JP2002005640A - Optical shape-measuring apparatus - Google Patents

Optical shape-measuring apparatus

Info

Publication number
JP2002005640A
JP2002005640A JP2000184489A JP2000184489A JP2002005640A JP 2002005640 A JP2002005640 A JP 2002005640A JP 2000184489 A JP2000184489 A JP 2000184489A JP 2000184489 A JP2000184489 A JP 2000184489A JP 2002005640 A JP2002005640 A JP 2002005640A
Authority
JP
Japan
Prior art keywords
wafer
optical
measuring apparatus
optical shape
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000184489A
Other languages
Japanese (ja)
Other versions
JP3785025B2 (en
Inventor
Yasushi Yoneda
康司 米田
Tsutomu Morimoto
勉 森本
Eiji Takahashi
英二 高橋
Hidetoshi Tsunaki
英俊 綱木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Genesis Technology Co Ltd
Original Assignee
Kobe Steel Ltd
Genesis Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Genesis Technology Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2000184489A priority Critical patent/JP3785025B2/en
Publication of JP2002005640A publication Critical patent/JP2002005640A/en
Application granted granted Critical
Publication of JP3785025B2 publication Critical patent/JP3785025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02021Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different faces of object, e.g. opposite faces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02076Caused by motion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical shape-measuring apparatus which can accurately measure shape, e.g. flatness and thickness, of a thin planar sample, especially a wafer. SOLUTION: The optical shape-measuring apparatus comprises optical measuring means 10, 20 provided with two reference planar substrates 15, 25 disposed opposite on the major surface 1a side and the rear surface 1b side of a wafer 1 held substantially vertically via an edge part, and transparent rigid plates 19, 29 disposed between the referential planar substrates 15, 25 and the wafer 1 in the proximity of the wafer, while forming a parallel gap with respect to the wafer 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄板ガラス、鏡、
アルミ磁気ディスク、ガラスディスクやウェーハなどの
厚さの薄い平板状の被検体の、平坦度、厚さなどの形状
を測定するための光学式形状測定装置に関するものであ
る。以下は理解を容易にするためウェーハの光学式形状
測定を例に上げて説明する。
TECHNICAL FIELD The present invention relates to thin glass, mirrors,
The present invention relates to an optical shape measuring apparatus for measuring the shape, such as flatness and thickness, of a thin plate-shaped subject such as an aluminum magnetic disk, a glass disk, and a wafer. In the following, for ease of understanding, description will be made by taking an optical shape measurement of a wafer as an example.

【0002】[0002]

【従来の技術】ウェーハの平坦度、厚さなどを測定する
手法としては、例えば特開平11−260873号公報
に提案されているものが知られている。
2. Description of the Related Art As a method for measuring the flatness, thickness, and the like of a wafer, a method proposed in, for example, JP-A-11-260873 is known.

【0003】上記公報に提案されているウェーハの光学
式形状測定装置は、図5に示すように、エッジ部におい
て鉛直保持されたウェーハ1の両面側に2つの光学測定
系10,20が対向配置され、前記ウェーハ1の周縁に
向けて厚さ測定部50が配置されている。前記各光学測
定系10,20は、それぞれ測定光12,22を出射す
る発光器11,21、前記測定光12,22を平行ビー
ムとするコリメータレンズ14,24、前記平行ビーム
が透過する基準平面レンズ15,25、前記ウェーハ1
の主面1a及び裏面1bで反射された測定光が前記基準
平面レンズ15,25及び前記コリメータレンズ14,
24等を経て入射される受光器16,26と、前記基準
平面レンズ15,25と前記ウェーハ1の主面1a及び
裏面1bとで作られた干渉縞が取り込まれる演算器17
を備えている。そして、前記受光器16,26では、前
記基準平面レンズ15,25での反射光と、前記ウェー
ハ1の主面1a及び裏面1bとで形成される干渉縞が観
測され、演算器17では、前記受光器16,26で観測
された干渉縞の画像に基づいて前記ウェーハ1の主面1
a及び裏面1bの平面形状が演算され、前記厚さ測定部
50で測定されたウェーハ1の所定位置での厚さ実測値
を基準として前記ウェーハ1の真形状が求められる。
[0003] In the wafer optical shape measuring device proposed in the above publication, as shown in FIG. 5, two optical measuring systems 10 and 20 are opposed to each other on both sides of a wafer 1 held vertically at an edge portion. The thickness measuring unit 50 is arranged toward the periphery of the wafer 1. Each of the optical measurement systems 10 and 20 includes a light emitter 11 or 21 that emits measurement light 12 or 22, a collimator lens 14 or 24 that uses the measurement light 12 or 22 as a parallel beam, and a reference plane through which the parallel beam passes. Lenses 15 and 25, wafer 1
The measurement light reflected by the main surface 1a and the back surface 1b of the reference plane lenses 15 and 25 and the collimator lens 14,
The light receiving devices 16 and 26 which enter through the light receiving device 24 and the like, the computing device 17 into which interference fringes formed by the reference plane lenses 15 and 25 and the main surface 1a and the back surface 1b of the wafer 1 are taken in.
It has. Then, in the light receivers 16 and 26, reflected light from the reference plane lenses 15 and 25 and interference fringes formed by the main surface 1 a and the back surface 1 b of the wafer 1 are observed. The main surface 1 of the wafer 1 is determined based on the interference fringe images observed by the light receivers 16 and 26.
a and the plane shape of the back surface 1b are calculated, and the true shape of the wafer 1 is determined based on the actual thickness measured at a predetermined position of the wafer 1 measured by the thickness measuring unit 50.

【0004】そして、上記提案のウェーハの光学式形状
測定装置では、ウェーハの主面及び裏面から得られる干
渉縞を利用して主面及び裏面の平坦度をそれぞれ求め、
厚さ測定器で得られたウェーハの厚さ実測値を基準とし
てウェーハの真形状を算出しているので、従来方式に比
較して、極めて短時間で平坦度が高精度で測定される。
また、算出された真形状から主面形状、裏面形状、平坦
度及び絶対厚さも求められる。更に、測定対象であるウ
ェーハは、静止状態で鉛直保持されているため、重力の
影響を受けることなく測定に供される。しかも、ごみや
疵が付着する機会が少なく、ウェーハの特性劣化が防止
される。といった効果が得られるとされている。
[0004] In the proposed optical shape measuring apparatus for a wafer, the flatness of the main surface and the back surface are obtained by using interference fringes obtained from the main surface and the back surface of the wafer, respectively.
Since the true shape of the wafer is calculated based on the actual measured value of the thickness of the wafer obtained by the thickness measuring device, the flatness can be measured with high accuracy in a very short time as compared with the conventional method.
Further, the main surface shape, the back surface shape, the flatness, and the absolute thickness are obtained from the calculated true shape. Further, since the wafer to be measured is held vertically in a stationary state, it is used for measurement without being affected by gravity. In addition, there is little opportunity for dust and flaws to adhere, and deterioration of wafer characteristics is prevented. It is said that such an effect can be obtained.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記公報に
提案のウェーハの光学式形状測定装置では、上記効果が
得られることが期待されるものの、ウェーハのような薄
肉形状からなる被検体の表面形状を測定する場合、被検
体の表面又は/及び裏面の全面測定が望まれるため、被
検体のエッジ部を介して保持する方法がとられ、一般に
は被検体の周辺の3点を支持する方法がとられる。この
ように周辺を支持した状態では、空気中を伝搬する振動
(音)の影響で、被検体が振動を起こすために、精度の
高い測定ができにくく、特に被検体がウェーハの場合、
ウェーハの平坦度測定で要求される高精度(20nm以
下)測定に対して、振動による計測誤差が無視できない
オーダとなる。
By the way, in the wafer optical shape measuring device proposed in the above-mentioned publication, although the above-mentioned effects are expected to be obtained, the surface shape of a thin-walled object such as a wafer is expected. In the case of measuring, since it is desired to measure the entire surface of the front surface and / or the back surface of the subject, a method of holding the object via the edge portion of the subject is used, and a method of supporting three points around the subject is generally used. Be taken. In the state where the periphery is supported in this manner, the subject is caused to vibrate by the influence of vibration (sound) propagating in the air, so that it is difficult to perform highly accurate measurement. In particular, when the subject is a wafer,
For a high-precision (20 nm or less) measurement required for wafer flatness measurement, a measurement error due to vibration is in a non-negligible order.

【0006】なお、上記公報に提案のウェーハの光学式
形状測定装置、或いは本出願人が先に提案している形状
測定装置(特願平12−53591号)では、光学測定
系はフィゾー型干渉計の構成を用いており、光学系に組
み込まれた基準平面基板(上記の従来技術の説明では基
準平面レンズと称しているが、この部分では光を平行に
透過させるだけなので、本発明では基準平面基板と称し
て説明する。)とウェーハ(被検体)表面の相対距離を
干渉画像計測することでウェーハの形状測定を行なう
が、上記のように、ウェーハが振動すると基準平面基板
との相対距離が変化することになり、高精度な形状測定
ができなくなる。
Incidentally, in the optical shape measuring device for wafers proposed in the above publication or the shape measuring device proposed by the present applicant (Japanese Patent Application No. 12-53591), the optical measuring system is a Fizeau interference type. The reference plane substrate incorporated in the optical system (referred to as the reference plane lens in the above description of the prior art, but since this part only transmits light in parallel, The shape of the wafer is measured by measuring the relative distance between the surface of the wafer (object) and the relative distance between the surface of the wafer (object), but as described above, when the wafer vibrates, the relative distance to the reference plane substrate is measured. Is changed, and high-precision shape measurement cannot be performed.

【0007】本発明は、上記の如き事情に基づいてなし
たものであって、その目的は、厚さの薄い平板状の被検
体、特にウェーハを対象として高精度に平坦度、厚さな
どの形状を測定し得る光学式形状測定装置を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made based on the above-mentioned circumstances, and has as its object to accurately and precisely measure flatness, thickness, etc. of a thin plate-shaped test object, particularly a wafer. An object of the present invention is to provide an optical shape measuring device capable of measuring a shape.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明(請求項1)に係る光学式形状測定装置
は、エッジ部を介して略鉛直に保持された厚さの薄い平
板状の被検体の光学式形状測定装置であって、被検体と
平行間隙を形成する剛体平板が被検体に近接して配置さ
れてなるものである。このように被検体に対して平行間
隙を形成する剛体平板を近接配置すると、近接する間隔
が狭まるに伴い空気層が振動(音)の抵抗分として作用
し減衰効果を引き起こす。これにより、被検体の振動が
抑制され精度の高い平坦度、厚さなどの形状測定ができ
る。この場合、剛体平板としては、光学式形状測定装置
に組み込まれている基準平面基板そのものであってもよ
いし、基準平面基板とは別で鋼板、アルミ板、光学ガラ
ス製平板ガラスなどの厚みのある平板を用いることもで
きる。前記鋼板、アルミ板などの光を透過させない材質
の場合は被検体の片面の形状測定の場合に用い、その場
合、被測定面でない側の面に対向配置される。
In order to achieve the above object, an optical shape measuring apparatus according to the present invention (claim 1) has a thin flat plate which is held substantially vertically via an edge portion. An optical shape measuring apparatus for a test object having a rectangular shape, wherein a rigid flat plate forming a parallel gap with the test object is arranged close to the test object. When a rigid flat plate that forms a parallel gap is disposed close to the subject in this manner, the air layer acts as a resistance component of vibration (sound) and causes an attenuation effect as the close interval becomes narrow. Thereby, the vibration of the subject is suppressed, and the shape such as flatness and thickness can be measured with high accuracy. In this case, the rigid flat plate may be the reference flat substrate itself incorporated in the optical shape measuring apparatus, or may be a steel plate, an aluminum plate, a flat glass plate made of optical glass or the like separately from the reference flat substrate. Certain flat plates can also be used. A material that does not transmit light, such as the above-mentioned steel plate or aluminum plate, is used for shape measurement of one surface of a subject, and in that case, it is disposed to face a surface other than the surface to be measured.

【0009】そして、上記剛体平板を被検体に対して近
接配置する間隔は20mm以下とすることが望ましく
(請求項2)、この間隔が20mmを越えると空気層の
層厚さが大きくなるため、振動(音)の抵抗分としての
作用が十分に得られず減衰効果が得にくくなり、被検体
の平坦度、厚さなどの形状を高精度に測定できにくくな
るためである。また、より好ましくは10mm以下がよ
い。
It is desirable that the distance between the rigid flat plate and the subject is less than 20 mm (claim 2). If the distance exceeds 20 mm, the thickness of the air layer becomes large. This is because the effect of the vibration (sound) as a resistance component cannot be sufficiently obtained, so that it is difficult to obtain an attenuation effect, and it is difficult to accurately measure the shape of the subject such as flatness and thickness. Further, it is more preferably 10 mm or less.

【0010】また、本発明(請求項3)に係る光学式形
状測定装置は、エッジ部を介して略鉛直に保持されたウ
ェーハの主面側及び裏面側に対向配置された2つの基準
平面基板を備える光学測定手段と、前記基準平面基板と
ウェーハとの間に、ウェーハと平行間隙を形成し且つウ
ェーハに近接して配置された透明な剛体平板を備えてな
るものである。
The optical shape measuring apparatus according to the present invention (Claim 3) is characterized in that two reference flat substrates are disposed on the main surface side and the rear surface side of a wafer held substantially vertically via an edge portion. And a transparent rigid flat plate which forms a parallel gap with the wafer between the reference plane substrate and the wafer and is arranged close to the wafer.

【0011】上記構成は、請求項1に記載の光学式形状
測定装置において被検体をウェーハに特定した場合の好
ましい装置構成例を示すものである。すなわち、ウェー
ハの場合主面及び裏面の両面が測定対象となるため、そ
の両面側に光学測定手段を設け、その光学測定手段の基
準平面基板とウェーハとの間に、ウェーハに対して平行
間隙を形成する透明な剛体平板を近接配置したもので、
このようにウェーハに対して平行間隙を形成する透明な
剛体平板を近接配置しても、上記請求項1と同様、近接
する間隔が狭まるに伴い空気層が振動(音)の抵抗分と
して作用し減衰効果を引き起こす。これにより、ウェー
ハの振動が抑制され精度の高い平坦度、厚さなどの形状
測定ができる。なおこの場合、透明な剛体平板に代えて
光学測定手段の基準平面基板を近接配置させてもよい。
The above configuration shows a preferred example of the configuration of the optical shape measuring apparatus according to the first aspect of the present invention when the subject is specified as a wafer. That is, in the case of a wafer, since both the main surface and the back surface are to be measured, optical measuring means are provided on both sides thereof, and a parallel gap with respect to the wafer is provided between the wafer and the reference plane substrate of the optical measuring means. A transparent rigid plate to be formed is arranged close to,
Even when the transparent rigid flat plate that forms a parallel gap with respect to the wafer is arranged close to the wafer, the air layer acts as a resistance component of vibration (sound) as the close gap is narrowed, similarly to the above-described claim 1. Causes a damping effect. Thereby, the vibration of the wafer is suppressed, and the shape such as flatness and thickness can be measured with high accuracy. In this case, a reference plane substrate of the optical measuring means may be arranged close to the transparent rigid flat plate.

【0012】また、上記の透明な剛体平板は、透明で光
が透過し得るものであれば特に限定するものではない
が、汎用されている光学ガラス製の平板ガラスが望まし
い(請求項4)。
The transparent rigid flat plate is not particularly limited as long as it is transparent and can transmit light, but a generally used flat glass made of optical glass is desirable (claim 4).

【0013】また、上記透明な剛体平板をウェーハに対
して近接配置する間隔は、請求項2と同様の理由から2
0mm以下とすることが望ましい(請求項5)。すなわ
ち、この間隔が20mmを越えると空気層の層厚さが大
きくなるため、振動(音)の抵抗分としての作用が十分
に得られず減衰効果が得にくくなり、被検体の平坦度、
厚さなどの形状を高精度に測定できにくくなるためであ
る。また、より好ましくは10mm以下がよい。
Further, the interval at which the transparent rigid flat plate is arranged close to the wafer is set to 2 for the same reason as in claim 2.
It is desirable that the thickness be 0 mm or less (claim 5). That is, if the distance exceeds 20 mm, the thickness of the air layer becomes large, so that the effect as the resistance of vibration (sound) cannot be sufficiently obtained, and the damping effect is hardly obtained.
This is because it becomes difficult to measure the shape such as the thickness with high accuracy. Further, it is more preferably 10 mm or less.

【0014】なお、上述した本発明において、厚さの薄
い平板状の被検体(ウェーハ)を略鉛直に保持するとし
たのは、鉛直に保持することで重力の影響を受けること
なく被検体のたわみ量を小さくする効果はあるが、鉛直
から約5度程度傾けて保持してもその効果は実質的に同
じであるため、略鉛直に保持するとしたものである。ま
た、平行間隙については、剛体平板と被検体面との面平
行を完全に一致させるような平行のみを意図しているの
ではなく、剛体平板面からの正反射光が受光器に入るの
を避けるために幾分傾きがあってもよいことを含むもの
である。
In the present invention described above, the reason why the thin plate-shaped test object (wafer) is held substantially vertically is that the test sample is held vertically so that the deflection of the test object is not affected by gravity. There is an effect of reducing the amount, but the effect is substantially the same even if it is held at an angle of about 5 degrees from vertical, so that it is held substantially vertical. The parallel gap is not intended only to be parallel so that the plane parallel between the rigid flat plate and the object plane is completely coincident with each other. This includes that there may be some inclination to avoid.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。なお、従来技術と同じ部分は同じ符
号で示す。図1は、本発明に係る光学式形状測定装置の
概要説明図である。図において、1はウェーハ、19,
29は平板ガラス(剛体平板)、10,20は光学測定
手段、17は演算器である。
Embodiments of the present invention will be described below with reference to the drawings. The same parts as those in the conventional technique are denoted by the same reference numerals. FIG. 1 is a schematic explanatory view of an optical shape measuring apparatus according to the present invention. In the figure, 1 is a wafer, 19,
29 is a flat glass (rigid flat plate), 10 and 20 are optical measuring means, and 17 is a calculator.

【0016】ウェーハ1は、その外周エッジ部を従来よ
り用いられている適宜の保持手段により鉛直方向に保持
されている。
The outer peripheral edge portion of the wafer 1 is held vertically by appropriate holding means conventionally used.

【0017】平板ガラス19,29は、光学ガラス製
で、上記ウェーハ1の両側に間隔hで近接して且つ面平
行に配置されている。間隔hは20mm以下が望まし
く、より好ましくは10mm以下がよい。
The flat glass plates 19 and 29 are made of optical glass and are arranged on both sides of the wafer 1 close to each other at an interval h and in plane parallel. The interval h is desirably 20 mm or less, and more desirably 10 mm or less.

【0018】光学測定手段10,20は、上記平板ガラ
ス19,29の外側に配置され、発光器11,21、ハ
ーフミラー13,23、コリメータレンズ14,24、
基準平面基板15,25及び受光器16,26を備えて
なる。
The optical measuring means 10 and 20 are arranged outside the flat glass 19 and 29, and the light emitting devices 11 and 21, the half mirrors 13 and 23, the collimator lenses 14 and 24,
Reference plane substrates 15 and 25 and light receivers 16 and 26 are provided.

【0019】演算器17は、モニタ18を備え、発光器
11,21及び受光器16,26が接続されている。
The arithmetic unit 17 has a monitor 18 to which the light emitters 11 and 21 and the light receivers 16 and 26 are connected.

【0020】上記光学式形状測定装置において発光器1
1,21から出射された測定光12,22は、ハーフミ
ラー13,23を介してコリメータレンズ14,24に
送られ、平行ビームとして基準平面基板15,25更に
平板ガラス19,29を透過し、ウェーハ1の主面1a
及び裏面1bを照射する。そして、測定光12,22は
ウェーハ1の主面1a及び裏面1bで反射されるが、一
部はウェーハ1の主面1a及び裏面1bに対向する基準
平面基板15,25でも反射する。
In the above-mentioned optical shape measuring apparatus, the light emitting device 1
The measurement lights 12, 22 emitted from the light sources 1, 21 are sent to the collimator lenses 14, 24 via the half mirrors 13, 23, and transmitted as parallel beams through the reference flat substrates 15, 25 and the flat glass plates 19, 29. Main surface 1a of wafer 1
And irradiate the back surface 1b. The measurement light beams 12 and 22 are reflected on the main surface 1a and the back surface 1b of the wafer 1, but a part of the light is also reflected on the reference flat substrates 15 and 25 facing the main surface 1a and the back surface 1b of the wafer 1.

【0021】上記の、ウェーハ1の主面1a及び裏面1
b及び基準平面基板15,25で反射した測定光12,
22は、逆の経路を辿って基準平面基板15,25及び
コリメータレンズ14,24を透過し、ハーフミラー1
3,23で反射され、受光器16,26に取り込まれ
る。ウェーハ1の主面1a及び裏面1bで反射した測定
光12,22は、基準平面基板15,25で反射した測
定光12,22と光路差が異なる。このようにウェーハ
1の面形状を反映して光路差が生じることから、観察さ
れた干渉縞からウェーハ1の主面1a及び裏面1bの平
面形状が判る。
The main surface 1a and the back surface 1 of the wafer 1
b and the measurement light 12 reflected by the reference plane substrates 15 and 25,
A half mirror 1 transmits through the reference plane substrates 15 and 25 and the collimator lenses 14 and 24 along the reverse path, and
The light is reflected by the light receiving devices 3 and 23 and is taken into the light receiving devices 16 and 26. The measurement light beams 12 and 22 reflected by the main surface 1a and the back surface 1b of the wafer 1 have different optical path differences from the measurement light beams 12 and 22 reflected by the reference plane substrates 15 and 25. Since the optical path difference reflects the surface shape of the wafer 1 as described above, the plane shapes of the main surface 1a and the back surface 1b of the wafer 1 can be determined from the observed interference fringes.

【0022】受光器16,26で取り込まれた、基準平
面基板15,25とウェーハ1の両面(主面1a及び裏
面1b)とがそれぞれ作る二つの干渉縞は演算器17に
同時に取り込まれる。演算器17では、取り込んだ干渉
縞からウェーハ1の主面1a及び裏面1bの形状を演算
し記録する。また、一方の主面又は裏面形状を基準に
し、他方の干渉縞からウェーハ1の平坦度を演算し記録
する。
Two interference fringes captured by the light receivers 16 and 26 and formed by the reference flat substrates 15 and 25 and both surfaces (the main surface 1a and the back surface 1b) of the wafer 1 are simultaneously captured by the arithmetic unit 17. The arithmetic unit 17 calculates and records the shapes of the main surface 1a and the back surface 1b of the wafer 1 from the taken interference fringes. In addition, the flatness of the wafer 1 is calculated from the interference fringes on the basis of the shape of one main surface or the back surface and recorded.

【0023】上述の如くして求められるウェーハ1の平
坦度等の形状測定では、ウェーハ1の両側に平板ガラス
19,29が間隔hで近接して且つ面平行に配置されて
いるので、ウェーハ1が空気中を伝搬する振動(音)の
影響で振動を起こすことがなく、精度の高い平坦度、厚
さなどの形状測定ができる。
In the shape measurement such as the flatness of the wafer 1 obtained as described above, the flat glasses 19 and 29 are arranged on both sides of the wafer 1 close to each other at an interval h and parallel to the plane. Does not vibrate under the influence of vibration (sound) propagating in the air, and can accurately measure shapes such as flatness and thickness.

【0024】因みに、上記の如く構成した光学式形状測
定装置を用い、直径300mmのウェーハ1を測定対象
とし、平板ガラス19,29として形状寸法:360m
m角、15mm厚さの石英ガラス製平板ガラスを用い、
更に、ウェーハ1が空気中を伝搬する振動(音)の影響
によりウェーハ1の固有振動数で振動を起こす実測定環
境下において、ウェーハ1と平板ガラス19,29との
間隔hを10mm〜50mmの間で変化させた場合と、
平板ガラス19,29を設けない場合とで、振動減衰の
効果を確認した。
The wafer 1 having a diameter of 300 mm was measured using the optical shape measuring apparatus constructed as described above, and the flat glass 19 and 29 were used as the shape dimensions 360 m.
Using quartz glass flat glass with m square and 15 mm thickness,
Further, in an actual measurement environment in which the wafer 1 vibrates at the natural frequency of the wafer 1 under the influence of vibration (sound) propagating in the air, the distance h between the wafer 1 and the flat glass 19, 29 is set to 10 mm to 50 mm. If you change between
The effect of vibration damping was confirmed between the case where the plate glasses 19 and 29 were not provided.

【0025】その結果、平板ガラス19,29を設けな
い状態(ウェーハ1と基準平面基板15,25との間隔
が約65mm)では、固有振動数:f=39Hzで振動
振幅:A=45nm(実効値)のウェーハの振動を観測
した。一方、ウェーハ1と平板ガラス19,29との間
隔hを10mmとなるように近接配置した状態では、ウ
ェーハ1の振動の振動振幅:A=8nm(実効値)まで
振動減衰することが確認できた。また、ウェーハ1と平
板ガラス19,29との間隔hを50mm程度まで離す
と、前記平板ガラス19,29を設けない状態とほとん
ど変わらなくなり、間隔hが狭くウェーハ1に近接する
ほど振動減衰効果があることが確認された。
As a result, in the state where the plate glasses 19 and 29 are not provided (the distance between the wafer 1 and the reference flat substrates 15 and 25 is about 65 mm), the natural frequency: f = 39 Hz and the vibration amplitude: A = 45 nm (effective Value) was observed. On the other hand, in a state where the distance h between the wafer 1 and the flat glasses 19 and 29 is closely arranged to be 10 mm, it was confirmed that the vibration amplitude of the vibration of the wafer 1 was attenuated to A = 8 nm (effective value). . Further, when the distance h between the wafer 1 and the flat glasses 19 and 29 is set to about 50 mm, it is almost the same as the state where the flat glasses 19 and 29 are not provided. It was confirmed that there was.

【0026】また、上記の結果から、振動減衰効果は間
隔hの減少とともに増大する傾向が確認され、その振動
減衰効果が直線的にあると仮定すると、ウェーハ1の平
坦度測定で要求される高精度(20nm)測定に対して
は、間隔hは20mm以下にする必要がある。そして、
より好ましくは10mm以下がよい。
From the above results, it is confirmed that the vibration damping effect tends to increase as the distance h decreases, and assuming that the vibration damping effect is linear, the vibration damping effect required by the flatness measurement of the wafer 1 is high. For accuracy (20 nm) measurement, the interval h needs to be 20 mm or less. And
More preferably, it is 10 mm or less.

【0027】図2は、本発明に係る別の光学式形状測定
装置の概要説明図である。この図2に示す光学式形状測
定装置は、図1に示す光学式形状測定装置においてウェ
ーハ1の両側に配置した平板ガラス19,29の内、片
側の平板ガラス29を除いた外は図1に示す光学式形状
測定装置と同じものである。
FIG. 2 is a schematic explanatory view of another optical shape measuring apparatus according to the present invention. The optical shape measuring device shown in FIG. 2 is the same as the optical shape measuring device shown in FIG. 1 except that one of the flat glasses 19 and 29 disposed on both sides of the wafer 1 except the flat glass 29 is removed. This is the same as the optical shape measuring device shown.

【0028】上記のように平板ガラス19のみをウェー
ハ1との間隔hで近接配置しても、上記図1に示す光学
式形状測定装置と同様、ウェーハ1が空気中を伝搬する
振動(音)の影響で振動を起こすことがなく、精度の高
い平坦度、厚さなどの形状測定ができる。また、図1の
例と同様の測定により、ウェーハ1の平坦度測定で要求
される高精度(20nm)測定に対しては、間隔hは2
0mm以下にする必要があり、より好ましくは10mm
以下がよいことが確認された。
Even when only the flat glass 19 is arranged close to the wafer 1 at the distance h as described above, the vibration (sound) of the wafer 1 propagating in the air is the same as in the optical shape measuring apparatus shown in FIG. Vibration does not occur due to the influence of, and the shape such as flatness and thickness can be measured with high accuracy. In addition, according to the same measurement as in the example of FIG. 1, the interval h is 2 for the high accuracy (20 nm) measurement required for the flatness measurement of the wafer 1.
0 mm or less, more preferably 10 mm
The following was confirmed to be good.

【0029】図3は、本発明に係る別の光学式形状測定
装置の概要説明図である。この図3に示す光学式形状測
定装置は、図1に示す光学式形状測定装置においてウェ
ーハ1の両側に配置した平板ガラス19,29の両方を
除くとともに、光学測定手段10,20の基準平面基板
15,25をウェーハ1と間隔hをもって近接配置した
外は図1に示す光学式形状測定装置と同じものである。
FIG. 3 is a schematic explanatory view of another optical shape measuring apparatus according to the present invention. The optical shape measuring apparatus shown in FIG. 3 is different from the optical shape measuring apparatus shown in FIG. 1 in that both the flat glasses 19 and 29 arranged on both sides of the wafer 1 are removed, and the reference plane substrate of the optical measuring means 10 and 20 is removed. The configuration except that the wafers 15 and 25 are arranged close to the wafer 1 with an interval h is the same as the optical shape measuring apparatus shown in FIG.

【0030】上記のように平板ガラス19,29を除き
基準平面基板15,25をウェーハ1との間隔hで近接
配置しても、上記図1に示す光学式形状測定装置と同
様、ウェーハ1が空気中を伝搬する振動(音)の影響で
振動を起こすことがなく、精度の高い平坦度、厚さなど
の形状測定ができる。また、図1の例と同様の測定によ
り、ウェーハ1の平坦度測定で要求される高精度(20
nm)測定に対しては、間隔hは20mm以下にする必
要があり、より好ましくは10mm以下がよいことが確
認された。なお、図5に示す従来技術においてもウェー
ハ1と基準平面基板15,25との間隔を狭くすること
が行なわれるが、その間隔は狭くしても30〜50mm
程度で、その狭くする理由は空気のゆらぎを防止するた
めで、本発明のように被検体(ウェーハを含む)の振動
減衰効果を意図するものではない。
As described above, even when the reference flat substrates 15 and 25 are disposed close to the wafer 1 except for the flat glasses 19 and 29 at a distance h from the wafer 1, the wafer 1 is still in the same manner as the optical shape measuring apparatus shown in FIG. Vibration does not occur under the influence of vibration (sound) propagating in the air, and highly accurate shape measurement such as flatness and thickness can be performed. In addition, by the same measurement as in the example of FIG. 1, the high accuracy (20
nm), it has been confirmed that the interval h needs to be 20 mm or less, more preferably 10 mm or less. In the prior art shown in FIG. 5, the distance between the wafer 1 and the reference plane substrates 15 and 25 is also reduced, but even if the distance is reduced, the distance is 30 to 50 mm.
The reason for the narrowing is to prevent air fluctuations, and is not intended to provide the effect of damping the vibration of the subject (including the wafer) as in the present invention.

【0031】図4は、本発明に係る別の光学式形状測定
装置の概要説明図である。この図4に示す光学式形状測
定装置は、厚さの薄い平板状の被検体1(ウェーハ1で
もよい)の片側面の平坦度等の形状測定を行なう場合に
適用される装置であって、図1に示す光学式形状測定装
置と同じ部位を構成するものは同じ符号をもって示す。
なお、図4においては、被検体1の測定面の裏側に平板
ガラス19を近接配置した場合を例示したが、この例の
場合、透過性の平板ガラス19を用いる必要はなく、鋼
板、アルミ板、樹脂板などの材質からなる剛体平板であ
ってもよい。
FIG. 4 is a schematic explanatory view of another optical shape measuring apparatus according to the present invention. The optical shape measuring apparatus shown in FIG. 4 is an apparatus applied when measuring the shape such as the flatness of one side surface of a thin flat plate-shaped subject 1 (or the wafer 1). Components that constitute the same parts as those of the optical shape measuring apparatus shown in FIG. 1 are denoted by the same reference numerals.
Although FIG. 4 illustrates the case where the flat glass 19 is disposed close to the back side of the measurement surface of the subject 1, in this example, it is not necessary to use the transparent flat glass 19, and the steel plate and the aluminum plate are used. It may be a rigid flat plate made of a material such as a resin plate.

【0032】上記のような光学式形状測定装置であって
も、平板ガラス19をウェーハ1と間隔hで近接配置す
ることにより、上記図1に示す光学式形状測定装置と同
様、ウェーハ1が空気中を伝搬する振動(音)の影響で
振動を起こすことがなく、精度の高い平坦度、厚さなど
の形状測定ができる。また、図1の例と同様の測定によ
り、ウェーハ1の平坦度測定で要求される高精度(20
nm)測定に対しては、間隔hは20mm以下にする必
要があり、より好ましくは10mm以下がよいことが確
認された。
Even in the optical shape measuring apparatus as described above, the flat glass 19 is arranged close to the wafer 1 at an interval h so that the wafer 1 can be air-flowed similarly to the optical shape measuring apparatus shown in FIG. Vibration does not occur under the influence of vibration (sound) propagating through the inside, and highly accurate shape measurement such as flatness and thickness can be performed. In addition, by the same measurement as in the example of FIG. 1, the high accuracy (20
nm), it has been confirmed that the interval h needs to be 20 mm or less, more preferably 10 mm or less.

【0033】なお、上記例の平板ガラス19,29につ
いては次の点を考慮する必要がある。すなわち、発光器
11,21から出射した測定光が平行ビームとして平板
ガラス19,29を透過する際に、平板ガラス19,2
9の両面で測定光の一部が反射されると、基準平面基板
15,25とウェーハ1の両面1a,1bの間で観測さ
れる干渉縞の形成に対して外乱光ノイズとなる。例え
ば、光学材料として一般に使用される石英ガラス等の光
学ガラスの面の反射率は約4%であり、この反射の影響
で前記現象が無視できない場合には、平板ガラス19,
29の両面に減反射の表面コーティング処理を施し、外
乱光ノイズを除去するようにするとよい。あるいは前記
現象は、平板ガラス19,29の厚みの平行度を0.1
度以上大きくすることによっても解消できるので、平板
ガラス19,29の厚みの平行度が0.1度以上あるよ
うにしてもよい。
The following points must be taken into consideration for the flat glasses 19 and 29 in the above example. That is, when the measurement light emitted from the light emitters 11 and 21 passes through the plate glasses 19 and 29 as a parallel beam, the plate glasses 19 and 29
When part of the measurement light is reflected on both surfaces of the wafer 9, interference light noise is generated with respect to the formation of interference fringes observed between the reference plane substrates 15 and 25 and both surfaces 1 a and 1 b of the wafer 1. For example, the reflectance of the surface of an optical glass such as quartz glass generally used as an optical material is about 4%. If the above phenomenon cannot be ignored due to the reflection, the flat glass 19,
It is preferable to apply anti-reflection surface coating processing to both surfaces of the photoreceptor 29 to remove disturbance light noise. Alternatively, the above phenomenon is achieved by setting the parallelism of the thickness of the flat glass 19, 29 to 0.1.
Since the problem can be solved by increasing the thickness by at least the degree, the parallelism of the thickness of the flat glass 19, 29 may be set to 0.1 degree or more.

【0034】[0034]

【発明の効果】以上説明したように、本発明に係る光学
式形状測定装置であれば、厚さの薄い平板状の被検体を
対象として、空気中を伝搬する振動(音)によって起こ
る振動を抑制して、被検体の平坦度、厚さなどの形状を
高精度に測定することができる。
As described above, according to the optical shape measuring apparatus of the present invention, the vibration caused by the vibration (sound) propagating in the air can be applied to a thin plate-shaped subject. It is possible to measure the shape of the subject such as flatness and thickness with high accuracy while suppressing the occurrence of the problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光学式形状測定装置の概要説明図
である。
FIG. 1 is a schematic explanatory view of an optical shape measuring apparatus according to the present invention.

【図2】本発明に係る別の実施形態の光学式形状測定装
置の概要説明図である。
FIG. 2 is a schematic explanatory view of an optical shape measuring apparatus according to another embodiment of the present invention.

【図3】本発明に係る別の実施形態の光学式形状測定装
置の概要説明図である。
FIG. 3 is a schematic explanatory view of an optical shape measuring apparatus according to another embodiment of the present invention.

【図4】本発明に係る別の実施形態の光学式形状測定装
置の概要説明図である。
FIG. 4 is a schematic explanatory view of an optical shape measuring apparatus according to another embodiment of the present invention.

【図5】従来の光学式形状測定装置の概要説明図であ
る。
FIG. 5 is a schematic explanatory view of a conventional optical shape measuring device.

【符号の説明】[Explanation of symbols]

1:ウェーハ(被検体) 10,20:光学測
定手段 11,21:発光器 12,22:測定
光 13,23:ハーフミラー 14,24:コリ
メータレンズ 15,25:基準平面基板 16,26受光器 17:演算器 18:モニタ 19,29:平板ガラス
1: Wafer (subject) 10, 20: Optical measuring means 11, 21: Light emitter 12, 22: Measurement light 13, 23: Half mirror 14, 24: Collimator lens 15, 25: Reference plane substrate 16, 26 Light receiver 17: arithmetic unit 18: monitor 19, 29: flat glass

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 勉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 高橋 英二 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 綱木 英俊 兵庫県神戸市西区高塚台1丁目5番5号 ジェネシス・テクノロジー株式会社内 Fターム(参考) 2F065 BB01 BB03 BB22 BB25 CC03 CC19 CC21 DD14 FF52 FF61 LL00 LL04 PP11 QQ23  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsutomu Morimoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Eiji Takahashi Takatsuka, Nishi-ku, Kobe City, Hyogo Prefecture 1-5-5 Daiko Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Hidetoshi Tsunagi 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture F-term (reference) 2F065 BB01 BB03 BB22 BB25 CC03 CC19 CC21 DD14 FF52 FF61 LL00 LL04 PP11 QQ23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エッジ部を介して略鉛直に保持された厚
さの薄い平板状の被検体の光学式形状測定装置であっ
て、被検体と平行間隙を形成する剛体平板が被検体に近
接して配置されてなることを特徴とする光学式形状測定
装置。
1. An optical shape measuring apparatus for a thin plate-shaped subject held substantially vertically via an edge portion, wherein a rigid flat plate forming a parallel gap with the subject is close to the subject. An optical shape measuring device, wherein the optical shape measuring device is arranged.
【請求項2】 請求項1に記載の光学式形状測定装置に
おいて、剛体平板が被検体に20mm以下の間隔で配置
されてなる光学式形状測定装置。
2. The optical shape measuring apparatus according to claim 1, wherein the rigid flat plates are arranged on the subject at intervals of 20 mm or less.
【請求項3】 エッジ部を介して略鉛直に保持されたウ
ェーハの主面側及び裏面側に対向配置された2つの基準
平面基板を備える光学測定手段と、前記基準平面基板と
ウェーハとの間に、ウェーハと平行間隙を形成し且つウ
ェーハに近接して配置された透明な剛体平板を備えてな
ることを特徴とする光学式形状測定装置。
3. An optical measuring means comprising two reference plane substrates opposed to each other on a main surface side and a back surface side of a wafer held substantially vertically via an edge portion, and between the reference plane substrate and the wafer. An optical shape measuring apparatus, comprising: a transparent rigid flat plate that forms a parallel gap with a wafer and is disposed close to the wafer.
【請求項4】 透明な剛体平板が、光学ガラス製の平板
ガラスである請求項3に記載の光学式形状測定装置。
4. The optical shape measuring apparatus according to claim 3, wherein the transparent rigid flat plate is a flat glass made of optical glass.
【請求項5】 請求項3又は4に記載の光学式形状測定
装置において、透明な剛体平板がウェーハに20mm以
下の間隔で配置されてなる光学式形状測定装置。
5. The optical shape measuring apparatus according to claim 3, wherein transparent rigid flat plates are arranged on the wafer at intervals of 20 mm or less.
JP2000184489A 2000-06-20 2000-06-20 Optical shape measuring device Expired - Lifetime JP3785025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184489A JP3785025B2 (en) 2000-06-20 2000-06-20 Optical shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184489A JP3785025B2 (en) 2000-06-20 2000-06-20 Optical shape measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006014128A Division JP3848673B2 (en) 2006-01-23 2006-01-23 Optical shape measuring device

Publications (2)

Publication Number Publication Date
JP2002005640A true JP2002005640A (en) 2002-01-09
JP3785025B2 JP3785025B2 (en) 2006-06-14

Family

ID=18684928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184489A Expired - Lifetime JP3785025B2 (en) 2000-06-20 2000-06-20 Optical shape measuring device

Country Status (1)

Country Link
JP (1) JP3785025B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525801A (en) * 2004-12-23 2008-07-17 コーニング インコーポレイテッド Overlapping common optical path interferometer for two-plane measurement
JP2008180708A (en) * 2006-12-28 2008-08-07 Kobe Steel Ltd Shape measuring apparatus
WO2010096387A2 (en) 2009-02-18 2010-08-26 Kla-Tencor Corporation Method and apparatus for measuring shape or thickness information of a substrate
DE112010000808T5 (en) 2009-02-02 2012-06-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Profile measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525801A (en) * 2004-12-23 2008-07-17 コーニング インコーポレイテッド Overlapping common optical path interferometer for two-plane measurement
JP2008180708A (en) * 2006-12-28 2008-08-07 Kobe Steel Ltd Shape measuring apparatus
DE112010000808T5 (en) 2009-02-02 2012-06-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Profile measuring device
US8670128B2 (en) 2009-02-02 2014-03-11 Kobe Steel, Ltd. Profile measuring apparatus
WO2010096387A2 (en) 2009-02-18 2010-08-26 Kla-Tencor Corporation Method and apparatus for measuring shape or thickness information of a substrate
JP2012518185A (en) * 2009-02-18 2012-08-09 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring substrate shape or thickness information
EP2399285A4 (en) * 2009-02-18 2016-07-20 Kla Tencor Corp Method and apparatus for measuring shape or thickness information of a substrate

Also Published As

Publication number Publication date
JP3785025B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JP2963890B2 (en) Wafer optical shape measuring instrument
JPH112512A (en) Optical configuration measuring instrument for wafer
JP2013156248A (en) Method for reducing wafer shape and thickness measurement errors resulted from cavity shape changes
JP2005501243A5 (en)
JP2008047653A5 (en)
TW201423086A (en) Film thickness, refractive index, and extinction coefficient determination for film curve creation and defect sizing in real time
JP2002005640A (en) Optical shape-measuring apparatus
JP3848673B2 (en) Optical shape measuring device
EP2577266B1 (en) Apparatus and method for compensating for sample misalignment
JP4400985B2 (en) Shape measuring device
US20040257582A1 (en) Dual-beam interferometer for ultra-smooth surface topographical measurements
JPH10260037A (en) Flatness measuring method and device therefor
JPH0718963Y2 (en) Optical surface roughness measuring device
JP3041205B2 (en) Reference plate for interferometer
JPH0449643B2 (en)
JP3354698B2 (en) Flatness measuring device
JPH0540027A (en) Method for measuring flatness of mirror for projector
JP2003329414A (en) Shape measuring device
JP2888215B2 (en) Exposure apparatus and measurement method
JP2007171145A (en) Inspection device and method
JPH11194022A (en) Device for measuring flatness of semiconductor wafer
JP2816514B2 (en) Optical measuring device
JP2000298008A (en) Method for measuring clearance between discoid rotary cutting tools
JP2000258144A (en) Flatness and thickness measurement device for wafer
JP2004184194A (en) Device and method for measuring shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3785025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term