JPH0449643B2 - - Google Patents

Info

Publication number
JPH0449643B2
JPH0449643B2 JP14382283A JP14382283A JPH0449643B2 JP H0449643 B2 JPH0449643 B2 JP H0449643B2 JP 14382283 A JP14382283 A JP 14382283A JP 14382283 A JP14382283 A JP 14382283A JP H0449643 B2 JPH0449643 B2 JP H0449643B2
Authority
JP
Japan
Prior art keywords
film
laser
laser beam
etching
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14382283A
Other languages
Japanese (ja)
Other versions
JPS6035519A (en
Inventor
Tatsufumi Nishina
Shinichi Suzuki
Hiromitsu Enami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Microcomputer System Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Microcomputer System Ltd, Hitachi Ltd filed Critical Hitachi Microcomputer System Ltd
Priority to JP14382283A priority Critical patent/JPS6035519A/en
Publication of JPS6035519A publication Critical patent/JPS6035519A/en
Publication of JPH0449643B2 publication Critical patent/JPH0449643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体製造装置における薄膜を高精度
に形成、エツチングする場合に用いて好適なレー
ザ干渉方式を利用した膜厚モニター装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a film thickness monitoring device using a laser interference method suitable for forming and etching thin films in semiconductor manufacturing equipment with high precision.

〔背景技術〕[Background technology]

半導体製造工程の一つであつて、形成された薄
膜を選択的に除去するエツチング工程では、エツ
チングの終点を判定することが重要である。この
ため、発光分光法を利用して、エツチング時に生
じるガスの発光スペクトルからエツチング終点の
判定を行なうことが考えられる。しかし、パター
ンの微細化に伴なつて更に高精度のエツチングが
要求されるようになると、前述した発光分光法で
はこれに応答できるような高精度の判定ができ
ず、適用が不可能になる。
In an etching process, which is one of the semiconductor manufacturing processes, in which a formed thin film is selectively removed, it is important to determine the end point of etching. Therefore, it is conceivable to use emission spectroscopy to determine the end point of etching from the emission spectrum of gas generated during etching. However, as patterns become finer, more precise etching is required, and the above-mentioned emission spectroscopy is unable to make highly accurate determinations that can respond to this demand, making it impossible to apply.

したがつて、最近では原理的にも高精度の膜厚
モニタ、つまりエツチング終点判定が可能なレー
ザ干渉法を利用することが考えられてきている。
このレーザ干渉法は被エツチング部材としての半
導体ウエーハ表面にレーザ光を投射し、その反射
光と入射光の干渉を利用してユエーハ表面の膜厚
を求める方法である。しかしながら、通常のエツ
チングでは被エツチング膜の上にホトレジスト膜
等のマスク膜を選択的に形成しており、しかもこ
のパターンに対して投射されるレーザ光のビーム
径が大きいため、被エツチング膜のみならずマス
ク膜上にもレーザ光が投射されてしまうことにな
り、被エツチング膜の干渉信号に加えてマスク膜
の干渉信号が膜厚モニター装置に入力されてしま
う。このため被エツチング膜の膜厚を正確にモニ
ターすることは困難であり、これがレーザ干渉法
の実用化を阻害する原因になつていることが本発
明者により明らかにされた。
Therefore, in recent years, consideration has been given to using laser interferometry, which is capable of monitoring film thickness with high precision in principle, that is, determining the end point of etching.
This laser interferometry is a method in which a laser beam is projected onto the surface of a semiconductor wafer as a member to be etched, and the film thickness on the surface of the wafer is determined by utilizing the interference between the reflected light and the incident light. However, in normal etching, a mask film such as a photoresist film is selectively formed on the film to be etched, and the beam diameter of the laser beam projected onto this pattern is large, so if only the film to be etched is etched. As a result, the laser beam is also projected onto the mask film, and in addition to the interference signal from the film to be etched, the interference signal from the mask film is input to the film thickness monitoring device. For this reason, it is difficult to accurately monitor the thickness of the film to be etched, and the inventors have found that this is a cause of hindering the practical application of laser interferometry.

〔発明の目的〕[Purpose of the invention]

本発明の目的はレーザ干渉法による膜厚モニタ
ーの実用化を図ると共に、モニターの高精度化を
実現した膜厚モニター装置を提供することにあ
る。
An object of the present invention is to put into practical use a film thickness monitor using laser interferometry, and to provide a film thickness monitor device that achieves high precision monitoring.

また、本発明の目的はエツチング時における被
エツチング膜の膜厚を測定してエツチング終点を
正確に検出することができる膜厚モニター装置を
提供することにある。
Another object of the present invention is to provide a film thickness monitoring device that can accurately detect the end point of etching by measuring the film thickness of a film to be etched during etching.

本発明の前記ならびにそのほかの目的と新規な
特徴は、本明細書の記述および添付図面からあき
らかになるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なも
のの概要を簡単に説明すれば、下記のとおりであ
る。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、複数本のレーザビームの中、1本を
第1の膜としての被エツチング膜と第2の膜とし
てのマスク膜にわたつて投射して信号を得ると共
に、他1本を第2の膜にのみ投射して信号を得、
これら両信号の差を取ることにより第1の膜の信
号を得ることができ、これにより第1の膜厚を高
精度にモニターすることができるものである。
That is, one of the plurality of laser beams is projected across the film to be etched as the first film and the mask film as the second film to obtain a signal, and the other beam is projected onto the film to be etched as the second film. Get a signal by projecting only to
By taking the difference between these two signals, a signal of the first film can be obtained, and thereby the thickness of the first film can be monitored with high precision.

〔実施例〕〔Example〕

第1図は本発明の一実施例である膜厚モニター
装置の全体構成図であり、半導体ウエーハ1の主
面に形成したシリコン酸化膜(SiO2)等の薄膜
2をエツチングする際の膜厚モニター装置として
構成した実施例を示している。この場合、SiO2
薄膜2は被エツチング膜ないし被測定膜であり第
1の膜として構成される。また、この第1の膜と
してのSiO2薄膜2上にはエツチングマスクとし
てのホトレジスト膜3が第2の膜として微細パタ
ーンで形成される。なお、ウエーハ1の周辺部に
はホトレジスト膜3のみが形成される部分3Aを
必要により設けておく。
FIG. 1 is an overall configuration diagram of a film thickness monitoring device which is an embodiment of the present invention, and shows the film thickness when etching a thin film 2 such as a silicon oxide film (SiO 2 ) formed on the main surface of a semiconductor wafer 1. An example configured as a monitor device is shown. In this case, SiO2
The thin film 2 is a film to be etched or a film to be measured, and is configured as a first film. Further, on this SiO 2 thin film 2 as the first film, a photoresist film 3 as an etching mask is formed as a second film in a fine pattern. Note that a portion 3A where only the photoresist film 3 is formed is provided at the periphery of the wafer 1 if necessary.

前記ウエーハ1はチヤンバ4内の支持台5上に
略水平に載置され、ドライエツチングが行なわれ
る。前記膜厚モニター装置は、単一のレーザ光源
6を有し、このレーザ光源6から射出されるレー
ザビーム7をハーフミラー8,9を通して前記ウ
エーハ1の表面に投射している。前記ハーフミラ
ーの中、一方のハーフミラー8はビームスプリツ
タとして構成され、前記レーザ光源6からのレー
ザビーム7の一部を並設したハーフミラー10に
向けて反射させ、かつこのハーフミラー10の反
射によつてレーザビーム11をウエーハ1の異な
る表面位置に投射する。
The wafer 1 is placed substantially horizontally on a support stand 5 within a chamber 4, and dry etching is performed. The film thickness monitoring device has a single laser light source 6, and projects a laser beam 7 emitted from the laser light source 6 onto the surface of the wafer 1 through half mirrors 8 and 9. One of the half mirrors 8 is configured as a beam splitter, and reflects a part of the laser beam 7 from the laser light source 6 toward the half mirror 10 arranged in parallel. The laser beam 11 is projected onto different surface positions of the wafer 1 by reflection.

前記ハーフミラー9にはウエーハ1表面からの
レーザビーム7の反射光を受けてこれを電気信号
とするデイテクタ12を対向配置し、またハーフ
ミラー10の後方にも別のデイテクタ13を設け
このハーフミラー10を透過したレーザビーム1
1のウエーハ反射光を受信できるようにする。な
お、ハーフミラー10とデイテクタ13はレーザ
ビーム7,11の光軸と直角(図示の左右)方向
に移動できる可動テーブル14上に一体的に支持
されている。
A detector 12 that receives the reflected light of the laser beam 7 from the surface of the wafer 1 and converts it into an electrical signal is arranged opposite to the half mirror 9, and another detector 13 is provided behind the half mirror 10. Laser beam 1 transmitted through 10
It is possible to receive the reflected light from the wafer No. 1. The half mirror 10 and the detector 13 are integrally supported on a movable table 14 that can move in a direction perpendicular to the optical axis of the laser beams 7 and 11 (left and right in the drawing).

そして、前記一方のデイテクタ12は演算処理
部15に接続し、他方のデイテクタ13はアンプ
16を介して演算処理部15に接続している。こ
の演算処理部15の演算出力は図外のエツチング
制御部に送出するように構成している。
One of the detectors 12 is connected to an arithmetic processing section 15, and the other detector 13 is connected to the arithmetic processing section 15 via an amplifier 16. The calculation output of the calculation processing section 15 is configured to be sent to an etching control section (not shown).

次に以上の構成の膜厚モニター装置の作用を説
明する。レーザ光源6からレーザ光を射出すれ
ば、ビームスプリツタとしてのハーフミラー8を
通過したレーザビーム7はウエーハ1の表面のエ
ツチングされる部位に投射される。そして、ここ
ではSiO2膜(第1の膜)2とマスク膜(第2の
膜)3の夫々において表裏面からの反射ビームの
干渉が生じ、第1、第2の膜の干渉光が混ざつた
状態でハーフミラー9に反射されてデイテクタ1
2で受光される。したがつて、デイテクタ12の
出力は第2図Aのように第1、第2の膜の干渉信
号が混ざつた波形となる。
Next, the operation of the film thickness monitoring device having the above configuration will be explained. When a laser beam is emitted from a laser light source 6, a laser beam 7 that has passed through a half mirror 8 serving as a beam splitter is projected onto a portion of the surface of the wafer 1 to be etched. Here, interference occurs between the reflected beams from the front and back surfaces of the SiO 2 film (first film) 2 and the mask film (second film) 3, and the interference light from the first and second films is mixed. It is reflected by the half mirror 9 in a rough state and is sent to the detector 1.
The light is received at 2. Therefore, the output of the detector 12 has a waveform in which the interference signals of the first and second films are mixed, as shown in FIG. 2A.

一方、ビームスプリツタ8およびハーフミラー
10にて反射されたレーザビーム11はウエーハ
1周辺部のマスク膜(第2の膜)3のみが存在す
る部位3Aに投射される。この投射に際しては可
動テーブル14を移動させることによりレーザビ
ーム7に対するレーザビーム11の相対位置を変
化調整できる。そして、ここで第2の膜3の表裏
面からの反射ビームの干渉光をハーフミラー10
を通してデイテクタ13で受光すれば、第2図B
のようにマスク膜3のみの干渉信号を得ることが
できる。
On the other hand, the laser beam 11 reflected by the beam splitter 8 and the half mirror 10 is projected onto a region 3A around the wafer 1 where only the mask film (second film) 3 exists. During this projection, the relative position of the laser beam 11 with respect to the laser beam 7 can be changed and adjusted by moving the movable table 14. Here, the interference light of the reflected beam from the front and back surfaces of the second film 3 is transferred to the half mirror 10.
If the light is received by the detector 13 through the
An interference signal of only the mask film 3 can be obtained as shown in FIG.

次いで、デイテクタ13の信号レベルをアンプ
16によつて増幅し、一方のデイテクタ12の信
号と同一レベルに調整した上で両信号を演算処理
部15に入力させる。すると演算処理部15では
両信号の差分をとり、これにより第2図Cのよう
に第1の膜、つまりSiO2膜2の信号のみが取り
出され、この信号に基づいてSiO2膜2の膜厚を
算出することができる。したがつて、この算出値
をエツチング制御部に送出すれば、所定の膜厚、
通常では「0」になつたときにエツチングが終了
され、オーバエツチングのない良好なエツチング
が完成されることになる。
Next, the signal level of the detector 13 is amplified by the amplifier 16 and adjusted to the same level as the signal of one of the detectors 12, and then both signals are input to the arithmetic processing section 15. Then, the arithmetic processing unit 15 calculates the difference between the two signals, thereby extracting only the signal of the first film, that is, the SiO 2 film 2, as shown in FIG . Thickness can be calculated. Therefore, by sending this calculated value to the etching control section, the predetermined film thickness,
Normally, etching is finished when the value becomes "0", and good etching without overetching is completed.

なお、レーザビーム7,11はウエーハ1に対
する投射位置を反対の関係になるようにしてもよ
く、またアンプ16は両方のデイテクタ12,1
3に接続してもよい。また、レーザスプリツタに
よりレーザビームを多数本にするかわりにレーザ
光源を複数設けてもよい。
Note that the laser beams 7 and 11 may be projected at opposite positions to the wafer 1, and the amplifier 16 may be connected to both detectors 12 and 1.
It may be connected to 3. Furthermore, instead of using a laser splitter to provide multiple laser beams, a plurality of laser light sources may be provided.

〔効果〕〔effect〕

(1) 1本のレーザビームで第1、第2の膜の干渉
信号を形成し、他の1本のレーザビームで第2
の膜のみの干渉信号を形成し、両信号の差分か
ら第1の膜の干渉信号のみを得ることができる
ので、レーザビーム径が微細パターンに対して
大きい場合にも第1の膜厚を正確に求めること
ができ高精度の膜厚モニターを行なうことがで
きる。
(1) One laser beam forms interference signals for the first and second films, and another laser beam forms interference signals for the second film.
Since it is possible to form an interference signal for only the first film and obtain only the interference signal for the first film from the difference between both signals, it is possible to accurately determine the first film thickness even when the laser beam diameter is large relative to the fine pattern. It is possible to perform highly accurate film thickness monitoring.

(2) 単一のレーザ光源からのレーザビームをビー
ムスプリツタにて複数本のレーザビームに形成
しているので、高価なレーザ光源を複数個設け
る必要はなく経済性の点で有利である。
(2) Since the laser beam from a single laser light source is formed into multiple laser beams by a beam splitter, there is no need to provide multiple expensive laser light sources, which is advantageous in terms of economy.

(3) 被測定膜に非接触で膜厚モニターできるの
で、被測定膜を気密に保持した状態でもモニタ
ーを可能とし、エツチング装置等への組込みを
不要にして構成の簡易化を達成できる。
(3) Since the film thickness can be monitored without contacting the film to be measured, monitoring is possible even when the film to be measured is held airtight, and the structure can be simplified by eliminating the need to incorporate it into an etching device or the like.

以上本発明者によつてなされた発明を実施例に
もとづき具体的に説明したが、本発明は上記実施
例に限定されるものではなく、その要旨を逸脱し
ない範囲で種々変更可能であることはいうまでも
ない。たとえば、3層以上の膜から1層の膜厚を
モニターする場合には多数個のビームスプリツタ
によりレーザビームを多数本にし、これらの出力
信号から演算によつて求めるようにしてもよい。
また、各レーザビームは夫々独立したレーザ光源
から得るようにしてもよい。
Although the invention made by the present inventor has been specifically explained based on the examples above, the present invention is not limited to the above examples, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say. For example, when monitoring the thickness of one layer from a film having three or more layers, multiple laser beams may be provided by multiple beam splitters, and the calculation may be performed from the output signals of these beams.
Further, each laser beam may be obtained from an independent laser light source.

〔利用分野〕[Application field]

以上の説明では主として本発明者によつてなさ
れた発明をその背景となつた利用分野である半導
体ウエーハの表面薄膜のエツチング終点検出技術
に適用した場合について説明したがそれに限定さ
れるものではなく、たとえば薄膜の形成技術或い
はウエーハ以外の薄膜に対しても同様に適用でき
る。
In the above description, the invention made by the present inventor was mainly applied to the technology for detecting the etching end point of a thin film on the surface of a semiconductor wafer, which is the background field of application, but the invention is not limited thereto. For example, it can be similarly applied to thin film formation techniques or thin films other than wafers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成図、第2
図A〜Cは信号の波形図である。 1……ウエーハ、2……第1の膜(SiO2膜、
被測定膜)、3……第2の膜(マスク膜)、6……
レーザ光源、7……レーザビーム、8……ハーフ
ミラー(ビームスプリツタ)、9,10……ハー
フミラー、11……レーザビーム、12,13…
…デイテクタ、15……演算処理部、16……ア
ンプ。
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2
Figures A to C are signal waveform diagrams. 1... Wafer, 2... First film (SiO 2 film,
film to be measured), 3... second film (mask film), 6...
Laser light source, 7... Laser beam, 8... Half mirror (beam splitter), 9, 10... Half mirror, 11... Laser beam, 12, 13...
...Detector, 15... Arithmetic processing section, 16... Amplifier.

Claims (1)

【特許請求の範囲】 1 複数本のレーザビームを発生させる手段と、
これら各レーザビームに対応して設け、各レーザ
ビームの干渉信号を受信する複数個のデイテクタ
と、これらのデイテクタの信号の差分を取る演算
処理部とを備え、前記複数本のレーザビームのう
ち、1本のレーザビームは、被測定膜等の第1の
膜とこれに重なる第2の膜部位に投射され、他の
1本のレーザビームは、前記第2の膜にのみ投射
されるように構成してなることを特徴とする膜厚
モニター装置。 2 複数本のレーザビームを発生させる手段は、
単一のレーザ光源と、ビームスプリツタとで構成
される特許請求の範囲第1項記載の膜厚モニター
装置。
[Claims] 1. Means for generating a plurality of laser beams;
A plurality of detectors are provided corresponding to each of these laser beams and receive interference signals of each laser beam, and an arithmetic processing unit that calculates a difference between the signals of these detectors, and among the plurality of laser beams, One laser beam is projected onto a first film such as a film to be measured and a second film portion overlapping the first film, and the other laser beam is projected only onto the second film. A film thickness monitoring device characterized by comprising: 2. The means for generating multiple laser beams is
The film thickness monitoring device according to claim 1, comprising a single laser light source and a beam splitter.
JP14382283A 1983-08-08 1983-08-08 Film thickness monitoring device Granted JPS6035519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14382283A JPS6035519A (en) 1983-08-08 1983-08-08 Film thickness monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14382283A JPS6035519A (en) 1983-08-08 1983-08-08 Film thickness monitoring device

Publications (2)

Publication Number Publication Date
JPS6035519A JPS6035519A (en) 1985-02-23
JPH0449643B2 true JPH0449643B2 (en) 1992-08-12

Family

ID=15347760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14382283A Granted JPS6035519A (en) 1983-08-08 1983-08-08 Film thickness monitoring device

Country Status (1)

Country Link
JP (1) JPS6035519A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145508A (en) * 1987-12-01 1989-06-07 Canon Inc Measuring apparatus
JPH01145507A (en) * 1987-12-01 1989-06-07 Canon Inc Measurement
JPH04355916A (en) * 1990-10-12 1992-12-09 Seiko Epson Corp Dry etching device
GB2257507B (en) * 1991-06-26 1995-03-01 Digital Equipment Corp Semiconductor wafer processing with across-wafer critical dimension monitoring using optical endpoint detection
US5308447A (en) * 1992-06-09 1994-05-03 Luxtron Corporation Endpoint and uniformity determinations in material layer processing through monitoring multiple surface regions across the layer
JP4500510B2 (en) * 2003-06-05 2010-07-14 東京エレクトロン株式会社 Etching amount detection method, etching method, and etching apparatus
US11022877B2 (en) * 2017-03-13 2021-06-01 Applied Materials, Inc. Etch processing system having reflective endpoint detection

Also Published As

Publication number Publication date
JPS6035519A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
US7130056B2 (en) System and method of using a side-mounted interferometer to acquire position information
JPH0317505A (en) Method and device for measuring thickness of thin-film
JPH08316279A (en) Thickness measuring method for semiconductor base body and its measurement device
JPH0449643B2 (en)
JPH07117371B2 (en) measuring device
JPH0972723A (en) Method and equipment for measuring thickness and refractive index of film
JP2003065724A (en) Method for measuring thickness of film using ftir method, and method for manufacturing semiconductor wafer
JPH04208515A (en) Electron-beam drawing device and method, and measuring device for height of sample thereof
JPH0271517A (en) Etching apparatus
JPH08313422A (en) Apparatus for evaluating characteristics of thin film
JPS5979122A (en) Laser power measuring device
JPS59192904A (en) Device for measuring film thickness
JP2888215B2 (en) Exposure apparatus and measurement method
JP3939028B2 (en) Oblique incidence interferometer
JP3120438B2 (en) Film thickness measuring device
JP3184913B2 (en) Surface shape measuring method and surface shape measuring instrument
JP3010853B2 (en) Coordinate measuring system
JP3192461B2 (en) Optical measuring device
KR101844018B1 (en) Device to detect shape change values of wafer using a small size reference mirror
JPH10274513A (en) Surface configuration measuring method and surface configuration measuring apparatus
JP2000111311A (en) Photo-interference length-measuring device and exposing device using the device
JP2000304518A (en) Method and device for measuring contour
JPH07193033A (en) Method and apparatus for polishing surface of semiconductor
JP2003042710A (en) Optical heterodyne interferometer
JPH09138106A (en) Device for measuring moving quantity of moving body by interferometer