JP2006214823A - Surface configuration measuring instrument - Google Patents

Surface configuration measuring instrument Download PDF

Info

Publication number
JP2006214823A
JP2006214823A JP2005026733A JP2005026733A JP2006214823A JP 2006214823 A JP2006214823 A JP 2006214823A JP 2005026733 A JP2005026733 A JP 2005026733A JP 2005026733 A JP2005026733 A JP 2005026733A JP 2006214823 A JP2006214823 A JP 2006214823A
Authority
JP
Japan
Prior art keywords
sample
beams
scanning
height
relative error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005026733A
Other languages
Japanese (ja)
Other versions
JP4613310B2 (en
Inventor
Hisashi Yoshimori
久 吉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2005026733A priority Critical patent/JP4613310B2/en
Publication of JP2006214823A publication Critical patent/JP2006214823A/en
Application granted granted Critical
Publication of JP4613310B2 publication Critical patent/JP4613310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface configuration measuring instrument by means of scanning for achieving high resolution without being affected by relative error when acquiring a surface configuration by measuring a difference in height between measurement points. <P>SOLUTION: A double sharing interferometer comprises two heterodyne sharing interferometers. A surface 138 under test (SUT) is illuminated at equally spaced three points on a straight line to measure a difference in height between neighboring two points by a pair of phase meters 132 and 134. As the scanning of a specimen by three beams, closed scanning is performed by a stage 140 wherein phase difference signals are measured for each equal space while data on phase difference are stored and a return is made to the starting point of scanning. Since relative error in height between phase meters can be obtained by using a fact that the starting point and an end point of scanning are on a level, the surface configuration of the specimen can be obtained by calibrating the relative error. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、物体表面形状計測に関するものであり、複数の測定点の高さの差により、物体表面を走査して表面形状を得ることに関するものである。   The present invention relates to object surface shape measurement, and relates to obtaining a surface shape by scanning an object surface based on a difference in height between a plurality of measurement points.

シリコン・ウェファ,オプティカル・フラット(光学的平面),シンクロトロン用かすめ入射鏡(grazing incidence mirror)のような大規模な工業製品の表面形状の精密な計測への強い需要がある。シリコン・ウェファの大きさは、現在直径300mmまで大きくなっており、かすめ入射鏡の長さは1m以上に達している。
表面の形状を計測するために通常使用されている光学装置は、フィゾ干渉計(Fizeau interferometer)である。フィゾ干渉計は、干渉縞パターンを解析することで、テスト表面(surface under test:SUT)と参照光学的平面(reference optical flat:ROF)との間の断面の差を求めている。しかしながら、いくつかのフィゾ干渉計は、断面の不確定性(面精度)がλ/100(例えば、λが633nmの場合は6.33nmの精度)より小さいROFを備えているが、商業的に入手可能な装置に備えられている通常のROFの不確定性は、λ/20(同様に、31.65nmの精度)程度である。また、ROFの最大のサイズは現在直径350mmである。このように、ROFのサイズと正確性が、SUTのサイズと計測の正確性を制限している。
There is a strong demand for precise measurement of the surface profile of large industrial products such as silicon wafers, optical flats, and grazing incidence mirrors for synchrotrons. The size of the silicon wafer is currently increased to 300 mm in diameter, and the length of the grazing incidence mirror has reached 1 m or more.
A commonly used optical device for measuring the shape of a surface is a Fizeau interferometer. The Fizeau interferometer determines the cross-sectional difference between a test surface (surface under test: SUT) and a reference optical flat (ROF) by analyzing an interference fringe pattern. However, some Fizzo interferometers have ROFs with a cross-sectional uncertainty (surface accuracy) of less than λ / 100 (eg, 6.33 nm accuracy when λ is 633 nm), but commercially available The uncertainty of a typical ROF provided in available equipment is on the order of λ / 20 (also 31.65 nm accuracy). The maximum size of ROF is currently 350 mm in diameter. Thus, the size and accuracy of the ROF limits the size of the SUT and the accuracy of the measurement.

フィゾ干渉計は、機械的振動による好ましくない影響を防ぐために、剛性の高い、安定した構造が必要である。このため、光路は共通の軸方向に合わせているが、SUTとROFは独立して設置されている。フィゾ干渉計は全てのSUTを同時に計測できるが、計測感度は、移相法(phase shift method)(縞走査法(fringe scan method))と呼ばれることもある)などの縞模様分析(fringe pattern analysis)の方法およびフーリエ変換法に依存している。移相法による計測感度はλ/100と報告されている。
かすめ入射鏡(grazing incidence mirror)のような大きなサイズの計測に対して、ロングトレースプロファイラ(long trace profiler:LTP)が開発された。この計測器は、SUTを照射する単一のビームで走査し、フーリエ変換レンズの角度位置変換に基づいて、傾き断面を計測する。500mm長の鏡が、温度を摂氏±0.1度内に制御することで、高さを標準偏差4.6nmで計測されたことが最近報告されている。
The Fizeau interferometer requires a rigid and stable structure to prevent undesired effects due to mechanical vibration. For this reason, the optical path is aligned with a common axial direction, but the SUT and the ROF are installed independently. The Fizeau interferometer can measure all SUTs simultaneously, but the measurement sensitivity is fringe pattern analysis such as phase shift method (sometimes called fringe scan method). ) Method and Fourier transform method. The measurement sensitivity by the phase shift method is reported as λ / 100.
A long trace profiler (LTP) has been developed for large size measurements such as a grazing incidence mirror. This measuring instrument scans with a single beam that irradiates the SUT, and measures the tilted cross section based on the angular position conversion of the Fourier transform lens. It has recently been reported that a 500 mm long mirror has been measured with a standard deviation of 4.6 nm by controlling the temperature within ± 0.1 degrees Celsius.

上述したフィゾ干渉計固有の問題を解決する方法の1つに、共有干渉法(sharing interferometry)がある。これはROFが必要ないからである。共有干渉計は、横方向にシフトした2つのプローブビームを使用し、これらのビームの干渉信号から表面形状の差分を計測する。このタイプの干渉計は、ヘテロダイン検出技術を用いることができる。この検出技術は、相縞模様分析と比較すると1桁以上の高い感度を得ることができる。しかしながら、全ての表面形状を得るためには、SUTに対する機械的走査が必要であり、走査ステージの傾きの影響が表面形状の小さな変動を覆ってしまう。この理由で、従来の共有干渉法では、サブナノメータの表面形状が未だに得られていない。
共有干渉法の例として、共有へテロダイン干渉計で、中心に1つのセンサを置き、そのまわりをもう一つのセンサを回転させることで校正を行い、環境に対するロバスト性を高めることが行われている(非特許文献1参照)。しかし、校正のために360度回転させた際に、同一地点にもどることを条件としていない(校正時のループを完全に閉じていない)ために、上記に示すような面精度に留まり、サブナノレベルの精度が得られていない。
また、直線度や平面度をナノメートルからサブナノメートルの精度で測定する共有干渉計で、直交2周波レーザ光を平行な2光束に分離してそれぞれの光束に対しヘテロダイン方式の共有干渉計を構成し、さらにそれぞれの干渉計の片方のアームが試料面上で重なるごとく2つの干渉計を配置するものがある(非特許文献3、特許文献1参照)。この結果、2つのシヤリング干渉計は試料平面上の一直線上に並んだ等間隔の3点を照射し、それぞれ2点間の高さの差を測定することにより、試料面の移動の際に発生する試料面チルトによる誤差を補正できる。これは、等間隔の3点が直線上にあることが特徴である。
円弧状あるいは渦巻状の曲線の走引で平面度をナノメータからサブナノメータの感度で測定する3点シヤリングヘテロダイン干渉計もある(特許文献2参照)。この構成は、直交2周波レーザ光を2つの光路に分割し、各々の光路に旋光素子と偏光を2つの進行方向に分岐する素子をもうけ、該素子を通過した2つの光路の2組の偏光を3本の光束になるように合波すると共に前記の素子を通過する偏光の方位を変化させて3本の光束の進行方向を制御して任意の曲線上に3点がおかれる。
直交2周波レーザを光源とした2組のシヤリング干渉計を両者の一方の光束が一致するごとく組み合わせて3点から成るシヤリング干渉計を構成し、3点間つまり2つの光路差を計り被測定面の凹凸と被側面の移動に伴う誤差を同時に測定する(特許文献3参照)。これで、直線度や曲線に沿った面の凹凸をナノメータからサブナノメータの精度で測定することができる。
しかしながら、これらの文献では、2つの干渉計間の相対誤差について何も触れていないことから、上記に示すような面精度に留まっている。
また、測定点の高さの差を測定して、表面形状を得ることは、上述した光干渉計ばかりでなく、機械的な例えば静電容量型変位計を用いる方法もよく知られており、同様の問題が存在している(非特許文献2参照)。
Gary E. Sommargren, "Optical heterodyne profilometry" Applied Optics Vol. 20, No. 4 pp.610-618 15 February 1981 山口城治「改良逐次3点法による直線運動精度の計測」精密工学会誌第59巻第5号p.71−76(1993年) T Yokoyama et. al "Sub-nanometer double shearing heterodyne interferometry for profiling large scale planar surfaces", Measurement Science and Technology 15(2004)1-9 特開2001−165640号公報 特開2003−269910号公報 特開2004−177392号公報
One of the methods for solving the above-mentioned problems inherent to the Fizeau interferometer is a shared interferometry. This is because ROF is not necessary. The shared interferometer uses two probe beams shifted in the lateral direction, and measures the difference in surface shape from the interference signals of these beams. This type of interferometer can use heterodyne detection technology. This detection technique can obtain a sensitivity that is one digit higher than that of the phase stripe pattern analysis. However, in order to obtain all surface shapes, mechanical scanning with respect to the SUT is necessary, and the influence of the tilt of the scanning stage covers small variations in the surface shape. For this reason, the surface shape of the sub-nanometer has not yet been obtained by the conventional shared interference method.
As an example of the shared interferometry, a shared heterodyne interferometer is calibrated by placing one sensor at the center and rotating another sensor around it to increase the robustness to the environment. (Refer nonpatent literature 1). However, when rotating 360 degrees for calibration, it is not a condition to return to the same point (the loop at the time of calibration is not completely closed). The accuracy of is not obtained.
In addition, this is a shared interferometer that measures linearity and flatness with nanometer to sub-nanometer accuracy, and it separates the orthogonal dual-frequency laser light into two parallel light beams and configures a heterodyne shared interferometer for each light beam. In addition, there are those in which two interferometers are arranged so that one arm of each interferometer overlaps on the sample surface (see Non-Patent Document 3 and Patent Document 1). As a result, the two shearing interferometers illuminate three equally spaced points on a straight line on the sample plane, and measure the difference in height between the two points. The error due to the tilt of the sample surface can be corrected. This is characterized by three equally spaced points on a straight line.
There is also a three-point shearing heterodyne interferometer that measures flatness with sensitivity from nanometers to sub-nanometers by running an arc or spiral curve (see Patent Document 2). In this configuration, the orthogonal dual-frequency laser beam is divided into two optical paths, an optical rotation element and an element that splits the polarized light in two traveling directions are provided in each optical path, and two sets of polarizations of the two optical paths that have passed through the element. Are combined to form three light beams, and the traveling direction of the three light beams is controlled by changing the azimuth of polarized light passing through the element, so that three points are placed on an arbitrary curve.
Combining two sets of shearing interferometers using an orthogonal dual-frequency laser as a light source so that one of the two beams coincides to form a three-point shearing interferometer, measuring the difference between the three points, that is, the two optical paths, and measuring surface The error accompanying the movement of the unevenness and the side surface is measured simultaneously (see Patent Document 3). With this, it is possible to measure the degree of straightness and the unevenness of the surface along the curve with an accuracy of nanometer to subnanometer.
However, since these documents do not mention anything about the relative error between the two interferometers, the surface accuracy as described above remains.
In addition, measuring the height difference of the measurement points to obtain the surface shape is well known not only by the optical interferometer described above, but also by a mechanical method such as using a capacitive displacement meter, Similar problems exist (see Non-Patent Document 2).
Gary E. Sommargren, "Optical heterodyne profilometry" Applied Optics Vol. 20, No. 4 pp.610-618 15 February 1981 Joji Yamaguchi “Measurement of linear motion accuracy by the improved sequential three-point method” Journal of Precision Engineering, Vol. 59, No. 5, p. 71-76 (1993) T Yokoyama et. Al "Sub-nanometer double shearing heterodyne interferometry for profiling large scale planar surfaces", Measurement Science and Technology 15 (2004) 1-9 JP 2001-165640 A JP 2003-269910 A JP 2004-177392 A

本発明の目的は、測定点間の高さの差を計測して表面形状を得るときに、相対誤差による影響がなく、高い分解能が達成される走査による測定を提供することにある。   An object of the present invention is to provide a measurement by scanning in which a high resolution is achieved without being influenced by a relative error when a surface shape is obtained by measuring a height difference between measurement points.

前記目的を達成するために、当該発明は、複数のセンサにより試料と該センサ間の高さの差を得て試料の表面形状を得る表面形状測定装置であって、前記試料と前記複数のセンサとを相対的に移動して試料表面を走査するための走査部を有し、該走査部は、等間隔ごとに高さの差のデータを記憶しながら走査の出発点まで戻り、出発点を終点とする閉じた走査を行い、出発点と終点とが同じ高さであることを用いて、前記センサ間の高さの相対的誤差を得て、該相対誤差を較正して試料の表面形状を得ることを特徴とする。
前記表面形状測定装置は、共振器ミラー異方性により、偏光間で周波数差のあるレーザ光源と、該光源のビームから参照ビームを取り出すスプリッタと、該参照ビームから、偏光間の参照ビート信号を取り出すフォトダイオードと、該スプリッタからのビームを、平行する2つのビームとする平行板と、該2つの平行ビームをそれぞれ等間隔の2つのビームとして、そのうち1つは重なるように出力する光学子と、該光学子からの3つのビームを試料表面に当て、反射するビームを前記光学子を介して再度2つのビームとし、該ビームからビート信号を取り出すフォトダイオードと、前記参照ビート信号と、2つのビート信号を入力して位相差信号を取り出す2つの位相計と、前記試料を乗せ、前記3つのビームとの間で相対的に移動して、前記ビームにより試料表面の走査を行うステージとを備え、前記試料と前記3つのビームとの走査は、等間隔ごとに前記位相差信号を計測して位相差のデータを記憶しながら走査の出発点まで戻り、出発点を終点とする閉じた走査であり、出発点と終点とが同じ高さであることを用いて、前記2つの位相計間の相対的誤差を得て、該相対的誤差を較正して試料の表面形状を得ることを特徴とする、2重共有ヘテロダイン干渉計を用いるとよい。
In order to achieve the above object, the present invention provides a surface shape measuring apparatus for obtaining a surface shape of a sample by obtaining a height difference between the sample and the sensor by a plurality of sensors, the sample and the plurality of sensors. The scanning unit scans the surface of the sample relative to each other, and the scanning unit returns to the starting point of scanning while storing height difference data at equal intervals. Perform a closed scan with the end point, and use the fact that the start point and end point are the same height to obtain the relative height error between the sensors and calibrate the relative error to obtain the surface shape of the sample. It is characterized by obtaining.
The surface shape measuring apparatus includes a laser light source having a frequency difference between polarizations by a resonator mirror anisotropy, a splitter for extracting a reference beam from a beam of the light source, and a reference beat signal between the polarizations from the reference beam. A photodiode to be taken out, a parallel plate that makes the beams from the splitter into two parallel beams, and an optical element that outputs the two parallel beams as two beams that are equally spaced, one of which is overlapped , The three beams from the optical element are applied to the sample surface, the reflected beam is again converted into two beams through the optical element, a photodiode for extracting a beat signal from the beam, the reference beat signal, Two phase meters for inputting a beat signal and taking out a phase difference signal, and placing the sample, moving relatively between the three beams, A stage for scanning the surface of the sample with a recording beam, and the scanning of the sample and the three beams is performed by measuring the phase difference signal at equal intervals and storing the phase difference data, To obtain a relative error between the two phase meters using the closed scan with the start point as the end point and the start point and the end point being the same height. A dual shared heterodyne interferometer, characterized by calibrating to obtain the surface shape of the sample, may be used.

本発明の表面形状計測装置は、閉じた走査を行うことにより、相対誤差の走査を終了した時点で計算して、取り除いて表面形状を得ることができる。
また、2重共有ヘテロダイン干渉計は、閉じた走査を行うことにより、2つの干渉計間の相対誤差による影響がなく、サブナノメータの解像度で断面を得ることができる。本発明の2重共有ヘテロダイン干渉計は、1対の共通光路共有干渉計で構成されている。このため、機械的振動及び温度変化の影響はほとんど相殺される。この光学構成とヘテロダイン検出に基づき、本発明の2重共有ヘテロダイン干渉計では、サブナノメータのオーダの感度と計測環境の乱れに対しても大丈夫な計測とを実現している。
The surface shape measuring apparatus of the present invention can obtain a surface shape by performing a closed scan and calculating and removing it when the relative error scan is completed.
In addition, the double shared heterodyne interferometer can obtain a cross-section with sub-nanometer resolution without being affected by the relative error between the two interferometers by performing a closed scan. The double shared heterodyne interferometer of the present invention is composed of a pair of common optical path sharing interferometers. For this reason, the effects of mechanical vibration and temperature change are almost cancelled. Based on this optical configuration and heterodyne detection, the dual shared heterodyne interferometer according to the present invention realizes sub-nanometer order sensitivity and measurement that is safe against disturbance of the measurement environment.

この発明の実施形態では、2重共有ヘテロダイン干渉法(double sharing heterodyne interferometry)と名づけた干渉法による計測方法を用いている。この計測方法は、2つのヘテロダイン共有干渉計で構成されている。ここで、テスト表面(surface under test:SUT)は、1対の共有干渉計により、走査上の等距離にある3点で照射され、隣接する2点間の高さの差を計測する。計測された高さの差への走査ステージの傾きの寄与は、2つの干渉計間の相対誤差が、出発点に戻る閉じた走査により求められるので、相殺することができる。このように、2次の差分を得て、SUTの断面を求めることができる。各共有干渉計において、2つのプローブ・ビームが、異方性一軸結晶(anisotropic uniaxial crystal:AUC)をビーム・スプリッタとして用いて、ほとんど共通の光路を進む。共通光路の構成のために、機械的振動や空気の乱れによる屈折率の揺らぎの影響は、実質的に相殺される。その上、2つの共有干渉計の温度による変化もまた、適切な減算処理により相殺される。
以下で、実施形態に用いた1対の共有干渉計で構成された2重共有ヘテロダイン干渉計について、詳しく説明する。
In the embodiment of the present invention, an interferometric measurement method named double sharing heterodyne interferometry is used. This measurement method is composed of two heterodyne shared interferometers. Here, a test surface (surface under test: SUT) is irradiated at three points that are equidistant on the scan by a pair of shared interferometers, and the difference in height between two adjacent points is measured. The contribution of the scan stage tilt to the measured height difference can be offset because the relative error between the two interferometers is determined by the closed scan returning to the starting point. In this way, a cross-section of the SUT can be obtained by obtaining a secondary difference. In each shared interferometer, the two probe beams travel in an almost common optical path using an anisotropic uniaxial crystal (AUC) as a beam splitter. Due to the configuration of the common optical path, the effects of refractive index fluctuations due to mechanical vibrations and air turbulence are substantially offset. In addition, changes due to the temperature of the two shared interferometers are also offset by a suitable subtraction process.
Hereinafter, a double shared heterodyne interferometer configured by a pair of shared interferometers used in the embodiment will be described in detail.

光学システムの概要は、図1に示されている。システムの光源は、周波数安定化横ゼーマンHe−Neレーザ(frequency-stabilized transversal Zeeman He-Ne laser)(λ=633nm)110である。出力パワーは2mWで、ビーム直径(ピーク強度のe−2)は0.8mmである。出力光は直線偏光であり、偏光方向はゼーマン効果により、直交している。共振器ミラー異方性による2つの直交光間の周波数差は、約190kHzである。 An overview of the optical system is shown in FIG. The light source of the system is a frequency-stabilized transversal Zeeman He-Ne laser (λ = 633 nm) 110. The output power is 2 mW, and the beam diameter (peak intensity e −2 ) is 0.8 mm. The output light is linearly polarized light, and the polarization directions are orthogonal due to the Zeeman effect. The frequency difference between the two orthogonal lights due to the resonator mirror anisotropy is about 190 kHz.

半波長板(half wave plate:HWP)112を通過後、レーザ光の半分はビームスプリッタ(BS)114で反射され、直交偏光場は偏光子(PL)116と結合し、PIDフォトダイオード(PD)118で検出される。そして、参照ビート信号(周波数190kHz)は、検出器の2乗則によりPD118で生成される。BS114を透過したレーザ光は、平行板(parallel plate)120で2つの平行するビームに分割される。この2つのビームの空間分離は、計測器のサンプリング間隔ΔXに等しい。これらの平行ビームは他のBSを介して伝達される。各ビームは、異方性一軸結晶(anisotropic uniaxial crystal:AUC)136で、さらに正規光(ordinary ray)と非正規光(extraordinary ray)(図1では。それぞれoとeで表示されている)に分割される。AUC136の大きさは、正規光と非正規光間の離間距離がΔXと同じになるように設計されている。AUC,Nの光軸は、2つの入射平行ビームが含まれる平面中に設定されるので、2対の正規光と非正規光は同じ平面中にある。一つの入力ビームからの正規光と他の入力ビームからの非正規光は、AUC136の出力端で重畳される。このため、AUC136の出力は、平行する3つのビームで構成される。この3つのビームは、SUT138上の、走査上の等間隔に位置する3つの点、Xn−1,X,Xn+1を照射する。 After passing through a half wave plate (HWP) 112, half of the laser light is reflected by a beam splitter (BS) 114, and an orthogonal polarization field is combined with a polarizer (PL) 116, and a PID photodiode (PD) Detected at 118. The reference beat signal (frequency 190 kHz) is generated by the PD 118 according to the square law of the detector. The laser light transmitted through the BS 114 is divided into two parallel beams by a parallel plate 120. The spatial separation of the two beams is equal to the instrument sampling interval ΔX. These parallel beams are transmitted via other BSs. Each beam is an anisotropic uniaxial crystal (AUC) 136, and is further converted into normal light (ordinary ray) and non-normal light (extraordinary ray) (indicated by o and e in FIG. 1, respectively). Divided. The size of the AUC 136 is designed so that the separation distance between normal light and non-normal light is the same as ΔX. Since the optical axes of AUC and N are set in a plane including two incident parallel beams, the two pairs of normal light and non-normal light are in the same plane. Regular light from one input beam and non-regular light from another input beam are superimposed at the output end of the AUC 136. For this reason, the output of the AUC 136 is composed of three parallel beams. These three beams irradiate three points, X n−1 , X n , and X n + 1, which are located at equal intervals on the scan on the SUT 138.

HWP112は回転するので、2つの直交した偏光の1つの方向は、Nと入力ビームを含む平面中にある。このことにより、1つの偏光が正規光となり、他の偏光が非正規光となることを実現する。このように、各対の正規および非正規の光が、周波数差が190kHzである共有干渉計のヘテロダイン・プローブを形成している。AUC136の出力ビームはSUT138で反射され、正規および非正規の1対の光は、AUC136の前端で再び重畳される。そして、各重畳されたビームは、2の周波数成分を含み、SUT138上の2つの隣接したスポットの干渉情報を担っている。このように、光学構成は、Xn−1とXとの間及びXとXn+1との間の高さの差を計測する、2つのヘテロダイン共有干渉計を形成している。 Since the HWP 112 rotates, one direction of the two orthogonal polarizations is in the plane containing N and the input beam. This realizes that one polarized light becomes regular light and the other polarized light becomes non-regular light. Thus, each pair of normal and non-normal light forms a shared interferometer heterodyne probe with a frequency difference of 190 kHz. The output beam of AUC 136 is reflected at SUT 138 and a pair of normal and non-normal light is again superimposed at the front end of AUC 136. Each superimposed beam includes two frequency components and carries interference information of two adjacent spots on the SUT 138. Thus, the optical configuration forms two heterodyne shared interferometers that measure the height difference between Xn-1 and Xn and between Xn and Xn + 1 .

BS122で反射後、各ビームの2つの周波数成分はPL124,126で結合し、アバランシェ・フォトダイオード(avalanche photo diode:APD)128,130で、周波数190kHzのビート信号を生成して、検出される。参照ビート信号とこれらのビート信号との相対的位相差は、2つの位相計(PMA及びPMB)132,134で計測され、走査ステージのΔX動作ごとにコンピュータ(図示せず)に記憶される。   After reflection by the BS 122, the two frequency components of each beam are combined by PLs 124 and 126, and a beat signal having a frequency of 190 kHz is generated and detected by avalanche photo diodes (APD) 128 and 130. The relative phase difference between the reference beat signal and these beat signals is measured by two phase meters (PMA and PMB) 132 and 134 and stored in a computer (not shown) for each ΔX operation of the scanning stage.

<断面取得>
位置Xn−1,X及びXn+1における高さのサンプルは、図1に示すように、それぞれZn−1,Z及びZn+1とする。高さの差ΔZn−1及びΔZは下に示すように定義される。

Figure 2006214823
n−1とXとの間及びXとXn+1との間の、計測された高さの差は、それぞれΔZ(n)とΔZ(n)と表される。走査ステージの傾きがΔXに対してΔTのとき、計測された高さの差は、高さの差ΔZn−1及びΔZに加えて、ΔTを含む。そのため、ΔZ(n)とΔZ(n)は、下に示すように表される。
Figure 2006214823
ここで、式(2.2)に現れるΔZerは、2つの独立した干渉計の間の相対的誤差を表している。この誤差は、初期段階の較正処理で導入される。
式(2.1)と(2.2)から、下に示すような再帰的な式が得られる。
Figure 2006214823
そして、ΔZは下のように表される。
Figure 2006214823
<Section acquisition>
As shown in FIG. 1, the samples at the heights at the positions X n−1 , X n and X n + 1 are Z n−1 , Z n and Z n + 1 , respectively. The height differences ΔZ n−1 and ΔZ n are defined as shown below.
Figure 2006214823
The measured height differences between X n−1 and X n and between X n and X n + 1 are denoted as ΔZ A (n) and ΔZ B (n), respectively. When the inclination of the scanning stage is [Delta] T n with respect to [Delta] X, the difference between the measured height, in addition to the difference in height [Delta] Z n-1 and [Delta] Z n, including [Delta] T n. Therefore, ΔZ A (n) and ΔZ B (n) are expressed as shown below.
Figure 2006214823
Here, ΔZ er appearing in Equation (2.2) represents a relative error between two independent interferometers. This error is introduced in the initial calibration process.
From equations (2.1) and (2.2), a recursive equation as shown below is obtained.
Figure 2006214823
ΔZ n is expressed as follows.
Figure 2006214823

サンプルの高さZは、式(1.1)から与えられ、下のようになる。

Figure 2006214823
そして、Zは式(4)と式(5)から求められる。Zに対する最終表現は以下のようになる。
Figure 2006214823
ステージの傾きΔTは、式(2.1)及び式(4)から求められる。
Figure 2006214823
式(4)から式(7)において、Zは点Xにおける初期高さであり、ΔZは、XとXとの初期高さの差である。断面の取得に関して、ZおよびΔZは、一般性を失わずにどんな値を選んでもよいことに留意されたい。これは、これらが高さと傾きの原点に過ぎないからである。また、相対誤差ΔZerは、多項式における2次の偏り(式(6)参照)を断面Zに与えることに注目されたい。また、相対誤差ΔZerはステージ傾きΔTに対して、多項式における1次の偏り(式(7)参照)を与えている。 The sample height Z n is given by equation (1.1) and is as follows:
Figure 2006214823
And Zn is calculated | required from Formula (4) and Formula (5). The final expression for Z n is as follows.
Figure 2006214823
The stage inclination ΔT n is obtained from the equations (2.1) and (4).
Figure 2006214823
In the equations (4) to (7), Z 0 is the initial height at the point X 0 , and ΔZ 0 is the difference between the initial heights of X 0 and X 1 . It should be noted that Z 0 and ΔZ 0 can be chosen any value without loss of generality for cross-section acquisition. This is because these are only the origin of height and tilt. Note also that the relative error ΔZ er gives the section Z n a quadratic bias in the polynomial (see equation (6)). Further, the relative error ΔZ er gives a first-order bias in a polynomial (see Expression (7)) with respect to the stage inclination ΔT n .

ΔZerの真の値を決定するためには、完全に平坦な平面を用いて、2つの独立した干渉計の出力信号を比較することが必要である。しかしながら、このような参照平面を提供することは実際的ではない。このため本発明では、ΔZerの値を計算するため、走査として、出発点に戻るような、閉じた走査を行う(閉ループ法)ことを特徴とする。例えば、ステージを回転させ、走査を円周状に行う。このようにすると、式(6)において、同じ点に戻ることなので、出発点と終点の高さは同じであり、Z=Zとおいて、

Figure 2006214823
この式(8)を、そのときまでの計測された位相計から計測値であるΔZ(i),ΔZ(i)(i=0,…,N)を用いて計算を行うことで、ΔZerを計算できる。この計算で得られたΔZerを用いて、式(6)から誤差を補正した高さZを得ることができる。また、式(7)から傾きΔTも求まることになる。
この操作により、原理的には光子雑音限界で決まる位相(表面変位)測定精度が達成できる。例えば、現在市販されている高性能なロックインアンプ(NF社製6510)を使用した場合の位相測定精度は0.1°であることから、光源波長λを633nmとしたとき、約0.1nm(633nm/2×0.1°/360°=0.0879≒0.1nm)の変位分解能が得られることを表している。
In order to determine the true value of ΔZ er , it is necessary to compare the output signals of two independent interferometers using a perfectly flat plane. However, providing such a reference plane is not practical. For this reason, the present invention is characterized in that, in order to calculate the value of ΔZ er , a closed scan that returns to the starting point is performed as a scan (closed loop method). For example, the stage is rotated and scanning is performed circumferentially. In this way, since the same point is returned in the equation (6), the heights of the starting point and the ending point are the same, and Z 0 = Z N ,
Figure 2006214823
By calculating this equation (8) using ΔZ A (i), ΔZ B (i) (i = 0,..., N) that are measured values from the phase meter measured up to that time, ΔZ er can be calculated. Using a [Delta] Z er obtained by this calculation, it is possible to obtain the height Z n obtained by correcting the error from the equation (6). Further, the slope ΔT n is also obtained from the equation (7).
By this operation, the phase (surface displacement) measurement accuracy determined in principle by the photon noise limit can be achieved. For example, since the phase measurement accuracy is 0.1 ° when a high-performance lock-in amplifier (6510 made by NF) currently on the market is used, when the light source wavelength λ is 633 nm, it is about 0.1 nm. This indicates that a displacement resolution of (633 nm / 2 × 0.1 ° / 360 ° = 0.0879≈0.1 nm) can be obtained.

図2は、仮定した形状を周回測定(閉ループ法による円周状の走査)によりシミュレーションした結果を示す図である。図2の図中で“元”が仮定した試料形状(放物線形状)であり、“Zerr推定”は非特許文献3と同じ手法で、試料を平均的には平坦と仮定し、最小2乗法によって干渉計の相対位相Zerを推定したときの形状再現結果である。これは仮定した試料形状とはかけ離れていることが分かる。また、“周回測定”は閉ループ法によってZerをその場で校正し、試料形状を再現したものを多少ずらしてプロットしているものである。仮定した試料形状が再現されていることが分かる。なお、当該仮定試料を載せたステージにチルト変動を加えたシミュレーションも行ったが、チルト変動は分離して測定され、試料形状には影響が見られなかった。
<閉じた走査(閉ループ法)について>
上述の走査として、円周状に行うことを例として述べたが、それに限られず、走査の出発点と終点とが一致する走査であればよい。例えば、2軸のターンテーブル上に試料を乗せて計測してもよい。
<他の計測法への適用>
上述の実施形態では、2重共有ヘテロダイン干渉装置を用いている。しかしながら、上述の閉じた走査(閉ループ法)による表面形状の測定は、試料に対して計測点の走査を行い、等間隔ごとに計測点の高さの差信号で表面形状を計測する場合に適用可能である。例えば、逐次3点法として知られている計測法(例えば、静電容量型変位計を用いたものとして、上述の非特許文献2を参照されたい)の場合でも適用可能である。
FIG. 2 is a diagram showing a result of simulating the assumed shape by circular measurement (circular scanning by the closed loop method). 2 is the sample shape (parabolic shape) assumed by “original”, “Zerr estimation” is the same method as in Non-Patent Document 3, and the sample is assumed to be flat on the average, and the least square method is used. It is a shape reproduction result when the relative phase Zer of the interferometer is estimated. It can be seen that this is far from the assumed sample shape. Also, “circumference measurement” is a plot in which Zer is calibrated on the spot by the closed loop method and the sample shape is reproduced with a slight shift. It can be seen that the assumed sample shape is reproduced. In addition, although the simulation which added the tilt fluctuation | variation to the stage which mounted the said assumption sample was also performed, the tilt fluctuation | variation was isolate | separated and the sample shape was not influenced.
<About closed scanning (closed loop method)>
Although the above-described scanning has been described by way of example as being performed circumferentially, the scanning is not limited to this, and any scanning may be used as long as the starting point and the end point of scanning coincide with each other. For example, the measurement may be performed by placing a sample on a two-axis turntable.
<Application to other measurement methods>
In the above-described embodiment, a double shared heterodyne interferometer is used. However, the measurement of the surface shape by the above-mentioned closed scanning (closed loop method) is applied to the case where the measurement point is scanned with respect to the sample and the surface shape is measured by the difference signal of the height of the measurement point at regular intervals. Is possible. For example, the present invention can also be applied to a measurement method known as a sequential three-point method (for example, see the above-mentioned Non-Patent Document 2 as a method using a capacitance displacement meter).

実施形態の2重共有干渉計の構成を示す図である。It is a figure which shows the structure of the double sharing interferometer of embodiment. 仮定した形状を周回測定によりシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the assumed shape by the circumference measurement.

Claims (2)

複数のセンサにより試料と該センサ間の高さの差を得て試料の表面形状を得る表面形状測定装置において、
前記試料と前記複数のセンサとを相対的に移動して試料表面を走査するための走査部を有し、
該走査部は、等間隔ごとに高さの差のデータを記憶しながら走査の出発点まで戻り、出発点を終点とする閉じた走査を行い、
出発点と終点とが同じ高さであることを用いて、前記センサ間の高さの相対的誤差を得て、該相対誤差を較正して試料の表面形状を得ることを特徴とする表面形状測定装置。
In a surface shape measuring apparatus for obtaining a surface shape of a sample by obtaining a difference in height between the sample and the sensor by a plurality of sensors,
A scanning unit for scanning the sample surface by relatively moving the sample and the plurality of sensors;
The scanning unit returns to the starting point of scanning while storing height difference data at regular intervals, and performs a closed scan with the starting point as the end point,
Using the fact that the starting point and the ending point have the same height, obtain a relative error of the height between the sensors, and calibrate the relative error to obtain the surface shape of the sample. measuring device.
共振器ミラー異方性により、偏光間で周波数差のあるレーザ光源と、
該光源のビームから参照ビームを取り出すスプリッタと、
該参照ビームから、偏光間の参照ビート信号を取り出すフォトダイオードと、
該スプリッタからのビームを、平行する2つのビームとする平行板と、
該2つの平行ビームをそれぞれ等間隔の2つのビームとして、そのうち1つは重なるように出力する光学子と、
該光学子からの3つのビームを試料表面に当て、反射するビームを前記光学子を介して再度2つのビームとし、該ビームからビート信号を取り出すフォトダイオードと、
前記参照ビート信号と、2つのビート信号を入力して位相差信号を取り出す2つの位相計と、
前記試料を乗せ、前記3つのビームとの間で相対的に移動して、前記ビームにより試料表面の走査を行うステージとを備え、
前記試料と前記3つのビームとの走査は、等間隔ごとに前記位相差信号を計測して位相差のデータを記憶しながら走査の出発点まで戻り、出発点を終点とする閉じた走査であり、
出発点と終点とが同じ高さであることを用いて、前記2つの位相計間の相対的誤差を得て、該相対的誤差を較正して試料の表面形状を得ることを特徴とする、2重共有ヘテロダイン干渉計を用いた表面形状測定装置。
Due to the resonator mirror anisotropy, a laser light source with a frequency difference between the polarized light, and
A splitter for extracting a reference beam from the beam of the light source;
A photodiode for extracting a reference beat signal between polarizations from the reference beam;
A parallel plate that converts the beam from the splitter into two parallel beams;
An optical element that outputs the two parallel beams as two equally spaced beams, one of which overlaps,
A photodiode that impinges three beams from the optical element on the sample surface, makes the reflected beam again two beams through the optical element, and extracts a beat signal from the beam;
Two phase meters for inputting the reference beat signal and two beat signals to extract a phase difference signal;
A stage for placing the sample, moving relative to the three beams, and scanning the surface of the sample with the beams;
The scan of the sample and the three beams is a closed scan in which the phase difference signal is measured at equal intervals, the phase difference data is stored and returned to the start point of the scan, and the start point is the end point. ,
Obtaining a relative error between the two phase meters using the same height of the starting point and the ending point, and calibrating the relative error to obtain a surface shape of the sample, Surface shape measuring device using a double shared heterodyne interferometer.
JP2005026733A 2005-02-02 2005-02-02 Surface shape measuring device Active JP4613310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026733A JP4613310B2 (en) 2005-02-02 2005-02-02 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026733A JP4613310B2 (en) 2005-02-02 2005-02-02 Surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2006214823A true JP2006214823A (en) 2006-08-17
JP4613310B2 JP4613310B2 (en) 2011-01-19

Family

ID=36978184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026733A Active JP4613310B2 (en) 2005-02-02 2005-02-02 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JP4613310B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292728A (en) * 2013-05-16 2013-09-11 中国科学院高能物理研究所 High-precision long-range surface shape detecting system and method
KR20160051170A (en) * 2014-10-31 2016-05-11 서울과학기술대학교 산학협력단 Multiple beam path optical system using rear surface reflection of beam splitter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041733A (en) * 1999-07-30 2001-02-16 Univ Chuo Surface shape measuring device
JP2001165640A (en) * 1999-12-09 2001-06-22 Shiyuuko Yokoyama Flatness measuring method and measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041733A (en) * 1999-07-30 2001-02-16 Univ Chuo Surface shape measuring device
JP2001165640A (en) * 1999-12-09 2001-06-22 Shiyuuko Yokoyama Flatness measuring method and measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292728A (en) * 2013-05-16 2013-09-11 中国科学院高能物理研究所 High-precision long-range surface shape detecting system and method
KR20160051170A (en) * 2014-10-31 2016-05-11 서울과학기술대학교 산학협력단 Multiple beam path optical system using rear surface reflection of beam splitter
KR101664470B1 (en) 2014-10-31 2016-10-24 서울과학기술대학교 산학협력단 Multiple beam path optical system using rear surface reflection of beam splitter

Also Published As

Publication number Publication date
JP4613310B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US11029258B2 (en) Optical phase measurement method and system
JP5264172B2 (en) Optical sensor using low coherence interferometry
Badami et al. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry
US6924898B2 (en) Phase-shifting interferometry method and system
US6847458B2 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
KR20000068090A (en) Superheterodyne interferometry and method for compensating the refractive index of air using electronic frequency multiplication
Hori et al. Periodic error evaluation system for linear encoders using a homodyne laser interferometer with 10 picometer uncertainty
Berger et al. Non-contact metrology of aspheric surfaces based on MWLI technology
Guan et al. A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder
Lin et al. Measurement of small displacement based on surface plasmon resonance heterodyne interferometry
Řeřucha et al. Compact differential plane interferometer with in-axis mirror tilt detection
Ren et al. A novel enhanced roll-angle measurement system based on a transmission grating autocollimator
TW200928301A (en) Apparatus for measuring displacement by using wavelength-modulated heterodyne grating interferometer
JP4613310B2 (en) Surface shape measuring device
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
Haitjema et al. Improving a commercially available heterodyne laser interferometer to sub-nm uncertainty
Disawal et al. Simultaneous measurement of thickness and refractive index using phase shifted Coherent Gradient Sensor
Lee et al. Polarization-standing-wave interferometer for displacement measurement
Shimizu et al. Measurement of the apex angle of a small prism by an oblique-incidence mode-locked femtosecond laser autocollimator
Tiziani et al. Scanning differential-heterodyne-interferometer with acousto-optic deflectors
Yokoyama et al. Sub-nanometre double shearing heterodyne interferometry for profiling large scale planar surfaces
Weichert et al. A straightness measuring interferometer characterised with different wedge prisms
Abdel-Maaboud Automated contactless gauge block interferometer
Arosa et al. Measuring the wedge of flat optical windows
Gregorcic et al. Phase-shift error in quadrature-detection-based interferometers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150