JP2004184194A - Device and method for measuring shape - Google Patents

Device and method for measuring shape Download PDF

Info

Publication number
JP2004184194A
JP2004184194A JP2002350599A JP2002350599A JP2004184194A JP 2004184194 A JP2004184194 A JP 2004184194A JP 2002350599 A JP2002350599 A JP 2002350599A JP 2002350599 A JP2002350599 A JP 2002350599A JP 2004184194 A JP2004184194 A JP 2004184194A
Authority
JP
Japan
Prior art keywords
edge
shape
measurement
wafer
surface displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350599A
Other languages
Japanese (ja)
Inventor
Tsutomu Morimoto
勉 森本
Hiroyuki Takamatsu
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002350599A priority Critical patent/JP2004184194A/en
Publication of JP2004184194A publication Critical patent/JP2004184194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To remove an influence of surface roughness in the direction perpendicular to an end side of a measurement object in a predetermined region of the measurement object such as the shear drop shape in the vicinity of the end side of a wafer back face and accurately measure the shape. <P>SOLUTION: Two-dimensional surface displacement in the predetermined measurement region A of the measurement object is measured. The one-dimensional profile in the direction (the radial direction) perpendicular to the end side 2a is calculated by processing the measured surface displacement so as to be averaged in the direction parallel to the side end 2a of the measurement object. A width in the direction parallel to the end side 2a of the measurement region A is larger than a spatial period of unevenness due to the surface roughness. The two-dimensional surface displacement of the measurement region A is calculated based on an interference image detected by an interferometer on a surface of the measurement region A. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,被測定物の所定の測定領域の表面形状(平坦度等)を測定する形状測定装置であって,特に,半導体ウェーハ裏面の端辺付近の表面形状を測定するのに好適な形状測定装置及び形状測定方法に関するものである。
【0002】
【従来の技術】
一般に,半導体ウェーハ(以下,ウェーハという)においては,その中央部での平坦度は十分確保されるが,その端辺(エッジ)付近では,端辺に向かうに従って平坦度が悪化するいわゆるダレ(ロールオフ)が形成される傾向がある。
一方,近年,1枚のウェーハから得られる半導体チップの数を極力増やすため,ウェーハの端辺により近い部分まで高い平坦度が要求される。このため,ウェーハ全範囲のうち,端辺近辺の領域の表面形状(即ち,ダレ)を測定することが重要となる。
例えば,非特許文献1や特許文献1には,ウェーハのエッジ先端にブロック部材を当接させ,該ブロック部材のウェーハに当接する面の位置を基準とし,触針式の形状計をウェーハの端辺の直角方向(ウェーハの端辺が円弧状である場合にはその円弧の半径方向)に移動させながらウェーハの表面形状を測定することによってウェーハの端辺付近のロールオフ値(ダレ)を測定する技術が示されている。
ところで,ウェーハを取り扱うプロセスでは,ウェーハが載置されるステージによりウェーハの裏面を吸着するステッパーやウェーハをその裏面から研磨手段に押し付けるCMP(化学機械研磨)プロセス等においてウェーハの裏面形状がデバイスを作成するウェーハのおもて面の形状に影響を及ぼす。このように,ウェーハのダレ(ロールオフ)は裏面側でも問題となるため,デバイスの歩留まり向上のためにはウェーハの裏面側の端辺付近の形状(即ち,ダレ形状)を把握する必要がある。
【0003】
【特許文献1】
特開2000−146569号公報
【非特許文献1】
「M. Kimura et al., Jpn.J.Appl.Phys. Vol.38(1999)」
【0004】
【発明が解決しようとする課題】
しかしながら,一般に,ウェーハの裏面はポリッシュされていない粗面であるため,特許文献1及び非特許文献1に示されるような従来の方法でウェーハ裏面の表面変位を測定すると,粗面の凹凸によって測定値(表面変位)が大きく変化する。ところが,実際に把握したい裏面形状は,その表面粗さによる凹凸の空間周期よりも緩慢に形状が変化するダレ形状であり,従来の方法では正確なダレ形状を測定できないという問題点があった。
また,短周期成分と長周期成分とを有するデータから長周期成分のみを抽出する場合,一般に,FFTによるローパスフィルタ処理や荷重平均フィルタ処理の1つであるガウシアンフィルタリング処理等を行うことが考えられるが,FFTでは,入力波形に一般的に適用される窓関数の影響により,また,荷重平均フィルタの場合は被測定物の端部への適用が困難(例えば,2mm程度の移動平均では端部の1mm程度の範囲の計算ができない)なことから,これらフィルタリング処理によりダレ形状を抽出することは困難である。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,ウェーハ裏面の端辺付近のダレ形状のように被測定物の所定領域について被測定物の端辺に略直角の方向における表面粗さの影響を除去した形状を正確に測定することができる形状測定装置及び形状測定方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は,被測定物の所定の測定領域における前記被測定物の端辺に略直角の方向の表面形状を測定する形状測定装置において,前記測定領域の2次元の表面変位を測定する表面変位測定手段と,測定された前記表面変位について前記端辺に略平行な方向に所定の平均化処理を行うことにより前記端辺に略直角の方向の1次元プロフィール(即ち,1次元の表面変位分布)を算出する1次元プロフィール算出手段と,を具備してなることを特徴とする形状測定装置として構成されるものである。
これにより,前記測定領域における被測定物の端辺に略直角の方向の各位置について,前記表面変位が平均化処理された変位量が算出され,該変位量が前記端辺に略直角の方向の1次元プロフィールを表すことになる。この1次元プロフィールを構成する各変位量は,複数の前記表面変位が平均化処理されたものであるので,被測定物の表面粗さによる凹凸の影響が除去されている。しかも,その変位量は,被測定物の前記端辺に略平行な方向に平均化処理されたものであるので,前記端辺に略直角の方向に移動平均等の平均化処理を行う場合のように,前記端辺に略直角の方向における空間分解能は低下しない。従って,ウェーハ裏面の端辺付近のダレ形状のように被測定物の所定領域について被測定物の端辺に略直角の方向における表面粗さの影響を除去した形状を正確に測定することができる。
ここで,前記被測定物の端辺とは,前記被測定物の端部の一部をなす辺であり,直線状の端辺に限るものでなく,例えば円弧状の端辺等の曲線状のものも含まれる。また,前記端辺が曲線状である場合,前記端辺に略直角の方向とは,前記端辺の接線方向に対して略直角の方向のことをいうものとする。例えば,前記端辺が円弧状である場合,前記端辺の略直角の方向とは,その円弧の半径方向又はそれに近い方向を表す。
【0006】
また,前記平均化処理により被測定物の表面粗さの凹凸の影響を十分除去するためには,前記測定領域の前記端辺に略平行な方向の幅が,前記測定領域の表面粗さによる凹凸の空間周期よりも十分長いものであることが望ましい。
また,前記表面変位測定手段としては,例えば,前記測定領域表面における干渉像を検出する干渉計と,検出された前記干渉像に基づいて前記2次元の表面変位を算出する表面変位算出手段とを具備するものが考えられる。
これにより,光学的に精度の高い測定を短時間で行うことが可能となる。
【0007】
また,本発明は,前記形状測定装置に対応する形状測定方法として捉えてもよい。即ち,被測定物の所定の測定領域における前記被測定物の端辺に略直角の方向の表面形状を測定する形状測定方法において,前記測定領域の2次元の表面変位を測定する表面変位測定手順と,測定された前記表面変位について前記端辺に略平行な方向に所定の平均化処理を行うことにより前記端辺に略直角の方向の1次元プロフィールを算出する1次元プロフィール算出手順と,を有してなることを特徴とする形状測定方法である。
【0008】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る形状測定装置Xの概略構成を表す図,図2は本発明の実施の形態に係る形状測定装置Xで形状測定するウェーハの測定領域を設定するための校正用ウェーハがステージ上に載置された状態を表す図,図3は本発明の実施の形態に係る形状測定装置Xのステージ上にウェーハを載置した状態の平面及び側面を表す図,図4は本発明の実施の形態に係る形状測定装置Xによる形状測定と従来法による形状測定との各測定結果であるウェーハ端辺付近の一次元プロフィールを表すグラフ,図5は測定面の表面粗さを空間周期が0.1mm及び振幅が1μmの正弦波で表した場合における5mmの範囲の平均化処理を行った結果を表すグラフである。
【0009】
まず,図1を用いて,本発明の実施の形態に係る形状測定装置Xの構成について説明する。
本形状測定装置Xは,被測定物の一例であるウェーハ1の載置台であり該ウェーハ1を位置決めするためのピン18が設けられたステージ17と,該ステージ17上にその測定面1aを上にして載置された前記ウェーハ1の上方に設けられた斜入射干渉計10と,該斜入射干渉計10から得られる干渉像(干渉縞画像)を入力する演算器31とを具備している。ここで,前記ウェーハ1の測定面1aは,ポリッシュ研磨されていない粗面である裏面であるとする。
【0010】
前記斜入射干渉計10は,前記ウェーハ1に対して測定光12を出射する発光器11,その測定光12を前記ウェーハ1の測定面1aに対して斜め方向の平行ビームとするコリメータレンズ14,その平行ビーム12の一部を透過し,一部を反射する基準平面15aを有する三角プリズム15,前記ウェーハ1の測定面1aで反射された測定光が前記基準平面15a(前記三角プリズム15の一面)及びコリメータレンズ14’を経た光を受光するCCDカメラ等の受光器16,及び前記三角プリズム15を前記ウェーハ1の面に略垂直な方向に移動させるピエゾアクチュエータ19を備えている。このような構成により,前記基準平面15aでの反射光と,前記ウェーハ1の測定面1aでの反射光とには,前記基準平面15aと前記測定面1aとの距離に対応する光路差があるため,この光路差が,前記受光器16において,両反射光で形成される干渉縞として観測される。前記三角プリズム15は,前記基準平面15aが前記ウェーハ1の測定面1aに近接するよう(例えば,0.1mm程度の距離)前記ピアゾアクチュエータ19により位置決めされる。前記測定光12としては,例えば,HeNeレーザ(λ=633nm)や,半導体レーザ等のコヒーレント光が用いられる。また,前記三角プリズム15は,フィゾー干渉で用いられるようなウェッジプリズム等の参照板を用いてもかまわない。
【0011】
前記受光器16で得られる干渉縞画像は,画像入力手段を有するパーソナルコンピュータ等である前記演算器31に入力され,入力された干渉縞画像に基づいて前記ウェーハ1の測定面1aの表面形状(2次元の表面変位分布)が演算される。該演算は,前記演算器31に記憶された所定のプログラムが実行されることにより行われる。
ここで,前記三角プリズム15の前記基準平面15aは,前記ピアゾアクチュエータ19によって複数の位置に位置決めされ,それぞれの位置での干渉縞画像が輝度データとして前記演算器31に取り込まれる。前記基準平面15aの位置決めは,前記測定光12の前記ウェーハ1の測定面1aへの入射角θ(不図示)を考慮した位置(前記測定面1aとの距離)に位置決めされる。例えば,前記基準平面15aと前記測定面1aとの距離を,所定の基準距離を0として,0,λ/8×1/conθ,2λ/8×1/cosθ,3λ/8×1/cosθ(λ=λ’/cosψ (λ’は前記測定光12の波長,ψは前記測定光12の前記ウェーハ1への入射角))の各位置に移動させ,それぞれの位置での干渉縞画像を輝度データとして前記演算器31に取り込めば,それぞれ位相が0°,90°,180°,270°に変化した干渉縞画像が得られる。それぞれの位置での干渉縞画像の座標(x,y)における画像データ(輝度)をI(x,y),I90(x,y),I180(x,y),I270(x,y)とすると,干渉縞画像の位相φ(x,y)は,次の(1)式で求められる。
φ(x,y)=arctan(I−I180)/(I90−I270) …(1)
このようにして求められた位相φ(x,y)に周知のアンラップ処理を施し,アンラップ処理後の位相をφ’(x,y)とすると,例えば次の(2)式により,前記測定面1aの表面変位La(x,y)(表面形状)を求めることができる。
La(x,y)=(φ’(x,y)/2π)×(λ/2) …(2)
このような処理(演算)を前記演算期31で行うことにより,前記基準平面15aでカバーされる領域の一部又は全部について前記測定面1aと前記基準平面15aとの距離の分布,即ち,前記測定面1aの2次元の表面変位を算出できる。もちろん,表面変位の算出方法としては,周知の他の位相シフト法を用いてもかまわない。ここで,前記干渉計10及び前記演算器31が,前記表面変位測定手段の一例である。
【0012】
次に,図2を用いて,前記演算器31による前記ウェーハ1の表面形状(表面変位)の測定領域について説明する。
本形状測定装置Xでは,被測定物である前記ウェーハ1を測定する前に,予め,前記ウェーハ1と平面形状が略等しい所定の校正用ウェーハを用いて測定領域を設定する。
図2は,前記ウェーハ1の測定領域を設定するための前記校正用ウェーハ2が前記ステージ17上に載置された状態を表す図である。図2に示すように,円盤状の前記校正用ウェーハ2の表面には,その中心Oからその端辺2a付近まで2本の直線▲3▼,▲4▼がけがかれている(以下,この直線をケガキ線▲3▼,▲4▼という)。該ケガキ線▲3▼,▲4▼は所定の角度(例えば2°)をなしている。さらに,前記端辺2a付近には,円弧状の前記端辺2aに平行な円弧▲1▼,▲2▼がそれぞれ前記ケガキ線▲3▼,▲4▼の両方に交差するようけがかれている(以下,この円弧をケガキ線▲1▼,▲2▼という)。例えば,前記ケガキ線▲1▼は前記中心Oから半径r=140mmの位置に,前記ケガキ線▲2▼は半径r=149mmの位置にそれぞれけがかれている。これらケガキ線▲1▼〜▲4▼で囲まれる領域を測定領域Aとする。
このような校正用ウェーハ2をその端部が2つの前記ピン18に当接するとともに,前記測定領域Aが前記三角プリズム15の前記基準平面15aの範囲内(破線枠内)に入るように配置した状態で,前記受光器16及び前記演算器31により画像を取り込むことにより,前記演算器31によって前記ケガキ線▲1▼〜▲4▼を検出することができる。さらに,検出された前記ケガキ線▲1▼〜▲4▼の位置(座標)から,前記測定領域Aと,前記ケガキ線▲1▼,▲2▼の方向,即ち,円弧の中心及び半径とが求められる。このようにして求められる前記ケガキ線▲1▼,▲2▼の方向は,前記校正用ウェーハ2の前記端辺2aと平行な方向(以下,端辺平行方向という)である。該端辺平行方向は,前記校正用ウェーハ2が円盤状であるのでその周方向(に平行な方向)である。従って,図4に示すように,前記校正用ウェーハ2をこれと同等の平面形状を有する被測定物である前記ウェーハ1に置き換えて同様に配置した場合には,前記ケガキ線▲1▼,▲2▼により求めた前記端辺平行方向は,前記ウェーハ1の前記三角プリズム15(の前記基準平面15a)でカバーされる領域における端辺1bと略平行な方向(周方向に平行な方向)であるといえる。
【0013】
次に,前記演算器31による前記測定領域Aの表面形状の測定処理について説明する。
前記校正用ウェーハ2を用いて前記測定領域A及び前記端辺平行方向を予め求めた後,まず,図4に示すように被測定物である前記ウェーハ1をその端部が2つの前記ピン18に当接するように前記ステージ17上に載置した状態で,干渉縞画像(干渉像)が取り込まれる。
次に,所定のアンラップ処理等により,前記測定領域Aにおける2次元の表面変位が測定される(前記表面変位測定手段の処理及び前記表面変位測定手順の一例)。
さらに,測定された前記測定領域Aの表面変位のデータについて,前記端辺平行方向に積算して該積算を行ったデータ数で割るいわゆる単純平均を求める(前記1次元プロフィール算出手段の処理及び前記1次元プロフィール算出手順の一例)。このようにして求められた前記表面変位データの単純平均は,前記端辺平行方向に直角な方向(即ち,前記ウェーハ1の端辺1bの略直角方向)の1次元プロフィール(1次元の表面変位分布)を表すことになる。
ここで,前記単純平均を求める際に,前記端辺平行方向に対応する角度による座標系と前記受光器16(即ち,カメラ)のXY座標系(画素の座標系)との変換が必要となり,該変換によって前記受光器16の画素と一致しない座標のデータが必要となる場合も生じるが,そのような場合は,一般的な補間法を用いて補間したデータを用いるようにすればよい。
【0014】
図4(a),(b)は,前記端辺平行方向(周方向)の平均化処理を行わずに単純に前記ウェーハ1の前記測定領域Aにおいて,半径方向(前記端辺平行方向に直角の方向)に表面変位(形状)を測定した1次元プロフィールの一例を表すグラフである。ここで,半径方向の位置は,前記ウェーハ1の端辺(エッジ)からの距離で表す。図4(a),(b)に示されるように,前記ウェーハ1の裏面(前記測定面1a)は粗面であるため,粗面の凹凸によって測定値(表面変位)が大きく変化している。このような表面変位データに基づいてROA(Roll−offAmount)を評価しても,表面粗さによる凹凸の空間周期よりも緩慢な形状変化であるダレ形状を表すものではないため,そのROAは前記ウェーハ1の加工制御に用いることができない。
【0015】
一方,図4(c),(d)は,図4(a),(b)と同じ前記ウェーハ1の前記測定領域Aについて,本形状測定装置Xにより測定した半径方向(前記端辺平行方向に直角の方向)の1次元プロフィールを表すグラフである。
図4(c),(d)に示されるように,本形状測定装置Xで計測された1次元プロフィールを構成する各変位量(表面変位の平均値)は,前記端辺平行方向における複数の表面変位データが平均化処理されたものであるので,前記測定面1aの表面粗さによる凹凸の影響が除去されている。しかも,その変位量は,前記ウェーハ1の端辺1bに略平行な方向に平均化処理されたものであるので,前記端辺1bに略直角の方向に移動平均等の平均化処理を行う場合のように,前記端辺1bに略直角の方向(半径方向)における空間分解能は低下しない。従って,前記ウェーハ1b裏面の端辺付近のダレ形状を正確に測定することができる。このような変位量を用いてROAを求めれば,そのROAは,前記ウェーハ1の端辺付近(端部付近)の加工制御に用いることが可能となる。
【0016】
また,図3に示した例では,前記測定領域Aの前記端辺平行方向の幅は,前記ウェーハ1の最も内側(前記ケガキ線▲1▼の位置)で約4.9mm,最も外側(前記ケガキ線▲2▼の位置)で約5.2mmである。ここで,5mmの範囲を平均化処理した場合,測定データの空間周期が5mm程度以下である成分を減衰するローパスフィルタとして作用する。前記ウェーハ1では,前記測定面1aの表面粗さによる凹凸の空間周期が0.1mm〜0.05mm程度であることを考慮すると,5mm程度の範囲について平均化処理を行うことにより,前記測定面1aの表面粗さによる前記凹凸の影響を十分抑える(遮断する)ことができる。
例えば,表面粗さを空間周期λ,振幅Bの正弦波(平均化処理を行う方向の座標をxとする)として表すと,次の(3)式で表される。
【数1】

Figure 2004184194
この周期の表面粗さを有する前記測定面1aの測定データを,5mmの範囲(区間)で平均化処理した結果は,次の(4)式で表される。
【数2】
Figure 2004184194
この(4)式を,B=1μm,λ=0.1mm近郷でグラフ化したものが図5である。図5に示されるように,平均化処理を行うことによって前記測定面1aの表面粗さ(振幅B=1μm)の影響(変動)を約0.003倍以下と十分小さく抑えられることがわかる。従って,この測定領域Aの前記端辺平行方向の幅は前記ウェーハ1のダレ形状測定としては十分な長さである。
また,前記ケガキ線▲3▼,▲4▼を平行な線として前記測定領域Aの前記端辺平行方向の幅を等幅とすること等,前記測定領域Aの形状は他の形状であってもかまわない。
【0017】
本形状測定装置Xでは,図4(c),(d)に示されるような1次元プロフィールが前記演算器31の記憶部に記憶されるとともに,CRT等の表示装置に表示される。
なお,本実施の形態では,前記表面変位のデータを前記端辺平行方向に単純平均する例を示したが,これに限るものでなく,例えば,メディアンや中央値,或いはガウシアンやダブルガウシアンのような重み付け平均等の他の平均化処理を行うものであってもよい。特に,ガウシアンやダブルガウシアンによるフィルタリングは,前述した単純平均よりも,より高周波成分の減衰化特性に優れるという特徴を有しているため好適である。
また,2次元の表面変位の測定は,斜入射干渉計を用いることに限らず,フィゾー干渉計やマイケルソン干渉計を用いること等,他の測定装置及び方法を用いるものであってもかまわない。
【0018】
【発明の効果】
以上説明したように,本発明によれば,被測定物の所定の測定領域における端辺に略直角の方向の各位置について,表面変位が平均化処理された変位量が算出され,該変位量が前記端辺に略直角の方向の1次元プロフィールを表すことになるので,この1次元プロフィールにより表される形状は,測定領域の表面粗さによる凹凸の影響が除去されている。しかも,その変位量は,被測定物の前記端辺に略平行な方向に平均化処理されたものであるので,前記端辺に略直角の方向における空間分解能は低下しない。従って,ウェーハ裏面の端辺付近のダレ形状等の表面粗さの影響を除去した形状を正確に測定することができる。
また,測定領域の2次元の表面変位を干渉計による干渉像から算出するよう構成することにより,光学的に精度の高い測定を短時間で行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る形状測定装置Xの概略構成を表す図。
【図2】本発明の実施の形態に係る形状測定装置Xで形状測定するウェーハの測定領域を設定するための校正用ウェーハがステージ上に載置された状態を表す図。
【図3】本発明の実施の形態に係る形状測定装置Xのステージ上にウェーハを載置した状態の平面及び側面を表す図。
【図4】本発明の実施の形態に係る形状測定装置Xによる形状測定と従来法による形状測定との各測定結果であるウェーハ端辺付近の一次元プロフィールを表すグラフ。
【図5】測定面の表面粗さを空間周期が0.1mm及び振幅が1μmの正弦波で表した場合における5mmの範囲の平均化処理を行った結果を表すグラフ。
【符号の説明】
1…ウェーハ(被測定物)
1a…測定面(粗面)
1b…ウェーハの端辺
2…校正用ウェーハ
2a…校正用ウェーハの端辺
10…斜入射干渉計
11…発光器
12…測定光
14,14’…コリメータレンズ
15…三角プリズム
15a…基準平面
16…受光器
17…ステージ
18…ピン
19…ピエゾアクチュエータ
31…演算器(1次プロフィール算出手段)
A…測定領域[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shape measuring apparatus for measuring a surface shape (flatness or the like) of a predetermined measurement area of a device under test, and particularly to a shape suitable for measuring a surface shape near an edge of a back surface of a semiconductor wafer. The present invention relates to a measuring device and a shape measuring method.
[0002]
[Prior art]
Generally, in a semiconductor wafer (hereinafter, referred to as a wafer), the flatness at the center is sufficiently ensured, but near the edge, the so-called sagging (roll) in which the flatness deteriorates toward the edge. Off) tends to form.
On the other hand, in recent years, in order to increase the number of semiconductor chips obtained from one wafer as much as possible, high flatness is required to a portion closer to an edge of the wafer. For this reason, it is important to measure the surface shape (that is, sag) of the region near the edge in the entire wafer range.
For example, in Non-Patent Document 1 and Patent Document 1, a block member is brought into contact with the tip of the edge of a wafer, and a stylus-type shape meter is used as a reference for the position of the surface of the block member that comes into contact with the wafer. The roll-off value (sag) near the edge of the wafer is measured by measuring the surface shape of the wafer while moving in the direction perpendicular to the side (in the case where the edge of the wafer is an arc, in the radial direction of the arc). The technique to do is shown.
By the way, in the process of handling wafers, the shape of the backside of the wafer is created by a stepper that attracts the backside of the wafer by the stage on which the wafer is mounted, or a CMP (chemical mechanical polishing) process that presses the wafer against the polishing means from the backside. Affects the shape of the front surface of the wafer. As described above, since the sagging (roll-off) of the wafer is also a problem on the back side, it is necessary to grasp the shape near the back side of the wafer (ie, sagging shape) in order to improve the yield of the device. .
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-146569 [Non-Patent Document 1]
"M. Kimura et al., Jpn. J. Appl. Phys. Vol. 38 (1999)".
[0004]
[Problems to be solved by the invention]
However, since the back surface of the wafer is generally a rough surface that has not been polished, when the surface displacement of the back surface of the wafer is measured by a conventional method as shown in Patent Literature 1 and Non-Patent Literature 1, the measurement is based on the roughness of the rough surface. The value (surface displacement) changes greatly. However, the shape of the back surface that one actually wants to grasp is a sag shape in which the shape changes more slowly than the spatial period of the irregularities due to the surface roughness, and there has been a problem that the conventional sag shape cannot be measured accurately.
When only a long-period component is extracted from data having a short-period component and a long-period component, it is generally considered that a low-pass filter process by FFT or a Gaussian filtering process which is one of the weighted average filter processes is performed. However, in FFT, it is difficult to apply to the end of the DUT due to the influence of the window function generally applied to the input waveform (for example, the moving average of about 2 mm Cannot be calculated in the range of about 1 mm), it is difficult to extract the sag shape by these filtering processes.
Accordingly, the present invention has been made in view of the above circumstances, and an object thereof is to substantially match a predetermined region of an object to be measured with an edge of the object to be measured such as a sagging shape near the edge of the back surface of the wafer. It is an object of the present invention to provide a shape measuring device and a shape measuring method capable of accurately measuring a shape in which the influence of surface roughness in a right angle direction is removed.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a shape measuring apparatus for measuring a surface shape in a direction substantially perpendicular to an edge of the measured object in a predetermined measuring region of the measured object. A one-dimensional profile in a direction substantially perpendicular to the edge by performing a predetermined averaging process on the measured surface displacement in a direction substantially parallel to the edge; , A one-dimensional profile calculation means for calculating a one-dimensional surface displacement distribution).
Thereby, for each position in the direction substantially perpendicular to the edge of the measured object in the measurement area, the displacement amount obtained by averaging the surface displacement is calculated, and the displacement amount is calculated in the direction substantially perpendicular to the edge. Will be represented. Since each of the displacements constituting the one-dimensional profile is obtained by averaging a plurality of the surface displacements, the influence of the unevenness due to the surface roughness of the measured object is eliminated. In addition, since the displacement amount is averaged in a direction substantially parallel to the end side of the object to be measured, it is necessary to perform averaging processing such as moving average in a direction substantially perpendicular to the end side. As described above, the spatial resolution in the direction substantially perpendicular to the edge does not decrease. Therefore, it is possible to accurately measure a shape such as a sagging shape near the edge of the back surface of the wafer, in which the influence of surface roughness in a direction substantially perpendicular to the edge of the object is removed for a predetermined region of the object. .
Here, the edge of the object to be measured is a side that forms a part of the edge of the object to be measured, and is not limited to a linear edge, but may be a curved edge such as an arc edge. Also included. Further, when the edge is curved, a direction substantially perpendicular to the edge means a direction substantially perpendicular to a tangent direction of the edge. For example, when the edge is arc-shaped, the direction substantially perpendicular to the edge indicates the radial direction of the arc or a direction close thereto.
[0006]
In order to sufficiently remove the influence of the unevenness of the surface roughness of the object to be measured by the averaging process, the width of the measurement region in a direction substantially parallel to the edge is determined by the surface roughness of the measurement region. It is desirable that the length be sufficiently longer than the spatial period of the irregularities.
The surface displacement measuring means includes, for example, an interferometer for detecting an interference image on the surface of the measurement area, and a surface displacement calculating means for calculating the two-dimensional surface displacement based on the detected interference image. What is provided is conceivable.
This makes it possible to perform optically accurate measurement in a short time.
[0007]
Further, the present invention may be considered as a shape measuring method corresponding to the shape measuring device. That is, in a shape measuring method for measuring a surface shape in a direction substantially perpendicular to an edge of the measured object in a predetermined measuring region of the measured object, a surface displacement measuring step of measuring a two-dimensional surface displacement of the measured region is performed. And a one-dimensional profile calculation procedure of calculating a one-dimensional profile in a direction substantially perpendicular to the edge by performing a predetermined averaging process on the measured surface displacement in a direction substantially parallel to the edge. This is a shape measuring method characterized by having a shape.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a view showing a schematic configuration of a shape measuring apparatus X according to an embodiment of the present invention, and FIG. FIG. 3 is a view showing a state in which a calibration wafer is mounted on a stage, and FIG. 3 is a plan view and a side view showing a state in which the wafer is mounted on a stage of the shape measuring apparatus X according to the embodiment of the present invention. FIGS. 4 and 5 are graphs showing one-dimensional profiles near the edge of the wafer, which are the measurement results of the shape measurement by the shape measuring apparatus X according to the embodiment of the present invention and the shape measurement by the conventional method. FIG. 5 is a graph showing a result of performing an averaging process in a range of 5 mm when the surface roughness is represented by a sine wave having a spatial period of 0.1 mm and an amplitude of 1 μm.
[0009]
First, the configuration of a shape measuring apparatus X according to an embodiment of the present invention will be described with reference to FIG.
The shape measuring apparatus X is a stage 17 on which a pin 18 for positioning the wafer 1 is provided, which is a mounting table for the wafer 1 which is an example of an object to be measured. An oblique incidence interferometer 10 provided above the wafer 1 placed in the above-described manner, and a calculator 31 for inputting an interference image (interference fringe image) obtained from the oblique incidence interferometer 10. . Here, it is assumed that the measurement surface 1a of the wafer 1 is a rough rear surface that has not been polished.
[0010]
The oblique incidence interferometer 10 includes a light emitter 11 that emits measurement light 12 to the wafer 1, a collimator lens 14 that converts the measurement light 12 into a parallel beam oblique to the measurement surface 1 a of the wafer 1, A triangular prism 15 having a reference plane 15a that transmits a part of the parallel beam 12 and reflects a part thereof, and the measurement light reflected on the measurement surface 1a of the wafer 1 is reflected by the reference plane 15a (one surface of the triangular prism 15). ) And a light receiver 16 such as a CCD camera for receiving light passing through the collimator lens 14 ′, and a piezo actuator 19 for moving the triangular prism 15 in a direction substantially perpendicular to the surface of the wafer 1. With such a configuration, the reflected light on the reference plane 15a and the reflected light on the measurement surface 1a of the wafer 1 have an optical path difference corresponding to the distance between the reference plane 15a and the measurement surface 1a. Therefore, this optical path difference is observed in the light receiver 16 as an interference fringe formed by both reflected lights. The triangular prism 15 is positioned by the Piazo actuator 19 so that the reference plane 15a is close to the measurement surface 1a of the wafer 1 (for example, a distance of about 0.1 mm). As the measurement light 12, for example, a coherent light such as a HeNe laser (λ = 633 nm) or a semiconductor laser is used. Further, the triangular prism 15 may use a reference plate such as a wedge prism used for Fizeau interference.
[0011]
The interference fringe image obtained by the light receiver 16 is input to the computing unit 31 which is a personal computer or the like having an image input unit, and the surface shape of the measurement surface 1a of the wafer 1 is determined based on the input interference fringe image. (Two-dimensional surface displacement distribution) is calculated. The calculation is performed by executing a predetermined program stored in the calculator 31.
Here, the reference plane 15a of the triangular prism 15 is positioned at a plurality of positions by the Piazo actuator 19, and the interference fringe images at the respective positions are taken into the arithmetic unit 31 as luminance data. The reference plane 15a is positioned at a position (distance from the measurement surface 1a) in consideration of an incident angle θ (not shown) of the measurement light 12 to the measurement surface 1a of the wafer 1. For example, assuming that the distance between the reference plane 15a and the measurement surface 1a is a predetermined reference distance of 0, 0, λ / 8 × 1 / con θ, 2λ / 8 × 1 / cos θ, 3λ / 8 × 1 / cos θ ( λ = λ ′ / cosψ (λ ′ is the wavelength of the measurement light 12, ψ is the angle of incidence of the measurement light 12 on the wafer 1)), and the interference fringe image at each position is illuminated. If the data is taken into the computing unit 31, interference fringe images whose phases have changed to 0 °, 90 °, 180 °, and 270 ° can be obtained. The image data (luminance) at the coordinates (x, y) of the interference fringe image at each position is represented by I 0 (x, y), I 90 (x, y), I 180 (x, y), I 270 (x , Y), the phase φ (x, y) of the interference fringe image is obtained by the following equation (1).
φ (x, y) = arctan (I 0 −I 180 ) / (I 90 −I 270 ) (1)
If the phase φ (x, y) thus obtained is subjected to a well-known unwrapping process and the phase after the unwrapping process is assumed to be φ ′ (x, y), for example, the measurement surface is obtained by the following equation (2). The surface displacement La (x, y) (surface shape) of 1a can be obtained.
La (x, y) = (φ ′ (x, y) / 2π) × (λ / 2) (2)
By performing such processing (calculation) in the calculation period 31, the distribution of the distance between the measurement plane 1a and the reference plane 15a for a part or all of the area covered by the reference plane 15a, A two-dimensional surface displacement of the measurement surface 1a can be calculated. Of course, any other well-known phase shift method may be used for calculating the surface displacement. Here, the interferometer 10 and the calculator 31 are an example of the surface displacement measuring means.
[0012]
Next, the measurement area of the surface shape (surface displacement) of the wafer 1 by the arithmetic unit 31 will be described with reference to FIG.
In the present shape measuring apparatus X, before measuring the wafer 1 as an object to be measured, a measurement area is set in advance by using a predetermined calibration wafer having a plane shape substantially equal to the wafer 1.
FIG. 2 is a diagram illustrating a state in which the calibration wafer 2 for setting a measurement area of the wafer 1 is mounted on the stage 17. As shown in FIG. 2, on the surface of the disk-shaped calibration wafer 2, two straight lines (3) and (4) are drawn from the center O to the vicinity of the end side 2a (hereinafter, this straight line is referred to as a straight line). Straight lines are called marking lines (3) and (4)). The marking lines (3) and (4) form a predetermined angle (for example, 2 °). Further, in the vicinity of the end side 2a, arcs (1) and (2), which are parallel to the end side 2a, are marked so as to intersect both the marking lines (3) and (4), respectively. (Hereinafter, these arcs are referred to as marking lines (1) and (2)). For example, the marking line (1) is scribed at a radius r = 140 mm from the center O, and the marking line (2) is scribed at a radius r = 149 mm. The area surrounded by the marking lines (1) to (4) is referred to as a measurement area A.
Such a calibration wafer 2 is arranged such that its ends abut against the two pins 18 and that the measurement area A falls within the range of the reference plane 15a of the triangular prism 15 (within a broken-line frame). In this state, the image is captured by the light receiving device 16 and the computing unit 31, whereby the marking lines (1) to (4) can be detected by the computing unit 31. Further, from the detected positions (coordinates) of the marking lines (1) to (4), the measurement area A and the directions of the marking lines (1) and (2), that is, the center and radius of the arc, are determined. Desired. The directions of the marking lines {circle around (1)} and {circle around (2)} thus determined are directions parallel to the edge 2a of the calibration wafer 2 (hereinafter, referred to as edge parallel directions). The edge parallel direction is a circumferential direction of the calibration wafer 2 because the wafer 2 has a disk shape. Therefore, as shown in FIG. 4, when the calibration wafer 2 is replaced with the wafer 1 which is an object to be measured having an equivalent planar shape and arranged similarly, the marking lines (1), (1) The direction parallel to the edge determined in 2 ▼ is a direction substantially parallel to the edge 1b (direction parallel to the circumferential direction) in a region of the wafer 1 covered by the triangular prism 15 (the reference plane 15a). It can be said that there is.
[0013]
Next, measurement processing of the surface shape of the measurement area A by the arithmetic unit 31 will be described.
After the measurement area A and the edge side parallel direction are obtained in advance by using the calibration wafer 2, first, as shown in FIG. An interference fringe image (interference image) is taken in a state of being placed on the stage 17 so as to abut on the stage 17.
Next, a two-dimensional surface displacement in the measurement area A is measured by a predetermined unwrapping process or the like (an example of the process of the surface displacement measuring means and the surface displacement measuring procedure).
Further, a so-called simple average is obtained by integrating the measured surface displacement data of the measurement area A in the direction parallel to the edge and dividing by the number of data obtained by the integration (processing of the one-dimensional profile calculation means and the Example of one-dimensional profile calculation procedure). The simple average of the surface displacement data obtained in this way is a one-dimensional profile (one-dimensional surface displacement) in a direction perpendicular to the direction parallel to the edge (ie, substantially perpendicular to the edge 1b of the wafer 1). Distribution).
Here, when calculating the simple average, it is necessary to convert between a coordinate system based on an angle corresponding to the direction parallel to the edge and the XY coordinate system (pixel coordinate system) of the light receiver 16 (ie, camera). In some cases, data of coordinates that do not match the pixels of the light receiver 16 may be required by the conversion, but in such a case, data interpolated using a general interpolation method may be used.
[0014]
FIGS. 4A and 4B show that the averaging process is not performed in the edge parallel direction (circumferential direction), but simply in the measurement area A of the wafer 1 in the radial direction (perpendicular to the edge parallel direction). 3 is a graph showing an example of a one-dimensional profile obtained by measuring a surface displacement (shape) in a direction (a direction). Here, the position in the radial direction is represented by a distance from an edge of the wafer 1. As shown in FIGS. 4A and 4B, since the back surface of the wafer 1 (the measurement surface 1a) is a rough surface, the measured value (surface displacement) greatly changes due to the unevenness of the rough surface. . Even if ROA (Roll-offAmount) is evaluated based on such surface displacement data, it does not represent a sagging shape, which is a shape change that is slower than the spatial period of unevenness due to surface roughness. It cannot be used for processing control of the wafer 1.
[0015]
On the other hand, FIGS. 4 (c) and 4 (d) show the same measurement area A of the wafer 1 as in FIGS. 4 (a) and 4 (b) in the radial direction (the edge parallel direction) measured by the shape measuring apparatus X. 3 is a graph showing a one-dimensional profile (in a direction perpendicular to FIG. 3).
As shown in FIGS. 4 (c) and 4 (d), each displacement amount (average value of surface displacement) constituting the one-dimensional profile measured by the present shape measuring apparatus X is a plurality of displacements in the direction parallel to the edge. Since the surface displacement data has been subjected to the averaging process, the influence of unevenness due to the surface roughness of the measurement surface 1a has been removed. In addition, since the displacement amount has been averaged in a direction substantially parallel to the edge 1b of the wafer 1, when the averaging process such as moving average is performed in a direction substantially perpendicular to the edge 1b. As described above, the spatial resolution in the direction (radial direction) substantially perpendicular to the end side 1b does not decrease. Therefore, it is possible to accurately measure the sag shape near the edge of the back surface of the wafer 1b. If the ROA is obtained using such a displacement, the ROA can be used for processing control near the edge of the wafer 1 (near the edge).
[0016]
In the example shown in FIG. 3, the width of the measurement area A in the direction parallel to the edge is about 4.9 mm on the innermost side (the position of the marking line (1)) of the wafer 1, and the outermost side (the position on the marking line (1)). It is about 5.2 mm at the marking line (2). Here, when the range of 5 mm is averaged, it acts as a low-pass filter that attenuates components whose spatial period of the measurement data is about 5 mm or less. In consideration of the fact that the spatial period of the irregularities due to the surface roughness of the measurement surface 1a is about 0.1 mm to 0.05 mm, the wafer 1 is subjected to an averaging process over a range of about 5 mm, thereby obtaining the measurement surface 1a. The influence of the irregularities due to the surface roughness 1a can be sufficiently suppressed (cut off).
For example, when the surface roughness is expressed as a sine wave having a spatial period λ n and an amplitude B (coordinate in the direction in which the averaging process is performed is x), it is expressed by the following equation (3).
(Equation 1)
Figure 2004184194
The result of averaging the measurement data of the measurement surface 1a having this period of surface roughness in a range (section) of 5 mm is expressed by the following equation (4).
(Equation 2)
Figure 2004184194
FIG. 5 is a graph of the equation (4) when B = 1 μm and λ n = 0.1 mm. As shown in FIG. 5, it can be seen that by performing the averaging process, the influence (fluctuation) of the surface roughness (amplitude B = 1 μm) of the measurement surface 1a can be sufficiently suppressed to about 0.003 times or less. Therefore, the width of the measurement region A in the direction parallel to the end side is a sufficient length for measuring the sag shape of the wafer 1.
The shape of the measurement area A is another shape, such as making the marking lines (3) and (4) parallel lines and making the width of the measurement area A in the direction parallel to the end sides equal. It doesn't matter.
[0017]
In the present shape measuring apparatus X, a one-dimensional profile as shown in FIGS. 4C and 4D is stored in the storage unit of the arithmetic unit 31 and displayed on a display device such as a CRT.
In this embodiment, an example is shown in which the data of the surface displacement is simply averaged in the direction parallel to the edge. However, the present invention is not limited to this. For example, median, median, or Gaussian or double Gaussian is used. Other averaging processing such as weighted averaging may be performed. In particular, filtering by Gaussian or double Gaussian is preferable because it has a characteristic of more excellent high frequency component attenuation characteristics than the simple averaging described above.
In addition, the measurement of the two-dimensional surface displacement is not limited to the use of the grazing incidence interferometer, and may use other measurement devices and methods such as the use of a Fizeau interferometer or a Michelson interferometer. .
[0018]
【The invention's effect】
As described above, according to the present invention, for each position in a direction substantially perpendicular to an edge in a predetermined measurement region of a measured object, a displacement amount obtained by averaging the surface displacement is calculated, and the displacement amount is calculated. Represents a one-dimensional profile in a direction substantially perpendicular to the edge, so that the shape represented by this one-dimensional profile is free from the influence of irregularities due to the surface roughness of the measurement area. In addition, since the displacement is averaged in a direction substantially parallel to the edge of the measured object, the spatial resolution in a direction substantially perpendicular to the edge is not reduced. Therefore, it is possible to accurately measure a shape in which the influence of surface roughness such as a sagging shape near the edge of the back surface of the wafer is removed.
In addition, the configuration in which the two-dimensional surface displacement of the measurement area is calculated from the interference image by the interferometer enables optically accurate measurement to be performed in a short time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a shape measuring apparatus X according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a state in which a calibration wafer for setting a measurement area of a wafer to be measured in shape by the shape measuring apparatus X according to the embodiment of the present invention is mounted on a stage.
FIG. 3 is a diagram illustrating a plane and a side surface in a state where a wafer is mounted on a stage of the shape measuring apparatus X according to the embodiment of the present invention.
FIG. 4 is a graph showing a one-dimensional profile near a wafer edge which is a result of each of the shape measurement by the shape measuring apparatus X according to the embodiment of the present invention and the shape measurement by the conventional method.
FIG. 5 is a graph showing a result of performing averaging processing in a range of 5 mm when the surface roughness of a measurement surface is represented by a sine wave having a spatial period of 0.1 mm and an amplitude of 1 μm.
[Explanation of symbols]
1 ... Wafer (object to be measured)
1a: Measurement surface (rough surface)
1b Wafer edge 2 Calibration wafer 2a Calibration wafer edge 10 Oblique incidence interferometer 11 Light emitter 12 Measurement light 14, 14 'Collimator lens 15 Triangular prism 15a Reference plane 16 Receiver 17 Stage 18 Pin 19 Piezo actuator 31 Calculator (primary profile calculating means)
A: Measurement area

Claims (4)

被測定物の所定の測定領域における前記被測定物の端辺に略直角の方向の表面形状を測定する形状測定装置において,
前記測定領域の2次元の表面変位を測定する表面変位測定手段と,
測定された前記表面変位について前記端辺に略平行な方向に所定の平均化処理を行うことにより前記端辺に略直角の方向の1次元プロフィールを算出する1次元プロフィール算出手段と,
を具備してなることを特徴とする形状測定装置。
In a shape measuring apparatus for measuring a surface shape in a direction substantially perpendicular to an edge of the measured object in a predetermined measurement region of the measured object,
Surface displacement measuring means for measuring a two-dimensional surface displacement of the measurement area;
One-dimensional profile calculating means for calculating a one-dimensional profile in a direction substantially perpendicular to the edge by performing a predetermined averaging process on the measured surface displacement in a direction substantially parallel to the edge;
A shape measuring device characterized by comprising:
前記測定領域の前記端辺に略平行な方向の幅が,前記測定領域の表面粗さによる凹凸の空間周期よりも十分長いものである請求項1に記載の形状測定装置。2. The shape measuring apparatus according to claim 1, wherein a width of the measurement area in a direction substantially parallel to the end side is sufficiently longer than a spatial period of unevenness due to surface roughness of the measurement area. 前記表面変位測定手段が,前記測定領域表面における干渉像を検出する干渉計と,検出された前記干渉像に基づいて前記2次元の表面変位を算出する表面変位算出手段とを具備してなる請求項1又は2のいずれかに記載の形状測定装置。The surface displacement measuring means comprises: an interferometer for detecting an interference image on the surface of the measurement area; and a surface displacement calculating means for calculating the two-dimensional surface displacement based on the detected interference image. Item 3. The shape measuring device according to any one of Items 1 and 2. 被測定物の所定の測定領域における前記被測定物の端辺に略直角の方向の表面形状を測定する形状測定方法において,
前記測定領域の2次元の表面変位を測定する表面変位測定手順と,
測定された前記表面変位について前記端辺に略平行な方向に所定の平均化処理を行うことにより前記端辺に略直角の方向の1次元プロフィールを算出する1次元プロフィール算出手順と,
を有してなることを特徴とする形状測定方法。
In a shape measuring method for measuring a surface shape in a direction substantially perpendicular to an edge of the measured object in a predetermined measurement region of the measured object,
A surface displacement measurement procedure for measuring a two-dimensional surface displacement of the measurement area;
A one-dimensional profile calculating step of calculating a one-dimensional profile in a direction substantially perpendicular to the edge by performing a predetermined averaging process on the measured surface displacement in a direction substantially parallel to the edge;
A shape measuring method characterized by comprising:
JP2002350599A 2002-12-03 2002-12-03 Device and method for measuring shape Pending JP2004184194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350599A JP2004184194A (en) 2002-12-03 2002-12-03 Device and method for measuring shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350599A JP2004184194A (en) 2002-12-03 2002-12-03 Device and method for measuring shape

Publications (1)

Publication Number Publication Date
JP2004184194A true JP2004184194A (en) 2004-07-02

Family

ID=32752760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350599A Pending JP2004184194A (en) 2002-12-03 2002-12-03 Device and method for measuring shape

Country Status (1)

Country Link
JP (1) JP2004184194A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216099A (en) * 2007-03-06 2008-09-18 Kobe Steel Ltd Shape measuring system and method therefor
JP2009128167A (en) * 2007-11-22 2009-06-11 Olympus Corp Optical three-dimensional measurement device and filter process method
JP2012068264A (en) * 2011-12-19 2012-04-05 Hitachi High-Technologies Corp Method for obtaining roughness of substrate and device for obtaining roughness of substrate
JP2017207386A (en) * 2016-05-19 2017-11-24 株式会社神戸製鋼所 Roughness estimation method and roughness estimation device of metal plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216099A (en) * 2007-03-06 2008-09-18 Kobe Steel Ltd Shape measuring system and method therefor
JP2009128167A (en) * 2007-11-22 2009-06-11 Olympus Corp Optical three-dimensional measurement device and filter process method
US7817287B2 (en) 2007-11-22 2010-10-19 Olympus Corporation Optical three-dimensional measurement device and filter process method
JP2012068264A (en) * 2011-12-19 2012-04-05 Hitachi High-Technologies Corp Method for obtaining roughness of substrate and device for obtaining roughness of substrate
JP2017207386A (en) * 2016-05-19 2017-11-24 株式会社神戸製鋼所 Roughness estimation method and roughness estimation device of metal plate

Similar Documents

Publication Publication Date Title
US7852489B2 (en) Method for measuring surface profile, and apparatus using the same
US8970850B2 (en) Method and apparatus for surface profilometry
EP1460374B1 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
US7564566B2 (en) Method and system for analyzing low-coherence interferometry signals for information about thin film structures
NL1034928C (en) SYSTEM FOR FUNCTIONAL TREATMENT OF WAFFLE VOLTAGE.
US7369251B2 (en) Full-field optical measurements of surface properties of panels, substrates and wafers
TWI448661B (en) Interferometer utilizing polarization scanning
NL1032881C2 (en) Optical sample characterization system.
JP5560628B2 (en) Inspection apparatus and inspection method
JP2008083059A (en) Measuring system and measuring device for wafer
JP2006515925A (en) Common path frequency scanning interferometer
KR102583096B1 (en) Interference roll-off measurements using static fringe patterns
JP3871309B2 (en) Phase shift fringe analysis method and apparatus using the same
JP2008544295A (en) Method for reconstructing the surface topology of an object
US8275573B1 (en) Large-surface defect detection by single-frame spatial-carrier interferometry
JP4427632B2 (en) High-precision 3D shape measuring device
Freischlad et al. Interferometry for wafer dimensional metrology
JPH04161832A (en) Optical-phase-difference measuring method
JP2004184194A (en) Device and method for measuring shape
TWM552096U (en) Device measuring residual stress of optical thin film
JP3907518B2 (en) Shape measuring device
JP2006162586A (en) Surface measuring instrument, surface measuring method, surface measuring program, and computer-readable recording medium storing surface measuring program
WO2011135698A1 (en) Method of measuring deformation
KR20180106575A (en) Flat Mirror Profile Measuring Apparatus and Method Of The Same
JP2000275021A (en) Apparatus for measuring shape of face

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Effective date: 20060728

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A02