangular parallelepiped, but may be a cylindrical shape, a polygonal tube shape, or any other shape. The material may be a water-resistant metal, alloy, ceramic or other material, but it is preferable to use a synthetic resin molded body integrally or processed from the viewpoint of ease of production and production cost.
【0017】図1、2、3において、周壁部14には空
間Sの内部において気体とともに旋回する液体の旋回円
周100の接線方向に吹き出すように柱状空間Sに連通
して少なくとも液体を柱状空間内に導入させる2個の導
入口18が設けられている。実施形態において、導入口
18は容器体の周壁部14である一つの周壁平面から外
方に突設した中空筒体20を接合させて設けられてお
り、その中空部が円柱体状の空間S内に円柱の周面の接
線方向となるように連通されている。導入口18は、柱
状空間Sの軸方向長さの中心を含む縦断面を基準に対称
な離隔位置に設定されている。導入口18は必ずしも2
個でなくとも良く、1個、3個あるいはそれ以上の複数
個設けてもよい。In FIGS. 1, 2, and 3, the peripheral wall portion 14 communicates with at least the columnar space S so as to blow out in the tangential direction of the swirl circumference 100 of the liquid that swirls together with the gas inside the space S. There are provided two inlets 18 to be introduced into the inside. In the embodiment, the inlet 18 is provided by joining a hollow cylindrical body 20 protruding outward from one peripheral wall plane, which is the peripheral wall part 14 of the container body, and the hollow part has a cylindrical space S. The inside is communicated so as to be tangential to the peripheral surface of the cylinder. The inlet 18 is set at a symmetrical separation position with respect to a longitudinal section including the center of the axial length of the columnar space S. Inlet 18 is always 2
The number is not limited to one, but may be one, three, or more.
【0018】また、旋回容器12の両方の四角形の蓋部
16の中心部、すなわち、内部の柱上空間Sの軸方向線
上の延長線上には気液導出口22がそれぞれ設けられて
いる。すなわち、これらの気液導出口22は、円柱状空
間Sの中央縦断面に対して対称な位置に設けられ、か
つ、略同じ大きさの円形の開口面積で形成されている。
気液導出口22は、旋回容器の内部で生成された微細気
泡とともに同旋回容器内部に導入され旋回回転する液体
を外部、すなわち対象液体中に導出し放出させる。蓋部
16はそれぞれ単に板体であってその中心部に気液導出
口22が内外を連通する孔として形成されているだけで
あり、旋回容器から導出口22を介して出た流体はすぐ
に容器12の外部に接するようになっている。A gas-liquid outlet 22 is provided at the center of each of the rectangular lids 16 of the swirl container 12, that is, on the extension of the inner column space S in the axial direction. That is, these gas-liquid outlets 22 are provided at positions symmetrical with respect to the central longitudinal section of the columnar space S, and are formed with circular opening areas of substantially the same size.
The gas-liquid outlet 22 guides the liquid, which is introduced into the swirl container together with the fine bubbles generated inside the swirl container and swirls and rotates, to the outside, that is, the target liquid, and discharges the liquid. Each of the lids 16 is simply a plate body, and the gas-liquid outlet 22 is simply formed at the center thereof as a hole communicating between the inside and the outside. It comes into contact with the outside of the container 12.
【0019】本発明の微細気泡供給装置の旋回容器は、
柱状空間の接線側から液体及び気体ないしは気液混合流
体を圧送し、内部で高速旋回させることにより微細気泡
を発生させるものであるから導入口18は生成させたい
微細気泡の径に一致、あるいは対応させて小さなものに
設定する必要はなく、例えば1センチメートル程度の大
きさに設定してもよい。発生させる微細気泡の大きさは
気液として導入口18から圧送させる場合には、注入あ
るいは吸入させる空気量により、よって、これを調整し
て連続可変あるいは選択的に変化させ得る手段を設ける
ほうが好ましい。この実施形態においては導入口18か
らは後述するように液体中に空気を混合させて気液とし
て旋回容器内に圧送するようにしている。The swirling container of the microbubble supply device of the present invention comprises:
A liquid and a gas or a gas-liquid mixed fluid is pumped from the tangential side of the columnar space to generate microbubbles by swirling at high speed inside. Therefore, the inlet 18 matches the diameter of the microbubbles to be generated or corresponds to It is not necessary to set the size to a small one, and for example, it may be set to a size of about 1 cm. When the size of the microbubbles to be generated is pressure-fed from the inlet 18 as gas-liquid, it is preferable to provide a means capable of continuously changing or selectively changing the size by adjusting the amount of air to be injected or sucked. . In this embodiment, as described later, air is mixed into the liquid from the introduction port 18 and the liquid is pressure-fed into the swirling container as gas-liquid.
【0020】この実施形態において、2個の蓋部16に
設けられた2個の気液導出口22の総面積は接線方向か
ら気液を導入させる導入口18の総面積よりも大きく設
定されている。気液導出口22側の総面積が導入口18
側の総面積よりも小さい場合には旋回容器の中空筒体の
形状、体積条件を同じと考えると気液内の流体が高速回
転せず、よって旋回空洞部分208も十分に発達しない
細長い形状で小さな直径の空洞しか発生しない。したが
って、外部から導入される気液により負圧自体が発生し
にくく、その結果、微細気泡を安定的に発生させること
ができなくなる。導出口22を大きく設定することによ
り導入口18からスムーズに流体が導入され、旋回容器
内で高速回転を行ない、大径の空気の柱、すなわち旋回
空洞部分が生じ、負圧部分を大きく確保して確実にかつ
多量に微細気泡を発生させることとなる。In this embodiment, the total area of the two gas-liquid outlets 22 provided on the two lids 16 is set to be larger than the total area of the inlet 18 for introducing gas and liquid from the tangential direction. I have. The total area of the gas-liquid outlet 22 side is the inlet 18
When the total area of the swirl container is smaller than the total area of the swirl container, considering that the shape and volume conditions of the hollow cylindrical body of the swirl container are the same, the fluid in the gas and liquid does not rotate at high speed, and thus the swirl cavity portion 208 has an elongated shape that does not sufficiently develop. Only small diameter cavities occur. Therefore, the negative pressure itself is unlikely to be generated by gas-liquid introduced from the outside, and as a result, it is impossible to stably generate fine bubbles. By setting the outlet 22 large, the fluid is smoothly introduced from the inlet 18, performs high-speed rotation in the swirl container, and generates a large-diameter air column, that is, a swirl cavity portion, and secures a large negative pressure portion. As a result, a large amount of fine bubbles are generated reliably and in large quantities.
【0021】実験によれば、柱状空間Sを円柱形状と
し、その場合の直径Pと高さQを一定とした場合、導入
口18の直径Rと気液導出口22の直径Tは直径比で
1.5〜2.0(但し、導入口の直径<柱状空間の直径
の3分の1)であるあるときに、多くのかつ大きさが微
細な気泡を発生させることが確認されている。例えば、
図3のように2個の導入口18を有する旋回容器の場
合、上述の比率により定まる導入口と導出口の面積比を
構成し得るような各1個の導入口直径Rと、気液導出口
直径Tを定めればよい。すなわち、導入口18は1個あ
るいは2個以上の複数個設けた場合でもその比率により
定まる導入口と導出口の面積比で構成することにより確
実に微細気泡を発生させる。また、その際、容器内部で
の流体の高速旋回運動を確保するために導入口の直径R
は柱状空間の直径Pの3分の1以下であることが必要で
ある。According to an experiment, when the columnar space S has a cylindrical shape and the diameter P and the height Q are constant, the diameter R of the inlet 18 and the diameter T of the gas-liquid outlet 22 are expressed by a diameter ratio. It has been confirmed that when the diameter is 1.5 to 2.0 (where the diameter of the inlet port is smaller than one third of the diameter of the columnar space), many and large-sized fine bubbles are generated. For example,
In the case of a swirling container having two inlets 18 as shown in FIG. 3, each inlet diameter R which can form an area ratio between the inlet and the outlet determined by the above ratio, and a gas-liquid conduit The outlet diameter T may be determined. In other words, even when one or two or more inlets 18 are provided, fine bubbles are reliably generated by configuring the inlets and outlets in an area ratio determined by the ratio. At this time, the diameter R of the inlet is set to ensure high-speed swirling motion of the fluid inside the container.
Needs to be not more than one third of the diameter P of the columnar space.
【0022】図4に示すように、微細気泡供給装置10
は、さらに、旋回容器12の導入口18に接続される流
体供給装置24を備えている。流体供給装置24は対象
液体Lを引き込む引き込み管26と、引き込まれた対象
液体を圧送管28を介して再び対象液体L中に圧送する
ポンプ等の圧送装置30と、大気空気等の気体を引き込
まれた対象液体に混合させる混合部としての気体混合装
置32と、を備えている。この実施形態において、流体
供給装置24は、負圧圧送装置としてのポンプにより引
き込み管26を介して対象液体Lを地上側に引き込み、
気体混合装置32により空気を混合させて再び対象液体
中の旋回容器12に送給する気液循環供給手段を形成し
ている。引き込み管26の一端には対象液体中に配置さ
れる例えばストレーナ等の吸込部33が設けられてい
る。また、気体混合装置32は、コンプレッサ34、空
気圧調整弁36及び圧力計38を送気管40で連通して
圧送管に接続させた構成であり、送気管40の一端を圧
送管28の中間位置に接続させて圧縮空気を圧送される
液体中に混合し、気液混合流体を対象液体中に浸漬され
た旋回容器12内部に接線方向から加圧導入させるよう
になっている。送気管40は圧送管28に対して任意の
位置に接続させてもよい。このように予め地上側で気液
混合状態で対象液体中の旋回容器内に圧送するようにし
ているので圧送用のチューブ内が目詰まりすることが防
止される。なお、実施形態では気液混合流体を導入口1
8から導入させるようにしているが、液体と気体を別々
にそれぞれ旋回容器内に導入させるようにしてもよい。
液体は旋回容器内に接線方向に導入させるが気体は任意
の接続態様で任意の方向から旋回容器内に導入させるよ
うにしてもよい。As shown in FIG.
Further includes a fluid supply device 24 connected to the inlet 18 of the swirl container 12. The fluid supply device 24 draws in a target pipe L for drawing in the target liquid L, a pumping device 30 such as a pump for pumping the drawn target liquid into the target liquid L again through a pressure pipe 28, and a gas such as atmospheric air. And a gas mixing device 32 as a mixing unit for mixing with the target liquid. In this embodiment, the fluid supply device 24 draws the target liquid L to the ground side via a suction pipe 26 by a pump as a negative pressure pumping device,
A gas-liquid circulating supply means for mixing the air by the gas mixing device 32 and feeding the mixed air to the swirl container 12 in the target liquid again is formed. At one end of the suction pipe 26, a suction part 33 such as a strainer, which is disposed in the target liquid, is provided. The gas mixing device 32 has a configuration in which a compressor 34, an air pressure adjusting valve 36, and a pressure gauge 38 are connected to each other by communicating with an air supply pipe 40, and one end of the air supply pipe 40 is located at an intermediate position of the pressure supply pipe 28. By connecting the compressed air to the liquid to be fed under pressure, the gas-liquid mixed fluid is pressure-introduced from the tangential direction into the swirl container 12 immersed in the target liquid. The air supply pipe 40 may be connected to an arbitrary position with respect to the pressure supply pipe 28. As described above, since the pressure is fed in advance into the swirl container in the target liquid in a gas-liquid mixed state on the ground side, it is possible to prevent the pressure feeding tube from being clogged. In the embodiment, the gas-liquid mixed fluid is supplied to the inlet 1
8, the liquid and the gas may be separately introduced into the swirl container.
The liquid may be introduced tangentially into the swirl vessel, while the gas may be introduced into the swirl vessel from any direction in any connection manner.
【0023】空気圧調整弁36は、コンプレッサ34の
圧縮空気の供給量を調整する空気圧調整手段であり、旋
回容器12内で生成させる微細気泡のサイズ調整手段と
して機能する。The air pressure adjusting valve 36 is an air pressure adjusting means for adjusting the amount of compressed air supplied from the compressor 34, and functions as a size adjusting means for fine bubbles generated in the swirl container 12.
【0024】次に、図5ないし図9に基づいて実施形態
に係る微細気泡供給装置10の旋回容器内の流体の作用
について説明する。図5において、導入口18より、旋
回容器12内部へ導入された気液は、両端の蓋部16の
気液導出口22の中心どうしを結ぶ線X−Xの線上また
はその近縁を旋回中心軸とし、高速旋回する気液の旋回
流を形成する。図5において、導入口から圧送された気
液の旋回流は、両端の気液導出口22の中間部側に向け
て旋回しながら移動する中間側旋回流200と、容器の
両端側に向けて旋回しながら移動する端側旋回流202
に分流される。2個の導入口18から導入される中間側
旋回流200はそれぞれ容器の中央部分に向けて旋回し
ながら移動し、それらがぶつかる容器の中央部分204
位置で移動方向を反転し、旋回流中心軸線X−X付近を
容器の気液導出口22方向に向けて移動する。中間側旋
回流200と端側旋回流202は、両端側の気液導出口
22の直前付近で合流し、旋回流206となり気液導出
口22から吐出される。Next, the operation of the fluid in the swirl container of the fine bubble supply device 10 according to the embodiment will be described with reference to FIGS. In FIG. 5, the gas-liquid introduced into the inside of the swirl container 12 from the inlet 18 is swirled around the line XX connecting the centers of the gas-liquid outlets 22 of the lids 16 at both ends or in the vicinity thereof. An axis forms a swirling flow of gas-liquid swirling at high speed. In FIG. 5, the swirling flow of gas-liquid sent from the inlet is swirled toward the middle part of the gas-liquid outlet 22 at both ends, and moves toward the middle swirling flow 200 and toward both ends of the container. End-side swirling flow 202 that moves while turning
Shunted. The intermediate swirling flows 200 introduced from the two inlets 18 move while swirling toward the central part of the container, respectively, and the central part 204 of the container where they meet.
The direction of movement is reversed at the position, and the vicinity of the swirling flow center axis XX is moved toward the gas-liquid outlet 22 of the container. The intermediate swirling flow 200 and the end swirling flow 202 merge near immediately before the gas-liquid outlets 22 on both ends, and become a swirling flow 206 to be discharged from the gas-liquid outlet 22.
【0025】より詳細には、図6、7において、導入口
18から柱状空間Sの接線方向から旋回容器内に導入さ
れた高速旋回する中間側旋回流200及び端側旋回流2
02を含む気液は液体の粘性力に勝る遠心力により旋回
流中心軸X−Xより柱状空間を形成する容器の内壁寄り
側に圧縮され、旋回流中心軸付近には遠心力により負圧
となった柱状空間の軸方向に沿うように長く旋回空洞部
分208が生じる。さらに、旋回流200、202の旋
回流中心軸付近には遠心力と吸引力が同時に働き、引張
力が生じて減圧状態となる。そして、減圧状態となった
旋回空洞部分208には、減圧沸騰、すなわち、減圧に
よる容存気体のガス化現象により、旋回流200、20
2中に溶解している容存気体が微細気泡210となり発
生する。微細気泡210は、旋回流200、202の流
れに随伴しながら最終的には吐出旋回流206に伴って
両側の気液導出口22から吐出される。More specifically, in FIGS. 6 and 7, the intermediate-side swirling flow 200 and the end-side swirling flow 2 which are introduced into the swirling container from the inlet 18 from the tangential direction of the columnar space S and swirl at high speed.
02 is compressed by the centrifugal force exceeding the viscous force of the liquid toward the inner wall of the container forming the columnar space from the swirl center axis XX, and a negative pressure is generated by the centrifugal force near the swirl center axis. A long swirling cavity portion 208 is formed along the axial direction of the columnar space. Further, centrifugal force and suction force act simultaneously near the swirling flow central axes of the swirling flows 200 and 202, and a tensile force is generated to be in a reduced pressure state. Then, the swirling flows 200 and 20 are generated in the swirling cavity portion 208 in a reduced pressure state by boiling under reduced pressure, that is, gasification of a gas contained by the reduced pressure.
The dissolved gas dissolved in 2 becomes fine bubbles 210 and is generated. The fine bubbles 210 are discharged from the gas-liquid outlets 22 on both sides along with the discharge swirling flow 206 while accompanying the flow of the swirling flows 200 and 202.
【0026】旋回容器内の柱状空間Sから気液導出口2
2を通過して外部へ導出されるときには流体は複雑な作
用を生じさせる。柱状空間S側すなわち内面側の導出口
22近縁には吐出旋回流206と旋回空洞部分208と
の相互作用により内部減圧部分212を形成させるとと
もに、導出口22の外部直近縁にも外部減圧部分213
を生じさせ、これらの部分からも減圧沸騰作用により微
細気泡を発生させる。The gas-liquid outlet 2 from the columnar space S in the swirl vessel
The fluid has a complicated effect when it is led out through 2. At the column-shaped space S side, that is, on the inner surface side near the outlet 22, an internal depressurized portion 212 is formed by the interaction between the discharge swirling flow 206 and the swirling cavity portion 208, and an external depressurized portion is also formed at the outer edge of the outlet 22. 213
And micro bubbles are also generated from these portions by the action of boiling under reduced pressure.
【0027】図8において、旋回容器12内の旋回流中
の気液には気液の比重の違いにより気体には向心力が働
き、液体には遠心力が働き、液体は旋回流の外周側へ移
動するとともに気体は旋回流の中心側へ移動する。さら
に気体は旋回流旋回軸中心付近の旋回空洞部分208に
集積され、高速で旋回しながら気液導出口22へ向かう
周囲の液体に随伴して旋回空洞部分の柱状空間の先端側
220に向かう。旋回空洞部分の先端側220では、旋
回容器12内より吐出されようとする旋回流の旋回空洞
部分と境界を同じくする旋回空洞部分周囲の液体の液面
222と、旋回空洞部分の負圧によって旋回空洞内に引
き込まれようとする旋回容器外部液体の先端部分の円周
側液面224とが水の粘性力と旋回空洞部分の負圧によ
る吸引力の作用により旋回空洞部分に栓をする形で密着
している。気体はこの密着する部分を通過する際に両液
面222、224の圧縮力226により押しつぶされ
る。また、旋回流の旋回速度は旋回容器12内壁より半
径の小さい気液導出口22で速くなり、旋回容器12と
気液導出口境界付近では旋回速度差による専断力が発生
する。このとき気体は前記両液体の圧縮力と専断力によ
り、小さく分断された気泡210aとなる。したがっ
て、導入口18の気液の気体混入量を高めてやれば旋回
空洞部分の負圧は弱まり、両液面222、224の密着
力は減少し気体に作用する圧縮力も小さくなり気泡径は
大きくなる。逆に気体混入量を減じてやれば気泡径は小
となる。これによって、加圧された気液の気体混入量を
増減調整することにより、所望のサイズの気泡を発生さ
せることが可能となる。具体的には前述した空気圧調整
手段としての空気圧調整弁36を調整して圧送管28に
供給する圧縮空気量を内圧が正圧とならない範囲で調整
することにより気泡サイズの微調整操作を行なうことと
なる。In FIG. 8, the centrifugal force acts on the gas, the centrifugal force acts on the gas due to the difference in the specific gravity of the gas and liquid, and the liquid flows toward the outer peripheral side of the swirl flow in the swirl flow in the swirl vessel 12. As it moves, the gas moves toward the center of the swirling flow. Further, the gas is accumulated in the swirling cavity portion 208 near the center of the swirling flow swirling axis, and moves toward the front end side 220 of the columnar space of the swirling cavity portion along with the surrounding liquid flowing toward the gas-liquid outlet 22 while swirling at high speed. On the tip side 220 of the swirling cavity portion, a liquid level 222 around the swirling cavity portion, which has the same boundary as the swirling cavity portion of the swirling flow to be discharged from the swirling container 12, and swirling by the negative pressure of the swirling cavity portion The circumferential liquid surface 224 at the tip of the swirl container external liquid to be drawn into the cavity is plugged into the swirl cavity portion by the action of the viscous force of water and the suction force due to the negative pressure of the swirl cavity portion. Closely adhered. The gas is crushed by the compressive force 226 of the two liquid surfaces 222 and 224 when passing through the contact portion. Further, the swirling speed of the swirling flow becomes faster at the gas-liquid outlet 22 having a smaller radius than the inner wall of the swirling container 12, and a shearing force due to a difference in swirling speed is generated near the boundary between the swirling container 12 and the gas-liquid outlet. At this time, the gas becomes small divided bubbles 210a due to the compressive force and the exclusive force of the two liquids. Therefore, if the amount of gas-liquid mixture at the inlet 18 is increased, the negative pressure in the swirling cavity portion is weakened, the adhesion between the liquid surfaces 222 and 224 is reduced, the compressive force acting on the gas is reduced, and the bubble diameter is increased. Become. Conversely, if the gas mixing amount is reduced, the bubble diameter becomes smaller. This makes it possible to generate bubbles of a desired size by increasing or decreasing the amount of pressurized gas-liquid mixed gas. Specifically, fine adjustment of the bubble size is performed by adjusting the air pressure adjusting valve 36 as the air pressure adjusting means described above to adjust the amount of compressed air supplied to the pressure feed pipe 28 within a range where the internal pressure does not become a positive pressure. Becomes
【0028】これにより、対象液体中に微細気泡を連続
的に安定して供給し、容存酸素量を増大させて水質浄
化、養殖動植物の育成促進、閉鎖水域の水の活性化等を
実現させるとともに、気液導出口から多量の流体を対象
液中に供給して循環流等も同時に生起させることができ
る。Thus, fine bubbles are continuously and stably supplied into the target liquid, and the amount of oxygen contained therein is increased to realize water purification, promotion of cultivation of cultured animals and plants, activation of water in a closed water area, and the like. At the same time, a large amount of fluid can be supplied into the target liquid from the gas-liquid outlet to simultaneously generate a circulating flow.
【0029】次に、本発明の第2の実施形態に係る微細
気泡供給装置について図9、図10に基づいて説明する
が、第1実施形態と同一部材には同一符号を付し、その
詳細な説明を省略する。この実施形態では、周壁部14
内にはその柱状空間Sの軸方向と交差するように連通開
口50を有する整流板52が固定されている。整流板5
2は、接線方向から導入された液体は旋回容器内で乱流
とならずに確実に高速旋回流を生じさせる旋回整流手段
である。これによって、微細気泡発生を確実に生じさせ
る。Next, a fine bubble supply apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 9 and 10. The same members as those in the first embodiment are denoted by the same reference numerals, and details thereof are described. Detailed description is omitted. In this embodiment, the peripheral wall portion 14
Inside, a rectifying plate 52 having a communication opening 50 is fixed so as to intersect the axial direction of the columnar space S. Rectifier plate 5
Reference numeral 2 denotes a swirl rectification unit that ensures that a liquid introduced from a tangential direction does not become a turbulent flow in the swirl container but generates a high-speed swirl flow. As a result, the generation of fine bubbles is reliably caused.
【0030】この実施形態において柱状空間Sの軸方向
の中央部において空間Sを軸方向と直交するように2分
割して、中心部に連通開口50を有するドーナツ板状の
整流板50を旋回容器12の内壁に固定させている。整
流板50の両側から接線方向に柱状空間に液体を導入さ
せる2個の導入口18が整流板の取付位置から等間隔に
離隔して配置されている。In this embodiment, the space S is divided into two parts at a central portion in the axial direction of the columnar space S so as to be orthogonal to the axial direction. 12 are fixed to the inner wall. Two inlets 18 for introducing the liquid into the columnar space tangentially from both sides of the current plate 50 are arranged at equal intervals from the mounting position of the current plate.
【0031】この場合、2個の導入口18とは別に旋回
容器に空気の導入口54、あるいは気体の吸込口が設け
られる。空気導入口には気体供給チューブ56からなる
空気供給管が接続され外気側に配置させた気体取り込み
開口から空気を負圧吸引させながら旋回容器内部に空気
を送り込み、液体の旋回流に混合させて微細気泡を発生
させる。このように、気体は負圧吸引することによりコ
ンプレッサや送気系の供給管を省略し、装置構成を簡略
化して製造コスト低減を実現する。本発明のように、旋
回容器内での流体の旋回運動のみによって微細気泡を発
生させるので、容器の両端側に設けた気液導出口22の
開口面積を極めて小さなものとしなくともよく、したが
って、液体の導入口とともに、気体の導入口54の口径
をある程度大きなものに設定できるから、簡単に目づま
りすることがないものである。In this case, an air inlet 54 or a gas inlet is provided in the swirl container separately from the two inlets 18. An air supply pipe composed of a gas supply tube 56 is connected to the air inlet, and air is sent into the swirl container while suctioning air under a negative pressure from a gas intake opening arranged on the outside air side to mix the swirl flow of the liquid. Generates fine bubbles. In this way, the gas is suctioned at a negative pressure, thereby omitting the compressor and the supply pipe of the air supply system, simplifying the device configuration and realizing a reduction in manufacturing cost. As in the present invention, since fine bubbles are generated only by the swirling motion of the fluid in the swirling container, the opening area of the gas-liquid outlet 22 provided at both ends of the container does not have to be extremely small, and therefore, Since the diameter of the gas introduction port 54 can be set to be somewhat large together with the liquid introduction port, the gas is not easily clogged.
【0032】さらに、この実施形態においては、整流板
52の内部に通路58を設け、その一端外部側を気体供
給チューブ56に接続させるとともに、他端側を柱状空
間内部に開口させた吸込口としての空気導入口54とし
ている。すなわち、空気の吸込口としての空気導入口5
4はドーナツ円盤状の整流板の連通開口50内に向けて
空気を導入させる。したがって、この場合、整流板52
の整流旋回作用とあいまって気体の導入位置を気液を無
駄なく混合させやすい位置で導入させるから微細気泡発
生の効率を向上させ得る。Further, in this embodiment, a passage 58 is provided inside the current plate 52, one end of which is connected to the gas supply tube 56, and the other end is formed as a suction port opened to the inside of the columnar space. The air inlet 54 of FIG. That is, the air inlet 5 as an air inlet
Numeral 4 introduces air into the communication opening 50 of the donut disk-shaped current plate. Therefore, in this case, the current plate 52
The gas introduction position is introduced at a position where gas and liquid can be easily mixed without waste in combination with the rectifying swirling action of the above, so that the efficiency of generation of fine bubbles can be improved.
【0033】次に、本発明の第3の実施形態に係る微細
気泡供給装置について図11、図12に基づいて説明す
るが、前記した実施形態と同一部材には同一符号を付
し、その詳細な説明を省略する。この実施形態では、気
体供給チューブ56の一端開口56aは気液導出口22
近縁に固定的に配置されている。そして、導入口18は
柱状空間に対して接線方向から流体を導入させるように
柱状空間の軸方向中央から対称離間位置に2個設けられ
ている。この実施形態では2個の導入口18からは例え
ば対象液体Lのみが導入されるようになっている。そし
て、気体供給チューブ56の一端開口を旋回空洞部分2
08の気液導出口22出口近縁、すなわち、旋回容器内
でちょうど気液の導出口22の開口に臨ませるように図
示しない固定部材を旋回容器に支持させて固定させてい
る。この場合には、気液導出口22の開口が柱状空間S
内のその中心軸部分に生じる図上横長の旋回空洞部分2
08と外部減圧部分213とが連続する部分となるか
ら、負圧吸引力により気体供給チューブの一端開口56
aから外部の空気を吸引しながら旋回容器内部に取り込
み、気液混合しつつ旋回運動でさらに微細気泡を生じさ
せ、再び気液導出口22から外部に微細気泡を含む流体
を導出、供給させることができる。Next, a fine bubble supply apparatus according to a third embodiment of the present invention will be described with reference to FIGS. 11 and 12. The same members as those in the above embodiment are denoted by the same reference numerals, and details thereof will be described. Detailed description is omitted. In this embodiment, one end opening 56a of the gas supply tube 56 is connected to the gas-liquid outlet 22.
It is fixedly arranged in the vicinity. Two inlets 18 are provided at symmetrically spaced positions from the axial center of the columnar space so as to introduce the fluid into the columnar space from the tangential direction. In this embodiment, for example, only the target liquid L is introduced from the two introduction ports 18. Then, one end opening of the gas supply tube 56 is connected to the swirling cavity portion 2.
A fixed member (not shown) is supported on the swirling container and fixed so as to face the periphery of the gas-liquid outlet 22 at 08, that is, the opening of the gas-liquid outlet 22 in the swirl container. In this case, the opening of the gas-liquid outlet 22 is a columnar space S
Swiveling cavity part 2 in the figure, which is formed in the central axis part of the inside
08 and the external decompression portion 213 are continuous portions.
a) to take in the inside of the swirl container while aspirating external air from a, to generate further fine bubbles by swirling motion while mixing the gas and liquid, and to derive and supply the fluid containing the fine bubbles to the outside again from the gas-liquid outlet 22. Can be.
【0034】上記した微細気泡供給装置は、例えば、水
耕栽培、動植物の養殖、生物浄化、水中浮遊物の浮上分
離、水生植物栽培、鑑賞魚水槽等にも適用できる。The above-described fine bubble supply apparatus can be applied to, for example, hydroponics, cultivation of animals and plants, biological purification, floating separation of suspended matter in water, cultivation of aquatic plants, aquarium for aquarium fish, and the like.
【0035】[実施例1]本発明の微細気泡供給装置を
魚類養殖場(面積10,000平方メートル、水深6
m、水槽水深5.5m)に適用した。水槽中の対象液体
中に旋回容器を配置し、流体供給装置24の100V、
200Wポンプにより塩化ビニールパイプで構成した圧
送管をポンプに連接して旋回容器の導入口に接続した。
また、気体混合装置のコンプレッサとして100V、7
50W、吐出圧8kgf/平方センチメートルの小型コ
ンプレッサを用いた。空気圧調整弁36をコンプレッサ
に接続させ、加圧空気を調整して旋回容器内に圧送さ
せ、容器内で微細気泡を発生させて水槽内の液体内に供
給し、対象液内の容存酸素量を測定した。測定結果より
容存酸素量が大幅に増加し、かつ短時間で槽内の全体に
ついて容存酸素量が増加したことが確認された。[Example 1] A microbubble supply device of the present invention was installed in a fish farm (10,000 square meters, water depth 6).
m, aquarium water depth 5.5 m). The swirling container is arranged in the target liquid in the water tank, and 100 V of the fluid supply device 24,
A pumping tube composed of a vinyl chloride pipe was connected to the pump by a 200 W pump and connected to the inlet of the swirling container.
In addition, 100 V, 7
A small compressor having a power of 50 W and a discharge pressure of 8 kgf / cm 2 was used. The air pressure adjusting valve 36 is connected to the compressor, the pressurized air is adjusted and sent to the swirling container under pressure, fine bubbles are generated in the container and supplied into the liquid in the water tank, and the amount of oxygen stored in the target liquid. Was measured. From the measurement results, it was confirmed that the amount of dissolved oxygen was greatly increased, and that the amount of dissolved oxygen was increased in the entire tank in a short time.
【0036】[実施例2]止水域のビオトープ池(面積
20平方メートル、水深0.6m)内に旋回容器10を
浸漬し、第2の実施形態として説明した旋回容器内に整
流板を設け、液体のみを導入口18から圧送させるとと
もに空気を外部から負圧吸引させるタイプの微細気泡供
給装置を適用した。ビオトープ池には、ワサビ、水芭
蕉、クロモ、ヒラモ、ホザキノフサモ等の水生植物やヤ
マメ、いわな、フナ、ヤゴ、ホタル等の魚類あるいは水
生昆虫等の生息条件の異なる動植物を同時に観察した。
冷水域の動植物の容存酸素供給効率を高めることによ
り、生息限界温度を数度以上引き上げることができた。
また、同様に流水域、止水域の魚類も同時に飼育するこ
とが可能となった。さらに、実験開始後長期間を経過し
たが装置の目づまりが一切なく、メンテナンスなしで使
用継続し得ることが確認された。また、低電力のポンプ
のみで容存酸素供給効率を向上させ、メンテナンス作業
や設備コストの大幅な低減を図れるようになった。Example 2 A swirl vessel 10 is immersed in a biotope pond (area of 20 square meters, water depth 0.6 m) in a water stop area, and a flow straightening plate is provided in the swirl vessel described as the second embodiment. A fine bubble supply device of a type in which only the pressure was fed from the inlet 18 and the air was suctioned from the outside under a negative pressure was applied. In the biotope pond, aquatic plants such as wasabi, mizubashio, kuromo, hiramo and hozakinofusamo, and animals and plants having different habitats such as fish such as yamame trout, fish, crucian carp, firefly and firefly, and aquatic insects were simultaneously observed.
By increasing the available oxygen supply efficiency of animals and plants in the cold water area, the inhabitable limit temperature could be raised several degrees or more.
Similarly, it has become possible to breed fish in the watershed and stillwater areas at the same time. Further, it has been confirmed that although a long time has passed since the start of the experiment, there was no clogging of the device at all, and the device could be used without maintenance. In addition, the efficiency of oxygen supply can be improved by using only a low-power pump, and maintenance work and equipment costs can be significantly reduced.
【0037】[0037]
【発明の効果】以上説明したように、本発明の微細気泡
供給装置によれば、内部に気液旋回可能な柱状空間を有
する周壁部と、周壁部の両端において内部を閉鎖するよ
うに固定された蓋部と、を有し微細気泡が供給される対
象液体中に配置される旋回容器を備え、周壁部には気液
旋回円周の接線方向に吹き出すように前記柱状空間に連
通し少なくとも液体を柱状空間内に導入させる導入口を
有するとともに、両方の蓋部には前記柱状空間の軸方向
線上となる位置に気液導出口がそれぞれ設けられ、導入
口に接続されて前記柱状空間内に少なくとも液体を加圧
導入させる流体供給装置を備え、流体供給装置により柱
状空間内に少なくとも液体を接線方向に加圧導入しつつ
旋回流を生じさせて微細気泡を発生させ気液導出口から
同時に液体とともに微細気泡を対象液体中に導出した構
成であるから、旋回容器を筒体に導入口と導出口を設け
るだけの極めて簡単な構造で、低コストで製造でき、し
かも流体の高速旋回による減圧沸騰により微細気泡を発
生させるものであり、外部から導入される気体を微細に
分断しながら気泡を発生させるものではないので導入口
を小さく構成する必要がなく、流体供給用のパイプや導
入口の目づまりがなく、さらにメンテンスの負担がな
く、耐久性に優れた微細気泡供給装置を提供することが
できる。さらに、旋回容器の両端側から気液を導出させ
るから大きな吐出量を得て装置が配置される対象液体中
に微細気泡を供給し対象液体中の容存酸素量を増大さ
せ、しかも水流を生起させて効果的に水質浄化等を実現
させることが可能である。As described above, according to the microbubble supply device of the present invention, the peripheral wall having a columnar space capable of swirling gas and liquid therein is fixed to both ends of the peripheral wall so as to close the interior. And a swirl container disposed in the target liquid to which the microbubbles are supplied, and the peripheral wall portion communicates with the columnar space so as to blow out in a tangential direction of the gas-liquid swirl circumference at least the liquid. A gas-liquid outlet is provided on each of the lids at a position on the axial line of the columnar space, and both lids are connected to the inlet and are provided in the columnar space. At least a fluid supply device for pressurizing and introducing the liquid is provided, and the fluid supply device generates a swirl flow while pressurizing and introducing at least the liquid in the columnar space in the tangential direction to generate fine bubbles and simultaneously liquid from the gas-liquid outlet. With With a structure in which fine bubbles are led into the target liquid, the swirl container can be manufactured at a low cost with an extremely simple structure that simply provides an inlet and outlet in the cylinder. It does not generate bubbles while finely dividing the gas introduced from the outside, so it is not necessary to make the inlet small, and clogging of the fluid supply pipe and the inlet is not required. Thus, it is possible to provide a fine bubble supply device which is excellent in durability without burden of maintenance. Furthermore, since the gas-liquid is drawn out from both ends of the swirling container, a large discharge amount is obtained, and fine bubbles are supplied into the target liquid in which the device is disposed, thereby increasing the amount of oxygen contained in the target liquid and generating a water flow. By doing so, it is possible to effectively realize water purification and the like.
【0038】また、柱状空間の形状が円柱形であること
により、接線方向から旋回容器内に導入された流体の旋
回流動効率を向上させ、減圧沸騰作用により微細気泡を
確実にかつ高効率に生成させることができる。Further, since the shape of the columnar space is cylindrical, the efficiency of the swirling flow of the fluid introduced into the swirling container from the tangential direction is improved, and fine bubbles are reliably and efficiently generated by the reduced-pressure boiling action. Can be done.
【0039】また、気液導出口の総面積が導入口の総面
積よりも大きく設定された構成とすることにより、旋回
容器内で発生させた微細気泡を容器外に確実に導出さ
せ、対象液体中への微細気泡供給を実効的に行なわせ、
液中の容存酸素供給効率を向上させる。In addition, by employing a configuration in which the total area of the gas-liquid outlet is set to be larger than the total area of the inlet, fine bubbles generated in the swirl container are reliably led out of the container, and Effectively supply fine bubbles into the inside,
Improve the efficiency of supplying oxygen in liquid.
【0040】また、周壁部内にはその柱状空間の軸方向
と交差するように連通開口を有する整流板が固定されて
なる構成とすることにより、接線方向から旋回容器内に
導入された流体が乱流を生じさせて旋回流動時の抵抗と
なることなく、導入された流体が旋回流を生じさせるよ
うに整流させ、確実に流体を高速旋回させて微細気泡発
生効率を向上させることができる。In addition, since a flow straightening plate having a communication opening is fixed in the peripheral wall so as to intersect the axial direction of the columnar space, the fluid introduced into the swirl container from the tangential direction is disturbed. It is possible to rectify the introduced fluid so as to generate a swirling flow without causing the flow to cause a resistance at the time of the swirling flow, and to surely swirl the fluid at a high speed to improve the efficiency of generating fine bubbles.
【0041】また、旋回容器には気体の吸込口が設けら
れ、この吸込口に気体取り込み開口を地上側に配置させ
た気体供給チューブが接続され、前記導入口からは対象
液体が柱状空間内に供給されてなる構成とすることによ
り、気体のみを別個に旋回容器内に負圧吸引させること
で気体圧送のためのコンプレッサ等圧縮装置や稼働用電
力コストが不要となる。また、気体の吸込導入口はそれ
ほど小さくなくとも良く、目づまりも発生しにくいもの
である。The swirl container is provided with a gas suction port, and a gas supply tube having a gas intake opening arranged on the ground side is connected to the suction port. From the introduction port, a target liquid enters the columnar space. By adopting a configuration in which the gas is supplied, only the gas is separately suctioned into the revolving container under a negative pressure, so that a compressor such as a compressor for gas pressure feeding and an operating power cost are not required. Also, the gas inlet may not be so small, and clogging is unlikely to occur.
【0042】また、整流板内を貫通する通路を設け、同
通路の一端外部側を気体供給チューブに接続させ、通路
の他端側を連通開口に開口させた吸込口としてなる構成
とすることにより、流体の整流作用を行なう整流板か
ら、その連通開口内に向けて吸引気体を導入させるから
中央部分から気体を導入させながら効率よく液体の旋回
流全体に分布させて微細気泡を発生させることができ
る。Further, by providing a passage which penetrates the inside of the flow straightening plate, one end of the passage is connected to the gas supply tube at one end, and the other end of the passage is formed as a suction port opened to the communication opening. Since the suction gas is introduced into the communication opening from the rectifying plate that performs the rectifying action of the fluid, it is possible to efficiently distribute the liquid to the entire swirling flow of the liquid and generate fine bubbles while introducing the gas from the central portion. it can.
【0043】また、流体供給装置は対象液体を引き込む
引き込み管と、引き込まれた対象液体を圧送する圧送装
置と、気体を引き込まれた対象液体に混合させる混合部
と、を備え、気体を混合させた対象液体を導入口から加
圧導入させてなる構成とすることにより、対象液体を引
き込んで気液混合状態で対象液体中の旋回容器内に循環
圧送させる構成を実現できる。また、混合部に空気圧調
整手段を設けて混合空気量を調整することにより、旋回
容器内に発生させる微細気泡サイズの調整をも行うこと
ができる。Further, the fluid supply device includes a suction pipe for drawing in the target liquid, a pumping device for pumping the drawn target liquid, and a mixing section for mixing the gas with the drawn target liquid. With the configuration in which the target liquid is pressure-introduced from the inlet, it is possible to realize a configuration in which the target liquid is drawn and circulated and fed into the swirl container in the target liquid in a gas-liquid mixed state. Further, by providing an air pressure adjusting means in the mixing section to adjust the amount of mixed air, it is possible to adjust the size of fine bubbles generated in the swirl container.
【0044】また、気体供給チューブの一端開口は気液
導出口近縁に固定的に配置されてなる構成とすることに
より、負圧吸引力により気体供給チューブの一端開口か
ら外部の空気を吸引しながら旋回容器内部に取り込み、
気液混合しつつ旋回運動でさらに微細気泡を生じさせ、
再び気液導出口から外部に微細気泡を含む流体を導出、
供給させ、微細気泡の対象液体内への導出供給の実効を
確保し得る。Further, since one end opening of the gas supply tube is fixedly arranged near the gas-liquid outlet, the outside air is sucked from the one end opening of the gas supply tube by the negative pressure suction force. While taking it inside the swirl container,
Whilst mixing gas and liquid, a fine bubble is generated by swirling motion,
The fluid containing fine bubbles is derived again from the gas-liquid outlet,
It is possible to supply the fine bubbles and ensure the effective supply of the fine bubbles into the target liquid.
【0045】また、柱状空間を円柱形状でその場合の直
径と高さを一定とした場合、導入口と気液導出口は直径
比で1.5〜2.0(但し、導入口の直径<柱状空間の
直径の3分の1)である構成とすることにより、旋回容
器に設けた導入口の数にかかわらず多くのかつ大きさが
微細な微細気泡を確実に発生させることが可能である。When the columnar space is cylindrical and the diameter and height are constant, the inlet and the gas-liquid outlet are 1.5 to 2.0 in diameter ratio (provided that the diameter of the inlet < By adopting a configuration that is one third of the diameter of the columnar space, it is possible to reliably generate a large number of fine bubbles with a small size regardless of the number of inlets provided in the swirling container. .
【図1】本発明の第1実施形態に係る微細気泡供給装置
の旋回容器の側面図である。FIG. 1 is a side view of a swirl container of a fine bubble supply device according to a first embodiment of the present invention.
【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.
【図3】図1のB−B線断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;
【図4】第1実施形態の微細気泡供給装置の全体構成説
明図である。FIG. 4 is an explanatory diagram of the entire configuration of the fine bubble supply device of the first embodiment.
【図5】旋回容器内部の旋回流作用説明図である。FIG. 5 is an explanatory view of a swirling flow action inside the swirling container.
【図6】同じく旋回容器内部の旋回流作用説明図であ
る。FIG. 6 is an explanatory view of a swirling flow action similarly in the swirling container.
【図7】図6の断面作用説明図である。FIG. 7 is a sectional operation explanatory view of FIG. 6;
【図8】旋回容器導出口周縁での流体の作用説明図であ
る。FIG. 8 is an explanatory view of the action of the fluid around the periphery of the swirl container outlet.
【図9】本発明の第2実施形態に係る微細気泡供給装置
の旋回容器の側面図である。FIG. 9 is a side view of a swirl container of the fine bubble supply device according to the second embodiment of the present invention.
【図10】その旋回容器の構成説明件容器内部の旋回流
作用説明図である。FIG. 10 is an explanatory view of a swirling flow action inside the container.
【図11】本発明の第3実施形態に係る微細気泡供給装
置の旋回容器の側面図である。FIG. 11 is a side view of a swirl container of a fine bubble supply device according to a third embodiment of the present invention.
【図12】その旋回容器の構成説明件容器内部の旋回流
作用説明図である。FIG. 12 is an explanatory view of a swirling flow action inside the container.
【図13】従来の気泡発生装置の説明図である。FIG. 13 is an explanatory diagram of a conventional bubble generation device.
10 微細気泡供給装置 12 旋回容器 14 周壁部 16 蓋部 18 導入口 22 気液導出口 24 流体供給装置 26 引き込み管 32 気体混合装置 36 空気圧調整弁 50 連通開口 52 整流板 54 空気導入口 56 気体供給チューブ 210 微細気泡 L 対象液体 DESCRIPTION OF SYMBOLS 10 Fine bubble supply apparatus 12 Revolving container 14 Peripheral wall part 16 Lid 18 Inlet 22 Gas-liquid outlet 24 Fluid supply apparatus 26 Intake pipe 32 Gas mixing apparatus 36 Air pressure control valve 50 Communication opening 52 Straightening plate 54 Air introduction port 56 Gas supply Tube 210 Microbubble L Target liquid
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 4/00 102 B01J 4/00 102 C02F 3/20 ZAB C02F 3/20 ZABC Fターム(参考) 2B104 EB20 2B314 MA23 PA09 4D029 AA01 AB05 BB01 BB11 BB13 4G035 AB05 AB15 AC44 AE13 4G068 AA03 AB01 AB07 AD50 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 4/00 102 B01J 4/00 102 C02F 3/20 ZAB C02F 3/20 ZABC F-term (Reference) 2B104 EB20 2B314 MA23 PA09 4D029 AA01 AB05 BB01 BB11 BB13 4G035 AB05 AB15 AC44 AE13 4G068 AA03 AB01 AB07 AD50
Claims (9)
周壁部と、周壁部の両端において内部を閉鎖するように
固定された蓋部と、を有し微細気泡が供給される対象液
体中に配置される旋回容器を備え、 周壁部には気液旋回円周の接線方向に吹き出すように前
記柱状空間に連通し少なくとも液体を柱状空間内に導入
させる導入口を有するとともに、両方の蓋部には前記柱
状空間の軸方向線上となる位置に気液導出口がそれぞれ
設けられ、 導入口に接続されて前記柱状空間内に少なくとも液体を
加圧導入させる流体供給装置を備え、 流体供給装置により柱状空間内に少なくとも液体を接線
方向に加圧導入しつつ旋回流を生じさせて微細気泡を発
生させ気液導出口から同時に液体とともに微細気泡を対
象液体中に導出してなる微細気泡供給装置。1. A target liquid to which fine bubbles are supplied, comprising: a peripheral wall portion having a columnar space capable of swirling gas and liquid therein; and lid portions fixed at both ends of the peripheral wall portion so as to close the inside. The peripheral wall portion has an inlet which communicates with the columnar space so as to blow out in a tangential direction of the gas-liquid swirl circumference and has at least a liquid inlet introduced into the columnar space, and both lid portions. A gas-liquid outlet is provided at a position on the axial line of the columnar space, and a fluid supply device connected to the inlet to pressurize and introduce at least liquid into the columnar space is provided. A micro-bubble supply device that generates a swirling flow while pressurizing and introducing at least a liquid in a tangential direction into a columnar space to generate micro-bubbles and simultaneously discharges the micro-bubbles together with the liquid into a target liquid from a gas-liquid outlet.
記載の微細気泡供給装置。2. The columnar space has a cylindrical shape.
The microbubble supply device as described in the above.
りも大きく設定されてなる請求項1または2記載の微細
気泡供給装置。3. The fine bubble supply apparatus according to claim 1, wherein the total area of the gas-liquid outlet is set to be larger than the total area of the inlet.
差するように連通開口を有する整流板が固定されてなる
請求項1ないし3のいずれかに記載の微細気泡供給装
置。4. The fine bubble supply device according to claim 1, wherein a flow straightening plate having a communication opening is fixed in the peripheral wall portion so as to intersect the axial direction of the columnar space.
体供給チューブが接続され、 前記導入口からは対象液体が柱状空間内に供給されてな
る請求項1ないし4のいずれかに記載の微細気泡供給装
置。5. A swirling container is provided with a gas suction port, a gas supply tube having a gas intake opening arranged on the ground side is connected to the suction port, and a target liquid is introduced into the columnar space from the introduction port. The fine bubble supply device according to any one of claims 1 to 4, which is supplied.
の一端外部側を気体供給チューブに接続させ、通路の他
端側を連通開口に開口させた吸込口としてなる請求項5
記載の微細気泡供給装置。6. A suction port provided with a passage penetrating through the straightening plate, one end of the passage connected to the gas supply tube, and the other end of the passage opened to a communication opening.
The microbubble supply device as described in the above.
込み管と、引き込まれた対象液体を圧送する圧送装置
と、気体を引き込まれた対象液体に混合させる混合部
と、を備え、気体を混合させた対象液体を導入口から加
圧導入させてなる請求項1ないし4のいずれかに記載の
微細気泡供給装置。7. A fluid supply device comprising: a suction pipe for drawing in a target liquid; a pumping device for pumping the drawn target liquid; and a mixing unit for mixing a gas with the drawn target liquid. The microbubble supply device according to any one of claims 1 to 4, wherein the target liquid is introduced under pressure from an inlet.
口近縁に固定的に配置されてなる請求項5記載の微細気
泡供給装置。8. The microbubble supply device according to claim 5, wherein one end opening of the gas supply tube is fixedly disposed near the gas-liquid outlet.
高さを一定とした場合、導入口と気液導出口は直径比で
1.5〜2.0(但し、導入口の直径<柱状空間の直径
の3分の1)である請求項1ないし8のいずれかに記載
の微細気泡供給装置。9. When the columnar space has a cylindrical shape and the diameter and height are constant, the inlet and the gas-liquid outlet are 1.5 to 2.0 in diameter ratio (provided that the diameter of the inlet < The microbubble supply device according to any one of claims 1 to 8, wherein the diameter is one third of the diameter of the columnar space.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000198989A JP4145000B2 (en) | 2000-06-30 | 2000-06-30 | Fine bubble feeder |
PCT/JP2001/005231 WO2002002216A1 (en) | 2000-06-30 | 2001-06-19 | Method and device for feeding fine bubbles |
AU2001264331A AU2001264331A1 (en) | 2000-06-30 | 2001-06-19 | Method and device for feeding fine bubbles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000198989A JP4145000B2 (en) | 2000-06-30 | 2000-06-30 | Fine bubble feeder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002011335A true JP2002011335A (en) | 2002-01-15 |
JP4145000B2 JP4145000B2 (en) | 2008-09-03 |
Family
ID=18697074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000198989A Expired - Fee Related JP4145000B2 (en) | 2000-06-30 | 2000-06-30 | Fine bubble feeder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4145000B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005032243A1 (en) * | 2003-10-06 | 2005-04-14 | Reo Laboratory Co., Ltd. | Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization |
JP2006314281A (en) * | 2005-05-13 | 2006-11-24 | Keiten Co Ltd | Method for culturing fish and shellfish |
JP2007111616A (en) * | 2005-10-19 | 2007-05-10 | Sharp Corp | Fine air-bubble generating device |
JP2007275713A (en) * | 2006-04-04 | 2007-10-25 | Sumitomo Metal Mining Co Ltd | Oxidization method for removing of metal in liquid |
WO2007136030A1 (en) | 2006-05-23 | 2007-11-29 | Marubeni Corporation | Fine bubble generating apparatus |
JP2008093624A (en) * | 2006-10-16 | 2008-04-24 | Sharp Corp | Water cleaning apparatus and method |
KR100842786B1 (en) | 2007-04-25 | 2008-07-01 | 경상대학교산학협력단 | Dissolution oxygen generator by using a floating bubble |
KR100854687B1 (en) | 2007-08-09 | 2008-08-27 | 이상열 | Micro bubble system |
KR100952611B1 (en) | 2009-09-28 | 2010-04-15 | 조계만 | Apparatus for producing functional washing water using micro bubble |
KR100952612B1 (en) | 2009-09-28 | 2010-04-15 | 조계만 | Apparatus for producing functional washing water using micro bubble |
US7832028B2 (en) * | 2004-09-28 | 2010-11-16 | Tashizen Techno Works Co., Ltd. | Fine-bubble generator, and foot-bathing apparatus and bathing device with the same |
JP2011110551A (en) * | 2009-11-24 | 2011-06-09 | Sulzer Chemtech Ag | Fluid injection device |
WO2012108035A1 (en) * | 2011-02-10 | 2012-08-16 | Ogawa Hiroshi | Sewage treatment system in sewerage system |
JP2014069141A (en) * | 2012-09-28 | 2014-04-21 | I M T Kk | Bubble generating device |
KR101542901B1 (en) | 2014-04-08 | 2015-08-07 | 김용석 | Air supplier for a pool of an indoor fishing place |
JP6019418B1 (en) * | 2015-10-02 | 2016-11-02 | 合同会社クロスロード | Microbubble generator, microbubble generator and system |
JP2017087177A (en) * | 2015-11-16 | 2017-05-25 | 株式会社プリンシプル | Fine bubble generator |
CN109731492A (en) * | 2018-08-21 | 2019-05-10 | 北京环域生态环保技术有限公司 | A kind of self-priming venturi jet stream micro-nano bubble method for generation of dish and device |
WO2020138248A1 (en) * | 2018-12-25 | 2020-07-02 | 株式会社御池鐵工所 | Ultrafine bubble maker and ultrafine bubble water preparing device |
-
2000
- 2000-06-30 JP JP2000198989A patent/JP4145000B2/en not_active Expired - Fee Related
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005110552A (en) * | 2003-10-06 | 2005-04-28 | National Institute Of Advanced Industrial & Technology | System for pressure multilayer type micro ozone sterilization, purification and breeding sterilization |
WO2005032243A1 (en) * | 2003-10-06 | 2005-04-14 | Reo Laboratory Co., Ltd. | Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization |
US7832028B2 (en) * | 2004-09-28 | 2010-11-16 | Tashizen Techno Works Co., Ltd. | Fine-bubble generator, and foot-bathing apparatus and bathing device with the same |
JP2006314281A (en) * | 2005-05-13 | 2006-11-24 | Keiten Co Ltd | Method for culturing fish and shellfish |
JP2007111616A (en) * | 2005-10-19 | 2007-05-10 | Sharp Corp | Fine air-bubble generating device |
JP2007275713A (en) * | 2006-04-04 | 2007-10-25 | Sumitomo Metal Mining Co Ltd | Oxidization method for removing of metal in liquid |
WO2007136030A1 (en) | 2006-05-23 | 2007-11-29 | Marubeni Corporation | Fine bubble generating apparatus |
US8523151B2 (en) | 2006-05-23 | 2013-09-03 | Ligaric Co., Ltd. | Fine bubble generating apparatus |
US8186653B2 (en) | 2006-05-23 | 2012-05-29 | Hideyasu Tsuji | Fine bubble generating apparatus |
JP2008093624A (en) * | 2006-10-16 | 2008-04-24 | Sharp Corp | Water cleaning apparatus and method |
KR100842786B1 (en) | 2007-04-25 | 2008-07-01 | 경상대학교산학협력단 | Dissolution oxygen generator by using a floating bubble |
KR100854687B1 (en) | 2007-08-09 | 2008-08-27 | 이상열 | Micro bubble system |
KR100952612B1 (en) | 2009-09-28 | 2010-04-15 | 조계만 | Apparatus for producing functional washing water using micro bubble |
KR100952611B1 (en) | 2009-09-28 | 2010-04-15 | 조계만 | Apparatus for producing functional washing water using micro bubble |
JP2011110551A (en) * | 2009-11-24 | 2011-06-09 | Sulzer Chemtech Ag | Fluid injection device |
WO2012108035A1 (en) * | 2011-02-10 | 2012-08-16 | Ogawa Hiroshi | Sewage treatment system in sewerage system |
CN103269984A (en) * | 2011-02-10 | 2013-08-28 | 小川弘 | Sewage treatment system in sewerage system |
JPWO2012108035A1 (en) * | 2011-02-10 | 2014-07-03 | 小川 弘 | Sewage treatment system in sewer |
JP2014069141A (en) * | 2012-09-28 | 2014-04-21 | I M T Kk | Bubble generating device |
KR101542901B1 (en) | 2014-04-08 | 2015-08-07 | 김용석 | Air supplier for a pool of an indoor fishing place |
JP6019418B1 (en) * | 2015-10-02 | 2016-11-02 | 合同会社クロスロード | Microbubble generator, microbubble generator and system |
JP2017064685A (en) * | 2015-10-02 | 2017-04-06 | 合同会社クロスロード | Microbubble generator, microgeneration apparatus, and system of the same |
JP2017087177A (en) * | 2015-11-16 | 2017-05-25 | 株式会社プリンシプル | Fine bubble generator |
CN109731492A (en) * | 2018-08-21 | 2019-05-10 | 北京环域生态环保技术有限公司 | A kind of self-priming venturi jet stream micro-nano bubble method for generation of dish and device |
WO2020138248A1 (en) * | 2018-12-25 | 2020-07-02 | 株式会社御池鐵工所 | Ultrafine bubble maker and ultrafine bubble water preparing device |
JPWO2020138248A1 (en) * | 2018-12-25 | 2021-10-14 | 株式会社御池鐵工所 | Ultra fine bubble maker and ultra fine bubble water maker |
JP7150408B2 (en) | 2018-12-25 | 2022-10-11 | 株式会社御池鐵工所 | Ultra-fine bubble maker and ultra-fine bubble water maker |
US11980850B2 (en) | 2018-12-25 | 2024-05-14 | Miike Tekkou Kabushikigaisha | Ultrafine bubble manufacturing unit and ultrafine bubble water manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
JP4145000B2 (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002011335A (en) | Fine bubble supply apparatus | |
JP4420161B2 (en) | Method and apparatus for generating swirling fine bubbles | |
JP4525890B2 (en) | Swivel type micro bubble generator | |
US4844843A (en) | Waste water aerator having rotating compression blades | |
JP2003145190A (en) | Aerator | |
WO2001097958A9 (en) | Fine air bubble generator and fine air bubble generating device with the generator | |
JP3443728B2 (en) | Wastewater purification equipment | |
JP4018130B1 (en) | Water treatment system | |
JPS5920373B2 (en) | Method and device for increasing the oxygen content of water | |
JP2014097449A5 (en) | ||
JP2014097449A (en) | Through-flow pump ultrafine bubble flow supply device | |
JP2010155243A (en) | Swirling type fine-bubble generating system | |
CN102056654B (en) | Device for mixing gas into a flowing liquid | |
JP4124956B2 (en) | Fine bubble supply method and fine bubble supply device | |
JP2012125690A (en) | Through-flow pump aeration apparatus | |
JPH11333491A (en) | Microbubble jet water purifying apparatus | |
EP1670574B1 (en) | Method and apparatus for mixing of two fluids | |
JP2012005947A (en) | Pump aeration device | |
JP2002059186A (en) | Water-jet type fine bubble generator | |
JP3751308B1 (en) | Mixer and mixing apparatus using the same | |
JP2002153741A (en) | Tool for mixing fluid and pump for mixing fluid using the same | |
JP2013146702A (en) | Microbubble generator using through-flow pump | |
JP2008100225A (en) | Air/liquid mixer | |
JP2001205278A (en) | Sewage cleaning treatment apparatus | |
WO2002002216A1 (en) | Method and device for feeding fine bubbles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080617 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |