JP2002001298A - Electrode arranging method for anionic pollutant removal - Google Patents

Electrode arranging method for anionic pollutant removal

Info

Publication number
JP2002001298A
JP2002001298A JP2001147347A JP2001147347A JP2002001298A JP 2002001298 A JP2002001298 A JP 2002001298A JP 2001147347 A JP2001147347 A JP 2001147347A JP 2001147347 A JP2001147347 A JP 2001147347A JP 2002001298 A JP2002001298 A JP 2002001298A
Authority
JP
Japan
Prior art keywords
anode
cathode
water
soil
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001147347A
Other languages
Japanese (ja)
Other versions
JP3575544B2 (en
Inventor
Takeshi Kawachi
武 川地
Hiroshi Kubo
博 久保
Jun Mitsumoto
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001147347A priority Critical patent/JP3575544B2/en
Publication of JP2002001298A publication Critical patent/JP2002001298A/en
Application granted granted Critical
Publication of JP3575544B2 publication Critical patent/JP3575544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover anionic pollutants from soil. SOLUTION: In this anionic pollutant removing method, an anode and a cathode are embedded almost vertically in a soil containing the anionic pollutants (a step 101), and then, while water is supplied to the soil properly, a D.C. voltage is applied between the anode and the cathode to carry a current, and the supplied water is discharged only from the anode side (a step 102). When the electrodes are arranged, a number of the cathodes are installed around the anode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
等の陰イオン汚染物を土壌内から除去する方法に関す
る。
TECHNICAL FIELD The present invention relates to CrO 4 2- , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
And other methods for removing anionic contaminants from soil.

【0002】[0002]

【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、砒素、セレン、ニッケル、クロム等の汚染物質が含
まれていることがあり、このような土壌をそのまま放置
すると、かかる物質が地下水や生物サイクルを介して環
境に拡散する危険性がある。
2. Description of the Related Art Soil contaminated by factory wastewater, factory waste, mine wastewater, and the like may contain contaminants such as cadmium, lead, copper, zinc, arsenic, selenium, nickel, and chromium. However, if such soil is left as it is, there is a risk that such substances will diffuse into the environment via groundwater and biological cycles.

【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。
For this reason, the contaminated soil is excavated and removed and subjected to a predetermined treatment. Thereafter, the contaminated soil is disposed of in a management type or cut-off type disposal site. It is common to return to the original state on the land.

【0004】ところが、かかる方法では、掘削の際に汚
染土を撹乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。
[0004] However, such a method has a problem that contaminated soil may be disturbed during excavation and secondary contamination may occur. In addition, a large amount of contaminated soil must be carried out and transported. Directly underneath, there is a problem that excavation and removal itself becomes difficult. Therefore, recently, in-situ purification technology has begun to be studied, and as one of the methods, a method of collecting contaminants by energizing is disclosed in Japanese Patent Application Laid-Open No. 5-59716.
No. 6,009,045.

【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。
[0005] In the method, first, a water blocking wall is constructed in a ground area to be treated, and then an anode and a cathode each formed of a hollow tube having a large number of water passage holes are inserted into the ground area, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then water collected on the cathode side by an electroosmosis phenomenon is drained and collected through a hollow tube.

【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。
According to such a method, the predetermined contaminants are:
The contaminants can be removed by collecting the waste water by flowing into the cathode side by riding on the flow of water caused by the electroosmosis phenomenon.

【0007】[0007]

【発明が解決しようとする課題】一方、クロム、砒素、
セレン、シアン、鉛などは、それぞれCrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
(アルカリ性下) 等の陰イオンの形で土壌に含まれて
いる。そして、これら陰イオン汚染物は、通電を行う
と、陰極に移動する水の流れに逆らいながら電気泳動に
よって陽極方向に力を受けるので、陰極側ではほとんど
回収できないことが本出願人が行った実験で判明した。
そのため、陰イオン汚染物を回収するには、陽極付近に
集まったものを土とともに除去するしかないが、土の掘
削、運搬、客土など一連の作業が必要となり、その除去
効率はきわめて悪い。
On the other hand, chromium, arsenic,
Selenium, cyanide, lead, etc. are CrO 4 2- , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
(Under alkalinity) in the form of anions. The experiment conducted by the applicant that these anion contaminants could be hardly recovered on the cathode side because, when energized, they were subjected to a force in the anode direction by electrophoresis while opposing the flow of water moving to the cathode. It turned out.
Therefore, the only way to collect anion contaminants is to remove those collected near the anode together with the soil. However, a series of operations such as excavation, transportation, and soil of the soil are required, and the removal efficiency is extremely poor.

【0008】本発明は、上述した事情を考慮してなされ
たもので、陰イオン汚染物を効率よく土壌内から回収可
能な陰イオン汚染物の除去における電極配置方法を提供
することを目的とする。
[0008] The present invention has been made in view of the above circumstances, and has as its object to provide an electrode arrangement method for removing anionic contaminants that can efficiently collect anionic contaminants from soil. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の陰イオン汚染物の除去における電極配置方
法は請求項1に記載したように、陰イオン汚染物を含む
土壌内に陽極および陰極をほぼ鉛直に埋設し、次に、前
記土壌に適宜給水するとともに前記陽極および前記陰極
間に直流電圧を印加して通電を行い、陰極側で非排水と
することで電気浸透による前記陰極への水の移動を阻止
しつつ給水された水を前記陽極側からのみ排水する方法
であって、前記陰極を前記陽極の周囲に多数配設するも
のである。
To achieve the above object, the present invention provides a method for arranging electrodes for removing anionic contaminants, as described in claim 1, wherein an anode and an anode are provided in soil containing anionic contaminants. The cathode is buried almost vertically, and then water is appropriately supplied to the soil and a DC voltage is applied between the anode and the cathode to conduct electricity. A method of draining supplied water only from the anode side while preventing the movement of water, wherein a large number of the cathodes are arranged around the anode.

【0010】また、本発明に係る陰イオン汚染物の除去
における電極配置方法は請求項2に記載したように、陰
イオン汚染物を含む土壌内に陽極および陰極をほぼ鉛直
に埋設し、次に、前記土壌に適宜給水するとともに前記
陽極および前記陰極間に直流電圧を印加して通電を行
い、陰極側で非排水とすることで電気浸透による前記陰
極への水の移動を阻止しつつ給水された水を前記陽極側
からのみ排水する方法であって、前記陽極を所定の間隔
でほぼ直線状に配置し、該陽極の両側に前記陰極をほぼ
平行配置するものである。
Further, according to the electrode arrangement method for removing anionic contaminants according to the present invention, the anode and the cathode are buried almost vertically in the soil containing the anionic contaminants. Water is supplied while appropriately supplying water to the soil and applying a DC voltage between the anode and the cathode to conduct electricity, and preventing the movement of water to the cathode due to electroosmosis by making the cathode side non-drained. Draining water from only the anode side, wherein the anodes are arranged substantially linearly at predetermined intervals, and the cathodes are arranged substantially parallel to both sides of the anodes.

【0011】また、本発明に係る陰イオン汚染物の除去
における電極配置方法は、前記土壌内にトレンチを形成
し、該トレンチ内に前記陽極を配置してその間を砕石で
充填するとともに、前記陰極を前記トレンチの両側にほ
ぼ平行に打ち込まれた鋼矢板で構成したものである。
Further, in the method for arranging electrodes for removing anionic contaminants according to the present invention, the method comprises the steps of: forming a trench in the soil; arranging the anode in the trench; Are formed of steel sheet piles which are driven substantially parallel to both sides of the trench.

【0012】本発明に係る陰イオン汚染物の除去におけ
る電極配置方法においては、陰極側を非排水とすること
で電気浸透による陰極への水の移動を阻止しておき、か
かる状態で土壌中の水を陽極側から排水する。
In the method for arranging electrodes in the removal of anionic contaminants according to the present invention, the movement of water to the cathode due to electroosmosis is prevented by keeping the cathode side undrained. Drain water from the anode side.

【0013】すると、陰イオン汚染物は、電気浸透によ
る陰極への水の移動にあえて逆らうことなく、電気泳動
によって自然に陽極に集まり、水とともに回収される。
しかも、陽極に近づくほど酸性度が上昇して陰イオン汚
染物の溶解度が高くなるので、より効率的に回収され
る。
[0013] Then, the anion contaminants naturally collect on the anode by electrophoresis and are collected together with the water without opposing the movement of water to the cathode by electroosmosis.
In addition, the closer to the anode, the higher the acidity and the higher the solubility of the anion contaminants, so that they can be more efficiently collected.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る陰イオン汚染
物の除去における電極配置方法の実施の形態について、
添付図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an electrode arrangement method for removing anionic contaminants according to the present invention will be described.
This will be described with reference to the accompanying drawings.

【0015】(第1実施形態)(First Embodiment)

【0016】図1は、本実施形態に係る陰イオン汚染物
の除去における電極配置方法の手順を示したフローチャ
ートである。本実施形態の除去における電極配置方法に
おいては、まず図2(a) に示すように、CrO4 2-、Cr2O7
2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
の陰イオン汚染物を含む土壌1内に陽極2および陰極3
をほぼ鉛直方向に埋設する(図1、ステップ101)。
FIG. 1 is a flowchart showing a procedure of an electrode arrangement method in removing anionic contaminants according to the present embodiment. In the electrode arrangement method in the removal of the present embodiment, first, as shown in FIG. 2 (a), CrO 4 2- , Cr 2 O 7
2-, AsO 4 3-, AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, anode within the soil 1 containing anionic contaminants PbO 2 2-like 2 and cathode 3
Is embedded almost vertically (step 101 in FIG. 1).

【0017】ここで、陽極2は例えば炭素棒で構成し、
陰極3は鉄筋棒で構成するのがよい。なお、陽極2は、
中空管に多数の孔を設けたストレーナ管4の中に配設し
てあり、該ストレーナ管4との間に図示しないホースを
挿入して給水やポンプアップによる排水を行うことがで
きるようになっている。
Here, the anode 2 is made of, for example, a carbon rod.
The cathode 3 is preferably made of a reinforcing rod. In addition, the anode 2
It is disposed in a strainer pipe 4 having a number of holes formed in a hollow pipe, and a hose (not shown) is inserted between the strainer pipe 4 and the strainer pipe 4 so that water can be supplied or drained by pumping up. Has become.

【0018】これら陽極2および陰極3の平面配置例を
図3および図4に示す。まず、図3(a) は、多数の陰極
3を陽極2を取り囲むようにして配設したものである。
また、図3(b) は、陽極2を千鳥状に配置するとともに
陰極3を各陽極2の周囲に多数配設したものである。ま
た、図4は、汚染土壌1内にトレンチ5を形成し、該ト
レンチ内に陽極2およびストレーナ管4を所定の間隔で
ほぼ直線状に配置してその間を砕石6で充填するととも
に、トレンチ5の両側に鋼矢板で形成した陰極3をほぼ
平行に打ち込んで構成してある。なお、鋼矢板に代えて
鉄筋を格子状に組んだものなどを使用してもよい。
FIGS. 3 and 4 show examples of the planar arrangement of the anode 2 and the cathode 3. FIG. First, FIG. 3 (a) shows a number of cathodes 3 arranged so as to surround the anode 2.
FIG. 3B shows a state in which the anodes 2 are arranged in a staggered manner and a large number of cathodes 3 are arranged around each anode 2. FIG. 4 shows that a trench 5 is formed in the contaminated soil 1, and the anode 2 and the strainer tube 4 are arranged substantially linearly at a predetermined interval in the trench, and the gap therebetween is filled with crushed stone 6. The cathode 3 formed of a steel sheet pile is driven in substantially parallel to both sides. In addition, you may use what replaced the steel sheet pile in the shape of a lattice, etc.

【0019】このように電極を配置した後、図2(b) に
示すように、陽極2の側、例えばストレーナ管4を介し
て土壌1内に給水するとともに、陽極2および陰極3の
間に直流電圧を印加して通電し、給水した水を陽極2の
側から排水して陰イオン汚染物を回収する(ステップ1
02)。陽極2付近の水位は、陰極3側の水位が地表面
に達することがない程度に適宜調整する。
After arranging the electrodes in this manner, as shown in FIG. 2 (b), water is supplied into the soil 1 through the anode 2 side, for example, through a strainer tube 4, and between the anode 2 and the cathode 3 An electric current is applied by applying a DC voltage, and the supplied water is drained from the side of the anode 2 to collect anion contaminants (step 1).
02). The water level near the anode 2 is appropriately adjusted so that the water level on the cathode 3 side does not reach the ground surface.

【0020】ここで、陰極3側は通電中をはじめ終始非
排水とし、電気浸透による陰極3への水の移動を阻止し
ておく。すなわち、土壌中の水は、電気浸透によって陰
極3へ移動しようとするが、陰極側で非排水としておけ
ば、陰極3へ移動しようとする力と陰極付近の水位の上
昇による圧力とが平衡し、水は移動しなくなる。
Here, the cathode 3 side is not drained all the time, including during energization, to prevent the movement of water to the cathode 3 by electroosmosis. That is, the water in the soil tends to move to the cathode 3 by electroosmosis, but if the water is not drained on the cathode side, the force for moving to the cathode 3 and the pressure due to the rise in the water level near the cathode are balanced. , The water stops moving.

【0021】かかる状態で通電を行えば、陰イオン汚染
物は、従来のように電気浸透による陰極3への水の移動
にあえて逆らうことなく、電気泳動によって自然に陽極
2に集まる。しかも、陽極2に近づくほど酸性度が上昇
して陰イオン汚染物の溶解度が高くなるので、より効率
的な回収が可能となる。
If electricity is supplied in such a state, the anionic contaminants naturally collect on the anode 2 by electrophoresis without opposing the movement of water to the cathode 3 due to electroosmosis as in the prior art. Moreover, the closer to the anode 2, the higher the acidity and the higher the solubility of the anion contaminants, so that more efficient recovery is possible.

【0022】なお、図3(b) のように電極を千鳥配置に
する場合、すべての電極に同時に通電するのではなく、
たとえば奇数番目だけを一定日数通電し、その後、偶数
番目を通電するというように通電を交互に行うことによ
り、中間に位置する陰イオン汚染物がいずれの側にも移
動しないということがないようにする。
When the electrodes are arranged in a staggered pattern as shown in FIG. 3 (b), not all the electrodes are energized at the same time.
For example, energizing only the odd number for a certain number of days and then energizing the even number alternately, so that the anion contaminants located in the middle do not move to either side. I do.

【0023】次に、陽極から回収された水を酸性環境の
ままイオン交換樹脂等を用いて水処理を行い、該水中の
陰イオン汚染物を分離除去する(ステップ103)。次
いで、陰イオン汚染物が除去された後の処理水を給水用
にリサイクルする(ステップ104)。
Next, the water recovered from the anode is subjected to a water treatment using an ion exchange resin or the like in an acidic environment to separate and remove anionic contaminants in the water (step 103). Next, the treated water from which the anionic contaminants have been removed is recycled for water supply (step 104).

【0024】陽極側で回収された水は酸性度が高い。し
たがって、これをアルカリにして一般的な水処理を行う
よりも、酸性環境をそのまま生かして陰イオン汚染物を
分離処理し、処理された後の処理水を給水用にリサイク
ルするようにすれば、陰イオン汚染物を溶解させやすい
水を土壌中に給水することができる。
The water recovered on the anode side has a high acidity. Therefore, rather than making this an alkali and performing general water treatment, if the anionic environment is used as it is to separate and treat the anion contaminants, and the treated water after treatment is recycled for water supply, Water that easily dissolves anionic contaminants can be supplied to the soil.

【0025】なお、陰イオン汚染物が分離除去された排
水は、工事終了後はpH処理して下水に放流する。
The wastewater from which the anion contaminants have been separated and removed is subjected to a pH treatment after the completion of the construction and discharged to sewage.

【0026】以上説明したように、本実施形態に係る陰
イオン汚染物の除去における電極配置方法によれば、陰
極側を非排水とし陽極側からのみ排水するようにしたの
で、CrO4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3
2-、CN-、PbO2 2-などの陰イオン汚染物は、電気浸透に
よる水の流れに邪魔されることなく、電気泳動によって
スムーズに陽極に到達し、かくして、陰イオン汚染物を
効率よく陽極に集めてこれを回収することが可能とな
る。
As described above, according to the electrode arrangement method for removing anionic contaminants according to the present embodiment, the cathode side is not drained and only the anode side is drained, so that CrO 4 2- , cr 2 O 7 2-, AsO 4 3-, AsO 3 3-, SeO 4 2-, SeO 3
2-, CN -, PbO 2 2- anion contaminants, such as, without being disturbed by the flow of water by electroosmosis, smoothly reach the anode by electrophoresis, thus efficiently anion contaminants This can be collected at the anode and collected.

【0027】また、陽極に近づくほど陰イオン汚染物の
溶解度が高くなるので該陽極付近を効率よく除染するこ
とができる。特に、多数の陰極を陽極の周囲に配置した
場合、陽極を中心とした広い範囲を除染することが可能
となる。さらに、これを千鳥状に配置すれば、広い範囲
にわたってくまなく除染することができる。また、トレ
ンチを形成してその中に陽極を直線状に配置し、その両
側に陰極を配置するようにすれば、汚染領域が帯状に拡
がっている場合に有効な電極配置方法となる。
Further, the solubility of the anionic contaminants increases as the distance from the anode increases, so that the vicinity of the anode can be efficiently decontaminated. In particular, when a large number of cathodes are arranged around the anode, it is possible to decontaminate a wide area around the anode. Furthermore, if these are arranged in a staggered manner, decontamination can be performed over a wide range. If a trench is formed, an anode is arranged linearly in the trench, and cathodes are arranged on both sides of the trench, an effective electrode arrangement method can be provided when the contaminated region is spread in a strip shape.

【0028】また、陰極非排水としたことによって電気
浸透による水の移動がなくなり、その分、給排水の量や
位置によって土壌中の水の流れを制御できるようにな
る。
In addition, the non-drainage of the cathode eliminates the movement of water due to electroosmosis, and accordingly the flow of water in the soil can be controlled by the amount and position of water supply and drainage.

【0029】また、排水中の陰イオン汚染物の分離除去
処理を酸性状態のまま行い、該処理水を給水用にリサイ
クルするようにしたので、土壌中の陰イオン汚染物が溶
解しやすい状態となり、いったんアルカリに戻して分離
除去し、これを給水用にリサイクルするよりも土壌中の
陰イオン汚染物をより効率的に回収除去することが可能
となる。
Further, the separation and removal of the anion contaminants in the wastewater is performed in an acidic state, and the treated water is recycled for water supply, so that the anion contaminants in the soil are easily dissolved. This makes it possible to more efficiently collect and remove anionic contaminants in the soil than to return to alkali once and separate and remove it, and then recycle it for water supply.

【0030】本実施形態では、炭素棒で構成した陽極を
ストレーナ管内に配設したが、ストレーナ管自体を陽極
としてもよい。
In this embodiment, the anode made of a carbon rod is provided in the strainer tube, but the strainer tube itself may be used as the anode.

【0031】また、本実施形態では、給水を陽極側から
行うようにしたが、給水位置については特に限定される
ものではなく、陽極側に加えてあるいはその代わりに電
極間の所望の位置で地表面から散水し、例えば電気分解
による損失分を補充するようにしてもよい。
In this embodiment, water is supplied from the anode side. However, the water supply position is not particularly limited. In addition to or instead of the anode side, water is supplied at a desired position between the electrodes. Water may be sprinkled from the surface to replenish the loss due to electrolysis, for example.

【0032】また、本実施形態では、酸性環境のまま水
処理を行う方法として、イオン交換樹脂を用いた方法を
採用したが、かかる方法に代えて、例えば砒素やセレン
を鉄化合物に吸着させて除去を図る方法を採用してもよ
い。
In the present embodiment, a method using an ion exchange resin is employed as a method for performing water treatment in an acidic environment. Instead of such a method, for example, arsenic or selenium is adsorbed on an iron compound. A removal method may be employed.

【0033】また、本実施形態では、排水された水を酸
性環境のまま水処理するようにしたが、必ずしも酸性の
ままで処理する必要はなく、いったんアルカリ性にして
から陰イオン汚染物の分離除去水処理を行うようにして
もよいし、かかる場合、処理水を給水用にリサイクルし
なくてもよい。
In this embodiment, the drained water is treated in an acidic environment. However, it is not always necessary to treat the discharged water in an acidic environment. Water treatment may be performed, and in such a case, the treated water need not be recycled for water supply.

【0034】(第2実施形態)(Second Embodiment)

【0035】次に、第2実施形態について説明する。な
お、第1実施形態と実質的に同一の部品等については同
一の符号を付してその説明を省略する。
Next, a second embodiment will be described. Note that components that are substantially the same as those in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.

【0036】図5は、第2実施形態に係る陰イオン汚染
物の除去における電極配置方法の手順を示したフローチ
ャートである。本実施形態の除去における電極配置方法
は、図6に示すように既設構造物11の下方を除染する
場合に特に適した方法であり、まず、既設構造物11の
下方に拡がる汚染土壌1の側方に作業用立坑16を掘削
し、該立坑16から陰極12および陽極13を陰極12
が上段になるようにほぼ平行に埋設する(図5、ステッ
プ111)。
FIG. 5 is a flowchart showing a procedure of an electrode arrangement method for removing anionic contaminants according to the second embodiment. The electrode arrangement method in the removal of the present embodiment is a method particularly suitable for decontaminating below the existing structure 11 as shown in FIG. 6, and firstly, of the contaminated soil 1 spreading below the existing structure 11. A working shaft 16 is dug to the side, and a cathode 12 and an anode 13 are
Are buried almost in parallel so as to be in the upper stage (FIG. 5, step 111).

【0037】ここで、陰極12および陽極13は、それ
ぞれ導電性中空管に多数の孔を設けて形成してあり、電
極とストレーナ管とを兼用させてある。また、陰極12
内には給水管14を、陽極13内には排水管15をそれ
ぞれ配設してあり、該給水管14、排水管15は図示し
ない給排水ポンプに接続してある。
Here, each of the cathode 12 and the anode 13 is formed by providing a large number of holes in a conductive hollow tube, and serves as both an electrode and a strainer tube. In addition, the cathode 12
A water supply pipe 14 is provided therein, and a drainage pipe 15 is provided in the anode 13. The water supply pipe 14 and the drainage pipe 15 are connected to a water supply / drainage pump (not shown).

【0038】このように電極を配置した後、給水管14
および陰極12を介して土壌1内に給水するとともに、
陽極13および陰極12の間に直流電圧を印加して通電
する。そして、給水した水を排水管15を介して陽極1
3の側から排水し、陰イオン汚染物を回収する(ステッ
プ112)。
After arranging the electrodes in this way, the water supply pipe 14
And water into the soil 1 via the cathode 12 and
A DC voltage is applied between the anode 13 and the cathode 12 to conduct electricity. Then, the supplied water is supplied to the anode 1 through the drain pipe 15.
Drain from side 3 to collect anionic contaminants (step 112).

【0039】ここで、陰極12側は通電中をはじめ終始
非排水とし、電気浸透による陰極12への水の移動を阻
止しておく。すなわち、土壌中の水は、電気浸透によっ
て陰極12へ移動しようとするが、陰極側で非排水とし
ておけば、周囲の地下水位よりも若干上昇した位置で陰
極12へ移動しようとする力と陰極付近の水位の上昇に
よる圧力とが平衡し、水は上方へ移動しなくなる。
At this time, the drain of the cathode 12 is not drained from the start to the end of the operation, and the movement of water to the cathode 12 by electroosmosis is prevented. That is, the water in the soil tends to move to the cathode 12 by electroosmosis, but if the water is not drained on the cathode side, the force to move to the cathode 12 at a position slightly higher than the surrounding groundwater level and the cathode The pressure due to the rise of the nearby water level is balanced, and the water does not move upward.

【0040】かかる状態で通電を行えば、陰イオン汚染
物は、従来のように電気浸透による陰極12への水の移
動にあえて逆らうことなく、電気泳動および自重によっ
て自然に陽極13に集まる。しかも、陽極13に近づく
ほど酸性度が上昇して陰イオン汚染物の溶解度が高くな
るので、より効率的な回収が可能となる。
When electricity is supplied in such a state, the anion contaminants naturally collect on the anode 13 by electrophoresis and self-weight without opposing the movement of water to the cathode 12 by electroosmosis as in the conventional case. In addition, the closer to the anode 13, the higher the acidity and the higher the solubility of the anion contaminants, so that more efficient recovery is possible.

【0041】以下、第1実施形態と同様に水処理をして
陰イオン汚染物を分離除去し(ステップ113)、分離
除去した後の処理水を給水用にリサイクルする(ステッ
プ114)。
Thereafter, water treatment is carried out in the same manner as in the first embodiment to separate and remove anionic contaminants (step 113), and the treated water after separation and removal is recycled for water supply (step 114).

【0042】以上説明したように、本実施形態に係る陰
イオン汚染物の除去における電極配置方法によれば、第
1実施形態と同様の効果に加えて、既設構造物の下方領
域であってもこれを効率的に除染することができるとい
う効果を奏する。
As described above, according to the electrode arrangement method for removing anionic contaminants according to the present embodiment, in addition to the same effects as those of the first embodiment, even in the region below the existing structure. There is an effect that this can be efficiently decontaminated.

【0043】[0043]

【発明の効果】以上述べたように、本発明の陰イオン汚
染物の除去における電極配置方法に寄れば、陰イオン汚
染物を効率よく土壌内から回収することができる。
As described above, according to the electrode arrangement method for removing anionic contaminants of the present invention, anionic contaminants can be efficiently recovered from soil.

【0044】[0044]

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係る陰イオン汚染物の除去にお
ける電極配置方法の手順を示したフローチャート。
FIG. 1 is a flowchart showing a procedure of an electrode arrangement method in removing anionic contaminants according to a first embodiment.

【図2】第1実施形態に係る陰イオン汚染物の除去にお
ける電極配置方法の作用を説明したものであり、(a)は
通電前、(b)は通電中の状態を示した図。
FIGS. 2A and 2B are diagrams illustrating an operation of an electrode arrangement method in removing anionic contaminants according to the first embodiment, wherein FIG. 2A illustrates a state before energization and FIG. 2B illustrates a state during energization.

【図3】電極配置例を示した平面図であり、(a) は陽極
の周囲に多数の陰極を配置した例、(b) はこれを千鳥配
置にした例。
FIG. 3 is a plan view showing an example of an electrode arrangement, wherein (a) shows an example in which a large number of cathodes are arranged around an anode, and (b) shows an example in which they are arranged in a staggered arrangement.

【図4】電極配置例を示した別の平面図。FIG. 4 is another plan view showing an example of an electrode arrangement.

【図5】第2実施形態に係る電極配置方法の手順を示し
たフローチャート。
FIG. 5 is a flowchart showing a procedure of an electrode arrangement method according to a second embodiment.

【図6】第2実施形態に係る電極配置状況を示した断面
図。
FIG. 6 is a sectional view showing an electrode arrangement state according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 汚染土壌 2、13 陽極 3、12 陰極 4 ストレーナ管 1 Contaminated soil 2,13 Anode 3,12 Cathode 4 Strainer tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 光本 純 東京都清瀬市下清戸4丁目640 株式会社 大林組技術研究所内 Fターム(参考) 4D004 AA41 AB03 AC07 CA44 CB50 CC03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Jun Mitsumoto 4-640 Shimoseito, Kiyose-shi, Tokyo F-term in Obayashi Corporation Technical Research Institute Co., Ltd. 4D004 AA41 AB03 AC07 CA44 CB50 CC03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陰イオン汚染物を含む土壌内に陽極およ
び陰極をほぼ鉛直に埋設し、次に、前記土壌に適宜給水
するとともに前記陽極および前記陰極間に直流電圧を印
加して通電を行い、陰極側で非排水とすることで電気浸
透による前記陰極への水の移動を阻止しつつ給水された
水を前記陽極側からのみ排水する方法であって、前記陰
極を前記陽極の周囲に多数配設することを特徴とする陰
イオン汚染物の除去における電極配置方法。
1. An anode and a cathode are buried substantially vertically in soil containing anionic contaminants. Then, water is supplied to the soil as appropriate, and a DC voltage is applied between the anode and the cathode to conduct electricity. A method of draining supplied water only from the anode side while preventing movement of water to the cathode by electroosmosis by making the cathode side non-draining, wherein a large number of the cathodes are provided around the anode. An electrode arrangement method for removing anionic contaminants, which is provided.
【請求項2】 陰イオン汚染物を含む土壌内に陽極およ
び陰極をほぼ鉛直に埋設し、次に、前記土壌に適宜給水
するとともに前記陽極および前記陰極間に直流電圧を印
加して通電を行い、陰極側で非排水とすることで電気浸
透による前記陰極への水の移動を阻止しつつ給水された
水を前記陽極側からのみ排水する方法であって、前記陽
極を所定の間隔でほぼ直線状に配置し、該陽極の両側に
前記陰極をほぼ平行配置することを特徴とする陰イオン
汚染物の除去における電極配置方法。
2. An anode and a cathode are buried substantially vertically in soil containing anion contaminants, and then water is appropriately supplied to the soil and a DC voltage is applied between the anode and the cathode to conduct electricity. A method of draining supplied water only from the anode side while preventing movement of water to the cathode by electroosmosis by making the cathode side non-draining, wherein the anode is substantially straight at predetermined intervals. And disposing the cathode substantially parallel to both sides of the anode.
【請求項3】 前記土壌内にトレンチを形成し、該トレ
ンチ内に前記陽極を配置してその間を砕石で充填すると
ともに、前記陰極を前記トレンチの両側にほぼ平行に打
ち込まれた鋼矢板で構成した請求項2記載の陰イオン汚
染物の除去における電極配置方法。
3. A trench is formed in the soil, the anode is arranged in the trench, and a space therebetween is filled with crushed stone, and the cathode is formed of a steel sheet pile driven substantially parallel to both sides of the trench. 3. The method for arranging electrodes in removing anionic contaminants according to claim 2.
JP2001147347A 2001-05-17 2001-05-17 Electrode placement method for removal of anionic contaminants Expired - Lifetime JP3575544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147347A JP3575544B2 (en) 2001-05-17 2001-05-17 Electrode placement method for removal of anionic contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147347A JP3575544B2 (en) 2001-05-17 2001-05-17 Electrode placement method for removal of anionic contaminants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04832296A Division JP3214607B2 (en) 1996-02-09 1996-02-09 Electrode placement method for removal of anionic contaminants

Publications (2)

Publication Number Publication Date
JP2002001298A true JP2002001298A (en) 2002-01-08
JP3575544B2 JP3575544B2 (en) 2004-10-13

Family

ID=18992847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147347A Expired - Lifetime JP3575544B2 (en) 2001-05-17 2001-05-17 Electrode placement method for removal of anionic contaminants

Country Status (1)

Country Link
JP (1) JP3575544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012445A (en) * 2008-07-07 2010-01-21 Tosaka Takuya Method for treating contaminated soil
JP2021062342A (en) * 2019-10-16 2021-04-22 株式会社島津製作所 Soil purifier and soil purification method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012445A (en) * 2008-07-07 2010-01-21 Tosaka Takuya Method for treating contaminated soil
JP4718585B2 (en) * 2008-07-07 2011-07-06 登坂 卓也 Treatment method of contaminated soil
JP2021062342A (en) * 2019-10-16 2021-04-22 株式会社島津製作所 Soil purifier and soil purification method
JP7268572B2 (en) 2019-10-16 2023-05-08 株式会社島津製作所 SOIL CLEANING DEVICE AND SOIL CLEANING METHOD

Also Published As

Publication number Publication date
JP3575544B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US5584980A (en) Electric field method and apparatus for decontaminating soil
Schultz Electroosmosis technology for soil remediation: laboratory results, field trial, and economic modeling
Trombly Electrochemical remediation takes to the field
JP2006346567A (en) In-situ purification method of contaminated soil
JP3178581B2 (en) How to clean contaminated soil
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
JP3214607B2 (en) Electrode placement method for removal of anionic contaminants
JP4718585B2 (en) Treatment method of contaminated soil
JP3575544B2 (en) Electrode placement method for removal of anionic contaminants
JP2000084535A (en) Method of cleaning contaminated soil by volatile compound
JP2006346519A (en) In-situ purification method of contaminated soil
JP3816438B2 (en) Treatment of contaminated groundwater and soil by electrode reduction method
JP3381764B2 (en) How to clean contaminated soil
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JPH115077A (en) Contaminated ground purification system
JP3180313B2 (en) Anion contaminant removal equipment
JP3214606B2 (en) How to remove anionic contaminants
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JP3610916B2 (en) How to remove anionic contaminants
JP3142050B2 (en) Method for removing and cleaning anionic contaminants
JP3214600B2 (en) How to clean contaminated soil
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
JP2005161171A (en) Soil pollution cleaning structure and method for the same
JPH11221553A (en) Purifying method of heavy metal contamination soil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6