JP2003329414A - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JP2003329414A
JP2003329414A JP2002136753A JP2002136753A JP2003329414A JP 2003329414 A JP2003329414 A JP 2003329414A JP 2002136753 A JP2002136753 A JP 2002136753A JP 2002136753 A JP2002136753 A JP 2002136753A JP 2003329414 A JP2003329414 A JP 2003329414A
Authority
JP
Japan
Prior art keywords
wafer
surface side
main surface
back surface
reference plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002136753A
Other languages
Japanese (ja)
Other versions
JP3907518B2 (en
Inventor
Tsutomu Morimoto
勉 森本
Hiroyuki Takamatsu
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002136753A priority Critical patent/JP3907518B2/en
Publication of JP2003329414A publication Critical patent/JP2003329414A/en
Application granted granted Critical
Publication of JP3907518B2 publication Critical patent/JP3907518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To measure a shape of a wafer (thickness distribution) with high accuracy without being affected by errors of flatness of a reference surface of an interferometer even when a main side of the wafer is mirror-finished and a back side of the wafer is coarse. <P>SOLUTION: A shape measuring device comprises two reference surfaces, i.e., a reference surface disposed on a main surface side 1a of a wafer 1 and a back surface side of the wafer, a main surface side interferometer 10 to acquire a first interference fringe image formed by each reflected light from the main surface 1a and the reference surface 15a on the main surface side, and a back surface side interferometer 20 to acquire a second interference fringe image formed of each reflected light from the back surface 1b and a reference surface 25a on the back surface side of the light 22 irradiated diagonally on the back surface 1b of the wafer 1, and acquires a third interference fringe image formed of reflected lights from the two reference surfaces 15a and 25a by the main surface side interferometer 10 with the wafer 1 removed therefrom, and calculates the thickness distribution of the wafer based on the first to third interference fringe images. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,干渉計を用いて半
導体ウェハの形状(厚さ分布)を測定する形状測定装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring apparatus for measuring the shape (thickness distribution) of a semiconductor wafer using an interferometer.

【0002】[0002]

【従来の技術】半導体シリコン等のウェハの厚さ分布を
測定する形状測定装置としては,例えば,特開2001
−241923号公報(公報1)に提案されているもの
がある。該公報1に示される形状測定装置は,ウェハの
面に垂直に平行光を入射させるフィゾー型干渉計を,ウ
ェハの主面側及びその裏面側に対向して配置し,ウェハ
の厚さ分布を測定する装置である。前記公報1の技術で
は,ウェハの主面からの反射光とウェハの主面側の基準
平面からの反射光とによって形成される干渉縞に基づい
て,ウェハの主面と主面側の基準平面との距離La
(x,y)を,ウェハの裏面からの反射光とウェハの裏
面側の基準平面からの反射光とによって形成される干渉
縞に基づいて,ウェハの裏面と裏面側の基準平面との距
離Lb(x,y)を,ウェハを2つの基準平面の間から
除去した状態で,前記平行光の一方に対するウェハの主
面側及び裏面側それぞれの基準平面からの反射光によっ
て形成される干渉縞に基づいて,2つの基準平面の距離
Lt(x,y)をそれぞれ求め,ウェハの厚さT(x,
y)を次の(1)式により求めるものである。 T(x,y)=Lt(x,y)−La(x,y)−Lb(x,y)…(1) これにより,前記2つの基準平面それぞれの各位置
(x,y)ごとにその変位(凹凸)分が相殺されるの
で,求められるウェハの測定精度に対して前記2つの基
準平面それぞれの平坦度が十分でない場合であっても,
これに依存せず精度の高いウェハの形状測定を行うこと
が可能となる。即ち,ウェハ表面に垂直な方向から見た
所定の位置(x0,y0)において,主面側及び裏面側
それぞれの基準平面が,理想平面に対してそれぞれΔ
a,Δbの誤差(凹凸)を有しているとすると,その位
置での各測定距離La0(=La(x0,y0)),L
b0(=Lb(x0,y0)),Lt0(=Lt(x
0,y0))は,それぞれ以下の式で表される。 La0=La0’−Δa Lb0=Lb0’−Δb …(2) Lt0=Lt0’−Δa−Δb ここで,La0’,Lb0’,Lt0’は,2つの基準
平面が理想平面であるときのLa0,Lb0,Lt0に
対応する真の距離である。この(2)式を(1)式に適
用すると,各誤差Δa,Δbが相殺され,理想平面を基
準としたウェハの真の厚みを求められる。
2. Description of the Related Art A shape measuring device for measuring the thickness distribution of a wafer such as semiconductor silicon is disclosed in, for example, Japanese Unexamined Patent Publication No. 2001.
There is one proposed in Japanese Patent Laid-Open No. 241923 (Gazette 1). In the shape measuring apparatus disclosed in the publication 1, a Fizeau interferometer that makes parallel light incident perpendicularly to the surface of a wafer is arranged so as to face the main surface side and the back surface side of the wafer, and the thickness distribution of the wafer is measured. This is a measuring device. In the technique of the above-mentioned publication 1, based on the interference fringes formed by the reflected light from the main surface of the wafer and the reflected light from the reference plane on the main surface side of the wafer, the main surface of the wafer and the reference plane on the main surface side Distance to La
Based on interference fringes formed by the reflected light from the back surface of the wafer and the reflected light from the reference plane on the back surface side of the wafer, (x, y) is a distance Lb between the back surface of the wafer and the reference plane surface on the back surface side. (X, y) is an interference fringe formed by reflected light from one of the reference planes on the main surface side and the back surface side of the wafer with respect to one of the parallel rays, with the wafer removed from between the two reference planes. Based on the above, the distance Lt (x, y) between the two reference planes is obtained, and the wafer thickness T (x, y
y) is obtained by the following equation (1). T (x, y) = Lt (x, y) −La (x, y) −Lb (x, y) (1) As a result, for each position (x, y) of each of the two reference planes. Since the displacement (unevenness) is canceled out, even if the flatness of each of the two reference planes is not sufficient with respect to the required wafer measurement accuracy,
It becomes possible to perform highly accurate wafer shape measurement without depending on this. That is, at a predetermined position (x0, y0) viewed from the direction perpendicular to the front surface of the wafer, the reference planes on the main surface side and the back surface side are each Δ relative to the ideal plane.
Assuming that there are errors (concavities and convexities) of a and Δb, the measurement distances La0 (= La (x0, y0)), L at that position.
b0 (= Lb (x0, y0)), Lt0 (= Lt (x
0, y0)) is represented by the following equations, respectively. La0 = La0′−Δa Lb0 = Lb0′−Δb (2) Lt0 = Lt0′−Δa−Δb Here, La0 ′, Lb0 ′, and Lt0 ′ are La0 when two reference planes are ideal planes, It is a true distance corresponding to Lb0 and Lt0. When this equation (2) is applied to the equation (1), the errors Δa and Δb are canceled out, and the true thickness of the wafer with respect to the ideal plane is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,現在利
用されている主な半導体ウェハ(以下,単にウェハとい
う)は,主面は鏡面であるが,裏面はエッチング処理や
サンドブラスト処理等が施された散乱面(以下,粗面と
いう)である。このような粗面(裏面)に対して前記公
報1に示されるフィゾー干渉計を用いると,照射した平
行光の反射率が低くなり,測定に十分な干渉縞が得られ
ないという問題点があった。これに対し,粗面の干渉測
定を行う方法として,例えば特開2000−81321
号公報(公報2)に示されるような斜入射干渉計が知ら
れている。該公報2に示される技術は,ウェハに近接し
て配置されたプリズムの基準平面(参照面)を介してウ
ェハ表面に平行光を斜めに照射し,ウェハの面及び基準
平面それぞれからの反射光で形成される干渉縞画像に基
づいて,ウェハの面と基準平面との距離を測定するもの
である。これを用いれば,粗面であっても反射率を高め
ることができ,測定に十分な干渉縞を得ることが可能と
なる。しかしながら,前記公報2に示される技術では,
平行光をウェハ表面に対して斜めに照射するため,プリ
ズムの基準平面の平坦度が測定精度に影響することにな
る。このことについて,図3を用いて説明する。
However, in the main semiconductor wafers (hereinafter simply referred to as wafers) currently used, the main surface is a mirror surface, but the back surface is scattered by etching treatment or sandblasting treatment. Surface (hereinafter referred to as a rough surface). If the Fizeau interferometer disclosed in the above publication 1 is used for such a rough surface (back surface), the reflectance of the irradiated parallel light becomes low, and there is a problem that sufficient interference fringes cannot be obtained for measurement. It was On the other hand, as a method for performing interference measurement on a rough surface, for example, Japanese Patent Laid-Open No. 2000-81321
A grazing incidence interferometer as shown in Japanese Patent Laid-Open Publication No. (Gazette 2) is known. The technique disclosed in the publication 2 obliquely irradiates a wafer surface with parallel light through a reference plane (reference surface) of a prism arranged close to the wafer, and reflects light from each of the wafer surface and the reference plane. The distance between the surface of the wafer and the reference plane is measured on the basis of the interference fringe image formed in. If this is used, it is possible to increase the reflectance even on a rough surface, and it is possible to obtain interference fringes sufficient for measurement. However, in the technique disclosed in the above-mentioned publication 2,
Since the parallel light is radiated obliquely to the wafer surface, the flatness of the reference plane of the prism affects the measurement accuracy. This will be described with reference to FIG.

【0004】図3(a)は,従来の斜入射干渉計Zによ
り基準平面とウェハとの距離を測定する際の光路を模式
的に表した図である。図3(a)に示すように,斜入射
干渉計をウェハ1の主面1a側,及び裏面1b側それぞ
れに配置した場合を考える。即ち,主面1a側及び裏面
1b側それぞれにプリズム41,42を,その基準平面
41a,42aが主面1a及び裏面1bそれぞれに近接
するよう配置する。今,ウェハ1の裏面1bに斜めに照
射される平行光Bが,プリズム42の基準平面42aに
おける所定の出射位置Lを通過してウェハ1の裏面1b
に向かうとする。この光は,ウェハ1の面に垂直な方向
から見て(図3(a)においては上側又は下側から見
て),前記出射位置Lとずれた位置Mでウェハ1の裏面
1bで反射した後,さらにずれた位置Nにおいて基準平
面42aに到達する。従って,ウェハ1の裏面1bから
の反射光Sと,基準平面42aからの反射光Rとの光路
差は,(L〜M間の距離)+(M〜N間の距離)とな
り,この光路差による干渉縞が得られる。このため,基
準平面42aの平坦度が十分でなく,基準平面42aが
理想平面に対して位置Lと位置Nとがずれていれば(表
面に凹凸があれば),そのずれが測定誤差となってしま
う。ここで,基準平面42aをウェハ1の裏面1bに十
分近接させれば,位置L〜N間の距離が十分小さくな
り,位置L,Mのずれによる測定誤差を許容範囲内に抑
えることができる。このことは,ウェハ1の主面1a側
においても同様である。しかし,このようにして得られ
る干渉縞に基づいて求められるのは,あくまで基準平面
41a,42aとウェハ1の表面1a,1bとの距離で
あり,求められるウェハの測定精度に対して2つの基準
平面41a,42aそれぞれの平坦度が十分でない場合
には精度のよい形状測定が行えない。そこで,ウェハ1
の主面1a側及び裏面1b側それぞれの基準平面41
a,42aの平坦度の誤差の影響を除去する(相殺す
る)前記公報1の技術を適用することが考えられるが,
そのためにはウェハ1を2つの基準平面41a,42a
の間から除去し,2つの基準平面41a,42aの間の
距離の分布を測定する必要がある。
FIG. 3A is a diagram schematically showing an optical path when the distance between the reference plane and the wafer is measured by the conventional oblique incidence interferometer Z. Consider a case where oblique incidence interferometers are arranged on the main surface 1a side and the back surface 1b side of the wafer 1 as shown in FIG. 3 (a). That is, the prisms 41 and 42 are arranged on the main surface 1a side and the back surface 1b side, respectively, so that the reference planes 41a and 42a are close to the main surface 1a and the back surface 1b, respectively. Now, the parallel light B obliquely irradiated on the back surface 1b of the wafer 1 passes through a predetermined emission position L on the reference plane 42a of the prism 42 and the back surface 1b of the wafer 1.
Let's go to. This light is reflected by the back surface 1b of the wafer 1 at a position M deviated from the emission position L when viewed from a direction perpendicular to the surface of the wafer 1 (as viewed from above or below in FIG. 3A). After that, the reference plane 42a is reached at a position N further deviated. Therefore, the optical path difference between the reflected light S from the back surface 1b of the wafer 1 and the reflected light R from the reference plane 42a is (distance between L and M) + (distance between M and N). Interference fringes are obtained. Therefore, if the flatness of the reference plane 42a is not sufficient and the position L and the position N of the reference plane 42a deviate from the ideal plane (if the surface has irregularities), the deviation causes a measurement error. Will end up. Here, if the reference plane 42a is sufficiently close to the back surface 1b of the wafer 1, the distance between the positions L to N becomes sufficiently small, and the measurement error due to the deviation of the positions L and M can be suppressed within the allowable range. This also applies to the main surface 1a side of the wafer 1. However, what is obtained on the basis of the interference fringes thus obtained is only the distance between the reference planes 41a and 42a and the surfaces 1a and 1b of the wafer 1, and there are two criteria for the required measurement accuracy of the wafer. If the flatness of each of the flat surfaces 41a and 42a is not sufficient, accurate shape measurement cannot be performed. Therefore, wafer 1
Reference planes 41 on the main surface 1a side and the back surface 1b side, respectively.
It is conceivable to apply the technique of the aforementioned publication 1 which removes (cancels) the influence of the flatness error of a and 42a.
For that purpose, the wafer 1 is provided with two reference planes 41a and 42a.
It is necessary to measure the distribution of the distance between the two reference planes 41a and 42a by removing the distance between the two reference planes 41a and 42a.

【0005】しかしながら,一般に,ウェハ1の厚みは
0.7〜0.8mm程度あるため,2つの基準平面41
a,42aの間隔は少なくとも1mm程度は必要とな
る。図3(b)は従来の斜入射干渉計Zにより2つの基
準平面41a,42aの間の距離を測定する際の光路を
模式的に表した図である。図3(b)に示すように,基
準平面42aにおける所定の入射位置L’を通過して基
準平面41aに向かう光は,前記入所位置L’とずれた
位置M’で基準平面41aに反射した後,さらにずれた
位置N’において基準平面42aに到達する。このとき
の位置L’〜N’間の距離(ずれ)は,10mm程度に
もなってしまう。一般に,基準平面には,10mm程度
を空間周期(間隔)として最大の平坦度誤差(例えば,
0.03μm程度)が生じやすいため,前記公報2に示
される斜入射干渉計を前記公報1の技術で用いられる干
渉計に置き換えると,基準平面の平坦度の最大誤差がそ
のまま測定誤差となってしまうという問題点があった。
これでは,0.01μmオーダーの測定精度が要求され
た場合には適用できない。従って,本発明は上記事情に
鑑みてなされたものであり,その目的とするところは,
ウェハの主面が鏡面,その裏面が粗面であっても,干渉
計の基準平面が有する平坦度の誤差に影響されずに精度
よくウェハの形状(厚み分布)を測定できる形状測定装
置及びその方法を提供することにある。
However, since the thickness of the wafer 1 is generally about 0.7 to 0.8 mm, the two reference planes 41
The distance between a and 42a needs to be at least about 1 mm. FIG. 3B is a diagram schematically showing an optical path when the distance between the two reference planes 41a and 42a is measured by the conventional oblique incidence interferometer Z. As shown in FIG. 3 (b), light passing through a predetermined incident position L'on the reference plane 42a and traveling toward the reference plane 41a is reflected on the reference plane 41a at a position M'shifted from the entrance position L '. After that, the reference plane 42a is reached at a position N'which is further deviated. The distance (shift) between the positions L ′ and N ′ at this time becomes about 10 mm. Generally, in the reference plane, the maximum flatness error (for example, with a spatial period (spacing) of about 10 mm (for example,
Since the grazing incidence interferometer disclosed in the publication 2 is replaced with the interferometer used in the technology disclosed in the publication 1, the maximum error of the flatness of the reference plane becomes a measurement error as it is. There was a problem that it would end up.
This cannot be applied when a measurement accuracy of 0.01 μm order is required. Therefore, the present invention has been made in view of the above circumstances, and its object is to:
Even if the main surface of the wafer is a mirror surface and the back surface is a rough surface, a shape measuring device capable of accurately measuring the wafer shape (thickness distribution) without being affected by the flatness error of the reference plane of the interferometer, and the same To provide a method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は,ウェハの主面側に配置される基準平面及び
前記ウェハの裏面側に近接して配置される基準平面の2
つの基準平面を構成する手段と,前記主面側の基準平面
を介して前記ウェハの主面に略垂直に平行光を照射する
主面側発光手段と,前記主面側発光手段による平行光の
前記ウェハの主面及び前記主面側の基準平面それぞれか
らの反射光で形成される第1の干渉縞画像を取得する主
面側干渉縞画像取得手段と,前記裏面側の基準平面を介
して前記ウェハの裏面に斜めに照射する裏面側発光手段
と,前記裏面側発光手段による平行光の前記ウェハの裏
面及び前記裏面側の基準平面それぞれからの反射光で形
成される第2の干渉縞画像を取得する裏面側干渉縞画像
取得手段と,前記ウェハを前記2つの基準平面の間から
除去した状態で,前記主面側発光手段による平行光の前
記裏面側の基準平面及び前記主面側の基準平面それぞれ
からの反射光で形成される第3の干渉縞画像を取得する
基準平面干渉縞画像取得手段と,前記第1乃至3の干渉
縞画像に基づいて前記ウェハの厚さ分布を算出する形状
算出手段と,を具備してなることを特徴とする形状測定
装置である。
In order to achieve the above object, the present invention comprises a reference plane arranged on the main surface side of a wafer and a reference plane arranged close to the back surface side of the wafer.
Means for forming two reference planes, a main surface side light emitting means for irradiating the main surface of the wafer with parallel light substantially perpendicularly via the reference surface on the main surface side, and a parallel light by the main surface side light emitting means. Via a main surface side interference fringe image acquisition means for acquiring a first interference fringe image formed by reflected light from each of the main surface of the wafer and the main surface side reference plane, and the back surface side reference plane. Second interference fringe image formed by the back surface side light emitting means for obliquely irradiating the back surface of the wafer and the parallel light reflected by the back surface side light emitting means from the back surface of the wafer and the reference plane of the back surface side. Of the back surface side interference fringe image acquisition means and the wafer from which the wafer is removed from between the two reference planes, the parallel surface of the back surface side reference plane and the main surface side of the parallel light by the main surface side light emitting means. Shaped by reflected light from each reference plane A reference plane interference fringe image acquisition means for acquiring a third interference fringe image, and a shape calculation means for calculating a thickness distribution of the wafer based on the first to third interference fringe images. It is a shape measuring device characterized by the following.

【0007】ここで,前記形状算出手段は,前記ウェハ
の厚さ分布T(x,y)を,前記第1の干渉縞画像に基
づき求められる前記ウェハの主面と前記主面側の基準平
面との距離La(x,y)と,前記第2の干渉縞画像に
基づき求められる前記ウェハの裏面と前記裏面側の基準
平面との距離Lb(x,y)と,前記第3の干渉縞画像
により求められる前記2つの基準平面の距離Lt(x,
y)とに基づいて,次式により算出することが可能であ
る。 T(x,y)=Lt(x,y)−La(x,y)−Lb
(x,y) これにより,ウェハの主面(鏡面)及びその裏面(粗
面)それぞれに適した干渉計を配置してウェハの主面及
び裏面の形状を測定できるとともに,主面側の干渉計に
よって求めた主面側及び裏面側の2つの基準平面間の距
離に基づいて,2つの基準平面それぞれの各位置ごとに
その変位(凹凸)分が相殺されるので,求められるウェ
ハの測定精度に対して2つの基準平面それぞれの平坦度
が十分でない場合であっても,これに依存せず精度の高
いウェハの形状測定を行うことが可能となる。さらに,
垂直入射光が用いられる主面側では,主面側の基準平面
とウェハとの間隔を確保できるので,斜入射光を用いる
基準平面をウェハ両面に近接させて測定する場合に比
べ,ウェハを2つの基準平面の間へ挿入及び除去するハ
ンドリングが容易となる。
Here, the shape calculation means calculates the thickness distribution T (x, y) of the wafer based on the first interference fringe image and the main surface of the wafer and a reference plane on the main surface side. La (x, y), a distance Lb (x, y) between the back surface of the wafer and a reference plane on the back surface, which is obtained based on the second interference fringe image, and the third interference fringe. The distance Lt (x, x,
Based on y), it can be calculated by the following equation. T (x, y) = Lt (x, y) -La (x, y) -Lb
(X, y) This makes it possible to arrange the interferometers suitable for the main surface (mirror surface) and the back surface (rough surface) of the wafer to measure the shapes of the main surface and the back surface of the wafer, as well as the interference on the main surface side. Based on the distance between the two reference planes on the main surface side and the back surface side, the displacement (concavity and convexity) of each position on each of the two reference planes is offset, so the required wafer measurement accuracy is obtained. On the other hand, even if the flatness of each of the two reference planes is not sufficient, it is possible to perform highly accurate wafer shape measurement without depending on this. further,
On the main surface side where the vertically incident light is used, the distance between the reference plane on the main surface side and the wafer can be secured. It is easy to insert and remove between two reference planes.

【0008】また,前記ウェハの少なくとも1箇所の絶
対厚さを測定する絶対厚さ測定手段を具備し,前記形状
算出手段が,前記絶対厚さ測定手段による前記絶対厚さ
に基づいて前記ウェハの絶対厚さ分布を算出するもので
あってもよい。
Further, the apparatus further comprises an absolute thickness measuring means for measuring an absolute thickness of at least one portion of the wafer, wherein the shape calculating means calculates the absolute thickness of the wafer based on the absolute thickness measured by the absolute thickness measuring means. The absolute thickness distribution may be calculated.

【0009】[0009]

【発明の実施の形態】以下添付図面を参照しながら,本
発明の実施の形態及び実施例について説明し,本発明の
理解に供する。尚,以下の実施の形態及び実施例は,本
発明を具体化した一例であって,本発明の技術的範囲を
限定する性格のものではない。ここに,図1は本発明の
実施の形態に係るウェハ形状測定装置Xの構成図,図2
は本発明の実施の形態に係るウェハ形状測定装置Xにお
ける基準平面とウェハとの間及び2つの基準平面間の光
路を模式的に表した図,図3は従来の斜入射干渉計Zに
よる基準平面とウェハとの間及び2つの基準平面間の光
路を模式的に表した図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following embodiments and examples are merely examples embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is a configuration diagram of a wafer shape measuring apparatus X according to an embodiment of the present invention, and FIG.
FIG. 3 is a diagram schematically showing an optical path between a reference plane and a wafer and between two reference planes in a wafer shape measuring apparatus X according to an embodiment of the present invention. FIG. 3 is a reference by a conventional oblique incidence interferometer Z. It is the figure which represented typically the optical path between a plane and a wafer, and between two reference planes.

【0010】以下,図1を用いて本発明の実施の形態に
係るウェハ形状測定装置Xについて説明する。本ウェハ
形状測定装置Xは,ウェハ支持部30により支持された
ウェーハ1の主面1a及び裏面1bの両面側に2つの光
学測定系10,20が対向配置されている。前記主面1
a側の光学測定系10はフィゾー干渉計であり,測定光
12を出射する主面側発光器11,その測定光12を透
過させるハーフミラー13,該ハーフミラー13を透過
後の前記測定光12を前記主面1aに垂直な平行ビーム
とするコリメータレンズ14,その平行ビームの一部を
透過し,一部を反射する主面側基準平面15aを有する
参照板15,前記ウェハ1の主面1aで反射された測定
光が前記参照板15及び前記コリメータレンズ14を経
て,前記ハーフミラー13に反射した光を受光するCC
Dカメラ等の主面側受光器16,及び前記参照板15を
前記ウェハ1の面に垂直な方向に移動させるピエゾアク
チュエータ17を備えている。ここで,前記主面側基準
平面15aでの反射光と,前記ウェハ1の主面1aでの
反射光とには,前記主面側基準平面15aと前記主面1
aとの距離に対応する光路差があるため,この光路差
が,前記主面側受光器16において,両反射光で形成さ
れる干渉縞として観測される。
A wafer shape measuring apparatus X according to an embodiment of the present invention will be described below with reference to FIG. In the present wafer shape measuring apparatus X, two optical measuring systems 10 and 20 are arranged opposite to each other on both sides of the main surface 1a and the back surface 1b of the wafer 1 supported by the wafer supporting portion 30. The main surface 1
The a-side optical measurement system 10 is a Fizeau interferometer, and includes a main surface side light emitter 11 that emits the measurement light 12, a half mirror 13 that transmits the measurement light 12, and the measurement light 12 that has passed through the half mirror 13. Is a parallel beam perpendicular to the main surface 1a, a reference plate 15 having a main surface side reference plane 15a that transmits a part of the parallel beam and reflects a part of the parallel beam, the main surface 1a of the wafer 1. CC which receives the light reflected by the half mirror 13 through the reference plate 15 and the collimator lens 14
A main surface side light receiver 16 such as a D camera and a piezo actuator 17 for moving the reference plate 15 in a direction perpendicular to the surface of the wafer 1 are provided. Here, the reflected light on the main surface side reference plane 15a and the reflected light on the main surface 1a of the wafer 1 include the main surface side reference plane 15a and the main surface 1
Since there is an optical path difference corresponding to the distance to a, this optical path difference is observed as an interference fringe formed by both reflected lights in the main surface side light receiver 16.

【0011】一方,前記裏面1b側の光学測定系20
は,斜入射干渉計であり,測定光22を出射する裏面側
発光器21,その測定光22を前記裏面1bに対して斜
め方向の平行ビームとするコリメータレンズ24,その
平行ビームの一部を透過し,一部を反射する裏面側基準
平面25aを有する三角プリズム25,前記ウェハ1の
裏面1bで反射された測定光が前記裏面側基準平面25
a(前記三角プリズム25)及びコリメータレンズ2
4’等を経た光を受光するCCDカメラ等の裏面側受光
器26,及び前記三角プリズム25を前記ウェハ1の面
に略垂直な方向に移動させるピエゾアクチュエータ27
を備えている。そして,前記裏面側基準平面25aでの
反射光と,前記ウェハ1の裏面1bでの反射光とには,
前記裏面側基準平面25aと前記裏面1bとの距離に対
応する光路差があるため,この光路差が,前記裏面側受
光器26において,両反射光で形成される干渉縞として
観測される。前記三角プリズム25は,前記裏面側基準
平面25aが前記ウェハ1の裏面1bに近接するよう
(例えば,0.1mm程度の距離で)配置されている。
前記測定光12,22としては,例えば,HnNeレー
ザ(λ=633nm)や,半導体レーザ等のコヒーレン
ト光が用いられる。また,前記三角プリズム25は,フ
ィゾー干渉で用いられるようなウェッジプリズム等の参
照板を用いてもかまわない。
On the other hand, the optical measurement system 20 on the back surface 1b side
Is an oblique-incidence interferometer, which includes a back-side light emitter 21 that emits the measurement light 22, a collimator lens 24 that makes the measurement light 22 a parallel beam in an oblique direction with respect to the back surface 1b, and a part of the parallel beam The triangular prism 25 having a back surface side reference plane 25a that transmits and reflects a part, and the measurement light reflected by the back surface 1b of the wafer 1 has the back side reference plane 25a.
a (the triangular prism 25) and the collimator lens 2
Piezoactuator 27 for moving rear surface side light receiver 26 such as CCD camera for receiving light passing through 4'and the like, and triangular prism 25 in a direction substantially perpendicular to the surface of wafer 1.
Is equipped with. The reflected light on the back surface side reference plane 25a and the reflected light on the back surface 1b of the wafer 1 are:
Since there is an optical path difference corresponding to the distance between the back surface side reference plane 25a and the back surface 1b, this optical path difference is observed in the back surface side light receiver 26 as an interference fringe formed by both reflected lights. The triangular prism 25 is arranged so that the back surface side reference plane 25a is close to the back surface 1b of the wafer 1 (for example, at a distance of about 0.1 mm).
As the measurement light 12 and 22, for example, coherent light such as an HnNe laser (λ = 633 nm) or a semiconductor laser is used. Further, the triangular prism 25 may use a reference plate such as a wedge prism used in Fizeau interference.

【0012】前記主面側受光器16及び前記裏面側受光
器26で得られる干渉縞画像は,画像入力手段を有する
パーソナルコンピュータ等である演算器31(前記形状
算出手段の一例)に入力され,入力された干渉縞画像に
基づいて前記ウェハ1の主面1a及び裏面1bの表面形
状(高さ分布)が演算される。以下,前記主面側受光器
16で得られたウェハ1の主面1aと前記主面側基準平
面15aとの反射光で形成される干渉縞画像をa,前記
裏面側受光器26で得られたウェハ1の裏面1bと前記
裏面側基準平面25aとの反射光で形成される干渉縞画
像をbとする。
The interference fringe images obtained by the main surface side light receiver 16 and the back surface side light receiver 26 are input to a computing unit 31 (an example of the shape calculating unit) such as a personal computer having an image input unit, The surface shapes (height distribution) of the main surface 1a and the back surface 1b of the wafer 1 are calculated based on the input interference fringe image. Hereinafter, an interference fringe image formed by the reflected light of the main surface 1a of the wafer 1 and the main surface side reference plane 15a obtained by the main surface side light receiver 16 is obtained by the back surface side light receiver 26. An interference fringe image formed by reflected light from the back surface 1b of the wafer 1 and the back surface side reference plane 25a is defined as b.

【0013】さらに,前記演算器31には,前記2つの
干渉縞画像a,bの他に,前記主面側基準平面15a及
び前記裏面側基準平面25aそれぞれからの反射光で形
成される干渉縞画像cが取り込まれる。前記干渉縞画像
cは,前記ウェハ1を前記2つの光学測定系10,20
の間から取り除いた状態で,前記主面1a側の発光器1
1からの測定光の前記主面側及び裏面側の各基準平面1
5a,25aにおける反射光を前記主面側受光器16で
受光することにより観測する。前記演算器31は,入力
した前記干渉縞画像cにより,前記主面側基準平面15
aと前記裏面側基準平面25bとの距離の分布を演算す
る。ここで,前記主面側発光器11及び前記コリメータ
レンズ14が前記主面側発光手段の一例,前記裏面側発
光器21及び前記コリメータレンズ24が前記裏面側発
光手段の一例,前記主面側受光器16が前記主面側干渉
縞画像取得手段及び基準平面干渉縞画像取得手段の一
例,前記裏面側受光器26が前記裏面側干渉縞画像取得
手段の一例である。
In addition to the two interference fringe images a and b, the arithmetic unit 31 further includes interference fringes formed by reflected light from the main surface side reference plane 15a and the back surface side reference plane 25a. Image c is captured. The interference fringe image c shows the wafer 1 on the two optical measurement systems 10, 20.
The light emitter 1 on the main surface 1a side in a state of being removed from between
Reference planes 1 on the main surface side and the back surface side of the measurement light from 1
The reflected light at 5a and 25a is received by the main surface side photodetector 16 and observed. The arithmetic unit 31 uses the input interference fringe image c to determine the main surface side reference plane 15
The distribution of the distance between a and the back side reference plane 25b is calculated. Here, the main surface side light emitter 11 and the collimator lens 14 are an example of the main surface side light emitting means, the back surface side light emitter 21 and the collimator lens 24 are an example of the back surface side light emitting means, and the main surface side light receiving means. The device 16 is an example of the main surface side interference fringe image acquisition means and the reference plane interference fringe image acquisition means, and the back surface side light receiver 26 is an example of the back surface side interference fringe image acquisition means.

【0014】次に,図2を用いて,前記干渉縞画像a〜
cそれぞれを観測時の前記平行光の光路について説明す
る。前記干渉縞画像a(主面)の観測時においては,図
2(a)に示すように,前記主面側基準平面15aの所
定の入射位置Qから前記ウェハ1の主面1aに向かう光
は,前記主面1aに垂直な方向に照射されているため,
前記ウェハ1の面に垂直な方向から見て(図2(a)に
おいては上側又は下側から見て),前記入射位置Qと同
じ位置M’でウェハ1の主面1aに反射した後,前記主
面側基準平面15aの前記入射位置Qに戻る。このよう
に,前記出射位置Qから出た光が元の位置に戻ってくる
ため,前記主面側基準平面15aの平坦度(凹凸)の影
響を受けない。一方,前記干渉縞画像b(裏面)の観測
時においては,図2(a)に示すように,前記裏面側基
準平面25aの所定の入射位置Lから前記ウェハ1の裏
面1bに向かう光は,前記裏面1bに対して斜めに照射
されているため,前記ウェハ1の面に垂直な方向から見
て,前記入射位置Lとずれた位置Mで反射した後,さら
にずれた位置Nにおいて前記裏面側基準平面25aに到
達する。ここで,前述したように,前記裏面側基準平面
25aは前記ウェハ1の裏面1bに近接しているので,
前記位置LとNのずれは,測定精度に問題が生じない程
度に十分小さい。前述したように,一般に,基準平面に
は10mm程度を空間周期(間隔)として最大の平坦度
誤差が生じやすいが,例えば,前記裏面側基準平面25
aを前記ウェハ1の裏面1bに対して0.1mm程度ま
で近接させれば,前記位置LとNのずれは,1mm程度
となり,基準平面の平坦度誤差の影響を無視できる程度
に抑えられる。また,前記干渉縞画像c(2つの基準平
面間)の観測時においては,図2(b)に示すように,
前記主面側基準平面15aの前記入射位置Qから前記ウ
ェハ1の主面1aに向かう光は,前記ウェハ1の面に垂
直な方向から見て(図2(b)においては上側又は下側
から見て),前記入射位置Qと同じ位置Pで前記裏面側
基準平面25aで反射した後,前記主面側基準平面15
aの前記入射位置Qに戻る。このように,前記出射位置
Qから出た光が元の位置に戻ってくるため,前記主面側
基準平面15aの平坦度(凹凸)の影響を受けない。従
って,前記ウェハ1の主面1a側における前記位置M’
と前記裏面1b側における前記位置Mとが表裏関係の位
置であると考えると,前記裏面側基準平面25aにおけ
る前記位置L,P,Nそれぞれのずれは,前記裏面側基
準平面25aの平坦度誤差の影響を無視できる程度に十
分小さく抑えられる。また,前記ウェハ1の裏面1b側
においては,前記裏面側基準平面25aと前記ウェハ1
とが近接するが,前記ウェハ1の主面1a側において
は,前記主面側基準平面15aと前記ウェハ1との間隔
を確保できるため,前記ウェハ1を前記2つの基準平面
15a,25aの間に挿入したり除去したりするハンド
リングが容易となる。
Next, referring to FIG. 2, the interference fringe images a ...
An optical path of the parallel light at the time of observing each of c will be described. At the time of observing the interference fringe image a (main surface), as shown in FIG. 2A, light traveling from the predetermined incident position Q of the main surface side reference plane 15a toward the main surface 1a of the wafer 1 is , Because it is irradiated in a direction perpendicular to the main surface 1a,
When viewed from a direction perpendicular to the surface of the wafer 1 (viewed from the upper side or the lower side in FIG. 2A), after being reflected on the main surface 1a of the wafer 1 at the same position M ′ as the incident position Q, It returns to the incident position Q of the main surface side reference plane 15a. In this way, since the light emitted from the emission position Q returns to the original position, it is not affected by the flatness (unevenness) of the main surface side reference plane 15a. On the other hand, when observing the interference fringe image b (back surface), as shown in FIG. 2A, the light traveling from the predetermined incident position L of the back surface side reference plane 25a to the back surface 1b of the wafer 1 is: Since the back surface 1b is obliquely irradiated, when viewed from a direction perpendicular to the surface of the wafer 1, it is reflected at a position M deviated from the incident position L and then at a position N deviated further from the back surface side. The reference plane 25a is reached. Here, as described above, since the back surface side reference plane 25a is close to the back surface 1b of the wafer 1,
The deviation between the positions L and N is sufficiently small so that no problem occurs in measurement accuracy. As described above, in general, the maximum flatness error is likely to occur in the reference plane with a spatial period (spacing) of about 10 mm.
When a is brought closer to the back surface 1b of the wafer 1 by about 0.1 mm, the deviation between the positions L and N becomes about 1 mm, and the influence of the flatness error of the reference plane can be suppressed to a negligible level. Further, at the time of observing the interference fringe image c (between two reference planes), as shown in FIG.
The light traveling from the incident position Q of the main surface side reference plane 15a toward the main surface 1a of the wafer 1 is viewed from a direction perpendicular to the surface of the wafer 1 (from the upper side or the lower side in FIG. 2B). (Seeing), after being reflected by the back surface side reference plane 25a at the same position P as the incident position Q, the main surface side reference plane 15
It returns to the said incident position Q of a. In this way, since the light emitted from the emission position Q returns to the original position, it is not affected by the flatness (unevenness) of the main surface side reference plane 15a. Therefore, the position M ′ on the main surface 1a side of the wafer 1 is
Considering that and the position M on the back surface 1b side are positions having a front-back relationship, the respective deviations of the positions L, P, N on the back surface reference plane 25a are caused by the flatness error of the back surface reference plane 25a. Can be kept small enough to ignore the effect of. Further, on the back surface 1b side of the wafer 1, the back surface side reference plane 25a and the wafer 1
However, on the side of the main surface 1a of the wafer 1, since the distance between the main surface side reference plane 15a and the wafer 1 can be secured, the wafer 1 is placed between the two reference planes 15a and 25a. It is easy to handle by inserting and removing it.

【0015】以上の測定により得られた前記干渉縞画像
a〜cを用いて,前記演算器31では次のような演算を
行う。まず,前記干渉縞画像aに基づいて,前記主面側
基準平面15aと前記主面1aとの間の距離La(x,
y),前記干渉縞画像bに基づいて前記裏面側基準平面
25aと前記裏面1bとの間の距離Lb(x,y),前
記干渉縞画像cに基づいて前記主面側基準平面15aと
前記裏面側基準平面25aとの間の距離Lt(x,y)
が求められる。前記主面1a側の光学測定系10による
前記干渉縞画像aは,前記ピアゾアクチュエータ17に
よって前記参照板15(即ち,前記主面側基準平面15
a)を,例えば,0(所定の基準位置),λ/8,2λ
/8,3λ/8の各位置(λは測定光の波長)に移動さ
せることにより,それぞれの位置での干渉縞画像の輝度
データI0(x,y),I90(x,y),I180(x,
y),I270(x,y)として前記演算器31に取り込
まれる。この輝度データに基づいて,前記干渉縞画像a
の位相φa(x,y)は,次の(2)式で求められる。 φa(x,y)=arctan{(I0−I180)/(I90/I270)}…(2) このようにして得られたφa(x,y)に所定のアンラ
ップ処理(処理後の位相をφa’(x,y)とする)を
施した場合,前記距離La(x,y)は,次の(3)式
で求められる。 La(x,y)=(φa’(x,y)/2π)×(λ/2) …(3) 前記距離Lc(x,y)も,前記距離La(x,y)と
同様にして求められる。また,前記裏面1b側の光学測
定系20による前記干渉縞画像bも同様に,前記ピアゾ
アクチュエータ27によって前記三角プリズム25(即
ち,前記裏面側基準平面25a)を,前記測定光22の
前記ウェハ1の裏面1bへの入射角θを考慮した位置,
例えば,0(所定の基準位置),λ/8/conθ,2
λ/8/cosθ,3λ/8/cosθの各位置に移動
させて,それぞれの干渉縞画像の輝度データとして前記
演算器31に取り込まれる。さらに,その輝度データか
ら,前記φa’(x,y)を求めたのと同様にアンラッ
プ処理後の前記干渉縞画像bの位相φb’(x,y)が
求められる。そして,次の(4)式により,前記距離L
b(x,y)が求められる。 Lb(x,y)=(φb’(x,y)/2π)×(λ/2×1/cosθ) …(4) そして,前記3つの距離La(x,y),Lb(x,
y),Lt(x,y)に基づいて,前記(1)式によ
り,前記ウェハ1の厚さ分布T(x,y)が求められ
る。このようにして求められたウェハ1の厚さ分布T
(x,y)は,前記公報1の段落0014に示されるよ
うに,前記2つの基準平面15a,25aそれぞれの各
位置(x,y)ごとにその変位(凹凸)分が相殺される
ので,前記主面側基準平面15a及び前記裏面側基準平
面25aの平坦度(平面形状)に依存しない値である。
即ち,本ウェハ形状測定装置Xによれば,基準平面の平
坦度に依存せず高精度にウェハの厚さ分布測定を行うこ
とが可能となる。これにより,前記ウェハ1の主面1a
が鏡面,その裏面1bが粗面であっても,前記2つの基
準平面15a,25aの平坦度の誤差に影響されずに精
度よく前記ウェハ1の形状(厚み分布)を測定できる。
また,前記2つの基準平面15a,25aは必ずしも理
想平面である必要がないため,装置の低コスト化が実現
できる。
Using the interference fringe images a to c obtained by the above measurement, the calculator 31 performs the following calculation. First, based on the interference fringe image a, a distance La (x, between the main surface side reference plane 15a and the main surface 1a is set.
y), the distance Lb (x, y) between the back surface side reference plane 25a and the back surface 1b based on the interference fringe image b, and the main surface side reference plane 15a and the above based on the interference fringe image c. Distance Lt (x, y) from the back side reference plane 25a
Is required. The interference fringe image a by the optical measurement system 10 on the main surface 1a side is displayed by the piezo actuator 17 on the reference plate 15 (that is, the main surface side reference plane 15).
a) is, for example, 0 (predetermined reference position), λ / 8, 2λ
/ 8, 3λ / 8 (where λ is the wavelength of the measurement light) to move the interference fringe image luminance data I 0 (x, y), I 90 (x, y), I 180 (x,
y) and I 270 (x, y) are taken into the arithmetic unit 31. Based on this luminance data, the interference fringe image a
The phase φa (x, y) of is calculated by the following equation (2). φa (x, y) = arctan {(I 0 −I 180 ) / (I 90 / I 270 )} (2) The φa (x, y) thus obtained is subjected to a predetermined unwrapping process (after processing). , The distance La (x, y) is obtained by the following equation (3). La (x, y) = (φa ′ (x, y) / 2π) × (λ / 2) (3) The distance Lc (x, y) is also the same as the distance La (x, y). Desired. Similarly, for the interference fringe image b by the optical measurement system 20 on the back surface 1b side, similarly, the triangular prism 25 (that is, the back surface side reference plane 25a) is moved by the piezo actuator 27 to the wafer 1 of the measurement light 22. Position considering the incident angle θ to the back surface 1b of
For example, 0 (predetermined reference position), λ / 8 / con θ, 2
It is moved to each position of λ / 8 / cos θ and 3λ / 8 / cos θ, and is taken into the arithmetic unit 31 as the luminance data of each interference fringe image. Further, the phase φb ′ (x, y) of the interference fringe image b after the unwrap processing is obtained from the luminance data in the same manner as the φa ′ (x, y) is obtained. Then, by the following equation (4), the distance L
b (x, y) is calculated. Lb (x, y) = (φb ′ (x, y) / 2π) × (λ / 2 × 1 / cos θ) (4) Then, the three distances La (x, y) and Lb (x,
Based on y) and Lt (x, y), the thickness distribution T (x, y) of the wafer 1 is obtained by the equation (1). The thickness distribution T of the wafer 1 thus obtained
As described in paragraph 0014 of the publication 1, the displacement (concavity and convexity) of (x, y) is offset for each position (x, y) of the two reference planes 15a and 25a. It is a value that does not depend on the flatness (planar shape) of the main surface side reference plane 15a and the back surface side reference plane 25a.
That is, according to the wafer shape measuring apparatus X, it becomes possible to measure the thickness distribution of the wafer with high accuracy without depending on the flatness of the reference plane. Thereby, the main surface 1a of the wafer 1 is
Even if the mirror surface is a mirror surface and the back surface 1b is a rough surface, the shape (thickness distribution) of the wafer 1 can be accurately measured without being affected by the error in the flatness of the two reference planes 15a and 25a.
Further, since the two reference planes 15a and 25a do not necessarily have to be ideal planes, the cost of the device can be reduced.

【0016】[0016]

【実施例】前記実施の携帯に係るウェハ形状測定装置X
で求められる前記ウェハ1の厚さ分布T(x,y)は未
知のOffset量を含むものとなる。そこで,前記ウ
ェハ1の任意位置での厚さを実測する厚さ測定器(前記
絶対厚さ測定手段に相当)を設け,得られた厚さ実測値
tを前記演算機31に入力すれば,前記厚さ実測値tに
基づいて前記ウェハ1の絶対厚さ分布を求めることが可
能である。即ち,前記厚さ分布T(x,y)のうち,前
記厚さ実測値tの測定点での値が前記厚さ実測値tと一
致するように,前記厚さ分布T(x,y)の各値を平行
移動させればよい。また,前記実施の形態では,前記ピ
エゾアクチュエータ17,27により,前記2つの基準
平面15a,25aを,90°の位相ごとに4段階移動
させているが,他の位相シフト方法(例えば,波長掃引
等)であってもかまわない。さらに,前記2つの基準平
面15a,25aを移動させるのではなく,前記ウェハ
1をアクチュエータで移動させる構成としてもよい。ま
た,前記実施の形態では,前記ウェハ1の主面1a側の
光学測定系10として,フィゾー干渉計を用いている
が,前記ウェハ1の面に略垂直に光を照射する他の干渉
計(例えば,マイケルソン干渉計等)であってもかまわ
ない。
[Embodiment] Wafer shape measuring apparatus X according to the above embodiment
The thickness distribution T (x, y) of the wafer 1 obtained by the above equation contains an unknown amount of Offset. Therefore, if a thickness measuring device (corresponding to the absolute thickness measuring means) for measuring the thickness of the wafer 1 at an arbitrary position is provided, and the obtained thickness measured value t is input to the arithmetic unit 31, The absolute thickness distribution of the wafer 1 can be obtained based on the measured thickness value t. That is, in the thickness distribution T (x, y), the thickness distribution T (x, y) is set so that the value at the measurement point of the thickness measurement value t matches the thickness measurement value t. Each value of can be translated. Further, in the above-described embodiment, the two reference planes 15a and 25a are moved by four steps for each 90 ° phase by the piezo actuators 17 and 27, but other phase shift methods (for example, wavelength sweeping). Etc.). Furthermore, instead of moving the two reference planes 15a and 25a, the wafer 1 may be moved by an actuator. Further, in the above embodiment, a Fizeau interferometer is used as the optical measurement system 10 on the main surface 1a side of the wafer 1, but other interferometers that irradiate the surface of the wafer 1 with light substantially perpendicularly ( For example, a Michelson interferometer) may be used.

【0017】[0017]

【発明の効果】以上説明したように,本発明によれば,
ウェハの主面(鏡面)及びその裏面(粗面)それぞれに
適した干渉計を配置してウェハの主面及び裏面の形状を
測定するとともに,主面側の干渉計によって求めた主面
側及び裏面側の2つの基準平面間の距離に基づいて,2
つの基準平面それぞれの各位置ごとにその変位(凹凸)
分が相殺されるので,求められるウェハの測定精度に対
して2つの基準平面それぞれの平坦度が十分でない場合
であっても,これに依存せず精度の高いウェハの形状測
定を行うことが可能となる。また,垂直入射光が用いら
れる主面側の干渉計とウェハとの間隔を確保できるの
で,斜入射干渉計をウェハ両面に近接させて測定する場
合に比べ,ウェハを2つの基準平面の間へ挿入及び除去
するハンドリングが容易となる。
As described above, according to the present invention,
Interferometers suitable for the main surface (mirror surface) and the back surface (rough surface) of the wafer are arranged to measure the shapes of the main surface and the back surface of the wafer. 2 based on the distance between the two reference planes on the back side
Displacement (concavo-convex) at each position of each of the two reference planes
Since the amount is canceled out, even if the flatness of each of the two reference planes is not sufficient for the required wafer measurement accuracy, it is possible to perform highly accurate wafer shape measurement without depending on this. Becomes In addition, since the distance between the main surface side interferometer where the vertically incident light is used and the wafer can be secured, the wafer can be placed between two reference planes as compared with the case where the oblique incidence interferometer is placed close to both sides of the wafer. It is easy to insert and remove.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係るウェハ形状測定装置
Xの構成図。
FIG. 1 is a configuration diagram of a wafer shape measuring apparatus X according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るウェハ形状測定装置
Xにおける基準平面とウェハとの間及び2つの基準平面
間の光路を模式的に表した図。
FIG. 2 is a diagram schematically showing an optical path between a reference plane and a wafer and between two reference planes in a wafer shape measuring apparatus X according to an embodiment of the present invention.

【図3】従来の斜入射干渉計Zによる基準平面とウェハ
との間及び2つの基準平面間の光路を模式的に表した
図。
FIG. 3 is a diagram schematically showing an optical path between a reference plane and a wafer and between two reference planes by a conventional grazing incidence interferometer Z.

【符号の説明】[Explanation of symbols]

1…ウェハ 10…主面側の光学測定系(フィゾー干渉計) 11…主面側発光器 12…測定光(主面側) 13…ハーフミラー 14,24,24’…コリメータレンズ 15…参照板 15a…主面側基準平面 16…主面側受光器 17,27…ピエゾアクチュエータ 20…裏面側の光学測定系(斜入射干渉計) 21…裏面側発光器 22…測定光(裏面側) 25…三角プリズム 25a…裏面側基準平面 26…裏面側受光器 30…ウェハ支持部 31…演算器 1 ... Wafer 10 ... Optical measurement system on the main surface side (Fizeau interferometer) 11 ... Main surface side light emitter 12 ... Measuring light (main surface side) 13 ... Half mirror 14, 24, 24 '... Collimator lens 15 ... Reference plate 15a ... Main surface side reference plane 16 ... Main surface side light receiver 17, 27 ... Piezo actuator 20 ... Optical measurement system on the back side (oblique incidence interferometer) 21 ... Back side light emitter 22 ... Measuring light (back side) 25 ... Triangular prism 25a ... Back side reference plane 26 ... Back side light receiver 30 ... Wafer support 31 ... Calculator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA30 CC19 FF51 HH03 HH12 HH13 HH14 JJ03 JJ05 JJ26 QQ31    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA30 CC19 FF51 HH03 HH12                       HH13 HH14 JJ03 JJ05 JJ26                       QQ31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ウェハの主面側に配置される基準平面及
び前記ウェハの裏面側に近接して配置される基準平面の
2つの基準平面を構成する手段と,前記主面側の基準平
面を介して前記ウェハの主面に略垂直に平行光を照射す
る主面側発光手段と,前記主面側発光手段による平行光
の前記ウェハの主面及び前記主面側の基準平面それぞれ
からの反射光で形成される第1の干渉縞画像を取得する
主面側干渉縞画像取得手段と,前記裏面側の基準平面を
介して前記ウェハの裏面に斜めに照射する裏面側発光手
段と,前記裏面側発光手段による平行光の前記ウェハの
裏面及び前記裏面側の基準平面それぞれからの反射光で
形成される第2の干渉縞画像を取得する裏面側干渉縞画
像取得手段と,前記ウェハを前記2つの基準平面の間か
ら除去した状態で,前記主面側発光手段による平行光の
前記裏面側の基準平面及び前記主面側の基準平面それぞ
れからの反射光で形成される第3の干渉縞画像を取得す
る基準平面干渉縞画像取得手段と,前記第1乃至3の干
渉縞画像に基づいて前記ウェハの厚さ分布を算出する形
状算出手段と,を具備してなることを特徴とする形状測
定装置。
1. A means for forming two reference planes, a reference plane arranged on the main surface side of the wafer and a reference plane arranged in proximity to the back surface side of the wafer, and a reference plane on the main surface side. Through the main surface side light emitting means for irradiating the main surface of the wafer with parallel light substantially perpendicularly, and the reflection of the parallel light by the main surface side light emitting means from the main surface of the wafer and the reference plane on the main surface side. A main surface side interference fringe image acquiring means for acquiring a first interference fringe image formed by light, a back surface side light emitting means for obliquely irradiating the back surface of the wafer via the reference plane on the back surface side, and the back surface. The back side interference fringe image acquisition means for acquiring the second interference fringe image formed by the reflected light of the parallel light by the side light emitting means from the back surface of the wafer and the reference plane on the back surface side, and With removed from between the two reference planes, Reference plane interference fringe image acquisition means for acquiring a third interference fringe image formed by reflected light from the reference plane on the back surface side and the reference plane on the main surface side of the parallel light by the main surface side light emitting means, And a shape calculation unit that calculates the thickness distribution of the wafer based on the first to third interference fringe images.
【請求項2】 前記形状算出手段は,前記ウェハの厚さ
分布T(x,y)を,前記第1の干渉縞画像に基づき求
められる前記ウェハの主面と前記主面側の基準平面との
距離La(x,y)と,前記第2の干渉縞画像に基づき
求められる前記ウェハの裏面と前記裏面側の基準平面と
の距離Lb(x,y)と,前記第3の干渉縞画像により
求められる前記2つの基準平面の距離Lt(x,y)と
に基づいて,次式により算出してなる請求項1に記載の
形状測定装置。 T(x,y)=Lt(x,y)−La(x,y)−Lb
(x,y)
2. The shape calculating means calculates a thickness distribution T (x, y) of the wafer between a main surface of the wafer obtained based on the first interference fringe image and a reference plane on the main surface side. La (x, y), the distance Lb (x, y) between the back surface of the wafer and the reference plane on the back surface, which is obtained based on the second interference fringe image, and the third interference fringe image. The shape measuring device according to claim 1, which is calculated by the following equation based on the distance Lt (x, y) between the two reference planes obtained by T (x, y) = Lt (x, y) -La (x, y) -Lb
(X, y)
【請求項3】 前記ウェハの少なくとも1箇所の絶対厚
さを測定する絶対厚さ測定手段を具備し,前記形状算出
手段が,前記絶対厚さ測定手段による前記絶対厚さに基
づいて前記ウェハの絶対厚さ分布を算出してなる請求項
1又は2のいずれかに記載の形状測定装置。
3. An absolute thickness measuring means for measuring an absolute thickness of at least one portion of the wafer, wherein the shape calculating means calculates the absolute thickness of the wafer based on the absolute thickness measured by the absolute thickness measuring means. The shape measuring device according to claim 1, wherein an absolute thickness distribution is calculated.
JP2002136753A 2002-05-13 2002-05-13 Shape measuring device Expired - Fee Related JP3907518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136753A JP3907518B2 (en) 2002-05-13 2002-05-13 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136753A JP3907518B2 (en) 2002-05-13 2002-05-13 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2003329414A true JP2003329414A (en) 2003-11-19
JP3907518B2 JP3907518B2 (en) 2007-04-18

Family

ID=29698696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136753A Expired - Fee Related JP3907518B2 (en) 2002-05-13 2002-05-13 Shape measuring device

Country Status (1)

Country Link
JP (1) JP3907518B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283858B1 (en) 2009-05-21 2013-07-08 가부시키가이샤 니콘 Shape measuring device, observation device, and image processing method
JP2016105060A (en) * 2014-12-01 2016-06-09 国立研究開発法人産業技術総合研究所 Surface shape measuring device of processing substrate
CN108431545A (en) * 2015-12-22 2018-08-21 统半导体公司 For measuring, there are the device and method of height when thin layer
CN112857238A (en) * 2021-04-16 2021-05-28 中国工程物理研究院机械制造工艺研究所 Interferometric measurement method for large-caliber parallel flat crystal thickness distribution
WO2022172532A1 (en) * 2021-02-09 2022-08-18 浜松ホトニクス株式会社 Film thickness measuring device and film thickness measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283858B1 (en) 2009-05-21 2013-07-08 가부시키가이샤 니콘 Shape measuring device, observation device, and image processing method
JP2016105060A (en) * 2014-12-01 2016-06-09 国立研究開発法人産業技術総合研究所 Surface shape measuring device of processing substrate
CN108431545A (en) * 2015-12-22 2018-08-21 统半导体公司 For measuring, there are the device and method of height when thin layer
WO2022172532A1 (en) * 2021-02-09 2022-08-18 浜松ホトニクス株式会社 Film thickness measuring device and film thickness measuring method
CN112857238A (en) * 2021-04-16 2021-05-28 中国工程物理研究院机械制造工艺研究所 Interferometric measurement method for large-caliber parallel flat crystal thickness distribution

Also Published As

Publication number Publication date
JP3907518B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JP6712349B2 (en) Alignment system
US6707559B2 (en) Method of detecting posture of object and apparatus using the same
EP1460374B1 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
US7130056B2 (en) System and method of using a side-mounted interferometer to acquire position information
US7852489B2 (en) Method for measuring surface profile, and apparatus using the same
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
US7130059B2 (en) Common-path frequency-scanning interferometer
JP2004531739A (en) Apparatus and method for optically monitoring thickness
TW201335569A (en) Low coherence interferometry using encoder systems
CN105466359A (en) Precision surface type measuring device
EP2153167A1 (en) Apparatus for measurement of three-dimensional shape
JP4427632B2 (en) High-precision 3D shape measuring device
JP3907518B2 (en) Shape measuring device
US8537369B1 (en) Method and apparatus for measuring the shape and thickness variation of a wafer by two single-shot phase-shifting interferometers
JP4400985B2 (en) Shape measuring device
JP2017040583A (en) Measurement device, lithographic device and article production method
US7471398B2 (en) Method for measuring contour variations
Kim et al. Point-diffraction interferometer for 3D profile measurement of rough surfaces
JP2004184194A (en) Device and method for measuring shape
JP5376284B2 (en) Interferometry method and interferometer
WO2003087710A2 (en) Method and apparatus for stage mirror mapping
JP2006214823A (en) Surface configuration measuring instrument
JPH0719842A (en) Optical measuring apparatus for shape of surface
JP2003329429A (en) Shape measuring instrument
JP2003329422A (en) Shape measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees