JP2001521650A - 点対のパララックス幾何学を使用する3次元シーン処理の方法及び装置 - Google Patents

点対のパララックス幾何学を使用する3次元シーン処理の方法及び装置

Info

Publication number
JP2001521650A
JP2001521650A JP53295297A JP53295297A JP2001521650A JP 2001521650 A JP2001521650 A JP 2001521650A JP 53295297 A JP53295297 A JP 53295297A JP 53295297 A JP53295297 A JP 53295297A JP 2001521650 A JP2001521650 A JP 2001521650A
Authority
JP
Japan
Prior art keywords
parallax
images
points
scene
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53295297A
Other languages
English (en)
Inventor
イラニ,マイケル
アナンダン,パーマナバン
Original Assignee
サーノフ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サーノフ コーポレイション filed Critical サーノフ コーポレイション
Publication of JP2001521650A publication Critical patent/JP2001521650A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/579Depth or shape recovery from multiple images from motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/221Image signal generators using stereoscopic image cameras using a single 2D image sensor using the relative movement between cameras and objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Abstract

(57)【要約】 3次元シーンを表す多重画像フレームにわたる点対の面像運動間の幾何学的関係を処理する方法及び装置。この関係は、任意の平らの表面に対する点のパララックス運動に基づき、エピポール幾何学を含まない。その画像座標及びそのパララックス変位だけに基づいた制約は、(平面に対する)その投影構造に関する任意の点対(506)に対する二つのフレーム(504)にわたり得られる。同様に、多重フレームにわたる点対間の3次元剛性制約が得られる。これらのパララックスベース制約に対して開示された応用は、3次元シーン構造の再生(512)と、カメラで誘導された運動がある場合の移動物体の検出(510)と、所与のビューセットに基づいた新しいカメラビューの合成とを含んでいる。更に、この方式は、3次元シーン解析に対する困難な状況、例えば、少数のパララックスベクトルセットだけがある場合、及び別々に移動する物体がある場合、を取り扱うことができる。

Description

【発明の詳細な説明】 点対のパララックス幾何学を使用する3次元シーン処理の方法及び装置 発明の分野 本発明は、一般に画像処理システム、より詳細には3次元シーン内の点対のパ ララックス幾何学を処理する方法及び装置に関するものである。 発明の背景 画像シーケンスからの3次元シーン解析は多数の目的を有する。これらの目的 は、次のものを含むが、これに限定されない。即ち、(i)3次元シーン構造の 再生、(ii)カメラで誘起される運動がある場合の移動物体の検出、及び(i ii)所与のビューセットに基づいた新しいカメラビューの合成。 これらの種類の問題の伝統的な取り組み方は、フレーム対の間のエピポール幾 何学を再生し、それからこの情報を適用し、上記の目的を達成する。しかしなが ら、この取り組み方はエピポール幾何学の再生に関連する障害で悩まされる。 3次元シーン解析の最近の研究方法は、運動を平面のホモグラフィ及び残留パ ララックスの組み合わせに分解することによってエピポール幾何学を再生する際 の困難の幾つかを解決しようと試みた。残留パララックス運動は、投影構造及び カメラ系間の平行移動によって決まる。これらの方法はカメラの回転を推定する 際のあいまいさの幾つかを取り除くが、これらの方法は、多数の状況の下で困難 である可能性があるエピポールそのものの明確な推定をなおも必要とする。特に 、エピポールが画像の中心から著しく離れた所にあり、パララックスの運動ベク トルが互いにほとんど平行である場合、エピポール推定は不十分に条件付けられ ている。更に、少数のパララックスベクトルだけがあり、シーンが移動物体を含 む場合、これらの物体はエピポール推定に誤って影響を及ぼす。 一般に、多点幾何学の処理は、シーンが静止しており、形状推定のために選択 された全ての点が単一の剛体にあることが知られている事実によるものであると 仮定する。その最新の形式において、この種の方法は欠点を有し、例えば、これ らの方法は、特に別々の移動物体による画像運動量が無視できない場合、ダイナ ミックシーンにおける形状再生の問題を扱わない。発明の概要 本発明は、シーンを表す複数の2次元画像を受信し、複数の画像内部の点対の ためのパララックス関連制約を計算し、複数の画像内部の所与の点がパララック ス関連制約と一致するかどうかを表す情報を生成するために複数の画像内部の複 数の点にパララックス関連制約を適用し、受信された複数の画像に関連する画像 処理タスクのために生成情報を使用する画像処理のための技術を含むものである 。 図面の簡単な説明 本発明の教示は、添付図面にとともに下記の詳細図面を考察することによって 容易に理解することができる。 図1は、3次元シーン解析システムのブロック図を示す。 図2は、平面ホモグラフィ+パララックス分解の幾何学的図を提供する。 図3は、対状パララックス制約の幾何学的図を示している。 図4は、エピポール推定が信頼できないが、相対構造制約はシーン内部の相対 構造を再生するために確実に使用することができるシーンの幾何学的図を示して いる。 図5は、パララックス制約を利用するルーチンの流れ図を示している。 図6及び図7は、パララックス幾何学及びエピポールの双対の図を提供する。 図8a〜図8gは、単一パララックスベクトルによる形状再生中に使用され、 発生される一連の画像を示している。 図9a〜図9bは、ボール及び木を使用したまばらなパララックス情報と一致 しない3次元運動の信頼できる検出を示している。 図10a〜図10fは、単一パララックスベクトルによる移動物体検出を示す 一連の画像である。 図11a〜図11fは、図10a〜図10fのような、単一パララックスベク トルによる一連の画像である。 理解を容易にするために、同一の参照番号は、可能である場合、図に共通であ る同一要素を示すために使用されている。詳細な説明 概要 本発明は、いろいろな画像処理タスクにおいて、二つあるいはそれ以上の画像 内部の二つあるいはそれ以上の点のパララックス変位間の幾何学的関係を使用す る。本発明は、これらの関係を(i)3次元シーン構造の再生、(ii)カメラ で誘起される運動がある場合の移動物体の検出、及び(iii)所与のビューセ ットに基づいた新しいカメラビューの合成のようないろいろな画像処理タスクに 応用する。 本発明の重要な利点は、困難な画像処理の場合(例えば、少数のパララックス ベクトルがある場合、エピポール推定が不十分な条件付けがされ、移動物体があ る場合)効果的に作動できる能力である。本発明は処理中エピポールの再生を必 要としない。従って、本発明はエピポールの正確な再生が困難である場合に応用 する。更に、少数のパララックスベクトルセットだけが使用可能である場合、3 次元シーン解析のための本技術が応用可能である。実際、単一点の平面パララッ クスは、全シーンの構造を再生し、他の点が静止シーンあるいは移動物体にある かどうかを決定する基準として使用することができる。 ここに示されている結果は、平面ホモグラフィを取り消した後の点の残留パラ ラックス変位によって示される。画像運動をホモグラフィ+パララックスに分解 することは、回転+平行移動に分解するよりもより頑丈で、より一層一般的であ るように示されている。画像対から平面ホモグラフィを推定する技術は、ここに 参照により組み込まれる、J.R.Bergen,P.Anandan,K,J.Hanna,及びR.Hingoran i著の“階層モデル方式の運動推定(Hierarchical model-based motion estlim a tion)”(European Conference on Computer Vision,pages237-252,Santa Marga rita Ligure,May 1992)に記載されている。 本発明では、二つの点の投影構造をその画像位置及びそのパララックス変位に 関連付けるパララックスベース構造制約が得られる。三つのフレーム間の点対の 相対投影構造を取り除くことによって、これらのフレームにわたって剛性物体と して移動する二つの点のパララックス変位に対するパララックスベース剛性制約 と呼ばれる制約が得られる。 パララックスベース剛性制約を得るための他の方法も下記に示されている。代 替の導出において、制約は代数的よりもむしろ幾何学的に決定される。そのよう にすることは、マルチフレーム剛性制約の簡単で直観的な幾何学的説明及びエピ ポールに対する双対の導出をもたらす。 これらのパララックスベース制約を3次元シーン解析で三つの重要な問題を解 決することに応用する例も示されている。この応用は、(i)3次元シーン構造 の再生、(ii)カメラで誘起される運動がある場合の移動物体の検出、及び( iii)所与のビューセットに基づいた新しいカメラビューの合成を含んでいる 。 最後に、平面ホモグラフィ成分を含むことによる全画像運動の制約の普遍化が 示されている。 例示的な実施例 図を参照すると、図1は、本発明を実施するのに適している3次元シーン解析 システム100のブロック図を示す。このシステムは、画像供給源102と、コ ンピュータシステム104と、1つあるいはそれ以上の装置106と、1つある いはそれ以上の入力装置108とを含んでいる。画像供給源102は、ビデオカ メラ、赤外線カメラ、あるいはシーンを示す一連の2次元画像を生成するある他 のセンサであってもよい。代替的に、画像供給源は、シーンを示す逐次画像を記 憶するビデオテープレコーダのような記憶装置、ディスク駆動装置あるいは他の 手段であってもよい。このシステムは一般にデジタル画像を処理する。従って、 画像供給源がアナログ画像を発生する場合、ディジタイザ(図示せず)は画像供 給源とコンピュータシステムとの間で使用される。 汎用コンピュータ104は、画像処理、シーン解析及び面像ディスプレイを容 易にする。特に、コンピュータシステムは、データバッファ110と、中央処理 装置(CPU)112と、サポート回路114と、ランダムアクセスメモリ(R AM)116と、読み出し専用メモリ(ROM)118と、ディスプレイドライ バ120とを含んでいる。更に、ユーザは、キーボード、マウス、トラックボー ル、タッチパッド等の1つあるいはそれ以上の入力装置108によってコンピュ ータシステムと対話する。更に、コンピュータシステムは、コンピュータモニタ のような出力ディスプレイ装置106上に画像及びいろいろなグラフィックイン タフェースディスプレイ(スクリーン)を表示する。代替的に、コンピュータシ ステムは、プリンタのような他の出力ディスプレイ装置とも対話し、コンピュー タモニタ上に表示される任意のディスプレイの“ハードコピー”を提供する。 データバッファ110は、画像供給源とCPUとの間にデータ速度等化(フレ ームバッファリング)を提供する。典型的には、このバッファはファーストイン ・ファーストアウト(FIFO)バッファである。このようなバッファは一般的 には一定のデータ速度を提供すると同時に画像供給源によって生成することがで きるデータ速度の汎用性を提供するために使用される。 CPUは、典型的にはパワーPC、ペンティアム、あるいは他の通常使用可能 なプロセッサのような汎用プロセッサである。パワーPCはニューヨーク州のア ーモンク市のIBMの登録商標であり、ペンティアムはカリフォルニア州のサン タクララ市のインテル社の登録商標である。本発明のソフトウェアインプリメン テーションは任意の特定のプロセッサで実行する必要がなく、本発明のルーチン は、任意の種類のプロセッサあるいは並列処理コンピュータ環境におけるプロセ ッサの組み合わせで実行できる。更に、汎用コンピュータを使用するよりもむし ろ、シーン解析は実時間画像プロセッサ内部で行うことができる。 CPU112は、RAM116、ROM118及びコプロセッサ、クロック回 路、キャッシュ、電源回路及び他の周知回路のようなサポート回路114のよう ないろいろな他の回路とともに作動する。これらの様々なコンピュータの操作及 び関係は当分野で周知であり、更なる説明は不要である。ディスプレイドライバ 120は、出力装置106によって必要されるビデオカードプリンタドライバあ るいは他の共通ドライバソフトウェアあるいはハードウェアであってもよい。 RAM116は、本発明のソフトウェアインプリメンテーションを記憶する。 典型的には、本発明のルーチンは大容量記憶装置(図示せず)に記憶され、CP U112によって実行される場合、RAM116に一時記憶するために読み出さ れる。図1において、本発明は3次元シーン解析ルーチン122において具体化 される。 点対のパララックスベース制約 ビデオカメラによって画像を形成されるような3次元シーンを示す二つの画像 フレーム間の点対のパララックス運動の制約が下記に記載されている。得られた 制約は、いかなる追加情報もなしに、特にカメラエピポールの再生を必要としな いで、そのパララックスベクトルだけから2点の不変の相対3次元構造を再生す るために使用できる。 パララックス制約は、任意の画像点対の剛性制約(三つの線の制約と同様であ る)を形成するために多重フレームに拡大される。即ち、独立して移動する3次 元物体がある二つの点の3次元運動の不一致は、任意の3次元情報を推定する必 要なしに三つ(あるいはそれより多く)のフレームの中のそのパララックス変位 に基づいて検出することができる。 パララックス制約を得るために、最初に、画像運動をホモグラフィ(即ち任意 の平面の画像運動)及び残留パララックス変位に分解することが記載されている 。この分解は当該技術分野で周知である。 1.平面パララックス表記方法 像平面上に投影されるようなシーン点の対応する座標をそれぞれ示すものとする 。 ものとする。 Sは任意の平らの表面であり、A’は、第2のフレームと第1フレームとの間 に平らの表面Sを整列させるホモグラフィであるとする(即ち、全ての点に対しることができることを示し得る。 は、第1フレームの座標系に示されるような二つのフレーム間の3次元平行移動 であり、dNは平らの表面SからのPの距離であり、dは第2のカメラ中心から の平面までの距離である。 ある。 る。 式(1)を画像変位の形式に再記述することによって、同次座標において下記 が、 2次元画像座標において、下記がス2次元運動を示している。 同様に、TZ=0 である場合(式(2))下記のようになる。 式(4)及び(5)は紙の残りに使用されるパララックス表記法の形式を提供 する。これらは2次元画像座標によって示されることに注目されたい。TZ=0 およびTZ≠0に対して別々にパララックス表記方法を得たが、これらは統合さ れ、下記の節で単一のケースとして取り扱われる。 2.パララックスベース構造制約 とによって始める。式(4)から、下記が得られる。 とすると、下記となる。 従って、 である。 を得る。 す。 ある。従って、二つの点のピクセル座標及びパララックスベクトルによって下記 のように再記述できる。 式(10)は、二つの点の構造パラメータ(g1およびg2)の制約をその画 像(ピクセル)座標及びそのパラメータベクトルだけを使用して提供する。 g1およびg2は第2のビューに依存する。しかしながら、そのパララックス よって下記のように再記述することができる。Z=0である場合、式(11)より強い制限が導出される 式(11)がなお成り立つ。二つの場合を区別するためにTZの事前の知識がな いために、これは重要である。 (11)から次のように、 あるいはより正確には下記のように、 取り出すことができる。 ある。ここでACおよびABは図3で規定される。 式(12)の制約の利点は、一方の点が他方の点状に示されるのと同じ量の情 報を使用して、エピポールの計算を遂行する必要なしに二つの点の位置及びパラ ラックスベクトルから直接この情報を提供することにある。 図4は、エピポールを推定することが信頼できないのに対して、相対構造を式 (12)から直接推定することが信頼性がある構成の例を示している。 3.パララックスベース剛性制約 この節では、いかにパララックスベース構造制約が構造パラメータもカメラの 構造のどちらも含んでいない画像点対の剛性制約を形成するために多重フレーム に拡大するかが記載されている。多重フレームにわたる剛性 きる。 任意の二つのフレームjおよびkに対する式(12)の構造不変動制約を使用 して、下記のものを得る。 分母を掛けることによって三つのフレーム(基準フレーム、フレームj、及び フレームk)にわたる二つの点の剛性制約が下記のように得られる。 パララックス運動軌跡の制約を示している。従って、式(13)の剛性制約は、 カメラ幾何学あるいは構造パラメータのいずれかを推定する必要がなく、フレー ムだけの間のそのパララックス運動に基づいて二つの画像点の3次元運動の不一 致(即ち、二つの画像点が同じあるいは異なる3次元の移動物体がある3次元点 の投影であるかどうかを示す)を検出するために適用することができる。多点にわたる剛性 多重フレームにわたる点対を考察する代わりに、代替法は異なる形式の剛性制 約を見つけるために二つのフレームにわたる多点を考察することにある。 式(12)の形状不変動制約を使用すると下記のようになる。 等式を使用すると、下記のようになり、 分母を掛けて、フレームの対にわたる三つの点に対する剛性制約を下記のように 得る。 剛性制約(14)の利点は、剛性制約(14)が二つの点が第3の点上に与え ることができるのと同じ量の情報を使用して、エピポールの不安定な計算を遂行 する必要がなく、三つの点からの位置及びパララックスベクトルから直接この情 報を提供するということである。 B.パララックス幾何学及びエピポールデュアル この節において、パララックスベース剛性制約を得る異なる方法が記載されて いる。制約を代数的に得るよりもむしろ、他の導出は幾何学を使用する。これは 、多重フレームの剛性制約の簡単で、直観的な幾何学的表示及びエピポールに対 す る双対点の導出をもたらす。この別個の画像点(エピポールデュアル)は示され るけれども、剛性制約そのものは、ちょうどエピポールそのものの推定を必要と しないようにデュアルエピポールの推定を必要としない。 図6は、二つのフレーム間の点対の平面パララックスに関連した3次元の幾何 学的構造を示している。この図において、Sは平らな表面であり、PおよびQは 二つのシーン点である。図2の場合のように、PwおよびQwは、平面Sに対する Rは、平面Sに対するPおよびQを接続する直線の交点であるとする。点P、 Q、R、Pw、Qwは同じ平面にあることに注目されたい。従って、PwおよびQw ならびにRは、同一直線上にある。もちろん、P、QおよびRは制約により同一 直線上にある。 影であるので、次のことを推論できる。 る。 図7は、直線の集束を示している。この図を参照すると、直線qC、pBおよ びrAは互いに平行であり、直線qprおよびCABを交差する。即ち、 同様に、 従って、 これは式(13)で得られた剛性制約と同じである。しかしながら、剛性制約そ を必要としないことに注目されたい。 複数のパララックスベクトルの交点、即ち、各画像点をフレーム対間のそのゆが 対及び全ての他のフレームからの対応するゆがみ点対を接続する全ての直線の交 点である。 C.対状のパララックス幾何学の応用 この節において、そのいろいろな形式におけるどんな対状のパララックス幾何 学も、3次元シーン解析、特に、(i)移動物体の検出、(ii)形状再生、( iii)新しいビュー発生における幾つかの周知の問題点を処理する研究の方法 を提供する。パララックス制約は、最初に“より複雑な”問題を解決する必要が ないこれらの問題点を解決する機能を提供する。 図5は、式(12)(あるいは等価的に式(11))の形状制約および式(1 3)及び(14)の剛性制約を使用する3次元シーン解析を実行する処理の流れ 図を示している。この処理は、ステップ502で始まり、ステップ504に進む 実行可能なソフトウェアルーチン500として示されている。ステップ504で 、ルーチンには複数の入力画像が提供される。ステップ506で、ルーチンは、 画 れから、ステップ508で、ステップ506で決定された各運動軌跡に対して、 式(11)、(12)、及び(14)の制約の1つあるいはそれ以上は全ての他 の点に対して適用される。ルーチン500は、1つあるいはそれ以上の画像処理 タスク内部でステップ508からの情報(即ち、制約と一致するような幾つかの 画像点及び制約と一致しない幾つかの画像点を示す情報)を使用する。これらの タスクは、移動物体検出(ステップ510)、形状再生(ステップ512)、及 び新しいビュー生成(ステップ514)を含むが、これに限定されない。本発明 の技術のこれらの具体的な応用が後述される。 1.平面パララックス運動の推定 この節に示された実験を実行するために使用された平面パララックス運動の推 定は、二つの連続する計算ステップ、即ち、(i)検出平面パララックス運動を 補償する2次元画像アライメント(即ち、2次元パラメトリック変換の形式のホ モグラフィ)及び(ii)整列画像間の残留画像変位(即ち、パララックス)の 推定を使用して行われた。このようなシステムは、1996年2月12日に出願 された米国仮特許出願第60/011,496号(代理人事件番号第12040 号)に開示され、参照によりここに組み込まれる。 2.形状再生 パララックスベース構造制約(式(12))は、そのパララックスベクトルか ら直接点対間の3次元相対構造を再生するために使用できる。これは、全シーン の構造が(非ゼロパララックスを有する)単一基準画像点に対して再生できるこ とを意味する。制約(式(12))の分母がゼロになる傾向がある場合、即ち、 そのパララックスベクトルの方向に基準点を通過する直線上にある点に対して特 異性が生じる。 図8a〜図8gは、単一基準点に対して全シーンの構造を再生する例を示して いる。玩具の自動車および箱でカバーされたヘアーピースの携帯カメラで得られ た三つのビューは、その高さが測定されたソースデータとして使用された。検出 された2次元平面運動はヘアーピースの平面運動であった(図8d)。非ゼロの 平面パララックスを有する単一点は相対形状を推定する基準点として選択された (図8e)。図8fは、二つのフレーム(図8b及び図8c)からの全シーンの 再生相対画像を示している。画像境界に近い領域は無視された。得られた結果は 、基準点のパララックスの方向に特異な直線に沿うことを除いてかなり正確であ った。特異な直線は図8fで明らかである。 特異性は取り除くことができ、計算構造の特性は、多重フレームを使用するこ とあるいは複数の基準点を使用することのいずれかによって改善することができ る。即ち、 ・多重フレーム:特異性は、そのエピポールが同一直線上にないならば、多重 フレームを使用して取り除かれる。エピポールが同一直線上にないことは基準画 像点のパララックス方向の変化によって検出することができる。 ・多点:特異性は、付加基準画像点を使用することによって取り除くことがで きる。付加基準点は、下記のように選択されるべきである。即ち、(i)付加基 準点は第1の基準点の特異な直線上にない(即ち、パララックスベクトルの方向 に)(付加基準点は直線に垂直な直線上に選択されるべきことが好ましい)及び (ii)付加基準点は、若干のフレームにわたり式(13)の剛性制約による第 1基準点と一致して移動するように最初に検証されるべきである。多重フレーム にわたる多基準点の組み合わせも使用できる。図8gは、図8fにおけるのと同 じ単一基準点に対する三つのフレームからの全シーンの構造を再生する例を示し ている。図8fの特異な直線は見えなくなった。 単一点に対してさえ比較的十分な構造情報を得る能力は、下記のいつくかの重 要な長所を有する。 ・この能力はエピポールの推定を必要としないので、甚だしい情報を必要とし ない。 ・構造を再生する従来の技術と違って、この能力は、演鐸的に単一の3次元移 動物体に属するものと知られている画像点の集合を有する必要がないようなダイ ナミックシーンを処理する能力を提供する。 ・この能力は単一パララックスベクトルによるので、この能力は、平面運動だ けが存在すると仮定する2次元場合と、パララックスデータを有することによる 3次元場合との間のギャップに埋めるために本来の連続的な方法を提供する。 3.移動物体検出 より簡単な2次元の場合において、多数の運動分析を処理するために多数の技 術が存在し、その場合、別個の移動物体の運動が2次元パラメトリック変換によ ってモデル化される。しかし、移動物体は背景の平面部分とは異なる2次元画像 運動を持つので、これらの方法は移動物体として平面のパララックス運動を伴う ポイントを検出する。 一般的な3次元の場合には、3次元運動の不一致の検出を必要とするので、移 動物体検出問題はもっと複雑である。典型的に、これはエピポールの外形を回復 することによって行われる。事前のセグメント化をせずに、多数の移動物体の存 在下にエピポールの外形(つまり、カメラの動き)を評価しようとすることは非 常に困難である。貧弱なパララックス情報しかない場合に、この問題はますます 深刻になる。 図9aは、幾つかの従来の技術によって提案されているように、エピポールド メインにおいてクラスター化技術を使用するときでさえも、多数の移動物体の存 在下にエピポールを評価することが、比較的多数の誤差を生じさせ得る構成例を グラフで表示している。3次元運動における不一致を検出するためにエピポール 計算方法に頼ると、このような場合における移動物体の検出に失敗する。 図9aにおいて、カメラは右に移動している。純粋なパララックス運動を伴う 唯一の静止物体は木のものである。ボールは別個に落下している。エピポールは eとして不正確に計算されるかもしれない。偽のエピポールeは両方の運動と一致 する。 カメラの外形または形状パラメータを評価する必要なしに、パララックス剛性 制約(式13)を適用して、多数の(三つまたはそれ以上の)フレームに関する それらの「パララックス」ベクトルから直接的に、別の画像点に対する1つの画 像点の3次元運動の不一致を検出することができる。これはパララックス情報が 最小であり、別個の運動を無視できない、図9aのような場合でさえも、「パラ ラックス」ベクトル(つまり、平面登録後の残差運動)を一貫して3次元の移動 物体に属する一致グループにクラスター化(セグメント化)するために有用なメ カ ニズムを提供する。図9bは、適用されたとき、式(13)の剛性制約がどのよ うにして三つのフレームに関する3次元的不一致を検出するかをグラフで示して いる。 図10a〜fは式(13)の剛性制約を使用して3次元的不一致を検出する例を 示している。このシーケンスでは、カメラは動いて(左から右に移動して)おり 、家や道路や道路標識に対する異なる大きさのパララックス運動を誘発している 。車は別個に左から右に動いている。検出された2次元平面運動は家のものであ った。平面パララックス運動は家に対する三つの画像の2次元登録後に計算され た(図10d)。道路標識上の1点が基準点として選択された(図10e)。図1 0fは選択された道路標識上の点に対する画像内の各々の点の不一致測定を表示 している。明るい領域は、式(13)の制約(つまり、道路標識の点に対して三 つのフレームで検出された3次元剛性における歪曲)を適用したときの、大きな 値を示す。道路標識の点に対して移動する3次元的不一致として検出された領域 は、車に対応する。画像の境界に近い領域は無視された。画像の他の全ての領域 は道路標識の点と共に移動する3次元一致として検出された。従って、未較正の カメラと仮定して、この方法は(2次元平面安定化の後)全ての非ゼロ残差運動 ベクトルを、(3次元的な意味で)一致して移動するグループに分割するための メカニズムを提供する。 図11a〜fは3次元不一致を検出するために、式(13)の剛性制約を使用す る別の例を示している。このシーケンスでは、カメラは左から右に飛ぶヘリコプ ターに装着され、家の屋根や木(画像の下部)の、及び(道路ぎわの)電柱の( 異なる大きさの)幾つかのパララックス運動を誘発する。道路を3台の車が別個 に移動する。検出された2次元平面運動は、地上表面のものであった(図11d )。基準点として木上の1点が選択された(図11e)。図11fは選択された基 準点に対して、画像の各点の不一致測定を表示している。明るい領域は、三つの フレームで検出された3次元不一致を示している。3台の車は選択された木の点 と一致せずに移動するものとして検出された。画像の境界に近い領域は無視され た。他の全ての画像領域は、選択された木の点と一致して移動するものとして検 出された。 先行技術では、三つの線に囲まれたテンソルの形態の三つのフレーム間の剛性 制約が、定期的な画像変位を使用して提示されてきた。しかし、それは1つの3 次元移動物体に属するために、先験的事実(priori)として知られている一組の 画像点のコレクションを持つことを必要とする。一致しない一組の点を選択する ことは、間違いの多いテンソルに導くことになり、従って偽の移動物体検出に導 く。 1つの点に対して3次元不一致を検出する本発明のパララックス剛性制約の能 力は、2次元アルゴリズム(これは平面運動とは異なる2次元運動が別個の移動 物体であると仮定する)と、3次元アルゴリズム(これは一致する一組の点に関 する事前の知識、あるいはその代わりに緻密なパララックスデータを有すること に依存する)間の橋渡しをする自然な方法を提供する。 4.新規なビューの発生 この節では、一組の「モデル」ビューを使用して新規なビューを発生させるた めの、パララックス剛性制約に基づくアプローチについて説明する。 エピポールの外形回復に基づいて新しいビューを発生させる方法は、新しい2 次元画像平面(虚像ビュー)上に再度情報を再投影するために、2次元情報のみ に基づいて、つまり2次元媒体から3次元媒体にわたって調査せずに新しいビュ ーを発生させる方法より、雑音に敏感であろう。新しいビュー発生のための後述 するアプローチは、エピポールの外形もしくは形状評価を必要としない。 二つの「モデル」フレームを仮定すれば、第1の(基準)フレームと第2のフ レーム間の全ての画像点に対して、平面パララックス運動を計算することができ る。非ゼロパララックスを持つ画像点が選択され、基準フレームから、発生すべ き「虚像」フレームまでのその点に対する「虚像」パララックスベクトルが定義 される。次に、剛性制約(式13)が基準フレームから虚像フレームまでの他の 全ての点の虚像パララックス運動に関して1つの制約を指定する。各々の2次元 パララックスベクトルが二つの成分(つまり、二つの未知数)を持つので、他の 全ての虚像パララックスベクトルを解くために、少なくとも二つの「虚像」パラ ラックスベクトルを指定することが必要である。一旦虚像パララックスベクトル が計算されると、基準箇像を二度ワープさせることによって:まず、その計算さ れた虚像パララックス分だけ各々の画像点をワープさせ、次に、虚像ホモグラフ ィに対する2次元虚像平面運動で全体のフレームを包括的にワープさせることに よって、新しい虚像ビューを作成することができる。 二つの虚像パララックスベクトルは一部の画像点に対しては十分な制約を提供 しないかもしれないことに注意されたい。これは二つの選択された基準点とそれ らのパララックスベクトルに対する、画像平面内のこれらの点の望ましくない位 置のためである。しかし、個別の点の虚像パララックスを確実に抑制するための 付加的な点として、抑制が強く信頼できる虚像パララックスを提供するのに十分 である他の画像点を(一旦それらの虚像パララックスが計算された後)使用する ことができる。 D.法則化されたパララックス制約 本節では、ホモグラフィが未知である場合でも、(パララックス運動に対立す るものとして)完全な画像運動を処理するために、対をなすパララックス制約( 式11、12、13、14)をどのようにして拡張できるかについて説明する。 これは物理的な平面を含まない場面を処理するのに有用である。未知のホモグラ フィパラメーターと点対の相対的投影構造に関して、二つのフレーム間の法則化 されたパララックス制約の形態を説明する。 式(1)と式(2)は以下のように1つの形態に統合できる: フレームまでの未知のホモグラフィである。それはその場面のどの平面にも関連 することができ、特に虚像面に関連することができる。重要なことは、構造を因 数分解する前に、まず上記と同様の方法でエピポールを因数分解することである 。 等式(16)は式の両側のベクトルが平行であることを必要とし、それは下記の 式に導く: が明確に与えられる。 法則化されたパララックス制約(17)はホモグラフィA'-、二つのフレーム 内の一対の点の画像座標、及び2点の相対的投影構造の式で表される。法則化さ れた制約はエピポールを含まない。 法則化されたパララックス制約は、全般的な2次元画像運動の新らしい暗黙の 表示を提案する。ホモグラフィ+エピポール+投影構造の式で2次元画像運動の 表示を調べるより、むしろそれはホモグラフィ+ペアの点の相対的投影構造の式 で、2次元画像運動の暗黙の表示を提案する。この表示はエピポールを含まない ので、多数のフレームに容易に拡張することができる。 二つのフレーム内の2点の画像位置の式で明示して表すことができる: 計算法は新しいカメラ位置に対して不変であるので、多数のフレーム(J及びk )に関して因数分解できる: それはその形態の剛性制約に導く: 式(19)は三つのフレームの全域での一対の点に関する剛性制約である。先 行技術の三つの線に囲まれたテンソルのように、それは三つのフレームの全域に わたる二つのホモグラフィのパラメータを必要とする。三つの線に囲まれたテン ソルとは異なり、それはエピポールを含まないが、その代わりに点の対に関して 表現される。 三つの線に囲まれた制約は初期の基準点に基づいており、テンソルの未知数を 制約するために、付加的な点が4つの直線的に別個の式(ホモグラフィのパラメ ータとエピポールの組み合わせである)を加える。 法則化されたパララックス剛性制約では、基準は一対の点である。この場合に も、付加的な点が4つの直線的に別個の剛性制約を加える。これらは(まだ一対 のフレーム内にある)付加的な3番目の点で等式(16)からTZを因数分解す ることを通して引き出され、三つのフレームに関する4つの直線的に別個の式を 形成することができる。 本発明の教示を含む様々な態様を図示し詳細に説明してきたが、当業者であれ ばこれらの教示を組み込む多くの他の変化した態様を容易に考案することができ るであろう。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),CA,JP,KR,M X

Claims (1)

  1. 【特許請求の範囲】 1. a) シーンを表す複数の2次元画像を受信するステップと、 b) 前記複数の画像内の一対の点に対するパララックス関連の制約をコンピュ ータ計算するステップであって、前記パララックス関連の制約は一対の点に対し て定めることができるエピポール幾何学とは独立したものであるステップと、 c) 前記複数の画像内の所与の点が前記パララックス関連の制約と整合性があ るかどうかを表す情報を発生させるために前記複数の画像内の複数の点に対して 前記パララックス関連の制約を適用するステップと、 d) 前記受信した複数の画像に関連した画像処理のタスクに対して前記発生さ せた情報を用いるステップと、 を含む画像処理方法。 2. a) シーンを表す複数の2次元画像を受信するステップと、 b) 前記複数の画像内の少なくとも一対の点に対するパララックス剛性の制約 をコンピュータ計算するステップであって、前記パララックス剛性の制約は一対 の点に対して定めることができるエピポール幾何学とは独立したものであるステ ップと、 c) 前記複数の画像内の所与の点が前記パララックスの制約と整合性があるか どうかを表す情報を発生させるために前記複数の画像内の複数の点に対して前記 パララックス関連の制約を適用するステップと、 d) 前記発生させた情報を用いて、前記受信した複数の画像に関連した移動物 体の検出を行うステップと、 を含む移動物体を検出する画像処理方法。 3. 前記パララックス剛性の制約が、前記受信した複数の画像の内の三つか ら発生した一対の点のパララックスベクトルと一対の点の位置情報とから派生す る、請求項2の方法。 4. 前記パララックス剛性の制約が、前記受信した複数の画像の内の二つか ら発生した少なくとも三つの点の位置情報と少なくとも三つの点のパララックス ベクトルとから派生する、請求項2の方法。 5. ステップ(c)が更に、 (c1) 前記複数の画像に対して2次元変換を行うステップであって、前記複数 の画像の領域を整列し、前記複数の画像の誤整列になった領域を確認するステッ プと、 (c2) 前記確認された領域を分割して整列して分割領域を作成するステップと とを含み、 ステップ(d)が更に (d1) 残りの領域が残余の領域を前記複数の画像内で残余の動作として残りの 領域を確認する基準を達成するまで、繰り返して分割された領域を整列しかつ分 割するステップを含む、請求項2の方法。 6. 残りの領域によって達成される基準はパララックス剛性の制約との不整 列性を含む、請求項5の方法。 7. ステップ(b)が、 (b1) 前記複数の画像に対して2次元変換を行うステップであって、前記複数 の画像の領域を整列し、前記複数の画像の誤整列となった領域を確認するステッ プを含み、 ステップ(c)が、 (c1) 前記誤整列となった領域を分割するステップであって分割領域を生成す るステップと、 (c2) 残りの誤整列の領域が、該残りの誤整列の領域を前記複数の画像内で残 余の動作として残余の領域が確認される基準が達成されるまで、繰り返して誤整 列の領域を整合しかつ分割するステップと、 を含む、請求項2の方法。 8. a) シーンを表す複数の2次元画像を受信するステップと、 b) 前記複数の画像内の一対の点に対するパララックス構造の制約をコンピュ ータ計算するステップとであって、前記パララックス構造の制約が一対の点に対 して定めることができるエピポール幾何学とは独立したものであるステップと、 c) 前記複数の画像内の所与の点が前記パララックス構造の制約と整合性があ るかどうかを表す情報を発生させるために前記複数の画像内の前記複数の点に対 して前記パララックス構造の制約を適用するステップと、 d) 前記発生させた情報を用いて、前記受信した複数の画像に関連したシーン 構造の回復を行うステップと、 を含む、画像処理方法。 9. a) シーンを表す複数の2次元画像を受信するステップと、 b) 前記複数の画像内の点の部分集合に対する平面のパララックス運動の軌道 をコンピュータ計算するステップであって、前記部分集合点間の関係パララック ス運動を表す情報を発生させ、前記平面のパララックス運動の軌道が点の部分集 合に対して定めることができるエピポール幾何学とは独立したものであるステッ プと、 c) 非ゼロのパララックス運動を持った点の前記部分集合から少なくとも二つ の点を選択するステップと、 d) 前記選択された点の各々に対してそれぞれの仮想パララックス運動ベクト ルを定義するステップとであって、前記仮想パララックス運動ベクトルが仮想の シーンにおいては選択された点の夫々の位置を表しているステップと、 e) 前記定義されたパララックス運動ベクトルに関して前記複数の画像内の少 なくとも点の部分集合に対してパララックス剛性の制約を適用するステップとで あって、前記点の対象の各々に対してパララックス運動ベクトルを発生させるス テップと、 f) 前記パララックス運動ベクトルを持った前記複数の画像でパララックス運 動ベクトルにより各点をゆがめるステップであって、中間的仮想シーンを発生さ せるステップと、 g) 仮想シーンに相当する2次元仮想平面運動で中間的仮想シーンを球状にゆ がめるステップとであって、仮想シーンを発生させるステップと を含む新規なビューを発生させる、画像処理方法。 10. 前記パララックス剛性の制約が前記受信した複数の画像の内の三つから 発生した少なくとも二つの点の位置情報と少なくとも二つの点のパララックスベ クトルとから派生する、請求項9の方法。 11. 前記パララックス剛性の制約が前記受信した複数の画像の内の二つから 発 生した少なくとも三つの点の位置情報と少なくとも三つの点のパララックスベク トルとから派生する、請求項9の方法。 12. シーンを表す2次元画像のソースと、 2次元画像を処理するためのコンピュータ・プロセッサと、を含み、 該コンピュータ・プロセッサが、 (a) シーンを表す複数の2次元画像を受信する手段と、 (b) 複数の画像内の所与の点がパララックス関連の制約と整合性があるかど うかを表す情報を発生させるために複数の画像内の複数の点に対してパララック ス関連の制約を適用する手段であって、前記パララックス関連の制約が複数の点 に対して定義され得るエピポール幾何学とは独立している手段と、 (c) 前記複数の画像内の所与の点がパララックス関連の制約と整合性がある かどうかを表す情報を発生させるために前記複数の画像内の複数の点に対してパ ララックスの制約を適用する手段と、 (d) 受信した複数の画像に関連する画像処理タスクのために、生成させた情 報を用いて、それに関連した出力信号を発生させる手段と、 (e) 画像処理タスクの出力信号を出す出力装置と、 を含む、画像を処理するための装置。 13. 画像のソースがビデオカメラを含む、請求項12の装置。 14. 一連の画像から複数の画像を選択する手段と、 前記複数の画像にパララックスの制約をかけて前記複数の画像の領域を整合さ せ、また前記複数の画像の不整合になった領域を確認する手段と、 前記不整合になった領域内でパララックスの動作を確認する手段と、 不整合になった領域からパララックスの動作を除去する手段であってシーン内 の移動物体を検出する手段と、 を含む、シーンを表す一連の画像内の物体の動きを検出する装置。 15. 前記パララックスの動作を除去する手段が、シーンの残存動作内でのパ ララックス発生した動作を確認するために、更にパララックスの動作の制約に関 して整合性をもって動く画像コンポーネントを含む、請求項14の装置。 16. 複数の命令をストアしたコンピュータ読み込み可能媒体であって、該複 数 の命令がプロセッサによって実行されると、プロセッサが、 a) シーンを表す複数の2次元画像をデジタル形式で受信するステップと、 b) 前記複数の画像内の一対の点に対するパララックス関連の制約をコンピュ ータ計算するステップとであって、前記パララックス関連の制約が前記一対の点 に対して定義できるエピポーラ幾何学とは独立したステップと、 c) 前記複数の画像内の所与の点がパララックス関連の制約と整合性があるか どうかを表す情報を発生させるために前記複数の画像内の複数の点に対して前記 パララックス関連の制約を適用するステップと、 d) 前記受信した複数の画像に関連する画像処理タスクのために生成させた情 報を用いるステップと を行うコンピュータ読み取り可能媒体。 17. 複数の命令をストアしたコンピュータ読み取り可能媒体であって、複数 の命令がプロセッサによって実行されると、プロセッサが、 (a) 前記一連の画像から複数の画像を選択するステップと、 (b) 前記複数の画像に対して2次元変換を行い前記複数の画像の静止領域を 整合させ、前記複数の画像の誤整合した領域を確認するステップと、 (c) 前記誤整合した領域内に残余の動作を決定するステップと、 (d) 前記残余の動作からパララックス動作を除去してシーン内で動体を検出 するステップと、 を行うコンピュータ読み取り可能媒体。
JP53295297A 1996-02-12 1997-02-12 点対のパララックス幾何学を使用する3次元シーン処理の方法及び装置 Pending JP2001521650A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US1152496P 1996-02-12 1996-02-12
US60/011,524 1996-02-12
US08/798,857 US6192145B1 (en) 1996-02-12 1997-02-11 Method and apparatus for three-dimensional scene processing using parallax geometry of pairs of points
US08/798,857 1997-02-11
PCT/US1997/002115 WO1997035161A1 (en) 1996-02-12 1997-02-12 Method and apparatus for three-dimensional scene processing using parallax geometry of pairs of points

Publications (1)

Publication Number Publication Date
JP2001521650A true JP2001521650A (ja) 2001-11-06

Family

ID=26682492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53295297A Pending JP2001521650A (ja) 1996-02-12 1997-02-12 点対のパララックス幾何学を使用する3次元シーン処理の方法及び装置

Country Status (6)

Country Link
US (1) US6192145B1 (ja)
EP (1) EP0880675B1 (ja)
JP (1) JP2001521650A (ja)
KR (1) KR20000064528A (ja)
DE (1) DE69722378T2 (ja)
WO (1) WO1997035161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003271045A (ja) * 2002-03-15 2003-09-25 Sony Corp 画像処理装置及び画像処理方法、印刷物製造装置及び印刷物製造方法、並びに印刷物製造システム

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342917B1 (en) * 1998-01-16 2002-01-29 Xerox Corporation Image recording apparatus and method using light fields to track position and orientation
US6198852B1 (en) * 1998-06-01 2001-03-06 Yeda Research And Development Co., Ltd. View synthesis from plural images using a trifocal tensor data structure in a multi-view parallax geometry
KR100568396B1 (ko) * 1998-10-08 2006-04-05 마츠시타 덴끼 산교 가부시키가이샤 운전조작 보조장치
US6424351B1 (en) * 1999-04-21 2002-07-23 The University Of North Carolina At Chapel Hill Methods and systems for producing three-dimensional images using relief textures
US6353678B1 (en) * 1999-07-14 2002-03-05 Sarnoff Corporation Method and apparatus for detecting independent motion in three-dimensional scenes
US6816632B1 (en) * 2000-02-17 2004-11-09 Wake Forest University Health Sciences Geometric motion analysis
AU2001250802A1 (en) * 2000-03-07 2001-09-17 Sarnoff Corporation Camera pose estimation
JP3996728B2 (ja) 2000-03-08 2007-10-24 株式会社日立製作所 表面検査装置およびその方法
US6535114B1 (en) 2000-03-22 2003-03-18 Toyota Jidosha Kabushiki Kaisha Method and apparatus for environment recognition
US6829384B2 (en) * 2001-02-28 2004-12-07 Carnegie Mellon University Object finder for photographic images
JP4861574B2 (ja) * 2001-03-28 2012-01-25 パナソニック株式会社 運転支援装置
US7003150B2 (en) * 2001-11-05 2006-02-21 Koninklijke Philips Electronics N.V. Homography transfer from point matches
US7031497B2 (en) * 2001-11-05 2006-04-18 Koninklijke Philips Electronics N.V. Method for computing optical flow under the epipolar constraint
US7248741B2 (en) * 2002-01-09 2007-07-24 Hiroshi Akimoto Video sequences correlation and static analysis and scene changing forecasting in motion estimation
US6975756B1 (en) * 2002-03-12 2005-12-13 Hewlett-Packard Development Company, L.P. Image-based photo hulls
US7257236B2 (en) 2002-05-22 2007-08-14 A4Vision Methods and systems for detecting and recognizing objects in a controlled wide area
US7174033B2 (en) 2002-05-22 2007-02-06 A4Vision Methods and systems for detecting and recognizing an object based on 3D image data
US7446797B2 (en) * 2003-02-10 2008-11-04 Activeye, Inc. User assisted customization of automated video surveillance systems
US7164800B2 (en) * 2003-02-19 2007-01-16 Eastman Kodak Company Method and system for constraint-consistent motion estimation
US7542834B2 (en) 2003-10-17 2009-06-02 Panasonic Corporation Mobile unit motion calculating method, apparatus and navigation system
US8018579B1 (en) 2005-10-21 2011-09-13 Apple Inc. Three-dimensional imaging and display system
GB0613352D0 (en) * 2006-07-05 2006-08-16 Ashbey James A Improvements in stereoscopic imaging systems
US7865285B2 (en) * 2006-12-27 2011-01-04 Caterpillar Inc Machine control system and method
US20120075296A1 (en) * 2008-10-08 2012-03-29 Strider Labs, Inc. System and Method for Constructing a 3D Scene Model From an Image
WO2010044939A1 (en) * 2008-10-17 2010-04-22 Honda Motor Co., Ltd. Structure and motion with stereo using lines
US8675730B2 (en) * 2009-07-13 2014-03-18 Nvidia Corporation Macroblock grouping in a destination video frame to improve video reconstruction performance
US20120050491A1 (en) * 2010-08-27 2012-03-01 Nambi Seshadri Method and system for adjusting audio based on captured depth information
US20120050478A1 (en) * 2010-08-27 2012-03-01 Jeyhan Karaoguz Method and System for Utilizing Multiple 3D Source Views for Generating 3D Image
US8855406B2 (en) 2010-09-10 2014-10-07 Honda Motor Co., Ltd. Egomotion using assorted features
US9280711B2 (en) 2010-09-21 2016-03-08 Mobileye Vision Technologies Ltd. Barrier and guardrail detection using a single camera
US9959595B2 (en) * 2010-09-21 2018-05-01 Mobileye Vision Technologies Ltd. Dense structure from motion
WO2013002280A1 (ja) * 2011-06-29 2013-01-03 Necシステムテクノロジー株式会社 三次元地物データ生成装置、三次元地物データ生成方法、および、三次元地物データ生成プログラムを記録した記録媒体
US9153025B2 (en) 2011-08-19 2015-10-06 Adobe Systems Incorporated Plane detection and tracking for structure from motion
US8982118B2 (en) 2011-11-22 2015-03-17 Raytheon Company Structure discovery in a point cloud
US8788968B1 (en) * 2012-06-04 2014-07-22 Google Inc. Transitioning an interface to a neighboring image
GB2519006B (en) * 2012-07-02 2018-05-16 Panasonic Ip Man Co Ltd Size measurement device and size measurement method
JP6201148B2 (ja) * 2013-12-20 2017-09-27 パナソニックIpマネジメント株式会社 キャリブレーション装置、キャリブレーション方法、キャリブレーション機能を備えた移動体搭載用カメラ及びプログラム
US9672626B2 (en) * 2014-12-08 2017-06-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Method and system for generating adaptive fast forward of egocentric videos
JP6551048B2 (ja) * 2015-08-24 2019-07-31 株式会社Jvcケンウッド 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム
CN105300362B (zh) * 2015-11-13 2019-03-01 上海华测导航技术股份有限公司 一种应用于rtk接收机的摄影测量方法
US20180068459A1 (en) * 2016-09-08 2018-03-08 Ford Global Technologies, Llc Object Distance Estimation Using Data From A Single Camera
US11272164B1 (en) * 2020-01-17 2022-03-08 Amazon Technologies, Inc. Data synthesis using three-dimensional modeling

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715482A (en) * 1971-10-12 1973-02-06 K Haines Holographic imaging by simultaneous source and receiver scanning
JPS59182688A (ja) 1983-03-31 1984-10-17 Toshiba Corp ステレオ視処理装置
US4654872A (en) 1983-07-25 1987-03-31 Omron Tateisi Electronics Co. System for recognizing three-dimensional objects
US4669048A (en) * 1984-09-14 1987-05-26 Carl-Zeiss-Stiftung Computer-controlled evaluation of aerial stereo images
US4982438A (en) * 1987-06-02 1991-01-01 Hitachi, Ltd. Apparatus and method for recognizing three-dimensional shape of object
US5448687A (en) * 1988-09-13 1995-09-05 Computer Design, Inc. Computer-assisted design system for flattening a three-dimensional surface and for wrapping a flat shape to a three-dimensional surface
US4985856A (en) * 1988-11-10 1991-01-15 The Research Foundation Of State University Of New York Method and apparatus for storing, accessing, and processing voxel-based data
US4908573A (en) * 1989-01-05 1990-03-13 The Regents Of The University Of California 3D image reconstruction method for placing 3D structure within common oblique or contoured slice-volume without loss of volume resolution
US5076687A (en) * 1990-08-28 1991-12-31 Massachusetts Institute Of Technology Optical ranging apparatus
US5490133A (en) * 1990-10-05 1996-02-06 Hitachi, Ltd. Optical information processing apparatus and method of controlling position of optical spot and reproducing signals
JP2941412B2 (ja) 1990-11-26 1999-08-25 株式会社東芝 3次元計測方法
US5528194A (en) * 1991-05-13 1996-06-18 Sony Corporation Apparatus and method for performing geometric transformations on an input image
US5185671A (en) * 1991-06-21 1993-02-09 Westinghouse Electric Corp. Adaptive control of an electronic imaging camera
US5577130A (en) 1991-08-05 1996-11-19 Philips Electronics North America Method and apparatus for determining the distance between an image and an object
GB9117443D0 (en) * 1991-08-13 1992-05-27 British Aerospace Optical apparatus
US5680474A (en) * 1992-10-27 1997-10-21 Canon Kabushiki Kaisha Corresponding point extraction method for a plurality of images
US5495576A (en) * 1993-01-11 1996-02-27 Ritchey; Kurtis J. Panoramic image based virtual reality/telepresence audio-visual system and method
JPH06269444A (ja) * 1993-03-24 1994-09-27 Fujitsu Ltd 放射線三次元画像の生成方法
US5764871A (en) * 1993-10-21 1998-06-09 Eastman Kodak Company Method and apparatus for constructing intermediate images for a depth image from stereo images using velocity vector fields
FR2714502A1 (fr) 1993-12-29 1995-06-30 Philips Laboratoire Electroniq Procédé et dispositif de traitement d'image pour construire à partir d'une image source une image cible avec changement de perspective.
US5473364A (en) 1994-06-03 1995-12-05 David Sarnoff Research Center, Inc. Video technique for indicating moving objects from a movable platform
US5703961A (en) * 1994-12-29 1997-12-30 Worldscape L.L.C. Image transformation and synthesis methods
US5644651A (en) * 1995-03-31 1997-07-01 Nec Research Institute, Inc. Method for the estimation of rotation between two frames via epipolar search for use in a three-dimensional representation
IL113496A (en) * 1995-04-25 1999-09-22 Cognitens Ltd Apparatus and method for recreating and manipulating a 3d object based on a 2d projection thereof
US5852672A (en) * 1995-07-10 1998-12-22 The Regents Of The University Of California Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects
JP3055438B2 (ja) * 1995-09-27 2000-06-26 日本電気株式会社 3次元画像符号化装置
US5694531A (en) * 1995-11-02 1997-12-02 Infinite Pictures Method and apparatus for simulating movement in multidimensional space with polygonal projections
US5706416A (en) * 1995-11-13 1998-01-06 Massachusetts Institute Of Technology Method and apparatus for relating and combining multiple images of the same scene or object(s)
US5828793A (en) * 1996-05-06 1998-10-27 Massachusetts Institute Of Technology Method and apparatus for producing digital images having extended dynamic ranges
US5986668A (en) * 1997-08-01 1999-11-16 Microsoft Corporation Deghosting method and apparatus for construction of image mosaics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003271045A (ja) * 2002-03-15 2003-09-25 Sony Corp 画像処理装置及び画像処理方法、印刷物製造装置及び印刷物製造方法、並びに印刷物製造システム
US7565003B2 (en) 2002-03-15 2009-07-21 Sony Corporation Image processing apparatus and method, printed matter production apparatus and method, and printed matter production system

Also Published As

Publication number Publication date
KR20000064528A (ko) 2000-11-06
EP0880675A1 (en) 1998-12-02
WO1997035161A1 (en) 1997-09-25
EP0880675A4 (en) 2000-07-05
DE69722378T2 (de) 2004-02-26
DE69722378D1 (de) 2003-07-03
US6192145B1 (en) 2001-02-20
EP0880675B1 (en) 2003-05-28

Similar Documents

Publication Publication Date Title
JP2001521650A (ja) 点対のパララックス幾何学を使用する3次元シーン処理の方法及び装置
US7352386B1 (en) Method and apparatus for recovering a three-dimensional scene from two-dimensional images
Pollefeys et al. From images to 3D models
Delamarre et al. 3D articulated models and multiview tracking with physical forces
Han et al. Reconstruction of a scene with multiple linearly moving objects
US7831090B1 (en) Global registration of multiple 3D point sets via optimization on a manifold
KR101410273B1 (ko) 증강현실 응용을 위한 환경 모델링 방법 및 장치
Irani et al. Direct recovery of planar-parallax from multiple frames
Wang et al. Camera calibration and 3D reconstruction from a single view based on scene constraints
JP2002032745A (ja) 点、線から、及び/または画像強度から直接に、3次元シーン構造及びカメラの動きを復元する方法
JP2007004578A (ja) 三次元形状取得方法、三次元形状取得装置、及びプログラムの記録媒体
CN107330980A (zh) 一种基于无标志物的虚拟家具布置系统
US6999612B1 (en) Method for recovering 3D scene structure and camera motion directly from image intensities
Shashua Correspondence and affine shape from two orthographic views: motion and recognition
Irani et al. Direct recovery of planar-parallax from multiple frames
Robertson et al. Building architectural models from many views using map constraints
KR100944293B1 (ko) 단일 축 회전 영상들로부터의 효율적인 전 방향 3차원모델의 재구성 방법
Tan et al. 3D structure and motion estimation from 2D image sequences
JP2004151106A (ja) トリフォーカルトランスファの誤り分析方法
JP2008261756A (ja) ステレオ画像対から3次元の頭部姿勢をリアルタイムで推定するための装置及びプログラム
JP2000003446A (ja) 欠測値推定方法、三次元データ入力装置、及び、記録媒体
JP2002008014A (ja) 3次元形状抽出方法及び装置並びに記録媒体
JP3871582B2 (ja) 物体形状復元・移動物体検出方法、物体形状復元・移動物体検出装置、物体形状復元・移動物体検出プログラム、およびこのプログラムを記録した記録媒体
JP2002170111A (ja) 画像合成装置、画像合成方法および画像合成プログラムを記録した記録媒体
JP3711203B2 (ja) 3次元形状抽出方法及び装置並びに記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026