JP2001514492A - 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法 - Google Patents

生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法

Info

Publication number
JP2001514492A
JP2001514492A JP53677898A JP53677898A JP2001514492A JP 2001514492 A JP2001514492 A JP 2001514492A JP 53677898 A JP53677898 A JP 53677898A JP 53677898 A JP53677898 A JP 53677898A JP 2001514492 A JP2001514492 A JP 2001514492A
Authority
JP
Japan
Prior art keywords
gly
protease
fluorophore
group
βala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP53677898A
Other languages
English (en)
Other versions
JP4298796B2 (ja
Inventor
コモリヤ,アキラ
エス. パッカード,ビバリー
Original Assignee
オンコイミューニン,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オンコイミューニン,インコーポレイティド filed Critical オンコイミューニン,インコーポレイティド
Publication of JP2001514492A publication Critical patent/JP2001514492A/ja
Application granted granted Critical
Publication of JP4298796B2 publication Critical patent/JP4298796B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96466Cysteine endopeptidases (3.4.22)
    • G01N2333/96469Interleukin 1-beta convertase-like enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

(57)【要約】 本発明は、螢光が特定のプロテアーゼの存在下で上昇する新規試薬を提供する。その試薬は、特徴的に折たたまれたペプチド主鎖を含んで成り、ここで前記主鎖の個々の端が螢光団に接合されている。折たたまれたペプチドが、プロテアーゼによる消化により切断される場合、螢光団は可視波長で高い強度の螢光シグナルを供給する。それらのプロテアーゼインジケーターは、生物学的サンプル、特に凍結された組織断片におけるプロテアーゼ活性の検出のために特に適切である。なぜならば、可視波長におけるそれらの高い螢光シグナルのためである。本発明はまた、現場凍結された断片におけるプロテアーゼ活性を検出するための方法も提供する。

Description

【発明の詳細な説明】 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法 発明の分野 本発明は、螢光レベルを活性プロテアーゼの存在下で高める新規種類の螢光発 生組成物に関する。それらの螢光発生プロテアーゼインジケーターは典型的には 可視波長で螢光を発し、そしてその故に、生物学的サンプル中のプロテアーゼ活 性の検出及び位置決定のためにひじょうに有用である。 発明の背景 プロテアーゼは、ペプチド結合を触媒的に加水分解する多くの種類のタンパク 質分解酵素を意味する。プロテアーゼの主なグループは、メタロプロテアーゼ、 セリンプロテアーゼ、システインプロテアーゼ及びアスパラギン酸プロテアーゼ を包含する。プロテアーゼ、特にセリンプロテアーゼは、多くの生理学的過程、 たとえば血液凝固、受精、炎症、ホルモン生成、免疫応答及び繊維素溶解に関連 している。 多くの病状は、特定のプロテアーゼ及びそれらのインヒビターの活性の変更に より引き起こされ、そしてその変更により特徴づけられ得る。たとえば、気腫、 関節炎、血栓症、癌転移及びいくつかの形の血友病は、セリンプロテアーゼ活性 の調節の欠陥に起因する(たとえば、Textbook of Biochemistry with Clinical Correlations,John Wiley and Sons,Inc.N.Y.(1993)を参照のこと)。 ウイルス感染の場合、感染された細胞中にウイルスプロテアーゼの存 在が同定されている。このようなウイルスプロテアーゼには、例えばAIDSに関連 するHIVプロテアーゼ及びC型肝炎に関連するNS3プロテアーゼが包含される。こ れらのウイルスプロテアーゼはウイルスのライフサイクルにおいて重要な役割を 演ずる。 プロテアーゼは癌転移に関連すると考えられて来た。プロテアーゼウロキナー ゼの高められた合成は、多くの癌における転移能力の上昇と関連付けれて来た。 ウロキナーゼは、細胞外空間に遍在するプラスミノーゲンからのプラスミンを活 性化し、そしてその活性化は転移する腫瘍細胞が侵入する細胞外マトリックスに おけるタンパク質の分解を引き起こすことができる。プラスミンはまた、コラゲ ナーゼを活性化することができ、従って、毛細管及びリンパ系を取り囲む基礎膜 におけるコラーゲンの分解を促進し、それにより、標的組織中への腫瘍細胞の侵 入を可能にする(Dano、など、Adv.Cancer.Res.,44:139(1985))。 特定のプロテアーゼの活性の変化の明確な測定は、根底にある病状の処置及び 管理において臨床的に有意義である。しかしながら、プロテアーゼは容易にはア ッセイすることができない。典型的なアプローチは、プロテアーゼと結合する抗 体を用いるELISA、又は種々のラベルされた基質を用いるRIAを包含する。それら の天然の基質によるアッセイは、実施するのに困難であり、且つ高価である。現 在入手できる合成基質によるアッセイは、高価で、低感受であり、且つ非選択性 である。さらに、多くの“インジケーター”基質は、プロテアーゼの自己破壊を 一部もたらす多量のプロテアーゼを必要とする。 プロテアーゼ検出への最近のアプローチは、P1’位置(切断できるペプチド 結合のカルボキシル側のアミノ酸位置)に位置する離れた色原体又は螢光発生体 の切断誘発される分光学的変化に依存す る(たとえば、アメリカ特許第4,557,862号及び第4,648,893号を参照のこと)。 しかしながら、多くのプロテアーゼは、プロテアーゼの認識のために切断されや すい結合のいづれかの側に2又は3個のアミノ酸残基を必要とし(特定のプロテ アーセは6個以下のアミノ酸残基を必要とするであろう)、そして従って、それ らのアプローチはプロテアーゼ特異性を欠いている。 しかしながら、最近、螢光発生インジケーター組成物が開発されており、ここ では“ドナー”螢光団は、HIVプロテアーゼのための結合部位であるペプチド( 7個のアミノ酸)及びそのペプチドに螢光団及び発色団を連結するリンカーを含 む短い橋により“レセプター”発色団に連結されている(Wangなど、Tetra.Lens .45:6493〜6496(1990))。ドナー螢光団のシグナルは、共鳴エネルギートラン スファー(RET)を包含すると思われる工程を通してレセプター螢光団により消光 される。ペプチドの切断は、螢光団及び発色団の分離、すなわち前記消光の除去 をもたらし、そして続くシグナルがドナー螢光団から測定された。 不運なことには、ドナーとレセプターとの間の橋の設計は、アッセイの感度を 制限する比較的無能な消光を導びいた。さらに、発色団は、紫外線範囲において 強く光を吸収する分子を典型的には含む生物学的サンプルにおいて検出のための 感度を減じる紫外線範囲での光を吸収した。 切断される場合、高いシグナルレベル、及び損なわれていない場合、非常に近 いシグナルレベルを示し、高度のプロテアーゼ特異性を示し、そして可視範囲に おいて独占的に作動し、それによりそれらを生物学的サンプルへの使用のために 適切な螢光発生プロテアーゼインジケーターが所望される。本発明の組成物は、 それらの及び他の利点を提供する。 発明の要約 本発明は、特定のプロテアーゼの存在下で、その螢光を高める新規の試薬を提 供する。それらの螢光発生プロテアーゼインジケーターは、それらがプロテアー ゼにより消化される場合、可視波長で高い強度の螢光シグナルを供給する。可視 波長におけるそれらの高い螢光シグナルのために、それらのプロテアーゼインジ ケーターは、生物学的サンプル、特に凍結された組織断片におけるプロテアーゼ 活性の検出のために特に適切である。測定は組織サンプルのためには螢光顕微鏡 を用いて、そして細胞懸濁サンプルのためにはフローサイトメーターを用いて行 うことができる。 本発明の螢光発生プロテアーゼインジケーターは、プロテアーゼの活性の検出 のために適切な組成物である。それらの組成物は、下記一般式: 〔式中、Pは2〜約15個、好ましくは2個〜約12個、好ましくは2個〜約10個、 好ましくは2個〜約8個、2個〜約6個、又は2個〜約4個のアミノ酸から成る 、プロテアーゼのためのプロテアーゼ結合部位を含んで成るペプチドであり;F1 及びF2は螢光団であり;S1及びS2は長さ1〜約50個の範囲のアミノ酸のペプ チドスペーサーであり;n及びkは独立して0又は1であり;そしてC1及びC2 は長さ1〜約8個より好ましくは1〜約6個の範囲のアミノ酸のペプチドを含ん で成るコンホメーション決定領域である〕を有する。コンホメーション決定領域 はそれぞれ、組成物中に曲げ(ベンド;bend)を導入し、あるいはペプチド主鎖 の自由度を制限し、それにより約100Å以下の分離を伴って螢光団を並置する。 スペーサー(S1及びS2)のいづれかが存在する場合、それらは末端ア ミノ酸のα炭素原子に結合されるペプチドによりプロテアーゼ結合部位に連結さ れる。従って、nが1である場合、S1はC1の末端αアミノ基を通して、ペプチ ド結合によりC1に連結され、そしてkが1である場合、S2はC2の末端αカル ボキシル基を通してペプチド結合によりC2に連結される。 プロテアーゼ結合部位を含んで成るアミノ酸残基は、従来、特定のプロテアー ゼにより加水分解されるペプチド結合に対して番号付けされている。従って、切 断されたペプチド結合のアミノ側上の第1のアミノ酸残基はP1と命名され、そ して切断されるペプチド結合のカルボキシル側上の第1のアミノ酸残基はP1'と 命名される。残基の番号付けは、加水分解されたペプチド結合からの距離が離れ るほど高まって行く。従って、4のアミノ酸プロテアーゼ結合領域は、 P2−P1−P1’−P2' と命名されたアミノ酸を含み、そしてプロテアーゼはP1とP1'との間の結合領 域を切断する。 特に好ましい態様において、本発明の螢光源組成物は、本明細書に記載する式 (II)及び式(V)の組成物である。好ましい螢光団は、決定領域を有し、そし て場合によっては本明細書に記載するようにスペーサーを有する。最も好ましい 態様において、組成物は単一種の螢光団を有する。これらの「ホモラベル」(hom olabel)された組成物のために好ましい螢光団には、H−型ダイマーを形成する 螢光団が含まれる。特に好ましい螢光団は約315nmと約700nmの間の励起波長を有 する。 もう一つの態様において、本発明はプロテアーゼの活性を検出する方法を提供 する。この方法は、プロテアーゼを、本明細書に記載する1又は複数のプロテア ーゼインジケーターと接触せしめること を含む。特に好ましい態様において、「接触」は組織切片において、あるいは組 織、血液、尿、唾液又は他の生物流体、リンパ、生検体から成る群から選択され た培養物、又は細胞懸濁液においてである。検出方法には、螢光顕微鏡法、螢光 マイクロプレートリーダー、フローサイトメトリー、フルオロメトリー、吸光分 光法から成る群から選択される方法が含まれる。 組成物において、F1が5−及び/又は6−カルボキシテトラメチルローダミ ンであることができ、そしてF2はローダミンXアセタミドであることができる 。これらの組成物は、膜又はリポゾームのごとき固体支持体又は液体に接合させ てもよい。 もう1つの態様においては、上記組成物のいづれかが、サンプル中のプロテア ーゼ活性を検出するための方法に使用され得る。サンプルは、たとえば研究又は 産業において使用される“貯蔵(stock)”プロテアーゼのサンプルであり得、又 はそれは生物学的サンプルでもあり得る。従って、本発明は、サンプルと上記組 成物のいづれかとを接触せしめ、そして次に、螢光の上昇がプロテアーゼ活性を 示す螢光発生組成物の螢光の変化を検出することによってサンプル中のプロテア ーゼ活性を検出するための方法を提供する。前記サンプルは好ましくは、生物学 的流体、たとえば唾液又は血液を包含する生物学的サンプル、組織サンプル、た とえば生検又は断片、及び生検としての又は培養物における細胞サンプルである 。特に好ましいものは、組織断片、培養された細胞、培養された組織及び同様の ものである。 本発明はまた、分子のコンホメーションの変化を検出する方法を提供する。こ の方法は、(1)第1の螢光団及び第2螢光団が結合されている第1の分子を用 意し、ここで前記第1の螢光団及び第2の螢光団は同種の螢光団であり、そして これらの螢光団は、前記分 子の同じ位置に結合された単一の螢光団の螢光強度に比べて、前記螢光団のそれ ぞれの螢光強度が検出可能に低下するのに十分な距離で並置されており;そして (2)前記分子のコンホメーションの変化により前記螢光団間の距離が増加する 際の螢光の変化を検出する、ことを含んで成る。あるいは、螢光団の相対的配向 (orientation)が分子のコンホメーションの変化により変化する際に、螢光の変 化を検出することができる。好ましい螢光団は、コンホメーションの変化の前に H−型ダイマーを形成することができるものである。好ましい態様において、螢 光団は、コンホメーションの変化の前に約10オングストローム未満の相互距離で 置換される。特に好ましい螢光団には、本明細書に記載する螢光団が含まれる。 1つの態様において、コンホメーションの変化は分子がそれぞれ1つの螢光団を 有する2つの異る分子に開裂することである。 他の態様において、コンホメーションの変化は、前記第1の分子への標的分子 の結合により惹起される。1つの態様において、第1の分子は核酸であり、そし てコンホメーションの変化は前記核酸の第2の核酸へのハイブリダイゼーション により、又は前記核酸の転写因子への結合により生ずる。他の態様において、前 記第1の分子はポリサッカライドであり、そしてコンホメーションの変化はオリ ゴサッカライド結合分子、例えばレクチン結合蛋白質の結合により生ずる。この 方法のための好ましい「主鎖」(backbone)分子には、核酸、ポリサッカライド 、ペプチド、脂質、蛋白質、リン脂質、糖脂質、糖蛋白質、ステロイド、又はpH 感受性もしくはチオール感受性結合を含有するポリマー(螢光団結合部位がこの 結合を挟む)が包含される。主鎖分子が核酸である場合、コンホメーションの変 化はこの核酸と他の核酸とのハイブリダイゼーションにより、又は核酸の開裂( 例えば、制限酵素もしくはリボザイムによる)により 生成され得る。さらに、コンホメーションの変化は、標識されたオリゴヌクレオ チドとヌクレオチド結合蛋白質との間の複合体の形成により生成することができ る。主鎖分子がペプチド、ポリサッカライド又は脂質である場合、コンホメーシ ョンの変化は主鎖分子の開裂により、又は主鎖分子とその結合分子、例えば抗体 、受容体、糖結合蛋白質又は脂質結合蛋白質との間の複合体形成により生成する ことができる。 本発明はまた、組成物のコンホメーションの変化の検出のための螢光源組成物 を提供する。1つの態様において、第1の螢光団及び第2の螢光団が結合した分 子を含んで成る螢光源組成物が提供され、ここで前記第1の螢光団及び第2の螢 光団は同じ種の螢光団であり、そしてこれらの螢光団は、前記の分子の同じ部位 に結合した各個々の螢光団の螢光強度に比べて、前記螢光団の相互作用が該螢光 団のそれぞれの螢光強度を検出可能に低下せしめるのに十分な距離で並置される 。螢光団は好ましくはH−型ダイマーを形成する螢光団である。 さらに他の態様において、本発明は、細胞に分子を結合するための方法を提供 する。この方法は、少なくとも2個の螢光団分子及び疎水性基が結合した分子を 用意し;そして該細胞を該分子に接触せしめ、これにより分子を細胞に入れるこ とを含んで成る。1つの態様において、この方法は、少なくとも2個の大きく平 らな疎水性の螢光団及び疎水性基が結合された分子を用意することを含む。好ま しい分子には、ポリペプチド、核酸、脂質、オリゴサッカライドが含まれる。適 当な螢光団及び疎水性基を本明細書に記載する。好ましい細胞には哺乳類細胞が 含まれる。定義 用語“プロテアーゼ結合部位”とは、特異的に認識され、そして プロテアーゼにより切断されるアミノ酸配列を意味する。プロテアーゼ結合部位 は、プロテアーゼにより加水分解されるペプチド結合を含み、そしてこのペプチ ド結合により連結されるアミノ酸残基は、その切断部位を形成すると言われる。 それらのアミノ酸は、それぞれ、加水分解された結合のアミノ及びカルボキシル 側上の残基のためにP1及びP1'を示す。 螢光団は、特徴的な波長で光を吸収し、そして次に最とも典型的には、特徴的 な異なった波長で光を再発光する分子である。螢光団は、当業者に良く知られて おり、そしてローダミン及びローダミン誘導体、フルオレセイン及びフルオレセ イン誘導体、クマリン、及びランタニドイオンシリーズとのキレート化剤を包含 するが、但しこれらだけには限定されない。螢光団は、光を吸収するが、しかし 特徴的には、光を再発光しない発色団とは区別される。 “ペプチド”及び“ポリペプチド”は、α炭素原子が、1つのアミノ酸のα炭 素カルボニル基と他のアミノ酸のアミノ基との間での縮合反応により形成される ペプチド結合を通して連結されるアミノ酸の鎖である。従って、鎖の一端での末 端アミノ酸(アミノ末端)は、遊離アミノ基を有し、そして鎖の他端での末端ア ミノ酸(カルボキシル末端)は、遊離カルボキシル基を有する。本明細書で用い られる場合、用語“アミノ末端”(N−末端として略語化される)は、ペプチド の末端でのアミノ酸上の遊離α−アミノ基、又はペプチド内のいづれか他の位置 でのアミノ酸のα−アミノ基(ペプチド結合に関与する場合、イミノ基)を意味 する。同様に、用語“カルボキシ末端”は、ペプチドのカルボキシ末端上の遊離 カルボキシル基又はペプチド内のいづれか他の位置でのアミノ酸のカルボキシル 基を意味する。ペプチドはまた、ペプチド擬似体、たとえばアミド結合に対して エーテル結合により連結されるアミノ酸をも包含する 。 本明細書に記載されるポリペプチドは、左側でアミノ末端及び右側でカルボキ シル末端により書かれる。本発明のペプチド成分を含んで成るアミノ酸は、プロ テアーゼ切断部位に対して番号付けされ、そして番号はその切断部位からカルボ キシル及びアミノ方向に距離と共に連続的に多くなる。カルボキシル部位上の残 基は、P1'におけるような“'”により、又はそれらが位置する領域を示す文字 及び下付き文字により示される。その“'”は、残基が切断部位のカルボキシル 側上に位置することを示す。 用語“残基”又は“アミノ酸”とは、本明細書で使用される場合、ペプチド中 に組込まれたアミノ酸を意味する。アミノ酸は天然に存在するアミノ酸であり、 そして特にことわらない限り、天然に存在するアミノ酸と類似する態様で機能す ることができる、天然のアミノ酸の既知の類似体を包含することができる。 用語“ドメイン”又は“領域”とは、ポリペプチドの特徴的な領域を意味する 。ドメインは、特定の構造特徴、たとえばβ回転、αヘリックス、又はβプリー ツシートにより、特徴的な構成アミノ酸(たとえば優先的な疎水性又は親水性ア ミノ酸、又は反復アミノ酸配列)により、又は折りたたまれた立体ポリペプチド の特定領域におけるその局在化により特徴づけられ得る。本明細書で使用される 場合、領域又はドメインは、一連の連続したアミノ酸から成る。 用語“プロテアーゼ活性”又は“プロテアーゼの活性”とは、プロテアーゼに よるペプチドの切断を意味する。プロテアーゼ活性は、多くの小さなペプチドフ ラグメントへの1又は複数のペプチドの“消化”を包含する。特定のプロテアー ゼのプロテアーゼ活性は、特定のプロテアーゼにより特異的に認識される特定の ペプチド結合部位での加水分解をもたらすことができる。その特定のプロテアー ゼは、特定の末端アミノ酸残基を担持するペプチドフラグメントの生成により特 徴づけられ得る。 本明細書において言及されるアミノ酸は、次のような短縮表示により記載され る: 本明細書において使用する他の略号には、Fmoc(9−フルオレニルメトキシカ ルボニル)基を示す「Fm」、N(α)−アセチル基を示す「Ac」、「daa」(「d 」がaaのd異性体を示す)、及びベン ゾキシカルボニル基を示す「Z」が含まれる。 図面の簡単な説明 図1A,1B及び1CはD-NorFES-Aプロテアーゼ阻害剤(F1-Asp-Ala-Ile-Pro -Nle-Ser-Ile-Pro-Cys-F2)(式中、F1はドナー(D)螢光団(5’−カルボキシ テトラメチルローダミン(C2211)であり、そしてF2はアクセプター(A)螢 光団(ローダミンXアセタミド(R492)である)の、エステラーゼ添加前及び後 でのHPLC分析を示す。図1A:エラスターゼ添加前のHPLCであって、無傷のイン ジケーター分子を示す後溶出ピークを示す。図1Bは、エラスターゼ添加後のHP LCであって、両螢光団が吸光する550nmでの検出を示す。図1Cはエラスターゼ 添加後のHPLCであって、F2が最大吸収する580nmでの検出を示す。 図2A及び2Bは、エラスターゼ添加の前(図2A)及び後(図2B)のD-No rFES-A-螢光源プロテアーゼインジケーターの発光スペクトルを示す。 図3は、エラスターゼ1ユニットの添加後の時間の関数としての、図1の螢光 源プロテアーゼインディケーターの経時的増加を示す。 図4A及び4Bは、エラスターゼ1ユニットの添加後の時間の関数としての、 ドナー螢光団の螢光強度を示す。図4B:図1の螢光源プロテアーゼインディケ ーター。図4B:2種類の螢光団のいずれか一方により標識された図1の螢光源 プロテアーゼのペプチド主鎖。D-NorFES-Aは、F1-Asp-Ala-Ile-Pro-Nle-Ser-Ile -Pro-Cys-F2プロテアーゼインディケーター(式中、F1はドナー螢光団(5’− カルボキシテトラメチルローダミン(C2211)であり、そしてF2はアクセプタ ー螢光団(ローダミンXアセタミド(R492)である )である。D-NorFES及びA-NorFESのそれぞれは、同じペプチド主鎖を有するが、 しかし2つの螢光団の内1方のみを提供する分子を示す。 図5は、DEVD,DEVN及びICE基質の螢光を示す。1μMの基質DEVD(例8の化 合物2)、DEVN(例8の化合物3)及びICE(例8の化合物5)を含有する測定緩 衝液50mM HEPES緩衝剤、pH7.5、10%(w/v)シュークロース及び0.1%(w/ v)(HAPS)100μlに、10μlのジャーカット細胞の細胞溶解物を添加し、そ して37℃にて16時間インキュベートした。このジャーカット細胞の溶解物は、抗 Fas抗体により1μg/mlの濃度で6時間刺激された細胞から調製した。基質溶 液のみの螢光強度を、図5において、t=0として標示した水平線として示し、 そして細胞溶解物と基質溶液との混合物の16時間後の螢光強度を垂直線で示し、 そしてt=16時間消化として標示する。10μlの細胞溶解物を50μMZ VAD-FMK( ベンゾキシカルボニル−バラニル−アラニル−アスパルチル−フルオロメチルケ トン)と共に37℃にて30分間プレインキュベートし、次に基質溶液に加えた。こ の混合物の16時間後の螢光強度を、ZVAD-FMK(阻害物質)として標示した棒によ り示す。最後に、プレインキュベートした細胞溶解物を、ヨードアセトアミド( スルヒドリル基のためのアルキル化剤)及びPMSF(セリンプロテアーゼを阻害す るため)と共に、基質溶液に加えた。37℃にて16時間後の螢光強度を、ヨードア セトアミド/PMSFとして標示した棒により示す。DEVN基質は負対照基質(P1,As p残基がAsnにより置換されている)である。CPP32プロテアーゼは、P1残基がア スパラギン酸残基であることを必要とする。DEVN基質のグラフの4本の棒(図5 )が示すところによれば、活性化された細胞溶解物はDEVD基質を消化する他のい かなるプロテアーゼも含有しない。なぜなら、16時間消化の強度は基質 のみと同じだからである。DEVD基質の棒グラフが示すところによれば、活性化さ れた細胞溶解物はCPP32プロテアーゼを含有し、そしてこのプロテアーゼ活性は 既知のCPP32プロテアーゼ阻害剤であるZVAD-FMKにより阻害される。DEVD基質の 消化への他のプロテアーゼの寄与は、ZVAD-FMK棒とヨードアセタミド/PMSF棒の 強度の間の差により示される通り、非常に小さい。プロテアーゼ活性の螢光発生インジケーター 本発明は、サンプル中のプロテアーゼ活性を検出するために有用な新規螢光発 生分子を提供する。本発明の螢光発生プロテアーゼインジケーターは一般的に、 特定のプロテアーゼにより認識され、そして切断されるアミノ酸配列を有するペ プチドにより“レセプター”分子に連結される螢光団(ドナー)を包含する。ド ナー螢光団は典型的には、異なった(より長い)波長で再発光する特定の波長で の入射放射線により励起される。ドナー螢光団がレセプター分子に接近して維持 される場合、レセプターは螢光団により再発光される光を吸収し、それにより、 ドナー分子の螢光シグナルを消光せしめる。従って、例1に示されるような2種 の異なった螢光団による二重ラベルされたペプチドの他に、同じ螢光団により二 重ラベルされたペプチドもまた、プロテアーゼインジケーターとしても使用され 得る(たとえば例6を参照のこと)。ドナー螢光団及びレセプターを連結する十 分に設計されたペプチド(すなわち、本発明のペプチド)の切断は、2つの分子 の分離、消光効果の開放及び螢光の上昇をもたらす。 1つの基本的な用途において、本発明の螢光発生分子は、実験又は産業使用の ための試薬(たとえば緩衝溶液中で)として製造される精製されたプロテアーゼ の活性をアッセイするために使用され得る。多くの他の酵素のように、プロテア ーゼは、特にそれらがそれ らの活性形として貯蔵される場合、時間の経過と共に活性を失なう。さらに、多 くのプロテアーゼは、使用する前、酵素の活性形を生成するために、特定のペプ チド結合の加水分解によりそれ自体活性化されるべき不活性前駆体形(たとえば チモーゲン)で天然において存在する。活性化の程度は多種であり、そしてプロ テアーゼは時間の経過と共に活性を失なうので、プロテアーゼが活性であること を認識し、そしてしばしば、特定の用途においては、特定のプロテアーゼを用い る前、その活性を定量化することがしばしば所望される。 プロテアーゼ活性を認識し、そして定量化するためのこれまでのアプローチは 、プロテアーゼのアリコートとその基質とを混合し、一定の期間、消化せしめ、 そして次に、その消化されたタンパク質の量を、最とも典型的にはHPLCにより測 定することを包含する。このアプローチは、時間の浪費であり、高価な試薬を用 い、多くの段階を必要とし、そして相当量の労力を必要とする。対照的に、本発 明の螢光発生試薬は、単一段階工程における数分でのプロテアーゼ活性の急速な 決定を可能にする。試験されるべきプロテアーゼのアリコートは単純に、本発明 の螢光発生試薬に添加され、又はその試薬と接触せしめられ、そして続く螢光の 変化がモニターされる(たとえば、螢光計又は螢光マイクロプレートリーダーを 用いて)。 “試薬”溶液におけるプロテアーゼ活性を決定する他に、本発明の螢光発生組 成物は生物学的サンプルにおけるプロテアーゼ活性を検出するためにも使用され 得る。用語“生物学的サンプル”とは、本明細書で使用される場合、生物から又 は生物の成分(たとえば細胞)から得られたサンプルを意味する。サンプルはい づれかの生物学的組織又は流体のものであり得る。ときおり、サンプルは、患者 に由来するサンプルである“臨床学的サンプル”であり得る。その ようなサンプルは、唾液、血液、血液細胞(たとえば白血球細胞)、組織又は細 い針の生検サンプル、尿、腹水、及び胸水、又はそれらからの細胞を包含するが 、但しそれらだけには限定されない。生物学的サンプルはまた、組織の断片、た とえば組織学的な目的のために採取される凍結断片も包含する。 これまで記載されて来た螢光発生プロテアーゼインジケーターは典型的には、 紫外線範囲での光を吸収する(たとえば、Wang、など.、前記)。従って、それ らは、紫外線範囲において吸収する構成成分(たとえばタンパク質)を典型的に は含む生物学的サンプルにおけるプロテアーゼ活性の敏感な検出のためには不適 切である。対照的に、本発明の螢光インジケーターは、可視範囲(400nm〜約750 nm)において吸収し、そして発光する。従って、それらのシグナルは、螢光団の 活性化、すなわち光の吸収により容易に消光されないし、又はバックグラウンド 分子により妨害もされず;従って、それらは生物学的サンプルにおいて容易に検 出される。 さらに、しばしば螢光団及び消光発色団を用いるこれまでの螢光発生プロテア ーゼインジケーターとは異なって、本発明のインジケーターは、2種の螢光団( すなわち、ドナー及びレセプターとしての螢光団)、又は本発明のペプチド主鎖 の1つにより連結される場合、基底状態のダイマーを効果的に形成する同じ2つ の螢光団を使用することができる。これまで記載された発色団/螢光団の組合せ よりも一層高い消出の程度を示す螢光団の対が選択され得る。事実、これまでの 組成物は、対合する発色団により得られる消出の低い程度のために、比較的低い 効能の螢光団に制限されて来た(Wangなど、前記)。対照的に、本発明の螢光発 生プロテアーゼインジケーターは、高い効能の螢光団を用い、そして消光がペプ チド基質の切断により開放される場合、強いシグナルを提供しながら、高い程度 の消光を達成することができる。高いシグナルは、ひじょうに低いレベルのプロ テアーゼ活性の検出を可能にする。従って、本発明の螢光発生プロテアーゼイン ジケーターは、プロテアーゼ活性の現場検出のために特に適切である。 本発明の螢光発生プロテアーゼインジケーターは、下記一般式: 〔式中、Pはプロテアーゼ結合部位を含むペプチドであり、F1及びF2は螢光団 であり、C1及びC2はコンホメーション決定領域であり、そしてS1及びS2は任 意のペプチドスペーサーであり、F1はドナー螢光団であり、そしてF2はレセプ ター螢光団であり、又は逆に、F2はドナー螢光団であり、そしてF1はレセプタ ー螢光団であり、あるいはF1及びF2は同一であり得る〕を有する。プロテアー ゼ結合部位は、そのプロテアーゼ活性をインジケーターが示すように企画されて いるプロテアーゼにより認識され、そして切断されるアミノ酸配列(ペプチド) を提供する。プロテアーゼ結合部位は、典型的には、2アミノ酸〜約12アミノ酸 、2〜約10、2〜約8、2〜約6、又は2〜約4アミノ酸の長さの範囲のペプチ ドである。 コンホメーション決定領域は、分子中に曲げ(bend)を導入するか、又はペプ チド主鎖の自由度を制限するアミノ酸配列である。2つのコンホメーション決定 領域の組合された効果は、それぞれC1及びC2のアミノ末端及びカルボキシ末端 に結合された螢光団を並置することである。従って、螢光団は好ましくは、約10 0Å以下の距離でお互いに隣接して位置する。螢光団(F1及びF2)は典型的に は、それらはリンカーに結合され得るけれども、コンホメーション決定領域に直 接的に接合される。存在する場合、任意のスペー サー(S1及ひS2)が、固体支持体に組成物を、又は生物学的サンプルの成分( たとえば細胞膜)に組成物を連結するために使用される。 実質的にコンホメーション決定領域は、組成物のプロテアーゼ特異性を高める 。コンホメーション決定領域を含んで成るアミノ酸配列は、典型的には、お互い との及び結合された螢光団との立体的妨害により、酵素にほとんど近づくことが できない。これに対して、プロテアーゼ結合部位は、螢光団又はコンホメーショ ン決定領域のいづれかにより比較的妨げられず、そしてそのため、プロテアーゼ に容易に接近することができる。プロテアーゼ結合部位及びコンホメーション決定領域 プロテアーゼ結合部位及びコンホメーション決定領域は、連続したアミノ酸配 列(ペプチド)を形成する。プロテアーゼ結合部位は、特定のプロテアーゼによ り認識され、そして切断されるアミノ酸配列である。種々のプロテアーゼが特定 のアミノ酸に隣接するペプチド結合を切断することは良く知られている。従って 、たとえば、トリプシンは、塩基性アミノ酸、たとえばアルギニン及びリジンに 続くペプチド結合を切断し、そしてキモトリプシンは、大きな疎水性アミノ酸残 基、たとえばトリプトファン、フェニルアラニン、チロシン及びロイシンに続く ペプチド結合を切断する。セリンプロテアーゼは、小さな疎水性残基、たとえば アラニンに続くペプチド結合を切断する。 しかしながら、特定のプロテアーゼは、正しい隣接したアミノ酸を有するタン パク質におけるあらゆる結合を切断しないであろう。むしろ、プロテアーゼは、 個々の特定のプロテアーゼのための認識ドメインとして作用する特定のアミノ酸 配列に対して特異的である。特定の理論により結びつけられないが、折りたたま れた球状タン パク質における多くの他の可能性ある部位よりも特定の切断部位のための特定の プロテアーゼの選択はその可能性ある切断部位のアミノ酸配列及びまた、それら のコンホメーション及びコンホメーション柔軟性により主として決定され得ると 思われる。 従って、たとえば、制限されたタンパク質分解生成物、たとえばスブチリシン と呼ばれるプロテアーゼを用いて一本鎖の折りたたまれたタンパク質リボヌクレ アーゼ−Aからリボヌクレアーゼ−S(2種のポリペプチド鎖から成る非共有複 合体)を得る。同様に、トリプシン消化により一本鎖スタフィロコーカス(Stap hylococcus)ヌクレアーゼから二本鎖非共有複合体、すなわちスタフィロコーカ スヌクレアーゼ−Tを得る。他の基質よりも1つの基質に対する特定のプロテア ーゼの選択のもう1つの例は、ヒト線維芽細胞型コラゲナーゼである。このプロ テアーゼは、両タイプI及びタイプIII可溶性コラーゲン基質が同じコラゲナー ゼ感受性Gly-Ile又はGly-Leu結合をたとえ含んでいたとしても、タイプIII可溶 性コラーゲンよりもタイプIの方を好む(たとえば、Brikedal-Hansenなど.,(19 93)Crit.Rev.in Oral Biology and Medicine 4:197-250を参照のこと)。 認識ドメインを含み、そしてそれ故に、プロテアーゼにより認識され、そして 切断され得るいづれかのアミノ酸配列が、本発明の螢光発生プロテアーゼインジ ケーター組成物の“プロテアーゼ結合部位”のために適切である。既知のプロテ アーゼ基質配列及びプロテアーゼのペプチドインヒビターは、それらが切断され 、又はそれらが阻害する特定のプロテアーゼにより認識されるアミノ酸配列を有 する。従って、既知の基質及びインヒビター配列は、プロテアーゼ認識領域への 使用のために適切な基本的配列を提供する。本発明の組成物におけるプロテアー ゼ結合ドメインとして使用するために適 切な多くのプロテアーゼ基質及びインヒビター配列は表2に示されている。当業 者は、これが完全な列挙ではなく、そして他のプロテアーゼ基質又はインヒビタ ー配列が使用され得ることを認識するであろう。 プロテアーゼ結合部位を含むアミノ酸残基は、従来、特定のプロテアーゼによ り加水分解されるペプチド結合に対して番号付けされている。従って、切断され たペプチド結合のアミノ側上の第1のアミノ酸残基は、P1として命名され、そ して切断されたペプチド結合のカルボキシル側上の第1のアミノ酸残基はP1'と して命名される。残基の番号は、加水分解されたペプチド結合から離れた距離ほ ど多くなる。従って、4つのアミノ酸プロテアーゼ結合領域は、 P2−P1−P1'−P2' と称するアミノ酸を含み、そしてプロテアーゼは、P1とP1'との間の結合領域 を切断する。 好ましい態様において、本発明の螢光発生プロテアーゼインジケーターのプロ テアーゼ結合領域は、切断部位に対して対称であるように選択される。従って、 たとえば、結合領域がIle-Pro-Met-Ser-Ile(たとえばα−1抗−トリプシン)で あり、そして切断がMetとSerとの間で生じる場合、この配列に基づく4つのアミ ノ酸残基結合領域は、 −P2−P1−P1'−P2'− −Pro−Met−Ser−Ile− である。より長い配列から選択される結合ドメインの他の例は、表2に提供され ている。プロテアーゼ結合ドメイン内に存在しない残るアミノ又はカルボキシル 残基は、下記に説明されるように一定の制限を受けやすいコンホメーション決定 領域の一部として残存することができる。従って、本発明の例においては、アミ ノ末端Ileは 、C1コンホメーション決定領域中に組込まれ得る。 種々のアミノ酸置換が、結合特異性を高め、反応性側鎖を排除し、又は分子の コンホメーションエントロピーを減じる(自由度を低める)ために、プロテアー ゼ結合ドメインを含んで成るアミノ酸に行なわれ得る。従って、たとえば、酸化 できる硫黄を担持するメチオニン(Met)残基をノルロイシンにより置換すること が時々所望される。従って、与えられる例においては、好ましいプロテアーゼ結 合領域は、次の配列: −P2−P1−P1'−P2'− −Pro−Nle−Ser−Ile− を有するであろう。コンホメーション決定領域 コンホメーション決定領域(C1及びC2)は、本発明の螢光発生プロテアーゼ インジケーター分子のペプチド主鎖を固定し、そしてその中に曲げを導入する、 プロテアーゼ切断領域のいづれかの端でのペプチド領域である。2種のコンホメ ーション決定領域及び比較的直線状のプロテアーゼ切断領域の組合せは、“U” 形状の基部(中央)で切断部位を有する、おおよそU−形状の分子を生成する。 用語U−形状とは、もちろん、おおよそであり、すなわち螢光団が近接した並置 (たとえば約100Å以下)下で比較的固定して保持されることを意味する。 1つの態様において、アミノ酸、たとえばプロリン(Pro)及びα−アミノ酪酸( Aib)の両者が、ペプチド分子中に曲げを導入し、そしてペプチド主鎖の固定性を 高めるために選択される。C1及びC2ドメインは、U形状の“アーム”が固定さ れ、そして結合された螢光団が約100Å以下の距離、分離してお互い隣接して位 置するように選択される。ペプチド主鎖の必要な剛性及び螢光団の配置を維 持するためには、コンホメーション決定領域は、好ましくは4個の長さ又はそれ 以下の長さのアミノ酸であり、又は他方では、約18個以上の長さのアミノ酸であ り、そして安定したαヘリックスコンホメーション又はβ−プリーツシートを形 成する。 A)テトラペプチド結合部位組成物 好ましい態様において、本発明の螢光発生プロテアーゼインジケーターのペプ チド主鎖は、トリペプチドC1領域、テトラペプチドP領域及び単一アミノ酸又 はジペプチドC2領域を含むであろう。それらの化合物は、下記式: のいづれかである〕により表わされ得る。それらの式において、ペプチド結合領 域は−P2−P1−P1'−P2'−として示され、そしてコンホメーション決定領域 C1及びC2のアミノ酸残基はそれぞれ−C1 5−C1 4−C1 3−及び−C2 3−C2 4− として示される。C2領域は、アミノ酸か又はジペプチドのいづれかであり得る 。C2領域がジペプチドであろうと又はアミノ酸であろうと、F2螢光団及びS2 スペーサーは、存在する場合、C2のカルボキシル末端残基に常に結合される。 スペーサーがC2領域に存在する場合、それはαカルボキシル基にペプチド結合 によりC2のカルボキシル末端残基を結合される。 上記で示されたように、コンホメーション決定領域は典型的には、分子中に曲 げを導入し、そしてその剛性を高めるアミノ酸残基、 たとえばプロリン(Pro)を含む。しかしながら、プロテアーゼ結合領域(P)の 末端残基がそれら自体、曲げを創造する残基、たとえばプロリンである場合、そ の末端に結合されるC領域においてPに接近した位置で曲げを創造する残基を配 置することは必要でないことを当業者は理解するであろう。従って、コンホメー ション決定領域は、上記のようにプロテアーゼ結合領域をまず決定し、コンホメ ーション決定領域に存在する“残りの”残基を決定し、そして必要なら、次のガ イドラインに従ってそれらの残基を変性することによって企画される: 1.P2'部位がProでない場合、C2はジペプチド(式III)Pro-Cys,Aib-Cys ,Pro-Lys、又はAib-Lysであり、そして逆に、P2'部位がProである場合、C2は 単一のアミノ酸残基(式IV)Cys又はLysである。 2.P2部位がProでない場合、C1はAsp-C1 4,-Pro,Asp-C1 4,-Aib,Asp-Aib-P ro,Asp-Pro-C1 3,Asp-Aib-C1 3,Asp-Pro-Aib又はAsp-Aib-Aibから成るトリペプ チドであり、そしてP2部位がPro残基である場合、基C1はAsp-C1 4-C1 3又はAsp- C1 4-Aibから成るトリペプチドである。 3.P3(C1 3)残基がProである場合、C1はAsp-C1 4-Pro又はAsp-Aib-Proから 成るトリペプチドである。 4.P4(C1 4)残基がProである場合、C1はAsp-Pro-C1 3又はAsp-Pro-Aibから 成るトリペプチドである。 5.P2及びC1 3が両者ともプロリンでない場合、C1はAsp-Pro-C1 3,Asp-Aib- C1 3,Asp-C1 4-Pro,Asp-C1 4-Aib,Asp-Pro-Aib又はAsp-Aib-Proから成るトリペ プチドである。 上記のように、いづれかのメチオニン(Met)がノルロイシン(Nle)により置換さ れ得る。C1、及びC2から成る多くの適切なペプ チド主鎖が表2に提供される。 1.好ましい態様において、配列の後に、Gly-TyrのS2スペーサーが続く。従っ て、たとえば、C2 4がLysである場合、C2 4−S2はLys-Gly-Tyrである。 B)他の結合部位を有するインジケーター もう1つの好ましい態様においては、結合部位(P)は、2〜約12個の長さの アミノ酸の範囲である。幾分大きなコンホメーション 決定領域がインジケーター分子の自由度の程度を十分に制限することができ、す なわちその螢光団が結合〔認識〕ドメイン(P)のアミノ酸配列にかかわりなく 、適切に消光されることが本発明の発見であった。1つの好ましい態様において 、それらの組成物は、下記式V: で表わされる化合物を含む。この式において、Pは、プロテアーゼ結合部位を含 んで成るペプチドであり、そして2〜約12個のアミノ酸から成り、F1及びF2は 螢光団であり、ここでF1は組成物(スペーサーを除く)のアミノ末端アミノ酸 に結合され、そしてF2はカルボキシル末端アミノ酸に結合される。S1及びS2 は、存在するなら、1〜約50個の長さのアミノ酸の範囲のペプチドスペーサーで あり、そしてS1は、存在するなら、アミノ末端アミノ酸に結合され、そしてS2 は、存在するなら、カルボキシル末端アミノ酸に結合される。下付き文字i,j ,k,m,n,o,p,q及びrは独立して0又は1である。 特に好ましい態様においては、aa1及びaa10は、リシン、オルニチン及びシス テインから成る群から独立して選択され;aa2,aa3,aa8及びaa9は、Asp、Glu、 Lys、オルニチン、Arg、シトルリン、ホモシトルリン、Ser、ホモセリン、Thr、 及びTyrから成るアミノ酸又はジペプチドから成る群から独立して選択され;aa5 ,aa4,aa6及びaa7はプロリン、3,4−デヒドロプロリン、ヒドロキシプロリ ン、α−アミノイソ酪酸及びN−メチルアラニンから成る群から独立して選択さ れ;XはGly,βAla,γAbu,Gly-Gly,Ahx,βAla-Gly,βAla-βAla,γAbu-Gly,β Ala-γAbu,Gly-Gly-Gly,γ Abu-γAbu,Ahx-Gly,βAla-Gly-Gly,Ahx-βAla,βAla-βAla-Gly,Gly-Gly-Gly- Gly,Ahx-γAbu,βAla-βAla-βAla,γAbu-βAla-Gly,γAbu-γAbu-Gly,Ahx-A hx,γAbu-γAbu-βAla、及びAhx-Ahx-Glyから成る群から選択され;YはGly,β Ala,γAbu,Gly-Gly,Ahx,Gly-βAla,βAla-βAla,Gly-γAbu,γAbu-βAla,G ly-Gly-Gly,γAbu-γAbu,Gly-Ahx,Gly-Gly-βAla,βAla-Ahx,Gly-βAla-βAla ,Gly-Gly-Gly-Gly,γAbu-Ahx,βAla-βAla-βAla,Gly-βAla-γAbu,Gly-γAbu -γAbu,Ahx-Ahx,βAla-γAbu-γAbu、及びGly-Ahx-Ahxから成る群から選択さ れる。 iが1である場合、S1は、aa1の末端αアミノ基を通してペプチド結合により aa1に結合され;そしてγが1である場合、S2は、aa10の末端αカルボキシル基 を通してペプチド結合によりaa10に結合される。それらのアミノ酸の1又は複数 のアミノ酸が不在である場合、螢光団は残る末端アミノ酸に結合される。 そのような特に好ましい組成物のアミノ酸主鎖は、表3及び4に列挙される。 “ドナー”及び“レセプター”螢光団 入射光線により励起された螢光団は光を吸収し、そして次に、異なった(長い )波長で光を再発光する。しかしながら、“レセプター”として知られる第2種 類の分子の存在下で、いわゆるドナー螢光団により発光された光は、レセプター により吸収され、それにより、ドナーの螢光シグナルを消光する。従って、螢光 団/発色団に対立するものとして、2種の螢光団の使用は、ドナーの発光スペク トルとレセプターの励起スペクトルとの間でのオーバーラップの明確な評価を可 能にする。これは、消光の最適化を可能にするペプチド主鎖の設計を促進する。 これは、低濃度のプロテアーゼ活性の検出を促進する高い効率のドナー/レセプ ター対をもたらす。従って、螢光団/発色団の組合せが適切であるけれども、好 ましい態様においては、本発明の螢光発生プロテアーゼインヒビターは2種の螢 光団を含むであろう。 “ドナー”及び“レセプター”分子は典型的には、レセプター分子の吸収スペ クトルが、ドナー分子の発光スペクトルと、できるだけ広くオーバーラップする ように、調和した対として選択される。さらに、ドナー及びレセプター螢光団は 好ましくは、ドナー分子の吸収及び発光スペクトルが可視範囲(400nm〜約700nm )に存在するように選択される。それにより、螢光団は、生物学的サンプルにお いて検出できるシグナルを提供し、従って、生物学的流体、組織ホモジネート、 組織断片及び同様のものにおけるプロテアーゼ活性の検出を促進する。多くの螢 光団の発光スペクトル、吸収スペクトル及び化学組成は、当業者に良く知られて いる(たとえば、Handbook of Fluorescent Probes and Research Chemlcals,R .P.Hauglond,ed.を参照のこと、これは引用により本明細書に組込まれる)。 好ましい螢光団対は、ローダミン誘導体を包含する。従って、たとえば5−カ ルボキシテトラメチルローダミン又は5−及び/又は6−カルボキシテトラメチ ルローダミン(9−(2,5−ジカルボキシフェニル)−3,6−ビスー(ジメ チルアミノ)キサンチリウムクロライド(5−TMR)及び9−(2,6−ジカルボ キシフェニル)−3,6−ビスー(ジメチルアミノ)キサンチリウムクロライド (6−TMR))のスクシンイミジルエステル、(Molecular Probes,Eugene,Oregon ,USAから入手できるC211及びC1171)(式VI)は、特に好ましいドナー分子であ り:そしてローダミンXアセトアミド(Molecular ProbesからのR492)(式VII) 又は5−及び/又は6−カルボキシ−X−ローダミン(9−(2,5−ジカルボ キシフェニル)−2,7−ジメチル−3,6−ビス− (エチルアミノ)キサンテン(5−DER)及び9−(2,6−ジカルボキシフェニ ル)−2,7−ジメチル−3,6−ビス−(エチルアミノ)キサンテン(6−DER ))、のスクシンイミジルエステル、C1309として得られる混合異性体(Molecul ar ProbesからのC1309)は特に好ましいレセプター分子である。それらの螢光 団は、このドナー/レセプター対の両メンバーの励起及び発光が可視波長に存在 し、分子が高い励起係数を有し、そして分子が溶液において高い螢光収率を有す るので、特に好ましい。励起係数は発光団による特定波長での光吸収の測定であ り、そして従って、シグナルを消光するその能力に関連し、ところが螢光収率は 再発光された光に対する吸収された光の割合であり、そして螢光団の効率の測定 値であり、そして従って、プロテアーゼインジケーターの感度に影響を及ぼす。 他の好ましい螢光団には、9−(2−カルボキシフェニル)−2,7−ジメチ ル−3,6−ビス(エチルアミノ)キサンチリウム、9−(2−カルボキシフェ ニル)−3,6−ビス(ジメチルアミノ)キサンチリウム、及び9−(2−カル ボキシフェニル)−キサンチリウムが含まれるが、これらに限定されない。 もちろん、最とも好ましいものではないが、紫外線範囲下で吸収し、そして発 光する螢光団もまた、本発明のプロテアーゼインジケーターに使用され得る。螢 光団の1つの特に好ましい紫外線吸収対は、ドナー分子として下記7−ヒドロキ シ−4−メチルクマリン−3−酢酸(式VIII): 及びレセプター分子として下記7−ジエチルアミノ−3−((4’−ヨードアセ チル)アミノ)フェニル)−4−メチルクマリン(式IX): である。それらの及び他の螢光団は、多くの製造業者、たとえばMolecular Prob es(Eugene,Oregon,USA)から市販されている。 調和された吸収及び発光スペクトルを有する螢光団が本発明の実施下で必要と されないことは驚くべき発見である。事実、単一種の螢光団は、F1及びF2によ り支配される位置における本発明のポリペプチド主鎖に連結される場合、それ自 体、消光することができる。さらに、この消光は、ペプチド主鎖が切断される場 合、十分に開放される。 特定の理論に基づくものではないが、消光は、2種の螢光団の電子軌道が相互 作用し、可逆的消光をもたらす、基底状態ダイマーの形成により達成されると思 われる。それは、基底状態ダイマーを効果的に形成するために螢光団を十分に接 近せしめる、本発明のペプチド主鎖の限定されたコンホメーションエントロピー である。 H−タイプダイマーからの特に好ましい分子。螢光分子によるH−タイプダイ マーの形成は、Packardなど.(1996)Proc.Natl.Acad.Sci.USA,93:11640-1 1645により記載される。このH−タイプダイマーは、吸収スペクトルにおける励 起バンド及び螢光消光により特徴づけられる(たとえば、Valdes-Aguileraなど .(1989)Acc.Chem.Res.,22:171-177及びPackardなど.(1996)Proc.Natl.A cad.Sci.USA,93:11640-11645を参照のこと)。 従って、好ましい態様においては、本発明のプロテアーゼインジケーターは、 単一種の螢光団のみ、より好ましくは、H−タイプダイマーを形成できる螢光団 を包含する。 NorFesは、セリンプロテアーゼエラスターゼのための認識配列及び切断部位を 含むウンデカペプチドである。NorFesがアミノ酸配列の反対の部位上で種々の螢 光団により二重にラベルされる場合、螢光は、分子内グラウンド状態ダイマーの 形成のために消光された。それらのダイマーのスペクトル特徴は、励起理論によ り予測できた。 温度の上昇につれてダイマー/モノマー比の低下は、染料分子間の分子間引力 を示した。テトラメチルローダミンから構成されるホモダイマーの破壊の活性化 の自由エネルギーは少なくとも1.7Kcal/モルであり、そしてジエチルローダミ ンの場合、2.4Kcal/モルであった。励起ダイマーを形成する螢光団の分子間引 力のために、結合するアミノ酸配列は本明細書に記載される最適配列からはずれ る。従って、励起−形成螢光団が使用される場合、アミノ酸置換が本明細書に記 載される“主鎖”において行なわれ得、そして活性はまだ維持され得る。 特に好ましい励起−形成螢光団は、カルボキシテトラメチルローダミン、カル ボキシローダミン−X、ジエチルアミノクマリン及び カルボシアニン染料を包含する。この態様においては、単一の螢光団のみが使用 されるので、発光又は吸収スペクトルを適合する必要はない。従って、広範囲の 種類の螢光団が効果的に使用され得る。さらに、単一の螢光団の使用は合成化学 をひじょうに単純化する。 本発明のホモ−二重ラベルされたインジケーター(単一種の螢光団によりラベ ルされたインジケーター)はまた、螢光測定の他に、吸光測定による酵素活性の 検出を可能にする。吸収スペクトルにおける青色−シフトされた励起バンド(又 は青色−シフトされた吸収最大値)はH−ダイマー形成を示し、そして螢光消化 が後者と同時に生じるので、吸収スペクトルの測定は正しい設定における診断手 段として十分であり得る。二重にラベルされたプロテアーゼインジケーターが特 定のプロテアーゼにより切断される場合、H−タイプのダイマーが破壊される。 次に、H−タイプのダイマーに関連する青色−シフトされた吸収最大値が失なわ れる。従って、青色−シフトされた励起バンドでの吸収強度を測定する場合、H −タイプのダイマーが破壊されるにつれて、吸収強度の低下が予測され、ところ が、モノマー最大ピークでの吸収強度は上昇することが予測される。螢光発生プロテアーゼインジケーターの調製 本発明の螢光発生プロテアーゼインジケーターは、まず、ペプチド主鎖、すな わちプロテアーゼ切断部位(P)、2種のコンホメーション決定領域(C1及び C2)、及び存在するなら、スペーサー(S1及びS2)を合成することによって 好ましくは調製される。次に、螢光団がペプチドに化学的に接合される。螢光団 は好ましくは、ペプチドに直接的に接合されるが、しかしながら、それらはまた 、リンカーを通してもペプチドに結合される。最後に、螢光発生プロテアーゼイ ンジケーターが固体支持体に結合される場合、次に 、それは直接的に又はリンカーを通して、スペーサー(S1又はS2)を経て固体 支持体に化学的に接合される。 ペプチド主鎖の調製 配列のC−末端アミノ酸が不溶性支持体に結合され、続いて配列における残る アミノ酸を連続的に付加する固相ペプチド合成は、本発明の化合物のペプチド主 鎖を調製するための好ましい方法である。固相合成のための技法は、次の文献に 記載されており:Barany and Merrifield,Solid−Phase Peptide Synthesis:p p.3〜284,The Peptides:Analysis,Synthesis,Biology,Vol.2:Special Methods in Peptide Synthesis,Part A.,Merrifield,et al,J.Am.Chem.Soc .85,2149〜2156(1963)、及びGross and Meienhofer,eds.Academic Press ,N.Y.,1980及びStewart et al.,Solid Phase Peptide Synthesis,2nd ed.P ierce Chem.Co.,Rockford,III.(1984);これらは引用により本明細書に組込ま れる。固相合成は、FMOC又はTBOC化学を用いて市販のペプチド合成機により最と も容易に達成される。螢光助剤プロテアーゼインジケーターのペプチド成分の化 学合成は、例1及び2に詳細に記載されている。 特に好ましい態様においては、ペプチド合成は、Fmoc合成化学を用いて実施さ れる。Asp,Ser,Thr及びTyrの側鎖が好ましくは、t−ブチルチオを用いて保護 され、そしてCys残基の側鎖はS−トリチル及びS−t−ブチルチオにより保護 され、そしてLys残基が好ましくは、リシン残基のためのt−Boc,Fmoc及び4− メチルトリチルを用いて保護される。適切に保護されたアミノ酸試薬は市販され ている。複数の保護基の使用は、選択的なブロック解除及びいづれか特定の所望 する側鎖への螢光団の結合を可能にする。従って、たとえば、t−Boc保護解除 は、ジクロロメタン中、TFAを用いて達成され、Fmoc保護解除はDMF又はN−メチ ルピロリドン中、20 %(v/v)ピペリジンを用いて達成され、そして4−メチルトリチル保護解除 は水中、1〜5%(v/v)TFA、又はDCM中、1%TFA又は5%トリイソプロピ ルシランを用いて達成される。S−t−ブチルチオ保護解除は水性メルカプトエ タノール(10%)を用いて達成され、t−ブチル及びt−boc、及びS−トリチ ル保護解除は、TFA:フェノール:水:チオアニソール:エタンジチオール(85: 5:5:2.5:2.5)を用いて達成され、そしてt−ブチル及びt−Boc保護解除は TFA:フェノール:水(95:5:5)を用いて達成される。詳細な合成、保護解 除、及び螢光団結合法は、例1及び2に提供される。 他方、本発明の螢光発生プロテアーゼインジケーターのペプチド成分は、組換 えDNA技法を用いても合成され得る。手短に言及すれば、所望するアミノ酸配列 をコードするDNA分子が、Beaucage and Carruthers,Tetra.Letts.22:1859〜 1862(1981)により記載される固相ホスホラミジット法、Matleucci、など.、J .Am.Chem.Soc.,103:3185(1981)(両者は引用により本明細書中に組込まれ る)を包含する当業者に知られている種々の方法、又は当業者に知られている他 の方法により化学的に合成される。好ましくは、DNAは、標準方法を用いての市 販のDNA合成機に基づいて標準のβ−シアノエチルホスホラミジットを用いて合 成され得る。 オリゴヌクレオチドは、必要なら、当業者に良く知られている技法により精製 され得る。典型的な精製法は、ゲル電気泳動、アニオン交換クロマトグラフィー (たとえばMono−Qカラム、Pharmacia−LKB,Piscataway,New Jersey,USA) 又は逆相高性能液体クロマトグラフィー(HPLC)を包含するが、但しこれらだけ には限定されない。タンパク質及びペプチド精製の方法は、当業者に良く知られ ている。標準方法のレビューのためには、Methods in Enzymology, Volume 182:Guide to Protein Purification,M.Deutscher,ed.(1990),619 〜626ページ(これは、引用により本明細書に組込まれる)を参照のこと。 オリゴヌクレオチドは、相捕的オリゴヌクレオチドによるアニーリング、又は DNAポリメラーゼによる重合により二本鎖DNAに転換され得る。次に、DNAがプロ モーターの制御下でべクター中に挿入され、そして宿主細胞を形質転換するため に使用され、その結果、細胞がコードされたペプチド配列を発現する。ペプチド のクローニング及び発現の方法は当業者に良く知られている。たとえば、Sambro ok,et al.,Molecular Cloning:A Laboratory Manual(2nd Ed.,Vols.1− 3,Cold Spring Harbor Laboratory(1989)),Methods in Enzymology,Vol.15 2:Guids to Molecular Cloning Technigues(Berger and Kimmel(eds.),San Di ego:Academic Press,Inc.(1987))、又はCurrent Protocols in Molecular Bi ology,(Ausubel,et al.(eds.),Greens Publishing and Wiley−Interscienc e,New York(1987)(これらは、引用により本明細書に組込まれる)を参照の こと。 ペプチド主鎖への螢光団の連鎖 螢光団は、当業者に良く知られている多くの手段のいづれかによりペプチド主 鎖に連結される。好ましい態様においては、螢光団は、螢光団上の反応部位から ペプチド上の反応基、たとえば末端アミノ又はカルボキシル基に、又はアミノ酸 側鎖上の反応性基、たとえばアミノ、ヒドロキシル、又はカルボキシル成分に直 接的に連結される。多くの螢光団は通常、適切な反応部位を含む。他方、螢光団 は、他の分子への連鎖のために反応性部位を付与するよう誘導体化され得る。第 2分子への結合のために官能基により誘導体化された螢光団は、種々の製造業者 から入手できる。誘導体化は、螢光団自 体上の基の単純な置換によることができ、又はリンカーへの接合によることがで きる。種々のリンカーが当業者に良く知られており、そして下記に論ぜられる。 上記のように、好ましい態様においては、螢光団は、プロテアーゼインジケー ターのペプチド主鎖に直接連結される。従って、たとえば、5’−カルボキシテ トラメチルローダミン(C2211)螢光団は、式Vに示されるようにアミノ酸のα アミノ基を通してアスパラギン酸に連結され得る。ローダミンXアセトアミド( R492)のヨードアセトアミド基は、式VIに示されるように、システインのスルフ ヒドリル基との反応により連結され得る。そのような連結を実施する手段は、当 業者に良く知られており、そして1つのそのような連結の詳細が例1に提供され る。 当業者は、ペプチドスペーサー(S1又はS2)が存在する場合(下記で論ぜら れるように)、螢光団は好ましくは、スペーサー自体がそれぞれC1又はC2の末 端アミノ及びカルボキシル基とペプチド連鎖を形成するにつれて、C1又はC2の 末端アミノ酸の側鎖上の反応性基を通してコンホメーション決定領域に連結され ることを理解するであろう。 スペーサーペプチドの選択及び固体支持体への連鎖 本発明の螢光発生プロテアーゼインジケーターは、溶液で得られ、又は固体支 持体に連結され得る。“固体支持体”とは、本発明の螢光発生プロテアーゼイン ジケーターを用いてのプロテアーゼ活性についてのアッセイのために使用される 溶液に存在するいづれの成分にも溶解せず又はその成分と反応せず、そして螢光 発生分子の結合のための官能基を提供するいづれかの固体材料を意味する。固体 支持材料は当業者に良く知られており、そしてシリカ、調節された多孔性ガラス (CPG)、ポリスチレン、ポリスチレン/ラテックス、 カルボキシル変性テフロン、デキストラン、誘導体化された多糖類、たとえばア ミノ、カルボキシル又はスルフヒドリル基を担持する寒天、種々のプラスチック 、たとえばポリエチレン、アクリル樹脂、及び同様のものを包含するが、但しこ れらだけには限定されない。“半固体”支持体、たとえば細胞及びリポソームに 見出されるような脂質膜もまた使用される。当業者は、固体支持体が、リンカー の結合又はペプチドの直接的な結合のための反応性部位を供給するために官能基 (たとえばヒドロキシル、アミン、カルボキシル、エステル、及びスルフヒドリ ル)により誘導体化され得ることを理解するであろう。 螢光助剤プロテアーゼインジケーターは、螢光団を通して、又はインジケータ ーを含むペプチド結合を通して、直接的に固体支持体に連結され得る。ペプチド 主鎖を通しての連鎖が、最とも好ましい° ペプチド主鎖を通して固体支持体に連結することが所望される場合、そのペプ チド主鎖は、追加のペプチドスペーサー(式IにおいてS1又はS2と命名されて いる)を含むことができる。そのスペーサーは、ペプチド主鎖のアミノ又はカル ボキシル末端で存在し、そして約1〜約50個のアミノ酸、より好ましくは1〜約 20個及び最とも好ましくは1〜約10個のアミノ酸の長さのものであり得る。特に 好ましいスペーサーは、Asp-Gly-Ser-Gly-Gly-Gly-Glu-Asp-Glu-Lys,Lys-Glu-A sp-Gly-Gly-Asp-Lys,Asp-Gly-Ser-Gly-Glu-Asp-Glu-Lys、及びLys-Glu-Asp-Glu -Gly-Ser-Gly-Asp-Lysを包含する。 ペプチドスペーサーのアミノ酸組成は、スペーサーが支持体から分子の活性成 分を分離するように作用し、それにより所望しない相互作用を妨げる場合、臨界 ではない。しかしながら、スペーサーのアミノ酸組成は、リンカー又は固体支持 体自体が容易に結合される 側鎖を有するアミノ酸(たとえばシステイン又はリシン)を供給するよう選択さ れ得る。他方、リンカー又は固体支持体自体は、S1のアミノ末端又はS2のカル ボキシル末端に結合され得る。 好ましい態様においては、ペプチドスペーサーは実際、リンカーにより固体支 持体に連結される。用語“リンカー”とは、本明細書で用いられる場合、他の分 子にペプチドを連結するために使用され得る分子(たとえば、固体支持体、螢光 団、等)を意味する。リンカーは、ペプチドと共有結合を形成することができる 第1反応部位及び固体支持体上の反応性基と共有結合を形成することができる第 2反応部位を供給するホモ二官能性分子である。ペプチド(スペーサー)との共 有結合は、末端カルボキシル又はアミノ基のいづれかを通してであり、又はアミ ノ酸側鎖上の反応性基による(たとえばシステインへのジスルフィド結合を通し て)。 適切なリンカーは、当業者に良く知られており、そして直鎖又は枝分れ鎖の炭 素リンカー、複素環式炭素リンカー又はペプチドリンカーを包含するが、但しこ れらだけには限定されない。上記のように、リンカーは、それらの末端カルボキ シル又はアミノ基を通して、又はそれらの反応性側鎖基を通してカルボキシル及 びアミノ末端アミノ酸に連結され得る。 特に好ましいリンカーは、アミノ基、カルボキシル基、又はスルフヒドリルに 対して共有結合を形成することができる。アミノ結合リンカーは、反応性基、た とえばカルボキシル基、イソシアネート、イソチオシアネート、エステル、ハロ アルキル、及び同様のものを包含する。カルボキシル−結合リンカーは、反応性 基、たとえば種々のアミン、ヒドロキシル及び同様のものを形成することができ る。最後に、スルフヒドリル−/結合リンカーは、反応性基、たとえばスルフヒ ドリル基、アクリレート、イソチアシネート、イソシ アネート及び同様のものを包含する。特に好ましいリンカーは、固体支持体上に 見出されるスルフヒドリル基によりアミノ基(たとえばペプチドにおけるリシン 残基上に見出されるアミノ基)を連結するために、又は固体支持体上に見出され るアミノ基によりスルフヒドリル基(たとえば、ペプチドのシステイン残基上に 見出される)を連結するためにスルホMBO(m−マレイミドベンゾイル−N−ヒド ロキシスルホスクシンイミドエステル)を包含する。他の特に好ましいリンカー は、EDC(1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド) 及びビス−(スルホスクシンイミジルスベレート)を包含する。他の適切なリン カーは、当業者に良く知られている。 本発明の螢光発生化合物は、ドナー螢光団が、分子の切断の後、固体支持体上 に保持されるように、又はドナー螢光団が、切断の後、溶液中に入るように、S1 又はS2スペーサーのいづれかを通して固体支持体に連結され得る。前者の場合 、次に支持体がプロテアーゼ活性を検出するために螢光についてアッセイされ、 そして後者の場合、溶液がプロテアーゼ活性を検出するために螢光についてアッ セイされる。プロテアーゼ活性の検出 本発明はまた、種々の情況においてプロテアーゼ活性を検出するために螢光発 生プロテアーゼインジケーターを用いるための方法も提供する。従って、1つの 態様においては、本発明は、実験又は産業目的のために使用されるプロテアーゼ の原液のプロテアーゼ活性を確証し、又は定量化するために螢光発生インジケー ターを用いる方法を提供する。使用する前、プロテアーゼ原液のプロテアーゼ活 性の確証は一般的に、プロテアーゼはしばしば、時間の経過と共に活性を失ない (たとえば、自己加水分解を通して)又はチモーゲン 前駆体から活性化される場合、種々の程度の活性化を示すので推薦される。 原液のプロテアーゼ活性についてのアッセイは、本発明の螢光発生プロテアー ゼインジケーターに一定量の原液を添加し、そして螢光の続く上昇を測定するこ とを単に必要とする。原液及び螢光発生インジケーターはまた結合され得、そし てプロテアーゼの活性を最適化する“消化緩衝液”においてアッセイされ得る。 プロテアーゼ活性をアッセイするのに適切な緩衝液は当業者に良く知られている 。一般的に、そのpHが特定のプロテアーゼの最適pHに対応する緩衝液が選択され るであろう。たとえば、エラスターゼ活性をアッセイするのに特に適切な緩衝液 は、50mMのリン酸ナトリウム、1mMのEDTA(pH8.9)から成る。その測定は、螢光計 、及び螢光団のための”励起”光源を提供し、そして次に、特定の波長で発光さ れる光を測定する装置により最とも容易に行なわれる。プロテアーゼを欠く対照 のインジケーター溶液との比較は、プロテアーゼ活性の測定を提供する。その活 性レベルは、既知の活性のプロテアーゼ溶液により生成される螢光の変化速度が 決定される、プロテアーゼ/インジケーターの組合せのための標準曲線を生成す ることによって正確に定量化され得る。 螢光発生化合物の検出は好ましくは、螢光計を用いて達成されるけれども、検 出は当業者に良く知られている種々の他の方法により達成され得る。従って、た とえば、本発明の螢光団は可視波長を発光するので、検出は光源による励起に応 答しての螢光の可視検査により単純に行なわれ得る。検出はまた、ディジタイザ ー又は他の像獲得システムに連結されたビデオカメラを用いて、像分析システム により行なわれ得る。検出はまた、螢光顕微鏡下でフィルターを通しての可視化 により行なわれ得る。その顕微鏡は、オペレーターに より可視化されるシグナルを提供する。しかしながら、シグナルは写真フィルム 上に又はビデオ分析システムを用いて記録され得る。シグナルはまた、像分析シ ステム又は単なる光度計のいづれかを用いて即時に単純に定量化され得る。 従って、たとえば、サンプルのプロテアーゼ活性についての基本的アッセイは 、緩衝液にサンプルを懸濁し、又は溶解し(アッセイされる特定のプロテアーゼ の最適pHで)、本発明の螢光発生プロテアーゼインジケーターの1つを緩衝液に 添加し、そして分光光度計を用いて螢光の得られる変化をモニターすることを包 含するであろう。分光光度計は、ドナー螢光団の励起波長でドナー螢光団を励起 し、そしてドナー螢光団の発光波長でその得られる螢光を検出するよう設定され るであろう。 もう1つの態様において、本発明のプロテアーゼ活性インジケーターは、生物 学的サンプルにおけるプロテアーゼ活性の検出のために使用され得る。従って、 好ましい態様においては、本発明は、単離された生物学的サンプル、たとえば唾 液、血液、血液細胞、腫瘍生検及び同様のもの、又は培養物中の細胞又は組織、 又はその断片が包埋されておらず、そして固定されていない断片におけるプロテ アーゼ活性を検出するための方法を提供する。シグナルは、螢光顕微鏡、螢光マ イクロプレートリーダー、螢光計、又はフローサイトメーターを用いて定量する ことができる。 単離された生物学的サンプルのエキソビボアッセイ 1の態様において、本発明は単離された生物学的サンプルにおけるプロテアー ゼ活性の検出方法を提供する。これは、本発明の螢光助剤プロテアーゼインジケ ーターとサンプルとを単純に接触せしめ、そしてインジケーターの螢光の変化を 時間と共にモニターすることによって決定され得る。サンプルは、上記のように “消化緩衝液 ”に懸濁され得る。サンプルはまた、分析の前、たとえば遠心分離により細胞残 骸を除去され得る。 螢光助剤プロテアーゼインジケーターが固体支持体に結合される場合、アッセ イは、サンプル溶液にインジケーターを担持する固体支持体を接触せしめること を包含する。インジケーターがドナー螢光団を担持する分子側により固体支持体 に連結される場合、そのインジケーターの消化に起因する支持体の螢光が上記手 段のいづれかにより時間の経過と共にモニターされるであろう。逆に言えば、レ セプター分子螢光団が固体支持体に結合される場合、試験溶液が固体支持体上に 通され、そして次に、試験溶液のその得られる発光(切断された螢光団による) が測定される。この後者のアプローチは、高い処理量の自動アッセイのために特 に適切である。 組織学的断片の現場アッセイ もう1つの態様においては、本発明は組織学的断片における現場プロテアーゼ 活性を検出するための方法を提供する。組織におけるプロテアーゼ活性を検出す るこの方法は従来技術の方法(たとえば、特異的染色、抗体ラベル、等)よりも 実質的な利点を提供する。なぜならば、単純なラベリングアプローチとは異なっ て、プロテアーゼインジケーターを用いての現場アッセイは、プロテアーゼの単 純な存在又は不在よりもむしろ実際の活性を示すからである。プロテアーゼは、 しばしば、プロテアーゼラベルを結合することができるそれらの不活性前駆体( チモーゲン)形で組織に存在する。従って、従来のラベリングアプローチは、組 織のプロテアーゼ活性と共に生理学的状態に関しての情報を提供しない。 現場アッセイ法は一般的に、組織断片(好ましくは凍結された断片)を供給し 、その断片と本発明の螢光発生プロテアーゼインジケーターの1つとを接触せし め、そして得られる螢光を可視化するこ とを含んで成る。可視化は好ましくは、螢光顕微鏡を用いて行なわれる。その螢 光顕微鏡は“ドナー”螢光団の螢光を誘発するために“励起”光源を供給する。 顕微鏡は典型的には、得られる螢光の検出を最適化するためにフィルターを備え 付けられている。従って、たとえば、例1に記載される螢光助剤プロテアーゼイ ンジケーターに関して、Nikon顕微鏡のための典型的なフィルターキューブは、 励起フィルター(λ=550±12nm)、二色ミラー(λ=580nm)及び干渉−発光フィ ルター(λ=580±10nm)を含むであろう。上記のように、顕微鏡は、カメラ、 光測計又は像獲得システムを備え付けられ得る。 断片は好ましくは、固定化又は包埋がサンプル中のプロテアーゼ活性を破壊す るので凍結断片として切断される。 螢光発生インジケーターは、多くの手段で断片に導入され得る。たとえば、螢 光助剤プロテアーゼインジケーターは、組織断片に適用される、上記のような緩 衝溶液に供給され得る。他方、螢光発生プロテアーゼインジケーターは、半固体 媒体、たとえば組織サンプル上に広げられるゲル又は寒天として供給され得る。 ゲルは、プロテアーゼ活性に応答してシグナルを提供しながら、サンプル中の湿 気の保持を助ける。螢光発生プロテアーゼインジケーターはまた、ウェスターン ブロットの開発に類似する方法に使用され得るポリマー、たとえばプラスチック フィルムに接合されて供給され得る。プラスチックフィルムはスライド上の組織 サンプル上に配置され、そして切断されたインジケーター分子に起因する螢光が 顕微鏡下でサンプル組織に見られる。 典型的には、組織サンプルは、内因性プロテアーゼが螢光発生プロテアーゼイ ンジケーターを切断する時間インキュベートされるべきである。インキュベーシ ョン時間は、37℃までの温度(37℃も含 む)で約10〜60分の範囲であろう。組織及び生検サンプルに由来する培養物及び細胞懸濁液における細胞の現場アッ セイ さらにもう1つの態様において、本発明は、組織、生検サンプル、又は生物学 的流体(たとえば唾液、血液、尿、リンパ、血漿、等)に由来する培養物又は細 胞懸濁液における細胞の現場プロテアーゼ活性の検出方法を提供する。培養され た細胞は、チャンバースライド上で又は懸濁液において増殖され、そして次に、 細胞遠心分離により組織学スライドに移される。同様に、細胞懸濁液は、標準の 方法に従って調製され、そして組織学スライドに移される。スライドがリン酸緩 衝溶液により洗浄され、そして螢光源プロテアーゼインジケーターを含む、半固 体ポリマー又は溶液により被覆される。スライドが、37℃で、プロテアーゼイン ジケーターを内因性プロテアーゼが切断するのに必要な時間インキュベートされ る。次に、スライドが上記のように適切なフィルターを備えた螢光顕微鏡下で試 験される。 他方では、細胞が37℃でプロテアーゼインジケーターと共にインキュベートさ れ、次に、緩衝液により洗浄され、そしてガラス細管に移され、そして螢光顕微 鏡下で試験される。流動細胞計測計が細胞内酵素活性を定量化するために使用さ れる場合、螢光原インジケーターと共に細胞が、37℃でのインキュベーションの 後、緩衝液により単純に希釈され、そして分析される。他のインジケーター組成物 上記で説明されたように、主鎖の反対側(たとえばペプチド切断部位)上に共 有結合される螢光分子が自己−相互作用(たとえば、ダイマーの形成を通して) により消光できることが、本発明の発見であった。従って、1つの態様において は、インジケーター分子が 適合されたドナー受容体対よりもむしろ単一の螢光団を用いて製造され得る。ま た、上記で説明されたように、特に好ましい螢光団は、H−タイプのダイマーを 形成するもの(たとえばカルボキシテトラメチルローダミン、カルボキシローダ ミン−X、ジエチルアミノクマリン、及びカルボシアニン染料)である。 しかしながら、単一種のラベルされたインジケーターの使用は、ペプチド−基 材の組成物に制限されない。それと反対に、“ホモ−二重ラベルされた”インジ ケーター分子は、種々の主鎖、たとえば核酸主鎖、オリゴ糖主鎖、脂質主鎖、及 び同様のもの(但し、それらだけには限定されない)を利用することができる。 そのような主鎖への螢光団のカップリング方法は当業者に良く知られている。た とえば、アミノ酸、ペプチド、タンパク質、核酸、オリゴヌクレオチド、糖、ポ リサッカリド、プロテオグリカン、脂質、糖脂質及びリポポリサッカリドに螢光 団を結合するための接合方法は、Hermanson,(1995)Bioconjugate Techniques, Academic Press New York,N.Y.,Kay M.など.,(1995)Biochemistry,34:29 3-300、及びStubbs,など.,(1996)Biochemistry 35:937-947により記載される 。核酸インジケーター ホモ−二重ラベルされた核酸主鎖は、核酸ハイブリダイゼーション及び/又は エンドヌクレアーゼ活性のための効果的なインジケーターを提供する。この態様 においては、核酸主鎖が、3’及び5’末端で(直接的な結合を通して、又はリ ンカー(たとえば、ペプチド)を通して間接的に)自己−消光性(たとえばH− タイプダイマー形成性)螢光団によりラベルされる。核酸主鎖は、自己−相補的 領域を含み、そしてそれにより、自己−消光が生じるよう螢光団を接近せしめる ヘアピン又は他の自己−ハイブリダイズされたコンホ メーションを形成するよう選択される。このようにして形成されたインジケータ ー(プローブ)が相補的標的核酸にハイブリダイズされる場合、自己−ハイブリ ダイゼーションが排除され、螢光団が分離され、そして分子により生成される螢 光シグナルが上昇する。他方では、螢光ラベルされた核酸主鎖は、ヌクレアーゼ 活性(たとえば制限エンドヌクレアーゼ又はリボザイム活性)についてアッセイ するために使用され得る。核酸主鎖がヌクレアーゼにより(たとえば、主鎖にお ける標的部位の制限エンドヌクレアーゼ認識により)切断される場合、螢光団は 再び分離され、螢光シグナルが高められる。適切な核酸主鎖を選択する方法は、 Tyagi and Kramerなど.(1996)Nature Biotechnology,14:303-308により記載 される。 ホモ−二重ラベルされた螢光DNAプローブは、種々の情況下で、標的DNA配列の 検出、局在化又は定量化のために使用され得る。従って、たとえば、本発明の核 酸インジケーターは、核酸増幅(たとえばPCR)反応における増幅生成物の急速な 検出のために使用され得る。ここで、増幅生成物の領域に対して相補的な主鎖を 有するインジケーターが選択される。増幅生成物が生成されるにつれて、インジ ケーターは、生成物にハイブリダイズし、そしてPCR溶液の螢光シグナル活性が 上昇する。核酸インジケーターは、他の種々の情況下で、ハイブリダイゼーショ ン又はヌクレアーゼ活性インジケーターとして使用され得る。たとえば、現場ハ イブリダイゼーション(たとえばFISH)において、ゲノムDNAのマッピングは、 染色体内の特定の領域を標的化するために螢光プローブを用いて達成され得る( たとえば、Meyne(1993)Chromosome mapping by fluorescent in situ hybridi zation,pp 263-268 In:Methods in Nonradioactive Detection G.C.Howard, ed.,Appleton & Lange,Norwalk,Connecticut;Morrison(1992)Deiection o f energy transfer an d fluorescence quenching,pp.311-352 In:Nonisotopic DNA Probes Techniq ues L.J.Kricka,ed.Academic Press,New York;and Varani(1995)Annu.R ev.Biophys.Biomol.Struct.24:379-404を参照のこと)。 もう1つの態様において、自己−消光螢光団は、2種の分子の相互作用(たと えば、タンパク質−タンパク質、タンパク質−核酸、リガンド−受容体、等)を アッセイするために使用され得る。この態様において、1つの螢光団が1つの分 子(たとえばタンパク質)に結合され、そして第2の螢光団が第2の分子(たと えば、第2の核酸又は核酸結合タンパク質)に結合される。2種の分子が結合す る場合、螢光団は並置され、そしてお互い消化する(たとえば、H−タイプのダ イマーの形成を通して)。2種の分子の相互作用を測定するためへのドナー受容 体共鳴エネルギートランスファーシステムの使用は、Bannwarthなど.,Helvetic a Chimica Acta.(1991)74:1991-1999,Bannwarthなど.(1991),Helvetica Ch imica Acta.74:2000-2007、及びBannwarthなど.、ヨーロッパ特許出願D43903 6A2により記載される。オリゴ糖インジケーター ホモ−二重ラベルされたオリゴ糖主鎖インジケーターは、グリコシダーゼ活性 の検出及びレシチン結合タンパク質の同定を可能にする。螢光団は、オリゴ糖又 は糖ペプチド主鎖に直接的に接合され、又はリンカー(たとえば、ペプチド)を 通して結合され得る。オリゴ糖及び/又は糖ペプチドは、化学的に合成され、組 換え的に発現され、又は天然源、たとえばフェチュイン及び他の糖タンパク質か ら親の糖タンパク質のタンパク質分解断片化により単離され得る。 オリゴヌクレオチドに関する場合におけるように、オリゴ糖特異的構造が、特 定のグリコシダーゼ、すなわち2種の糖分子間の結合 を加水分解する酵素の検出のために選択され得る。 特定のオリゴ糖又はレシチンがそのレシチン結合タンパク質を見出すために選 択される場合、高められた螢光性が、2種の染料を分離することによって、又は 2種の染料の相対的配向をゆがめることによって、H−タイプのダイマーを破壊 する複合体化現象を示す。それらの効果は、ホモ−二重ラベルされたプローブか らの高められた螢光性をもたらす。脂質インジケーター 脂質、糖脂質又はリポ多糖が自己−消光(たとえばH−タイプのダイマーを形 成する)螢光団によりラベルされ、そしてリポソーム又は他の脂質(たとえば生 物学的)膜に付加される場合、螢光性の低下がH−タイプのダイマー形成を示し 、そしてそのような螢光強度の程度は、H−タイプのダイマー形成の量の徴候で あろう。脂質膜の相対的な流動性のために、自己−消光性螢光団は、安定したH −タイプのダイマーと相互作用することができる(たとえば、約6〜約10Åの空 間に近づく)。膜活性剤、たとえば膜の流体力学又は試験化合物への透過性のい づれかに影響を及ぼす剤が添加される場合、その観察される螢光強度の変化は、 膜流動性又は透過性を変性する試験化合物の能力を示す。従って、そのようなラ ベルされた脂質は、薬物スクリーニング、及び液体−薬物供給ビークルの開発に おいて有用である。 同様に、本発明の脂質−基材のプローブは、脂質/タンパク質相互作用の程度 を同様に調べるために使用され得る。ポリペプチドの細胞摂取 ポリペプチドへの疎水性保護基の結合が、細胞によるそのポリペプチドの摂取 を高めることはまた、本発明の発見であった。その効果は、ポリペプチドがまた 、螢光団、より好ましくは2種の螢光団 を担持する場合、最とも明白である(例9を参照のこと)。好ましい疎水性基は 次のものを包含するが、但しそれらだけには限定されない:Fmoc、ベンジルオキ シカルボニル、キサンチル(Xan)、トリチル(Trt)、4−メチルトリチル(Mtt)、 4−メトキシトリチル(Mmt)、4−メトキシ−2,3,6−トリメチル−ベンゼ ンスルホニル(Mtr)、メシチレン−2−スルホニル(Mts)、4,4’−ジメトキシ ベンズヒドリル(Mbh)、トシル(Tos)、2,2,5,7,8−ペンタメチルクロマ ン−6−スルホニル(Pmc)、4−メチルベンジル(MeBzl)、4−メトキシベンジル (MeOBzl)、ベンジルオキシ(BzlO)、ベンジル(Bzl)、ベンゾイル(Bz)、3 −ニトロ−2−ピリジンスルフェニル(Npys)、1−(4,4−ジメチル−2, 6−ジアキソシクロヘキシリデン)エチル(Dde)、2,6−ジクロロベンジル(2 ,6−DiCl−Bzl)、2−クロロベンジルオキシカルボニル(2−Cl−Z)、2− ブロモベンジルオキシカルボニル(2−Br−Z)、ベンジルオキシメチル(Bom) 、t−ブトキシカルボニル(Boc)、シクロヘキシルオキシ(cHxO)、t−ブトキ シメチル(Bum)、t−ブトキシ(tBuO)、t−ブチル(tBu)、アセチル(Ac)、及 びトリフルオロアセチル(TFA)。 従って、本発明は、細胞中に分子(たとえば、ポリペプチド、オリゴヌクレオ チド、オリゴ糖、脂質、等)を供給するための方法を提供する。前記方法は、少 なくとも2種の螢光団分子及び疎水性基、より好ましくはFmoc基を結合している 、供給されるべき分子(たとえばポリペプチド)を供給し、そして次に、前記分 子と細胞とを接触せしめることを包含する。 ペプチド、オリゴヌクレオチド、オリゴ糖又は脂質が診断最終点のために又は 治療目的のためにインビボで供給される予定である場合、低められた毒性を有す るか又はまったく毒性を有さない螢光団 及び疎水性基が好ましいことが理解されるであろう。 従って、好ましい態様においては、螢光団は、生物学的活性をほとんど又はま ったく有さない非毒性分子により置換され得る。好ましい分子は、供給される予 定である分子の2つの末端を連結するリンカーとして作用する融合された環化合 物である。特に好ましい融合された環化合物は、励起ダイマーの空間を近づける 。 最とも好ましい融合された環化合物は、ステロイド類を包含するが、但しそれ らだけには限定されない。H−タイプのダイマー形成のために知られている、比 較的平らで且つ疎水性の螢光団は、たとえばステロイド分子に見出される同様に 疎水性で且つ構造的に硬質で及び/又は平らな融合された環化合物、すなわち完 全なステロイド分子よりも小さなステロイド誘導体により置換され得、ここで2 〜3個の融合された6員環分子は通常の架橋剤を通して架橋され、本明細書に記 載されるFmoc及び他の疎水性基に相当するサイズ及び全体的な疎水性が提供され 得る。安全な代謝経路がそれらの小さな構成単位から成る大きな分子のために存 在するので、そのようなハイブリッド分子の毒性は低いことが予測される。好ま しい態様においては、疎水性分子は、約17×12Åのサイズである。ペプチドがイ ンビボで供給される予定である場合、低められた毒性か又は非毒性の螢光団が好 ましい。多くの螢光団の毒性は当業者に良く知られている(たとえば、Haugland ,Handbook of Fluorescent Probes and Research Chemicals,6th Ed.,Molecu lar Probes,Eugene,OR.(1996)を参照のこと)。さらに、毒性(たとえばLD50 )は、当業者に良く知られている標準の方法に従って容易に決定され得る。最と も好ましい態様においては、融合された環化合物は、融合されたステロイド、た とえばLattなど.(1965)J.Am.Chom.Soc.,87:995-1003に示される構造体X I及びXIIであり、ここで−OR及び− OR2は細胞中に輸送することが所望される、ペプチド、核酸又は他分子の末端の ための結合の活性化された点として作用することができる。 上記に示されるように、ほとんどのいづれかの分子の細胞摂取は、疎水性基及 び螢光団又はステロイド架橋剤の結合により増強されるであろう。従って、適切 な分子は、実質的に、細胞中に導入することが所望されるいづれかの分子を包含 する。特に好ましい分子は、ポリペプチド(たとえば、本発明のプロテアーゼイ ンヒビター)、及び核酸(たとえば、オリゴヌクレオチドHIVインヒビター(た とえば、Jing(1997)Biochem.,36:12498-12505を参照のこと)、リボザイム 、ペプチド核酸、及び同様のもの)を包含するが、但しそれらだけには限定され ない。活性検出キット 本発明はまた、サンプル中のプロテアーゼ活性の検出のためのキットを提供す る。キットは本発明の螢光発生プロテアーゼインジケーターを含む1又は複数の 容器を含んで成る。インジケーターは、溶液に供給され、又は固体支持体に結合 され得る。従って、キットは、インジケーター溶液又はインジケーター“計量棒 ”、吸取紙、培養培地及び同様のものを含むことができる。キットはまた、自動 プロテアーゼ活性検出器への使用のためのインジケーターカートリッジ(ここで は、螢光発生インジケーターが“レセプター”螢光団側により固体支持体に結合 されている)も含むことができる。 キットはさらに、方法を教授し、そしてキットの成分の使用を記載する取扱説 明書を含むことができる。さらに、キットはまた、他の試薬、緩衝液、種々の濃 度のプロテアーゼインヒビター、原液プロテアーゼ(標準曲線、等の生成のため の)、培養培地、使い捨てキュベット及び同様のものを、本発明の螢光発生プロ テアーゼイン ジケーターを用いてのプロテアーゼ活性の検出を助けるために包含する。 さらに又は他方では、キットが、本明細書に記載されるいづれか他のインジケ ーター(たとえば、核酸基材のインジケーター、オリゴ糖インジケーター、脂質 インジケーター、等)を含んで成ることが理解されるであろう。この場合、キッ トは、特定のインジケーター主鎖が基質又は結合剤である、特定の活性/化合物 /相互作用の検出を促進するであろう。プロテアーゼインヒビター プロテアーゼインジケーターがまた、プロテアーゼインヒビターとしても作用 できることは、本発明の発見でもあった。プロテアーゼインヒビター及びプロテ アーゼ基質は、いくつかの基本的性質、たとえばプロテアーゼの触媒性基質結合 部位に結合する能力及びプロテアーゼと比較的安定した複合体を形成する能力を 共有する。従って、多くの通常の基質又はそれらのフラグメントは、より高い濃 度で競争基質阻害を示す。その阻害は、インヒビターがプロテアーゼの同じ基質 結合部位に結合し、それにより、それはプロテアーゼの触媒ドメインへの結合に おいて生来の基質と競争するので、競争性である。 本発明は、プロテアーゼインヒビター企画のための3種の新規アプローチを提 供する。第1のアプローチにおいては、通常の基質は、それがプロテアーゼに十 分に結合するが、しかし低められた(遅いか又は存在しない)加水分解速度を有 するように再企画される。遅い加水分解速度は、プロテアーゼ認識ドメイン中に 変更された(異なった)コンホメーション及び/又はコンホメーション柔軟性を 導入することによって達成される。基質(たとえば生来の)がプロテアーゼの基 質結合部位に結合した後、P1とP1'との間のペプチ ド結合のコンホメーションが、所定のプロテアーゼのペプチド結合加水分解反応 の転移コンホメーションにゆがめられる。このペプチド結合及び隣接するペプチ ド結合が、それらがゆがめられないように変更される場合、加水分解速度は、切 断部位ペプチド結合が所望する転移コンホメーションに容易にゆがめられる基質 に比較して、低められるであろう。このアプローチは例16に示されており、ここ でその例は、プロテアーゼ認識、アミノ酸配列を変えないで、基質の加水分解速 度をいかにして変えることができるかを示している。 第2のアプローチにおいては、インヒビターが、切断部位ペプチド結合をゆが めることを困難にする決定的なP1又はP1'残基を置換することによって生成さ れる。通常、P1及びP1'のアミノ酸側鎖は、プロテアーゼ触媒ドメインの側鎖 と特異的に相互作用する。それらの特異的相互作用は、加水分解反応の転移コン ホメーションへのペプチド結合ゆがみの調整を促進する。従って、たとえば、CP P32プロテアーゼ基質におけるアスパラギン酸残基の決定的P1残基が荷電されて いないアスパラギンにより置換される場合、基質とプロテアーゼとの間の通常の 相互作用は、変性された基質がプロテアーゼの基質結合部位に結合する場合でさ え、起こらない。再び、これは、より遅いか又はゼロの加水分解速度を導びく。 インヒビターの企画におけるP1残基置換効果の例は、DEVNペプチドの性質によ り示されている(たとえば、図5及び例12を参照のこと)。基質DEVNがインヒビ ターである生物学的コンホメーションは、例13に示されている。ペプチドDEVNが プロテアーゼに結合する追加の証拠が例15に与えられている。 P1'残基は、荷電されたアミノ酸側鎖、又は表3に示されるような構造的に硬 質の残基(たとえばプロリン)、すなわちDVVCC SMS(通常の基質)及びDVVCC P dMS(インヒビター)のC型肝炎ウイル スプロテアーゼ基質NS3 NS5A/5Bのための基質配列を、導入するために変更され 得る。下線の残基は、P1残基である。 第3のアプローチにおいては、基質のP1及びP1'残基間のアミド結合が、非 加水分解性化学結合、たとえばP1及びP1'残基のための同じアミノ酸側鎖を維 持する、エーテル、チオエーテル、メチレン結合、又はアルキレン(C=C)又 はエーテル結合(C−O−C(=O))(但し、それらだけには限定されない) に変更され得る。また、アミド結合は、レトロインバーソ(retroinverso)結合 、又は他の偽似アミノ酸結合、たとえばCH2基によりカルボニル基を置換するCH2 -NH又はC(=O)−Sにより置換され得る。 本発明は次の例により例示される。それらの例は例示目的のためであって、本 発明を制限するものではない。例1 プロテアーゼ活性の検出のための螢光発生分子の合成 a)ペプチド主鎖の合成 アミノ酸配列Asp-Ala-Ile-Pro-Nle-Ser-Ile-Pro-Cys(ここでC1はAsp-Ala-Il eであり、PはPro-Nle-Ser-Ileであり、そしてC2はPro-Cysである)及びAsp-Al a-Ile-Pro-Met-Ser-Ile-Pro-Cys(ここでC1はAsp-Ala-Ileであり、PはPro-Met -Ser-Ileであり、そしてC1はPro-Cysである)を、下記表3に与えられるカップ リングサイクルのための手段を用い、t−Boc Cys−Pam樹脂及びt−Boc化学を 用いて手動的に合成した。合成されたペプチドを、4℃の温度で無水条件下で60 分間、塩酸による処理により保護解除した。 粗製のHF保護解除され、そして分解された後のペプチドを、分離 用C18カラム(YMC.Inc.,Charlestown,North Carolina,USA)を用いて逆相HPL Cにより精製した。使用された溶媒システムは、水、及びアセトニトリル含有0.1 %(v/v)トリフルオロ酢酸(TFA)であった。HPLCを、10ml/分の流速で次の グラジエントを用いて実施した。 メチオニン含有ペプチドの精製は、メチオニンオキシドをメチオニンに還元す るためにペプチドを還元条件、たとえばジチオトレイトール(DTT)及び加熱にゆ だねることを必要とした。この還元処理は、1mMのDTT(pH7.5)を含む150mMのリ ン酸ナトリウム緩衝液にペプチドを60〜80℃で30分間、溶解することによって実 施された。還元はまた、0.03NのHClによる弱酸性pH下で実施されたが、しかしよ り長い加熱時間を必要とした。続くHPLC精製されたメチオニン含有ペプチドは、 水溶液又は凍結形での存在に基づいて酸化することが見出された。酸化されたペ プチドは、上記還元条件をくり返すことにより還元性になることが見出された。 b)螢光団分子によるペプチド主鎖の誘導体化 ペプチドを、ドナー及びレセプター螢光団により連続的に誘導体化した。特に 、Molecular Probes,Inc.Eugene,Oregon,USAから入手できるドナー螢光団( 5’−カルボキシテトラメチルローダミ ン(5−TMR))をまず、ペプチドのアミノ末端に共有結合した。3:1のモル比 でのペプチド:プローブを、最少量、通常20〜60μlの溶媒NMP(N−メチルピロ リドン)に溶解した。1モル当量のDIEA(ジイソプロピルエチルアミン)をまた 、反応混合物に添加した。次に、その反応物を37℃で、12時間〜3日間インキュ ベートした。2日後、追加の1モル当量の色素分子を時々、添加した。誘導体化 は、3日までにほぼ最大収率に達成した。単一の5−TMR螢光団を担持するペプ チドを、下記のようにしてHPLC精製した。 第2(レセプター)螢光団(ローダミンXアセトアミド(R492))を、螢光団 のヨードアセトアミド基と末端システインのスルフヒドリル基との間の連鎖によ りペプチドのカルボキシルシステインに結合した。この結合は、最初の螢光団に ついて記載されているようにして達成された。 次に、完全な螢光発生プロテアーゼインジケーターを、1ml/分で表6に示さ れるグラジエントを用いて、Waters Associates Inc.(Milford,Massachusetts ,USA)からの分析用逆相C3カラム(2mlの空隙率)を用いてのHPLCにより精製 した。 螢光団の結合においてのアミノ及びスルフヒドリル基の両者の遅い反応性は、 ペプチドの反応基への接近を立体的に妨げたペプチド 主鎖の折たたまれた構造の機能であると思われた。不適切な線状ペプチドを用い ての対照実験は、相当に早い結合を示した。折たたまれた構造体はまた、例2及 び3に報告される結果により支持される。ペプチドのコンピューターエネルギー 最少化モデルはまた、開放された延長構造体よりもむしろ折たたまれた構造体を 想定するためのペプチドについての可能な選択を示した。これは、2種のプロリ ン残基を含むコンホメーション決定領域の存在のためである。例2 プロテアーゼ活性インジケーターの他の合成 a.Fmoc−保護されたペプチド主鎖の合成 表8に列挙されるアミノ酸配列を、表7に与えられるカップリングサイクルに ついての手段を用いて、Fmoc化学及び2−クロロトリチルクロリド樹脂を利用し て手動的に合成した。 合成されたペプチドを、室温で30分間、緩酸処理(2:7:1のv/v比での 酢酸:ジクロロメタン:トリフルオロエタノール)により2−クロロトリチルク ロリド樹脂から切断した。このペプチド樹脂切断溶液10mlアリコートを、乾燥さ れたペプチド樹脂0.1gに添加した。次の側鎖保護基を合成に使用した:Asp,Ser ,Thr、及びTyr残基のためのt−ブチル、Cys残基のためのS−トリチル及 びS−t−ブチルチオ、及びリシン残基のためのt−Bot,Fmoc及び4−メチル トリチル。 側鎖保護基、及び合成されたペプチドのαアミノ基上のFmoc基を、この緩酸ペ プチド樹脂切断試薬により切断されなかった。保護されたペプチド含有溶液を凍 結乾燥せしめた。その凍結乾燥された保護ペプチドを、t−Boc保護解除のため にジクロロメタン中、30%(v/v)TFA,Fmoc保護解除のためにDMF又はN−メ チルピロリドン中、20%(v/v)ピリジン、4−メチルトリチル保護解除のた めに水中、1〜5%(v/v)トリフルオロ酢酸又はDCM中、1%TFA/5%トリ イソプロピルシラン、S−t−ブチルチオ保護解除のために水性メルカプトエタ ノール(10%)、t−ブチル、t−Boc及びS−トリチル保護基解除のためにTFA :フェノール:水:チアニゾール:エタンジチオール=85:5:5:2.5:2.5溶 液、及びt−ブチル及びt−Boc及びS−トリチルのためにTFA:フェノール:水 =90:5:5溶液によりさらに処理した。 完全に又は部分的に側鎖保護解除されたペプチドを、個々の溶媒に0.075%( v/v)TFAを含む水/アセトニトリルグラジエントによりC18カラムを用いて 逆相HPLCにより精製した。b.螢光団による、保護されたペプチド主鎖の誘導体化 十分に精製された保護ペプチドを、Cys又はLys残基の側鎖の選択的保護解除の ために適切な試薬によりさらに処理した。リシンのエプシロン(ε)アミノ基保 護のために、3種の異なった保護基、すなわちt−Boc,Fmoc、及び4−メチル トリチル基の使用は、選択的保護解除、及び従って、特定のリシン残基の選択的 誘導体化を可能にした。 たとえば、保護されたペプチド約1mgを、最少量のN−メチルピロリドンに溶 解した。スクシンイミジルエステル反応性官能基によ り誘導体化された適切な螢光団を、ペプチド上の反応性螢光団の1.2〜2倍モル 過剰でのペプチド溶液に添加した。10倍モル過剰のジイソプロピルエチルアミン (DIEA)をその反応混合物に添加した。その反応を、室温で2〜4時間、進行せ しめた。誘導体化されたペプチドを、C18又はC4カラム及び0.075%(v/v )TFA−含有水/アセトニトリル溶媒システムを用いて逆相HPLCにより精製した 。 第1の螢光団によるペプチドの誘導体化は、少なくとも1つのひじょうに疎水 性の基、たとえばFmocの存在により促進された。螢光団汚染物、及び誘導体化反 応の進行と共に蓄積する反応副生成物及び分解生成物からの誘導体化されたペプ チドの溶離(たとえば分割)を、ペプチド上のそのような疎水性基の存在が可能 にする。 次に、Fmoc基の保護解除は、1つのアミノ基又はスルフヒドリル基が所望する 螢光団により誘導体化された後に実施された。アミノ基接合のために使用される 螢光団は、6−TMR,5−(及び6−)カルボキシテトラメチルローダミンスク シンイミジルエステル、C1309,5−(及び6−)カルボキシ−X−ローダミン スクシンイミジルエステル、DER、5−(及び6−)カルボキシ−X−ローダミ ンスクシンイミドエステル及びフルオロセインイソチアシアネートであった。保 護解除の後、第2螢光団を、最初の付加法と同じ態様で添加した。 c.誘導体化されたペプチドの分子量特徴付け 保護されたペプチドの誘導体化の間又はその後、強酸保護解除段階が時々、種 々のアミノ酸側鎖から残るt−ブチル基を除去するために使用されるので、芳香 族アミノ酸又は螢光団が化学的に変性されている可能性が存在した。従って、誘 導体化され、そして精製されたペプチドの分子量を決定した。 分子量は、フライト質量分光計、すなわちKratos AnalyticalからのKompact M ADLIのマトリックス助力のレーザー脱着時間を用いて測定された。その質量分光 計を、Leucine−Enkaphelin(556.6amu),Bradykinin(1061.2amu)及びMellitin (2847.5amu)により検量した。使用されるサンプルマトリックスは、α−シアノ −4−ヒ ドロキシ桂皮酸であった。サンプルを標的に適用し、そしてエタノール溶液中、 0.1%TFA 1mlをその標的上に添加し、そして次に、乾燥せしめた。50回のレー ザーショットからの累積質量スペクトルデータを収集し、そして個々のサンプル についての、親質量ピーク+1に対応するピークを決定した。その結果は表10に 要約されている。 計算された及び実験的に決定された質量値間の良好な一致は、最終精製された 螢光団一接合のペプチドにおけるいづれの副反応生成物の不在を示す。 例3 螢光発生プロテアーゼインジケーターは、消化される場合、強いシグナルを供 給する 本発明の螢光発生プロテアーゼインジケーターがプロテアーゼにより容易に消 化されることを示すために、切断の程度を、プロテアーゼの存在下でインジケー ター切断生成物の出現についてアッセイすることによって決定した。式F1-Asp-A la-Ile-Pro-Nle-Ser-Ile-Pro-Cys-F2(ここでF1はαアミノ基を通してアスパラ ギン酸に連結されるドナー螢光団(5’−カルボキシテトラメチルローダミン( C2211))であり、そしてF2はシステインのスルフヒドリル基を通して連結さ れるレセプター螢光団(ローダミンXアセトアミド(R492))である)を有する プロテアーゼインジケーター約1μgを、50mMのリン酸ナトリウム、1mMのEDTA (pH8.9)から成る緩衝液に溶解した。この溶液に、1単位のエラスターゼを添加 した。その溶液を、エラスターゼの添加の前及び添加の約30分後にHPLCにより分 析した。消化は37℃で行なわれた。HPLCにより分離された成分を、5−TMR螢光 団及びR492螢光団の両者の検出を可能にする550nmの波長で及びR492螢光団の検 出を可能にする580nmの波長でモニターした。 結果は、プロテアーゼエラスターゼの添加の前及び添加の後の螢光発生プロテ アーゼインジケーター溶液のHPLCプロフィールを示す図1に示される。図1(a )は、損なわれていない螢光発生プロテアーゼインヒビターを表わす単一のピー クを示す、エラスターゼの添加の前のHPLCを示す。エラスターゼの添加後(図1 (b)及び1(c))、螢光発生プロテアーゼインジケーターの完全な消化を示 す後期溶離の単一のピーク(図1(a))の痕跡は存在しなかった。さらに、図 1(b)及び1(c)における2つの優先的なピークは、消化が単一の部位で主 に生じたことを示唆する。ペプチド配列 内の他の部位での低い程の消化を示すいくつかの小さなピークが存在するが、し かしながら、わずか2つの消化ピークの著しい優先は、それらの第2部位がエラ スターゼに容易に接近できなかったことを示す。 エラスターゼプロテアーゼの添加後の螢光発生プロテアーゼインジケーターの 発光スペクトルの変化を、励起及び発光側の両者上で4nmで設定されたスリット 幅を伴ってSLMスペクトロ螢光計モデル48000を用いてモニターした。すべての測 定は、37℃で実施された。 図2におけるスペクトルは、エラスターゼの添加の前(a)及び添加の後(b )での螢光発生プロテアーゼインジケーターの発光を示し、そしてエラスターゼ の添加の後、インジケータードナー螢光団の発光強度の時間依存性上昇を図3に プロットする。螢光発生プロテアーゼインヒビターは、エラスターゼプロテアー ゼによる処理の後、589nmでの螢光の10倍以上の上昇を示し(図2(a)が図2 (b)に比較された)、そして螢光の5倍以上の上昇がプロテアーゼへの暴露の 始めの1000秒以内で生じた。処理されたインジケーターと処理されていないイン ジケーターとの間の強さの変化は、それらが特定のスリット幅を通して統合され るシグナルを表わすので、ある程度、使用されるスリット幅の機能である。従っ て、より広いスリット幅(たとえば8又は16nmのスリット)が使用される場合、 さらに高いシグナルが消化に応答して提供されるであろう。例4 螢光シグナルは、分子内エネルギーの消光解除によるものであった プロテアーゼ処理の後に観察される螢光の上昇が分子内エネルギーの消光解除 によるものであることを示すために、螢光発生プロテ アーゼインジケーターのエラスターゼ消化により生成されるシグナルを、F1(5 −TMR)又はF2(R492)のいづれかに結合される同じペプチド主鎖のエラスターゼ 処理により生成されるシグナルに比較した。等濃度の二重螢光団分子及び2種の 単一螢光団分子への1単位のエラスターゼの添加の後のドナー螢光団の螢光強度 の変化を調べた。 その結果は図4に示される。二重螢光団分子は、初期において、ほぼ完全な消 光を示し、続いて、エラスターゼの添加の約30分後、一定値に達する、エラスタ ーゼの添加の後での螢光の劇的な上昇を示した(図4(a))。対照的に、2種 の単一螢光団分子は、実質的に初期消光を示さず、そしてエラスターゼの添加後 、螢光の有意な変化も示さなかった。実際、その螢光レベルは、十分に消化され た二重螢光団インジケーター分子の螢光レベルに相当した(図4(b))。 それらの結果は、螢光発生プロテアーゼインジケーターの螢光強度の上昇が、 ドナー螢光団からレセプター螢光団に分子内で移行される共鳴エネルギーの中断 によるものであり、そして螢光団とペプチド主鎖との間の相互作用ではないこと を示唆する。これは、大きなペプチド又は疎水性ペプチドへの結合に基づいて、 多くの疎水性螢光団の螢光が消光されるので、有意である。例5 特定の理論に基づくものではないが、本発明の螢光発生プロテアーゼインジケ ーターは、それらの折たたまれた構造により、より特定にはそれらの比較的剛性 のU−形状コンホメーションにより、高い程度のプロテアーゼ特異性を達成する と思われる。その分子から得られる螢光は、2種の螢光団の平均隔離距離に影響 を及ぼす。従って、プロテアーゼインジケーターが比較的折たたまれていないか 又は柔軟な状態で存在する場合、折たたまれていない状態(変性)を引き起こす 傾向がある条件は、プロテアーゼの不在下で分子の螢光に対する効果をほとんど 又はまったく有さないことが予測された。逆に言えば、分子が比較的剛性である 場合、螢光団の平均隔離距離の上昇が予測され、それにより消光効果が低められ ることが予測されるので、変性条件は、螢光シグナルを高めることを予測される であろう。 従って、プロテアーゼの不存在下での螢光源性プロテアーゼインディケーター の螢光に対する変性条件の効果が決定された。第1に、添加されたチャオトロー プ剤濃度(2M又は8Mの尿素)の関数としての、例1のインディケーターの螢 光の変化が測定された。螢光源性プロテアーゼインディケーターがチャオトロー プ剤により変性された場合、螢光強度は時間と共に増加し、分子の変性(アンフ ォルディング)により平らになった。 それらのデータは、螢光発生プロテアーゼインジケーターが通常、エネルギー 最少化問題解決法に基づくモデルにより予測されるように、コンホメーション決 定領域により創造される安定した折たたまれたコンホメーションで存在すること を示す。プラトーの螢光レベルは、十分に変性されたペプチド主鎖によりまだ連 結されている螢光団の残る消光を示す。延長された(変性された)ペプチドの消 化は、螢光団がお互いさらに遠くの方に移動することができるので、螢光の2倍 以上の上昇をもたらす。例6 1つの螢光団により二重ラベルされたペプチドの消光及び開放 1つの螢光団により二重ラベルされた本発明のペプチド主鎖が、螢光消光をま だ達成し、従って共鳴エネルギー移行の他に、他の機構を通しての消光を示すこ とは、本発明の驚くべき発見である。 基底状態の二量体化及び衝突性(collisional)消光が全体の観察される消光に 寄与することを評価するために、表11に列挙される一連の二重ラベルされたペプ チドを合成した。 個々の色素により単独でラベルされたNorFesペプチドと共に色素の吸収スペク トルを比較する他に、切断の前及び後で取られた発光スペクトルが、共鳴エネル ギー移行(RET)以外の手段により、消光の%及び螢光シグナル消光の存在を決定 するために比較された。 螢光団は、アスパラギン酸残基(D)のα−アミノ基を通してアミノ末端に及 びリシン(K)のε−アミノ基に連結された。ラベリングは、6−TMR又はDERに 連結されるスクシンイミジル基の置換により行なわれた。NorFES−KGYと称する ペプチドの構造は次の通りである: 吸光分光計から決定されるように、フルオレセイン−NorFES−フルオレセイン を除く、すべての二重ラベルされたペプチドは、いわゆる基底状態のダイマーの 存在を示した。これは、より短い波長への吸光最大値の移行、及び酵素消化され た、二重ラベルされたサンプルについてのスペクトルに比較される場合、吸収ス ペクトルの形状の変化により示された。エラスターゼによる切断に基づいて、基 底状態のダイマーを破壊し、そしてその得られるスペクトルは同濃度のそれぞれ の単独でラベルされたペプチドを含む溶液と同じであった。 特定の理論に基づくものではないが、本発明に従って企画され、そして合成さ れた化合物に観察される基底状態のダイマー形成は、ペプチド主鎖のU形状コン ホメーションが螢光団をきわめて接近し た状態にし、従って、基底状態二量体化を通して逆消光をもたらす2種の螢光団 の電子軌道のオーバーラップを可能にすることを示すと思われる。本発明のポリ ペプチドが、これまで観察されるよりも有意に低い色素濃度で基底状態のダイマ ーの形成を可能にしたことは驚くべき発見であった。たとえば、溶液における遊 離フルオロセイン色素の基底状態二量体化は、0.74M以上の高い濃度でのみ観察 され、溶液における遊離エオシン色素の基底状態二量体化は、2.8×10-2M以上 の高い濃度でのみ観察され(Forster and Konig,Zeitschrift fur Electrochem ie,61:344(1957)を参照のこと)、そして溶液におけるローダミンB色素の 基底状態二量体化は、6×10-4M以上の濃度でのみ観察された(Arbeloa and Oj eda,Chemical Physics Letters,87:556(1982)を参照のこと)。対照的に、 本発明においては、その効果は、4.0×10-7Mで又は報告された値よりも約100倍 低い濃度で観察された。 本発明に従って合成された化合物についての基底状態ダイマーの観察は、表11 に列挙されるそれらの化合物と同じ螢光団を有する二重ラベルされたペプチドに ついての有意なレベルの螢光消光を予測した。実際、この予測は確証された。す なわち、6−TMR−NorFES−KGY−6−TMR、すなわちホモ二重ラベルされたペプ チドと6−TMR−NorFES−KGY−6−TMRとの比較は、消光の程度がヘテロ−対ホ モ−においてわずかに高いことを示す(94%対90%)。しかしながら、フルオロ セイン誘導体はわずか55%の消光を示した。%螢光消光(%Q)についての記号 IO及びICは、損なわれていないラベルされたペプチド及び酵素消化されたラベ ルされたペプチド溶液についての螢光強度を言及する。 基質配列は1つのアミノ酸残基により拡張され、そして螢光団は、観察される 消光の量の主な心配を伴わないでリシン残基の側鎖上にエピシロンアミノ基を通 して結合され得た。特に、この付加(K−NorFES−KGYと称するペプチド)は、 ヘテロ−及びホモ−二重ラベルされたペプチドの両者について、切断率のわずか な上昇及び%消光のひじょうにわずかな上昇をもたらした(K−NorFES−KGYペ プチドにおいては、N−末端ラベリングは、α−アミノ末端よりもむしろリシン のエプシロンアミノ基を通してであった)。 エラスターゼによるそれらの基質の切断率をまた、シグナルが最大値の1/2で ある、プロテアーゼの添加後の時間を記録すること によって測定した(表11を参照のこと)。3種のホモ−二重ラベルされたペプチ ド、すなわち6−TMR;DERの2種の分子及びフルオレセイン(F1)によりラベル されたNorFES−KGYの比較は、次のような切断率の順序を示す:F1−NorFES−KGY −F1>6−TMR−NorFES−KGY−6−TMR>DER−NorFES−KGY−DER。例7 ホモ−二重ラベルされたプロテアーゼインジケーターの使用 本発明のプロテアーゼインジケーターのインビトロ効能を示すために、表皮癌 細胞系A431の細胞を、5%ウシ胎児血清(FCS)を含むダルベッコ最少必須培地(DM E)を含むPermanox組織培養チャンバースライド(Nunc,Inc.,Naperville,Illin ois,USA)において不完全集密性まで増殖した。培地の除去の後、20%エタノー ルを含む溶液200μlを、個々のチャンバーに添加し、そしてインキュベーショ ンを2分間実施した。次に、エタノール性媒体を除却し、そして単層培養物をDM E(FCSを含まない)により2度洗浄した。 次に、1×10-7Mの濃度で6−TMR−NorFES−C1171を含むDME溶液を、前記単 層培養物と共に10分間インキュベートした。次に細胞を、ローダミンフィルター キューブを用いてNikon螢光顕微鏡により螢光について試験した。(2種の異な った螢光団によりラベルされたペプチド〔ヘテロ−二重ラベルされた〕に比較し て単一の螢光団によりホモ−二重ラベルされたペプチドを用いての利点は、ホモ −二重ラベルされたペプチドを用いての螢光顕微鏡は、二色鏡の発光側上にカッ トオフフィルター〔すなわち、定義された波長以上のすべての光を伝達するフィ ルター〕を単に必要として、ところが、ヘテロ−二重ラベルされたペプチドを用 いての螢光顕微鏡は好ましくは、干渉フィルター〔すなわち、定義された波長範 囲(X±Ynm)における光を伝達するフィルター〕を用いることである)。 個々の細胞を、その全細胞質を満たす拡散レッド螢光(エラスターゼにより切 断されるプロテアーゼインジケーターにより生成される)により明確に定義した 。集密性集団の縁での細胞に関して、その集団の黒い境界部は、細胞の細胞質に おけるレッド螢光とは明確に異なっており、これは、その螢光がバックグラウン ド螢光又は媒体によるプロテアーゼインジケーターの切断によらなかったことを 示唆する。例8 さらに、本発明者は、(ホモ二重ラベルされた)PAI−2,CS−1(31個の残 基の長さのペプチド)及び染料−染料ダイマー形成を可能にしない2種のDEVD様 ペプチドを合成し、そして誘導体化した。CS−1ペプチドは、有意に長いペプチ ドにおいて、染料−染料ダイマー構造が形成され得ることを示す。このペプチド は、推定上の切断部位Ile-Leu結合のアミノ末端側に4個のプロリン残基を含む ことを注目すること。また、カルボキシルドメインに1つのプロリンが存在する 。CS−1ペプチドからの結果は、2種の染料(螢光団)間に潜在的に大きな配列 を維持する。生産性H−タイプダイマーの形成を可能にしない、2種のDEVE−様 ペプチドのアミノ酸配列は、F1-DEVDGIDPK[F1]GY及びF1-PDEVDGIDPK[F1]GYであ る。例9 流動細胞計測及び螢光顕微鏡分析により試験された基質の細胞摂取 表12に列挙される化合物を、細胞摂取のために合成し、そしてアッセイした。 基質の細胞インターナリゼーションを、Jurkat細胞(ヒト急性T細胞白血病系) 、HL−60細胞(ヒトプロ骨髄球白血病系)、ヒトリンパ球系、A1.1細胞(ネズミ T−細胞系)及びネズミ一次胸腺細胞を用いて試験した。生存細胞による基質摂 取の決定に使 用される方法は、例6(HPLC方法に関する)、例2(螢光顕微鏡分析に関する) 、及び例3(流動細胞計測分析に関する)に提供される。基質の細胞摂取に関す るそれらの分析の要約は、この例に提供されている。 表12に列挙されるデータは、(1)2種の螢光団のみの存在が、構造体2,5 ,7及び9により示されるように、細胞摂取のために最適ではなく;(2)αア ミノ基での9−フルオレニルメトキシカ ルボニル(Fmoc)基の付加、及びわずか1種の螢光団の結合は微々たる細胞摂取 をもたらさず(たとえば、化合物3);そして(3)螢光団及び少なくとも1種 のFmoc基は、基質の効果的な細胞摂取を可能にする(構造体1,4,6,8,10 ,11及び12)ことを示す。 2つの同一の螢光団及び少なくとも1つの追加の疎水性基、たとえばFmoc基に よりラベルされた本発明のプロテアーゼ基質を用いての他の実験は、この範例に 適合する。低い疎水性の基及び小さなベンジルオキシカルボニル基によるFmoc基 の置換は、低レベルの細胞摂取をもたらしたが、しかし疎水性基、たとえばDEVD ペプチド化合物構造体5を有さない化合物よりも有意に良好であった。 それらのデータは、Fmocがベンジルオキシカルボニル、Z、又は次の他の疎水 性基により置換され得ることを示す;キサンチル(Xan)、トリチル(Trt)、4− メチルトリチル(Mtt)、4−メトキシトリチル(Mmt)、4−メトキシ−2,3,6 −トリメチルベンゼンスルホニル(Mtr)、メシチレン−2−スルホニル(Mts)、4 ,4’−ジメトキシベンズヒドリル(Mbh)、トシル(Tos)、2,2,5,7,8− ペンタメチルクロマン−6−スルホニル(Pmc)、4−メチルベンジル(MeBzl)、4 −メトキシベンジル(MeOBzl)、ベンジルオキシ(BzlO)、ベンジル(Bzl)、ベ ンゾイル(Bz)、3−ニトロ−2−ピリジンスルフェニル(Npys)、1−(4, 4−ジメチル−2,6−ジアキソシクロヘキシリデン)エチル(Dde)、2,6− ジクロロベンジル(2,6−DiCl−Bzl)、2−クロロベンジルオキシカルボニル (2−Cl−Z)、2−ブロモベンジルオキシカルボニル(2−Br−Z)、ベンジ ルオキシメチル(Bom)、t−ブトキシカルボニル(Boc)、シクロヘキシルオキシ( cHxO)、t−ブトキシメチル(Bam)、t−ブトキシ(tBtO)、t−ブチル(tBu) 、アセチル(Ac)及びトリフルオロアセチル(TFA)。 化合物5上の酸基DEVDペプチドがエタノールによりエステル化される場合、こ の修飾されたペプチドは、生存細胞によるいづれの増強された細胞摂取も示さな かった。従って、Fmoc基の重要性、及び2種の螢光団形成H−タイプダイマーが 、この負の例により示される。例10 エステラーゼ又はアポプロトシス−関連プロテアーゼ基質と共にインキュベー トされた細胞の螢光顕微鏡分析 エラスターゼ基質、Fm-K[F1]DAIPNIuSIPK[F1]GY(ここで、F1はカルボキシテト ラメチルローダミンであり、FmはFmocであり、K〔F1〕はリシン(K)のエプシ ロンアミノ基を通して共有結合されるF1であり、そしてFm−Kはアミノ末端リシ ン残基のαアミノ基で共有結合されるFmoc基である)を、HL−60細胞と共に使用 した。細胞を、10nM〜10μMの範囲の種々の濃度のエラスターゼ基質と共に10〜 60分間インキュベートした。次に、細胞を、5%血清を含むRPMI1640培地又はリ ン酸緩衝溶液により5倍に希釈した。サンプルを遠心分離し、そして1mlの洗浄 溶液によりもう1度、洗浄した。遠心分離及び洗浄溶液の除去の後、細胞ペレッ トを約25μlの培地によりやわらかくし、そしてそれらの細胞をガラス細管に移 した。次に、細管をガラス顕微鏡スライド上に配置し、そして標準のローダミン フィルターを用いて、螢光顕微鏡下で試験した。 アポプトシス−関連プロテアーゼ活性の決定に関しては、例8に列挙される10 μMの濃度の化合物(化合物構造体2〜13)を、細胞と共に30分〜3時間インキ ュベートした。次に、細胞を同様にして2度、洗浄した。ガラス細管を用いて、 前記洗浄された細胞を移し、そして螢光顕微鏡下で試験した。例11 アポプトシス−関連プロテアーゼ基質と共にインキュベートされる細胞の流動 細胞計測分析 流動細胞計測分析に使用される基質の濃度は、4〜10%のウシ胎児血清を含む RPMI 1640培地において10μMであった。選択された基質とのインキュベーショ ンの間、細胞密度は、50,000細胞/ml〜4,000,000細胞/mlの範囲であった。イ ンキュベーション時間は、37℃で30分〜3時間であり、そしてインキュベーショ ン体積は50μl〜2mlであった。基質と共に30〜60分間、インキュベートした後 、細胞懸濁液を、氷冷却されたハンクス緩衝溶液(HBSS)により10倍に希釈し、 そして次に、ナイロン布シートを通して濾過した。この濾過された細胞懸濁液を 、488nmの励起源を用いて、流動細胞計測分析にゆだねた。Becton Dickenson,I nc.の流動細胞計測分析FacSortを、この流動細胞計測分析に使用した。典型的に は、サンプル当たり10,000〜30,000個の現象が集められた。 基質インキュベーションを伴わない対照細胞及び最大の予測される螢光シグナ ルを有するサンプルを用いて、計器検出器のパラメーターを設定した。たとえば 、基質化合物#11 Fm-CGD2D:Fm-K[F1]DBJGDEVDGIDGJPK[F1]GY(ここでF1はカル ボキシテトラメチルローダミンであり;FmはFmocであり、K〔F1〕は、リシン( K)のエプシロンアミノ基を通して共有結合されるF1であり、NIuはノルロイシ ンであり、Bはアミノイソ酪酸であり、そしてJはエプシロン−アミノカプロン 酸である)と共にJurkat細胞を15分間インキュベートした後、基質の細胞摂取を 示す約10個のチャネルの上昇が測定された。基質#11は完全には消光されなかっ たことを注目すること。従って、少量のバックグラウンド螢光が損なわれていな い基質から予測される。1μg/mlの抗−Fas抗体、CH11クローンにより1〜6 時間、活性化された細胞からのシグナルは、ピークチャネル数の上 昇を示した。螢光強度の10倍ほどの上昇が観察された。細胞が、アポプトシス誘 発剤、たとえば抗−Fas抗体及び50μMでのCPP32プロテアーゼインヒビタ−ZVAD −フルオロメチルケトンと共に同時インキュベートされる場合、この観察される 螢光強度の上昇は排除された。これは、化合物11からのシグナルがZVAD−FMKに より阻害できるCPP32プロテアーゼ活性のためであったことを示した。従って、 流動細胞計測分析により決定されるような個々の細胞における観察される螢光強 度が、細胞内CPP32プロテアーゼ活性の直接的な測定として作用した。例12 アポプトシス−関連のプロテアーゼ基質の細胞溶解物加水分解に対するそれら の効果により示される競争基質インヒビター 6時間の抗−Fas−刺激されたJurkat細胞溶解物におけるCPP32プロテアーゼ活 性のレベルを、50μMの基質濃度のプロテアーゼ基質DEVD−AFC(ここで、AFCは アミノフルオロメチルクマリンである)を用いて37℃で試験した。使用される緩 衝液は50mMのHEPES(Ph7.5,10%w/vスクロース、0.1%w/v CHAPS)であ った。螢光濃度の変化を、SLM 48000スペクトルフルオロメーターによりモニタ ーした。DEVD−AFCの加水分解速度は、反応混合物に存在する、DEVD,DEVN及びI CE基質(表12における化合物5,7、及び9)の濃度に依存することが見出され た。DEVD,DEVN及びICEの濃度が25μMに上昇するにつれて、DEVD−AFC加水分解 の速度は低められた。従って、DEVD,DEVN及びICE基質は、それらの加水分解速 度がDEVD−AFC基質の加水分解速度よりも遅いので、標的プロテアーゼ、たとえ ばCPP32の基質結合部位に結合し、そして競争インヒビターとして作用する。荷 電されていない保存性残基Asnにより突然変異誘発されたそのP1残基を有する基 質対照ペプチドが、プロテアー ゼ基質結合部位に結合する能力、及び酵素阻害を示す能力をまだ保持しているこ とを見出すことは驚くべきことである。例13 基質は完全な細胞におけるアポプトシス刺激を遅延し、そして阻害する Jurkat細胞を、5%CO2雰囲気下で、37℃で、10%ウシ胎児血清含有RPMI 160 培地において増殖する。血清含有率が4%に低下する場合、Jurkat細胞増殖速度 は遅くなったのみならず、また、有意な数の細胞が36時間以内に死亡した。使用 される細胞密度は、約400,000個の細胞/mlであった。36時間後、対照ウェルは 約50%の死亡細胞(トリパンブルー陽性細胞)を含むが、ところが、0.1又は1.0 μlの濃度の化合物#11(表12)“Fm-CGD2D”、又はFm-K[F1]DBJGDEVDGIDGJPK[ F1]GYを含むウェルはわずか10%又は8%の非生存細胞を示した。従って、効果 的な細胞摂取を示す化合物#11は、それらのJurkat細胞においてアポプトシスを 遅延せしめ、ここでそれはCPP32プロテアーゼインヒビターとして又はCPP32活性 化プロテアーゼインヒビターとして作用した。例14 細胞からの損なわれていない及び切断された基質フラグメントの単離 抗−Fas抗体(37℃で2時間、1μg/ml)によりアポプトシスに誘発されたJu rkat細胞を、10μMの基質化合物#10 Fm-G2D2Dと共にインキュベートした。こ の基質と共に1時間インキュベートした後、細胞を、4%血清含有RPMI 164O培 地(あらゆる100μlのインキュベーション培地のために1mlの洗浄溶液)によ り洗浄した。細胞を3度洗浄し、次にTriton X-100を含む細胞溶解緩衝液により 溶解した。次に、細胞溶解物を、C4逆相クロマトグラフィーカ ラム、及び0.075%のトリフルオロ酢酸を含む水/アセトニトリル溶離剤システ ムを用いて分析した。分析は、損なわれていない基質よりも早く溶出する2つの 主要な新規ピークと共に、損なわれていない基質の存在を示した。2つの回収さ れた主要ピークは、ローダミン吸収スペクトルを示し;従って、それらは基質の プロテアーゼ分解に基づいて生成される2つの主要基質フラグメントに対応する 。例15 標的酵素含有溶液と共に混合される場合のDEVN基質からの螢光シグナル DEVN(10μM)、すなわち表12の化合物である基質対照ペプチドは、アポプト シス−活性化されたJurkat細胞溶解物によるプロテアーゼ消化に対して耐性であ ることが見出された。集中的な消化時間は、螢光強度のさらなる上昇をもたらさ なかった。この反応混合物のHPLC逆相分析は、完全に切断されていない基質の存 在を確かめた。荷電されていないアミノ酸AsnによるP1残基Aspの置換は、プロ テアーゼ非基質へのプロテアーゼ基質の転換をもたらした。 この対照ペプチドは、例12に記載されるような実験において競争性基質阻害を 示した。さらに、細胞溶解物の添加の後、時間の関数としてモニターする螢光強 度は、始め、螢光強度の有意な上昇を示したが、しかし15分後、この初期強度レ ベルは安定化した。細胞溶解物に存在するプロテアーゼによる基質切断が存在し なかったことを考慮すると、この初期螢光強度の最良な説明は、プロテアーゼに 結合するDEVN基質及びコンホメーション変化を受ける基質による。基質の主鎖を 包含するこのコンホメーション変化はまた、平均距離及び相対的配向に関してお 互いに対しての2つの共有結合される螢光色素分子のコンホメーションにも影響 を及ぼす。基質構造体にお けるそれらの2種の螢光団の螢光消光の程度は、それらの双極子に関してのそれ らの距離及び特定の配向に対して敏感であることが見出された。従って、螢光報 告分子のそれらの2つの観点に影響を及ぼすいづれかのコンホメーション変化が 、螢光消光に影響を及ぼすことが予測される。従って、プロテアーゼの基質結合 部位に結合する基質により誘発されるコンホメーション変化は、観察される初期 螢光強度の変化、すなわちその螢光強度の上昇において影響された。基質は切断 され得ないので、初期螢光強度の上昇は安定に達する。新規種類の読取り、たと えば基質とその標的結合分子との間の会合の程度としての、基質切断よりもむし ろ基質のコンホメーション変化のために、この観察される螢光強度の上昇を利用 することができる。例16 種々のコンホメーション決定ドメイン(CDR)アミノ酸配列によりプロテアーゼ 認識ドメインの柔軟性を変更することによって誘発される加水分解速度の変動 いづれかの所定のプロテアーゼのための生理学的に適切な基質のプロテアーゼ 切断部位を、2つの場合に分類することができる。1つは、セリンプロテアーゼ インヒビター、たとえば好中球エラスターゼインヒビター、又はα−1−抗トリ プシンであり、ここでエラスターゼ認識配列は残るインヒビター分子によりかな り正確に保存される。エラスターゼによる切断に基づいて、このプロテアーゼ反 応性部位及びその新しく形成された末端残基は、反応性及び切断されたインヒビ ター構造体の高い分離結晶構造分析により明らかなように、有意なコンホメーシ ョン変化を受ける。第2種類のプロテアーゼ切断部位においては、その切断配列 は、コンホメーションが十分に定義されていないか又は有意な量の柔軟性が存在 するドメイン において、遊離線状ペプチドにおいてと同じほど存在する。いくらかの程度の定 義されたコンホメーション、又は2種の可能性ある基質間の最大に利用できる主 鎖柔軟性差異が、他の基質よりも1つの基質のための与えられたプロテアーゼの 選択をもたらすと言われる。 化合物4(Fm-DEVD)、10(Fm-G2D2D)及び11(Fm-CGD2D)は、種々の量の強制 されたコンホメーション空間又は柔軟性を、与えられた基質中に、同じプロテア ーゼ認識ドメインにより、しかし異なったコンホメーション決定ドメイン又は領 域(CDR)により、そのCDRのベント形成機能を保持しながら、いかにして導入でき るかを示す。この例は、CDRのコンホメーション柔軟性又は剛性を変えることに よって中心のプロテアーゼ認識ドメインの相対的剛性又は柔軟性をいかにして変 えることができるかを示す。 Fm-DEVDの親化合物は次の組成を有する:Fmoc-K[F1]DBDEVDGIDPK[F1]GY。太字 の下線の文字は、7個のアミノ酸残基から成るプロテアーゼ認識配列である。化 合物#10は、このプロテアーゼ認識配列の両端で2種のグリシン延長部を含む。 中心のプロテアーゼ認識ドメインは、アミノ末端でのグリシン残基が生来の配列 の一部分であるので、8個の長さの残基GDEVDGIDである。他のアミノ酸、たとえ ばアラニンよりも本来、より柔軟である2つのグリシン残基は、低いコンホメー ション強制、又は逆に、化合物4(表12)よりも高い柔軟性を提供し、そしてそ れにより、Aib又はPro残基と組合される場合、より一層の屈曲を可能にする。グ リシンに存在するメチレン基の他に、5つのメチレン基と共に両末端でアミノカ プロン酸の追加の挿入は、強制されたコンホメーションのさらなる緩和、及び従 って、プロテアーゼ認識ドメインGDEVDGIDのためのより高い柔軟性を提供する。 この柔軟性の進行は、CPP32はエラスターゼより もより柔軟なプロテアーゼ認識ドメインを認識するので、CPP32プロテアーゼに よる高められた加水分解速度をもたらした。この言及に関する支持は、その生理 学的基質のプロフォームでのCPP32プロテアーゼ切断部位、すなわちポリ(ADP− リボース)ポリメラーゼ、PARPが2種の十分に折りたたまれたドメイン間に位置 することである。従って、そのようなプロテアーゼ切断部位は確実には保持され 得ず、又はそのコンホメーションは残る分子よりもほとんど定義されていないこ とを予測される。従って、基質にそれらの構造特徴を供給するためには、柔軟な 残基、たとえばグリシン、エプシロンアミノカプロン酸、βアラニン、及びアミ ノ酪酸の導入は、基質の中心プロテアーゼ認識ドメインの主鎖柔軟性を調節する ことに重要な役割を演じることが予測される。コンホメーション決定ドメインの ためのそれらの追加の好ましい残基はまた、必要とされるベンド−誘発性影響を 付与することが予測される。 それらの3種の基質についての観察された、変更された加水分解速度は、プロ テアーゼ認識ドメインの柔軟性の調節における成功に向いている。これは、空間 を通してお互いと相互作用する2種の螢光団のための適切な配向を維持しながら 、タンパク質分解速度における観察される差異において表わされる。柔軟性を調 節するための手段を提供することにおける、及び適切に密接した空間においての アミノ及びカルボキシル末端の配向を可能にすることにおけるこのコンホメーシ ョン決定ドメインの重要性は、それらの化合物(4,10及び11)により例示され る。 それらの例は、Lys-Asp-Aib-Gly又はLys-Asp-Aib-Ahx-Glyを含んで成るテトラ ペプチド及びペンタペプチドを提供し、ここでAhxはエピシロンアミノカプロン 酸(すなわち、NH2-(CH2)5-COOH)である。螢光団はロイシン残基のエピシロンア ミノ基に結合される。カ ルボキシル末端CDRドメインは、トリペプチドGly-Pro-Lys及びテトラペプチドGl y-Ahx-Pro-Lysとして定義される。加水分解速度は、化合物4(Fm-DEVD:Fm-K[F 1]DBDEVDGIDPK[F1]GY])と10(Fm-G2D2D:Fm-K[F1]DBGDEVDGIDGPK[F1]GY)との 間で3倍、早められた。 図5に示されるように、加水分解速度は、さらに、アミノカプロン酸(Ahx)付 加物、すなわち化合物11(Fm-CGD2D:Fm-K[F1]DB Ahx GDEVDGIDG Ahx PK[F1]GY) により、上記グリシン残基挿入よりも約3倍、早められた。従って、全体的に少 なくとも9倍の基質加水分解速度の上昇が達成された(表12における化合物4及 び11)。例18 プロテアーゼ基質において分子内H−タイプのダイマーを形成する螢光団の構 造特徴 本発明のホモ−二重ラベルされた螢光原組成物への使用のための種々の可能性 ある螢光団の、H−ダイマー形成と構造元素との間の最強の相互関係は、順に、 非局在化電荷、対称性、及び転移双極子の大きさである。疎水性は、このタイプ の二量体化において主要決定基であることが観察されなかった。 本明細書に記載される実験においては、新規種類のプロ螢光プロテアーゼ基質 が企画され、そして合成された。それらの新規螢光原インジケーターは、励起モ デルと適合するスペクトル性質を有し;より特定には、ローダミンにより二重ラ ベルされたそれらのポリペプチドのスペクトルは、青色−シフトされた吸収ピー ク及び螢光消光を示し、ここで両インジケーターはH−ダイマー形成のものであ る。 たとえば、NoreFes、すなわちセリンプロテアーゼエラスターゼにより切断さ れるウンデカペプチドは、分子内H−タイプのダイマ ー形成を示す色素の構造元素を同定するために、その切断部位の反対側上で6種 の螢光団によりホモ−二重ラベルされた。酵素切断の前及び後で得られるそれら の6種の基質の吸収及び螢光スペクトルは、非局在化された電荷、続く対称性の 存在、及び最とも低いエネルギーの電子転移双極子の大きさがダイマー形成にお いて重要な要因であることを示唆する。驚くべきことには、疎水性相互作用がこ の研究において使用される螢光団において重要である証拠は存在しなかった。 この研究において使用される6種の螢光団は、ローダミン−X、テトラメチル ローダミン、フルオレセイン、ジエチルアミノクマリン、ヒドロキシクマリン及 びピレンであった。 それらの2種のローダミン(ローダミン−X、テトラメチルローダミン)のキ サンテン成分は同じ電荷及び対称構造を有するが、それらの間での区別できる特 徴は、テトラメチルローダミンの高い転移双極子の大きさ及び低い疎水性である 。損なわれていないテトラメチルローダミン−誘導体化された基質のスペクトル は、2種の二重ラベルされた損なわれていないペプチドの吸収スペクトルとそれ ぞれ切断されたペプチド溶液のスペクトルとを比較する場合、ローダミン−Xの 電荷よりもより顕著な電荷を示すことが注目される。 上記に示されるように、+1の電荷がキサンテン構造体の個々にわたって局在 化された2種のローダミン誘導体に比較して、フルオレセインの3種の接合され た環成分はpH9で荷電されていなかった。ペプチドの分解による色素(フルオレ セイン)の分離の後、吸収スペクトルのいづれかの有意な形状変化の欠失は、H −ダイマー形成における電荷のための役割を示す。この誘導体に関して観察され る、ほとんど目立たないが、しかし、それにもかかわらず、測定可能な消光は、 2種のローダミンのいづれかが、フルオレセインに関 するダイマー形成のための解離定数がローダミンのための解離定数よりも4の大 きさの程度低い、溶液におけるキサンテンの前記研究と一致する相互作用と比較 して、2種のフルオレセイン間の低いが、しかし測定可能な程度の相互作用に向 ける。 次に、色素対称の影響を、2種のクマリン、すなわちジエチルアミノクマリン 及びヒドロキシクマリンを用いて試験した。この種類の分子は、対称元素を含ま ない。ジエチルアミノクマリンは、ローダミンに類似して、その2つの接合され た環上に非局在化された陽性電荷を担持し、そしてヒドロキシクマリンは、フル オレセインに類似して、pH9で中性である。ジエチルアミノクマリン−ラベルさ れたNorFesのスペクトルは、11nmの青色シフトを示し、そしてヒドロキシクマリ ン−ラベルされたNorFesのスペクトルはわずかに青色の層を示す。切断されたペ プチド溶液に対する損なわれていないペプチドのそれぞれの消光度、76%及び28 %は、非局在化された電荷の重要性と一致する。ジエチルアミノクマリン−誘導 体化されたペプチドのあまり顕著でないスペクトルとキサンテンのスペクトルと の比較は、H−ダイマー形成において重要な要素としての対称性の役割を支持す る。 最後に、疎水性の役割を、ピレン、すなわち炭素及び水素のみを含むS2対称 を有する螢光団を用いて研究した。スペクトル変化は、吸収又は螢光モデルのい づれにも観察されず、そして転移双極子の大きさは極端に小さい。それらの結果 は、H−ダイマー形成における疎水性のための有力な役割に対する証拠を提供す る。 要約すると、H−ダイマー形成と構造元素との間の最とも強い相互関係は、順 に、非局在化された電荷、対称性、及び転移双極子の大きさである。疎水性は、 このタイプの二量体化においては主要決定因子であることが観察されなかった。 上記例は、例示的であって、本発明を限定するものではない。本発明の他の変 法は当業者に容易に明らかになるであろう。本明細書に引用されるすべての出版 物、特許及び特許出願は、引用により本明細書に組込まれる。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,GM,KE,LS,M W,SD,SZ,UG,ZW),EA(AM,AZ,BY ,KG,KZ,MD,RU,TJ,TM),AL,AM ,AT,AU,AZ,BA,BB,BG,BR,BY, CA,CH,CN,CU,CZ,DE,DK,EE,E S,FI,GB,GE,GH,GM,GW,HU,ID ,IL,IS,JP,KE,KG,KP,KR,KZ, LC,LK,LR,LS,LT,LU,LV,MD,M G,MK,MN,MW,MX,NO,NZ,PL,PT ,RO,RU,SD,SE,SG,SI,SK,SL, TJ,TM,TR,TT,UA,UG,US,UZ,V N,YU,ZW (72)発明者 パッカード,ビバリー エス. アメリカ合衆国,メリーランド 20852, ロックビル,パイン ヘブン テラス 10605

Claims (1)

  1. 【特許請求の範囲】 1.プロテアーゼの活性の検出のための螢光原組成物であって、 下記式: 〔式中、Pは、前記プロテアーゼのためのプロテアーゼ結合部位を含んで成るペ プチドであり、前記結合部位は、約2〜約8個のアミノ酸から成り; F1及びF2は螢光団であり、そしてF1はアミノ末端アミノ酸に結合され、そ してF2はカルボキシル末端アミノ酸に結合され; S及びS2は、存在する場合、1〜約50個の長さのアミノ酸の範囲のペプチド スペーサーであり、そしてS1は、存在する場合、アミノ末端アミノ酸に結合さ れ、そしてS2は、存在する場合、カルボキシル末端アミノ酸に結合され; i,j,k,l,m,n,o p,q及びrは独立して、0又は1であり; aa1及びaa10は、リジン、オルニチン及びシステインから成る群から独立して 選択され; aa2,a3,aa8及びaa9は、Asp、Glu、Lys、オルニチン、Arg、シトルリン、ホ モシトルリン、Ser、ホモセリン、Thr及びTyrから成るアミノ酸又はジペプチド から成る群から独立して選択され; aa5,aa4,aa6及びaa7は、プロリン、3,4−デヒドロプロリン、ヒドロキシ プロリン、α−アミノイソ酪酸及びN−メチルアラニンから成る群から独立して 選択され; Xは、Gly,βAla,γAbu,Gly-Gly,Ahx,βAla-Gly,βAla-βAla, γAbu-Gly,βAla-γAbu,Gly-Gly-Gly,γAbu-γAbu,Ahx-Gly,βAla-Gly-Gly, Ahx-βAla,βAla-βAla-Gly,Gly-Gly-Gly-Gly,Ahx-γAbu,βAla-βAla-βAla, γAbu-βAla-Gly,γAbu-γAbu-Gly,Ahx-Ahx,γAbu-γAbu-βAla、及びAhx-Ahx -Glyから成る群から選択され; Yは、Gly,βAla,γAbu,Gly-Gly,Ahx,Gly-βAla,βAla-βAla,Gly-γAbu,γ Abu-βAla,Gly-Gly-Gly,γAbu-γAbu,Gly-Ahx,Gly-Gly-βAla,βAla-Ahx,Gl y-βAla-βAla,Gly-Gly-Gly-Gly,γAbu-Ahx,βAla-βAla-βAla,Gly-βAla- γAbu,Gly-γAbu-γAbu,Ahx-Ahx,βAla-γAbu-γAbu、及びGly-Ahx-Ahxから成 る群から選択され; iが1である場合、S1は、aa1の末端αアミノ基を通してペプチド結合により aa1に結合され;そして γが1である場合、S2は、aa10の末端αカルボキシル基を通してペプチド結 合によりaa12に結合される〕を 有する組成物。 2.Pが、TGRTG,DEVDGID,DEVNGID,EVDGID,ADGID,DEVDGID,AIPMSI,GDE VDGID,GDEVDGIN,ADGID,GNEVDGID,GNEVDGIN,ODEVDGID,dODEVDGID,WDEVDGI D,dVVDEVDGID,dOdODEVDGID,dWdWDEVDGID,YVADGID,YVADGIN,YVANGIN,YVAD GID,YVANGIN、及びdYVADGINから成る群から選択される請求の範囲第1項記載の 組成物。 3.Pが、LVEIDNG,LVEINNG,GIETDSGVDD,GIETNSGVDD,GIETNSGV,GIETDSGV ,GSESMDSGISLD,GSESMDSG,DVVCCSMS,DVVCDSMS,DVVCSdMS,DVVCCPdMS,EDVVC CS,EDdVVCCP,EDdVVCDP,DdVVCCSdMS,DVdVCDSdMS,DdVVCCPdMS,DVVCCSM,DVV CDSM,VCCSM、及びVCDSMから成る群から選択される請求の範囲第1項記載の組成 物。 4.Pが、DEMEECSQHL,DEMEECPQHL,EMEECSQHL,EMEECPQHL,EM EEDSQHL,VMTGRTG,VdMTGRTG,VMTGRG,VdMTGRG,VMTGRVG,VdMTGRVG,VMTGRAG ,VdMTGRAG,SEVNLDAEF,SEVKLDAEF,SEVKMDAEF,SEVKMDDEF,SEVNLDDEF,GVVIA TVIVT,YGVVIATVIVIT,VIATVI,YGVVIA,QQLLNH,SIQYTY,SSQYSN、及びSSIYSQ から成る群から選択される請求の範囲第1項記載の組成物。 5.前記F1及びF2が同じ螢光団である請求の範囲第1項記載の組成物。 6.前記F1及びF2が約315nm〜約700nmの間での励起波長を有する請求の範囲 第5項記載の組成物。 7.前記F1分子が、aa1アミノ酸のα−アミノ基、aa1アミノ酸の側鎖アミノ 基、又はaa1アミノ酸の側鎖のスルフヒドリル基のいづれかを通して結合される 請求の範囲第1項記載の組成物。 8.前記F2分子が、aa10アミノ酸の側鎖アミノ基、aa10アミノ酸のカルボキ シル基、又はaa10アミノ酸の側鎖のスルフヒドリル基のいづれかを通して結合さ れる請求の範囲第1項記載の組成物。 9.前記螢光団が、カルボキシテトラメチルローダミン、カルボキシローダミ ン−X及びジエチルアミノクマリン、9−(2,5−ジカルボキシフェニル)− 3,6−ビス(ジメチルアミノ)キサンリウムクロリド(5−TMR)、9−(2, 6−ジカルボキシフェニル)−3,6−ビス(ジメチルアミノ)キサンチリウム クロリド(6−TMR)、9−(2−カルボキシフェニル)−2,7−ジメチル−3 ,6−ビス(エチルアミノ)キサンチリウム、9−(2−カルボキシフェニル) −3,6−ビス(ジメチルアミノ)キサンチリウム及び9−(2−カルボキシフ ェニル)キサンチリウムから成る群から選択される請求の範囲第1項記載の組成 物。 10.前記組成物が、疎水性基を担持する請求の範囲第1項記載の組成物。 11.前記疎水性基が、Fmoc、ベンジルオキシカルボニル、キサンチル(Xan)、 トリチル(Trt)、4−メチルトリチル(Mtt)、4−メトキシトリチル(Mmt)、4− メトキシ−2,3,6−トリメチル−ベンゼンスルホニル(Mtr)、メシチレン− 2−スルホニル(Mts)、4,4’−ジメトキシベンズヒドリル(Mbh)、トシル(Tos )、2,2,5,7,8−ペンタメチルクロマン−6−スルホニル(Pmc)、4−メ チルベンジル(MeBzl)、4−メトキシベンジル(MeOBzl)、ベンジルオキシ(Bzl O)、ベンジル(Bzl)、ベンゾイル(Bz)、3−ニトロ−2−ピリジンスルフェニ ル(Npys)、1−(4, 4−ジメチル−2,6−ジアキソシクロヘキシリデン )エチル(Dde)、2,6−ジクロロベンジル(2,6−DiCl−Bzl)、2−クロロベ ンジルオキシカルボニル(2−Cl−Z)、2−ブロモベンジルオキシカルボニル (2−Br−Z)、ベンジルオキシメチル(Bom)、t−ブトキシカルボニル(Boc)、 シクロヘキシルオキシ(cHxO)、t−ブトキシメチル(Bum)、t−ブトキシ(tBU O)、t−ブチル(tBu)、アセチル(Ac)、及びトリフルオロアセチル(TFA)から 成る群から選択される請求の範囲第10項記載の組成物。 12.前記疎水性基がFmocである請求の範囲第11項目記載の組成物。 13.前記疎水性基が、前記分子のアミノ末端に結合される請求の範囲第11項記 載の組成物。 14.前記組成物が、PAI−2,DEVD,DEVN,PARP,ICE,Fm-DEVD,Fm-FmDEVN, Fm-PARP,Fm-KNFES,Fm-G2D2D,Fm-CGD2D,Z-CGD2D、及びFm-ICEと称する組成物 から成る群から選択される請求の範囲第1項記載の組成物。 15.プロテアーゼの活性を検出するための方法であって、前記プロテアーゼと 請求の範囲第1項記載の組成物とを接触せしめること を含んで成る方法。 16.前記接触が組織学的断片において存在する請求の範囲第15項記載の方法。 17.前記接触が、組織、血液、尿、唾液、リンパ、生検体から成る群から選択 された生物学的サンプルに由来する細胞懸濁液において存在する請求の範囲第15 項記載の方法。 18.前記検出が、螢光顕微鏡、螢光マイクロプレートリーダー、フローサイト メトリー(流動細胞計測)法、螢光測定法、吸収分光分析法から成る群から選択 された方法による請求の範囲第15項記載の方法。 19.分子のコンホメーションの変化を検出するための方法であって、 第1螢光団及び第2螢光団をそれに結合している第1分子を用意し、ここで前 記第1螢光団及び前記第2螢光団は同じ種の螢光団であり、そして前記螢光団が 、同じ位置で前記分子に結合される単一の螢光団の螢光強度に比較して、前記螢 光団の個々の螢光強度を検出できるほどに低めるために前記螢光団の相互作用の ための十分な距離で並置され;そして 前記螢光団間の空間が、前記分子のコンホメーションの前記変化により広くさ れるにつれて、螢光の変化を検出することを含んで成る方法。 20.前記螢光団が、空間の広がりの前、H−タイプのダイマーを形成する請求 の範囲第19項記載の方法。 21.前記螢光団がお互い約10Å以下の距離で存在する請求の範囲第19項記載の 方法。 22.前記螢光団が、カルボキシテトラメチルローダミン、カルボキシローダミ ン−X及びジエチルアミノクマリン、テトラメチルロ ーダミン、ジエチルローダミン、及びローダミン110から成る群から選択される 請求の範囲第19項記載の方法。 23.前記コンホメーションの変化が、螢光団の1つをそれぞれ担持する2種の 異なった分子に前記分子を分割する請求の範囲第19項記載の方法。 24.前記コンホメーションの変化が、前記第1分子への第2分子の結合により 生成される請求の範囲第19項記載の方法。 25.前記分子が、核酸、多糖、ペプチド、タンパク質、脂質、リン脂質、糖脂 質、糖タンパク質、ステロイドから成る群から選択される請求の範囲第19項記載 の方法。 26.前記分子が核酸であり、そして前記コンホメーションの変化がもう1つの 核酸への前記核酸のハイブリダイゼーションにより生成される請求の範囲第19項 記載の方法。 27.前記分子が核酸であり、そして前記コンホメーションの変化が前記核酸の 分解により生成される請求の範囲第19項記載の方法。 28.前記分子が多糖であり、そして前記コンホメーションの変化が前記多糖の 分解により生成される請求の範囲第19項記載の方法。 29.組成物のコンホメーションの変化を検出するための螢光原組成物であって 、第1螢光団及び第2螢光団をそれに結合している分子を含んで成り、ここで前 記第1螢光団及び第2螢光団は同じ種の螢光団であり、そして前記螢光団が、同 じ位置で前記分子に結合されるそれぞれ個々の螢光団の螢光強度に比較して、前 記螢光団の個々の螢光強度を検出できるほどに低めるために前記螢光団の相互作 用のための十分な距離で並置されることを特徴とする組成物。 30.細胞中に分子を供給するための方法であって、 疎水性基に、及び2種の螢光団に又は少なくとも1つの融合された環構造体の いづれかに結合される前記分子を用意し;そして 前記細胞と前記分子とを接触せしめ、それによって、前記分子が前記細胞中に 侵入する方法。 31.前記分子が、核酸及びポリペプチドから成る群から選択される請求の範囲 第30項記載の方法。 32.前記融合された環構造体が、生物学的に不活性化されたステロイドである 請求の範囲第30項記載の方法。 33.前記疎水性基が、Fmoc、ベンジルオキシカルボニル、キサンチル(Xan)、 トリチル(Trt)、4−メチルトリチル(Mtt)、4−メトキシトリチル(Mmt)、4− メトキシ−2,3,6−トリメチル−ベンゼンスルホニル(Mtr)、メシチレン− 2−スルホニル(Mts)、4,4’−ジメトキシベンズヒドリル(Mbh)、トシル(Tos )、2,2,5,7,8−ペンタメチルクロマン−6−スルホニル(Pmc)、4−メチ ルベンジル(MeBzl)、4−メトキシベンジル(MeOBzl)、ベンジルオキシ(BzlO )、ベンジル(Bzl)、ベンゾイル(Bz)、3−ニトロ−2−ピリジンスルフェニ ル(Npys)、1−(4,4−ジメチル−2,6−ジアキソシクロヘキシリデン) エチル(Dde)、2,6−ジクロロベンジル(2,6−DiCl−Bzl)、2−クロロベン ジルオキシカルボニル(2−Cl−Z)、2−ブロモベンジルオキシカルボニル( 2−Br−Z)、ベンジルオキシメチル(Bom)、t−ブトキシカルボニル(Boc)、シ クロヘキシルオキシ(cHxO)、t−ブトキシメチル(Bum)、t−ブトキシ(tBuO )、t−ブチル(tBu)、アセチル(Ac)、及びトリフルオロアセチル(TFA)から成 る群から選択される請求の範囲第30項記載の方法。 34.前記螢光団が、カルボキシテトラメチルローダミン、カルボキシローダミ ン−X及びジエチルアミノクマリンから成る群から選択される請求の範囲第30項 記載の方法。 35.前記細胞が哺乳類細胞である請求の範囲第30項記載の方法。
JP53677898A 1997-02-20 1998-02-20 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法 Expired - Fee Related JP4298796B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/802,981 1997-02-20
US08/802,981 US6037137A (en) 1997-02-20 1997-02-20 Fluorogenic peptides for the detection of protease activity
PCT/US1998/003000 WO1998037226A1 (en) 1997-02-20 1998-02-20 Compositions for the detection of enzyme activity in biological samples and methods of use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008021366A Division JP2008167757A (ja) 1997-02-20 2008-01-31 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法

Publications (2)

Publication Number Publication Date
JP2001514492A true JP2001514492A (ja) 2001-09-11
JP4298796B2 JP4298796B2 (ja) 2009-07-22

Family

ID=25185248

Family Applications (2)

Application Number Title Priority Date Filing Date
JP53677898A Expired - Fee Related JP4298796B2 (ja) 1997-02-20 1998-02-20 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法
JP2008021366A Pending JP2008167757A (ja) 1997-02-20 2008-01-31 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008021366A Pending JP2008167757A (ja) 1997-02-20 2008-01-31 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法

Country Status (8)

Country Link
US (3) US6037137A (ja)
EP (1) EP0988394B1 (ja)
JP (2) JP4298796B2 (ja)
AT (1) ATE453722T1 (ja)
AU (1) AU745148B2 (ja)
CA (1) CA2280811C (ja)
DE (1) DE69841419D1 (ja)
WO (1) WO1998037226A1 (ja)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576419B1 (en) * 1993-07-23 2003-06-10 University Of Utah Research Foundation Assay procedure using fluorogenic tracers
US6893868B2 (en) * 1997-02-20 2005-05-17 Onco Immunin, Inc. Homo-doubly labeled compositions for the detection of enzyme activity in biological samples
US7312302B2 (en) 1997-02-20 2007-12-25 Oncolmmunin, Inc. Compositions for the detection of enzyme activity in biological samples and methods of use thereof
US6037137A (en) * 1997-02-20 2000-03-14 Oncoimmunin, Inc. Fluorogenic peptides for the detection of protease activity
US6756207B1 (en) 1997-02-27 2004-06-29 Cellomics, Inc. System for cell-based screening
US6342611B1 (en) * 1997-10-10 2002-01-29 Cytovia, Inc. Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for capsases and other enzymes and the use thereof
US6242246B1 (en) * 1997-12-15 2001-06-05 Somalogic, Inc. Nucleic acid ligand diagnostic Biochip
US20070166741A1 (en) * 1998-12-14 2007-07-19 Somalogic, Incorporated Multiplexed analyses of test samples
DE19811618C1 (de) * 1998-03-17 2000-08-31 Andreas Jenne Ribozym codierende DNA und ein Oligonucleotidsubstrat enthaltende Zusammensetzung und Verfahren zur Messung von Transkriptionsraten
US6251583B1 (en) * 1998-04-27 2001-06-26 Schering Corporation Peptide substrates for HCV NS3 protease assays
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
US7115410B1 (en) 1999-02-10 2006-10-03 Elan Pharmaceuticals, Inc. β-secretase enzyme compositions and methods
US7456007B1 (en) 1998-12-31 2008-11-25 Elan Pharmaceuticals, Inc. β-secretase enzyme compositions and methods
EP1165609A2 (en) 1999-02-10 2002-01-02 Elan Pharmaceuticals, Inc. Human beta-secretase enzyme, inhibitors and their compositions and uses
CA2379130A1 (en) 1999-07-16 2001-01-25 Board Of Regents, The University Of Texas System Method and apparatus for the delivery of samples to a chemical sensor array
JP2003508080A (ja) * 1999-09-10 2003-03-04 オンコイミューニン,インコーポレイティド 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法
US7514408B1 (en) 1999-12-02 2009-04-07 Elan Pharmaceuticals, Inc. β-secretase enzyme compositions and methods
DE60135092D1 (de) 2000-01-31 2008-09-11 Univ Texas Tragbare vorrichtung mit einer sensor-array-anordnung
US20020076741A1 (en) * 2000-02-11 2002-06-20 Tencza Sarah Burroughs Peptide biosensors for anthrax protease
EP1271133B1 (en) * 2000-02-28 2008-05-28 Daiichi Pure Chemicals Co., Ltd. Method of measurement based on fluorescence energy transfer using a long-lived fluorescence donor
FR2805820B1 (fr) * 2000-03-01 2009-09-11 Pasteur Institut Biocapteurs, leur procede d'obtention et leurs applications
AU2001265092A1 (en) * 2000-06-02 2001-12-17 Regents Of The University Of California Profiling of protease specificity using combinatorial fluorogenic substrate libraries
US6600057B2 (en) 2000-12-29 2003-07-29 Kimberly-Clark Worldwide, Inc. Matrix metalloproteinase inhibitors
US7041787B2 (en) * 2000-12-29 2006-05-09 Kimberly-Clark Worldwide, Inc. Design and use of advanced zinc chelating peptides to regulate matrix metalloproteinases
US20020197622A1 (en) * 2001-01-31 2002-12-26 Mcdevitt John T. Method and apparatus for the confinement of materials in a micromachined chemical sensor array
WO2002063270A2 (en) * 2001-02-05 2002-08-15 Board Of Regents, The University Of Texas System The use of mesoscale self-assembly and recognition to effect delivery of sensing reagent for arrayed sensors
WO2002063035A2 (en) * 2001-02-08 2002-08-15 The Penn State Research Foundation Fluorescent assay for proteolysis
WO2003089572A2 (en) * 2002-04-15 2003-10-30 Chiron Corporation Essential and important genes of pseudomonas aeroginosa and the use thereof to design or identify antibacterial agents
CA2450658A1 (en) * 2001-06-15 2002-12-27 Chiron Corporation Essential and important genes of pseudomonas aeruginosa and the use thereof to design or identify antibacterial agents
US7291698B2 (en) * 2001-09-04 2007-11-06 Stephen Eliot Zweig Synthetic substrate for high specificity enzymatic assays
US20030119073A1 (en) * 2001-12-21 2003-06-26 Stephen Quirk Sensors and methods of detection for proteinase enzymes
GB0200479D0 (en) * 2002-01-09 2002-02-27 Medical Res Council Fluorogenic protease substrates
US20030211548A1 (en) * 2002-01-29 2003-11-13 Oncolmmunin, Inc. Visualization and quantitiation of cellular cytotoxicity using cell-permeable fluorogenic protease substrates and caspase activity indicator markers
US7927871B2 (en) * 2002-01-29 2011-04-19 Oncoimmunin, Inc. Visualization and quantitation of cellular cytotoxicity using cell-permeable fluorogenic protease substrates and caspase activity indicator markers
US20030147810A1 (en) * 2002-02-01 2003-08-07 University Of Michigan Compositions and methods for reporting of protease activity within the secretory pathway
AU2003217379A1 (en) * 2002-02-15 2003-09-09 Somalogic, Inc. Methods and reagents for detecting target binding by nucleic acid ligands
CA2523626A1 (en) 2002-04-26 2003-11-06 Board Of Regents, The University Of Texas System Method and system for the detection of cardiac risk factors
US6942987B2 (en) * 2002-05-15 2005-09-13 Pharmacopeia Drug Discovery, Inc. Methods for measuring kinase activity
JP2005531603A (ja) * 2002-05-31 2005-10-20 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 3−デスクラジノシル−6−o−カルバモイルおよび6−o−カルボノイルマクロライド抗菌剤
JP4206378B2 (ja) * 2002-07-08 2009-01-07 哲雄 長野 蛍光プローブ
CA2497991A1 (en) * 2002-09-09 2004-03-18 Applera Corporation Fluorescent enzyme assay methods and compositions
AU2003275553A1 (en) * 2002-10-16 2004-05-25 Daiichi Pure Chemicals Co., Ltd. Reagents for the measurement of peroxynitrites
US20060228256A1 (en) * 2003-02-07 2006-10-12 Board Of Regents, The University Of Texas System Multi-shell microspheres with integrated chomatographic and detection layers for use in array sensors
US7696245B2 (en) * 2003-03-28 2010-04-13 Sekisui Medical Co., Ltd. Fluorescent probe for zinc
WO2004097371A2 (en) * 2003-04-25 2004-11-11 Board Of Regents, The University Of Texas System System and method for the detection of analytes
US9317922B2 (en) 2003-05-16 2016-04-19 Board Of Regents The University Of Texas System Image and part recognition technology
WO2004104922A2 (en) * 2003-05-16 2004-12-02 Board Of Regents, The University Of Texas System Image and part recognition technology
CA2530401A1 (en) * 2003-06-23 2005-02-24 Nlcpharma Inc. Enzymatic diagnostic test for sars and other viral diseases
PL1678209T3 (pl) 2003-10-07 2011-09-30 Yeda Res & Dev Przeciwciała skierowane przeciwko NIK, ich wytwarzanie i zastosowanie
EP2308978B8 (en) 2003-10-10 2015-04-08 Promega Corporation Luciferase biosensor
JP2007534308A (ja) * 2003-11-19 2007-11-29 アレロジック・バイオサイエンシズ・コーポレーション 複数のフルオロフォアで標識したオリゴヌクレオチド
WO2005054495A2 (en) * 2003-11-26 2005-06-16 Applera Corporation Ligand-containing micelles and uses thereof
EP1690089A1 (en) * 2003-11-26 2006-08-16 Applera Corporation Fluorogenic homogeneous binding assay methods and compostions
US20050214890A1 (en) * 2003-11-26 2005-09-29 Zhiqun Tan Novel "Cleave-N-Read" system for protease activity assay and methods of use thereof
WO2005057169A2 (en) * 2003-12-05 2005-06-23 Trellis Bioscience, Inc. Homogeneous competition assays
JP2005194244A (ja) * 2004-01-09 2005-07-21 Shigenobu Yano 亜鉛イオン蛍光センサー
US7304146B2 (en) * 2004-01-16 2007-12-04 Applera Corporation Fluorogenic kinase assays and substrates
US8105849B2 (en) * 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US8101431B2 (en) * 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
EP1598428A1 (en) 2004-05-18 2005-11-23 Georg Dewald Methods and kits to detect Hereditary angioedema type III
US20060035302A1 (en) * 2004-06-21 2006-02-16 Applera Corporation Kinase substrates with multiple phosphorylation sites
US20060121553A1 (en) * 2004-10-29 2006-06-08 Applera Corporation Fluorogenic enzyme assay methods, kits and compositions using charge-balancers
JP2008526207A (ja) * 2004-12-30 2008-07-24 アプレラ コーポレイション 荷電分子を用いるリアルタイム酵素アッセイのための組成物、方法およびキット
WO2006075429A1 (ja) * 2005-01-13 2006-07-20 Kyushu Institute Of Technology 酵素活性検出用粒子及びそれを用いた酵素活性の検出方法並びに酵素活性検出具
US7776567B2 (en) 2005-03-17 2010-08-17 Biotium, Inc. Dimeric and trimeric nucleic acid dyes, and associated systems and methods
US7601498B2 (en) * 2005-03-17 2009-10-13 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection and associated technology
CA2610793A1 (en) 2005-05-31 2007-05-10 Labnow, Inc. Methods and compositions related to determination and use of white blood cell counts
CA2613078A1 (en) * 2005-06-24 2007-01-04 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
US8227621B2 (en) * 2005-06-30 2012-07-24 Li-Cor, Inc. Cyanine dyes and methods of use
US20090215646A1 (en) * 2005-07-01 2009-08-27 The Board Of Regents Of The University Of Texas Sy System and method of analyte detection using differential receptors
US20070073039A1 (en) * 2005-09-29 2007-03-29 Chisari Francis V Peptides that inhibit viral infections
DE102005051978A1 (de) * 2005-10-31 2007-05-10 Forschungszentrum Borstel Zentrum für Medizin und Biowissenschaften Verfahren zur Bestimmung der Spaltbarkeit von Substraten
HUE025489T2 (en) * 2006-01-17 2016-04-28 Somalogic Inc Multiplexed analysis of test samples
EP2004813B1 (en) 2006-04-03 2015-06-03 Promega Corporation Permuted and nonpermuted luciferase biosensors binding cyclic nucleotides
US8077974B2 (en) 2006-07-28 2011-12-13 Hewlett-Packard Development Company, L.P. Compact stylus-based input technique for indic scripts
AT504443B1 (de) * 2006-10-19 2008-11-15 Apeiron Biolog Forschungs Und Verfahren zur bestimmung der aktivität von ace2
US7855054B2 (en) * 2007-01-16 2010-12-21 Somalogic, Inc. Multiplexed analyses of test samples
EP2147115A4 (en) * 2007-04-16 2010-05-05 CARDIOBIOINDEX / CARDIOBIOSCORE AND THE USE OF THE SPOKING PROTEOME IN CARDIOVASCULAR DIAGNOSTICS
US20080269065A1 (en) * 2007-04-30 2008-10-30 Syntrix Biosystems, Inc. Conformationally Constrained Analytical Probes
DE112008002473A5 (de) * 2007-07-06 2010-06-17 Papst Licensing Gmbh & Co. Kg Bestimmung der Aktivität von Proteasen
US8906700B2 (en) 2007-11-06 2014-12-09 Ambergen, Inc. Methods and compositions for phototransfer
WO2009064773A1 (en) * 2007-11-14 2009-05-22 Cardiac Pacemakers, Inc. Implantable creatinine sensor and related methods
CN101946171B (zh) 2007-12-14 2014-03-12 拜奥蒂乌姆股份有限公司 荧光化合物
EP2077119A1 (de) * 2007-12-21 2009-07-08 Apeiron Biologics Forschungs- und Entwicklungsgesellschaft M.B.H. Behandlung von Fibrosen und Lebererkrankungen
US20110039289A1 (en) * 2008-03-14 2011-02-17 Pierre Graves Fluorogenic peptides and their method of production
US20090238766A1 (en) * 2008-03-19 2009-09-24 Abbott Laboratories Bioluminescent construct
ATE542903T1 (de) 2008-05-19 2012-02-15 Promega Corp Luciferase-biosensoren für camp
WO2010006616A2 (en) * 2008-07-14 2010-01-21 Chemometec A/S Method and kit for examination of cells using n-(9-acridinyl)maleimide (nam) or using 7-diethylamino-3-((4'-(iodoacetyl)amino)phenyl)-4-methylcoumarin (cpi)
EP2312943B1 (en) 2008-07-14 2019-11-06 Chemometec A/S Method for assessing viable cells and the use of n-(7-dimethylamino-4-methyl-3-coumarinyl)-maleimide (dacm) or n-(9-acridinyl)maleimide (nam) for assessment of apoptosis.
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
US9332973B2 (en) 2008-10-01 2016-05-10 Covidien Lp Needle biopsy device with exchangeable needle and integrated needle protection
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
WO2010058396A1 (en) 2008-11-19 2010-05-27 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. A cd44vra antibody and diagnostic and therapeutic methods using same
JP5798487B2 (ja) * 2008-11-20 2015-10-21 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー Fretに基づく病原体の迅速診断
DE102009004371A1 (de) 2009-01-08 2010-07-15 Papst Licensing Gmbh & Co. Kg Vorrichtung und Verfahren zum Messen der Aktivität von Enzymen nach Inhibitorentzug
EP2403964B1 (en) 2009-03-02 2021-09-08 Massachusetts Institute of Technology Methods and products for in vivo enzyme profiling
WO2010137017A2 (en) 2009-05-27 2010-12-02 Yeda Research And Development Co. Ltd. Proteasome inhibitors and uses thereof
US8658434B2 (en) * 2009-10-28 2014-02-25 Biotium, Inc. Fluorescent pyrene compounds
CN102822175A (zh) * 2009-12-18 2012-12-12 埃迪尼克斯医药公司 5,5-稠合的亚芳基或亚杂芳基丙型肝炎病毒抑制剂
US8877437B1 (en) 2009-12-23 2014-11-04 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection
CA2787311C (en) 2010-01-27 2017-08-15 Yeda Research And Development Co. Ltd. Antibodies that inhibit metalloproteins
WO2011107994A1 (en) 2010-03-04 2011-09-09 Yeda Research And Development Co. Ltd. Methods of measuring protein stability
WO2011143339A1 (en) 2010-05-11 2011-11-17 Promega Corporation Mutant protease biosensors with enhanced detection characteristics
US9290794B2 (en) * 2010-05-11 2016-03-22 Promega Corporation Mutant protease biosensors with enhanced detection characteristics
CN103037891A (zh) 2010-06-03 2013-04-10 雷蒙特亚特特拉维夫大学有限公司 治疗糖尿病的方法和能够治疗糖尿病的组合物
US9695410B2 (en) 2010-07-15 2017-07-04 Technion Research & Development Foundation Limited Isolated high affinity entities with T-cell receptor like specificity towards native complexes of MHC class II and glutamic acid decarboxylase (GAD) autoantigenic peptides
CA2805478A1 (en) 2010-07-15 2012-01-19 Technion Research & Development Foundation Ltd. Isolated high affinity entities with t-cell receptor like specificity towards native complexes of mhc class ii and diabetes-associated autoantigenic peptides
CN103370337B (zh) 2010-10-28 2015-12-09 耶达研究及发展有限公司 用于产生针对金属酶的抗体的方法
CA2827188C (en) 2011-03-17 2020-02-11 Itai Benhar Bi- and monospecific, asymmetric antibodies and methods of generating the same
WO2013025261A2 (en) * 2011-04-06 2013-02-21 Georgia Tech Research Corporation Fluorogenic peptide probes and assays
EP2612908A3 (en) 2012-01-04 2014-10-15 Technion Research & Development Foundation Limited Optically sensitive cell network
EP3483184A1 (en) 2012-03-07 2019-05-15 Yeda Research and Development Co. Ltd Compositions for inhibition of quiescinsulfhydryl oxidase (qsox1) and uses of same
WO2014057490A1 (en) 2012-10-09 2014-04-17 Ramot At Tel-Aviv University Ltd. Methods and kits for predicting prognosis of cancer using soluble mortalin in blood
CN118010994A (zh) 2013-06-07 2024-05-10 麻省理工学院 基于亲和力检测配体编码的合成性生物标记物
WO2015037009A1 (en) 2013-09-16 2015-03-19 Plexicure Ltd. Isolated proteins capable of binding plexin-a4 and methods of producing and using same
ES2696348T3 (es) 2014-02-06 2019-01-15 Yeda Res & Dev Anticuerpos anti CD84, composiciones que comprenden los mismos y usos de los mismos
WO2015198334A2 (en) 2014-06-25 2015-12-30 Tel Hashomer Medical Research Infrastructure And Services Ltd. Identification of cancer stem cells and use of same for diagnosis and treatment
US10526416B2 (en) 2014-09-08 2020-01-07 Yeda Research And Development Co. Ltd. Anti-HER3 antibodies and uses of same
EP3280818A2 (en) * 2015-04-07 2018-02-14 Novozymes A/S Methods for selecting enzymes having lipase activity
US10716500B2 (en) 2015-06-29 2020-07-21 Cardiac Pacemakers, Inc. Systems and methods for normalization of chemical sensor data based on fluid state changes
EP3365376A1 (en) 2015-10-25 2018-08-29 Yeda Research and Development Co., Ltd. Antibodies targeting quiescin sulfhydryl oxidase (qsox1) and uses of same
US20190178888A1 (en) 2016-01-11 2019-06-13 Technion Research & Development Foundation Limited Methods of determining prognosis of sepsis and treating same
WO2017177115A1 (en) 2016-04-08 2017-10-12 Massachusetts Institute Of Technology Methods to specifically profile protease activity at lymph nodes
CA3022928A1 (en) 2016-05-05 2017-11-09 Massachusetts Institute Of Technology Methods and uses for remotely triggered protease activity measurements
AU2018248327A1 (en) 2017-04-07 2019-10-17 Massachusetts Institute Of Technology Methods to spatially profile protease activity in tissue and sections
EP3749368A1 (en) 2018-02-08 2020-12-16 Yeda Research and Development Co. Ltd Methods of identifying and using agents for treating diseases associated with intestinal barrier dysfunction
EP3759493A1 (en) 2018-02-28 2021-01-06 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Methods of diagnosing and treating bladder cancer
US11054428B2 (en) 2018-03-05 2021-07-06 Massachusetts Institute Of Technology Inhalable nanosensors with volatile reporters and uses thereof
IL261156A (en) 2018-08-14 2020-02-27 Fass Deborah Chimeric quiescin sulfhydryl oxidase (qsox1) antibodies and uses of same
WO2020053808A1 (en) 2018-09-12 2020-03-19 Georg Dewald Method of diagnosing vasoregulatory disorders
WO2020150560A1 (en) 2019-01-17 2020-07-23 Massachusetts Institute Of Technology Sensors for detecting and imaging of cancer metastasis
IL264768A (en) 2019-02-10 2020-08-31 Sagi Irit ANTI-MATRIX METALLOPROTEINASE 7 (MMP-7) inhibitory antibody and its use
EP3990488A4 (en) 2019-06-27 2023-09-13 Ramot at Tel-Aviv University Ltd. SEMAPHORIN 3A ANTIBODIES AND THEIR USES
US11603552B2 (en) 2020-07-20 2023-03-14 Mesa Photonics, LLC Method for pathogen identification
CN113588768B (zh) * 2021-05-18 2022-07-05 国家卫生健康委科学技术研究所 一种以分子图像方式定量组织内内源性代谢物的质谱方法
WO2024052922A1 (en) 2022-09-11 2024-03-14 Yeda Research And Development Co. Ltd. Anti-klk4 antibodies and uses thereof

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557862A (en) * 1983-10-28 1985-12-10 University Patents, Inc. Rhodamine derivatives as fluorogenic substrates for proteinases
US4708929A (en) * 1984-10-29 1987-11-24 Microgenics Corporation Methods for protein binding enzyme complementation assays
US5110801A (en) 1984-08-13 1992-05-05 Leveen Harry H Treatment of acne
FR2570364B1 (fr) * 1984-09-18 1991-09-20 Air Liquide Procede et dispositif de lubrification d'une empreinte de moulage, et leur application a une machine de fabrication de bouteilles en verre
US4897444A (en) * 1985-05-31 1990-01-30 The Research Foundation Of The State University Of New York Immobilized fluorogenic substrates for enzymes; and processes for their preparation
US4780421A (en) * 1986-04-03 1988-10-25 Sclavo Inc. Cleavable labels for use in binding assays
US5118801A (en) 1988-09-30 1992-06-02 The Public Health Research Institute Nucleic acid process containing improved molecular switch
US5212298A (en) * 1989-08-16 1993-05-18 Monsanto Company Method for producing synthetic N-linked glycoconjugates
US5011910A (en) 1989-12-28 1991-04-30 Washington University Reagent and method for determining activity of retroviral protease
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
WO1994016105A1 (en) 1993-01-15 1994-07-21 The Public Health Research Institute Of The City Of New York, Inc. Rna assays using rna binary probes and ribozyme ligase
DE69434688T2 (de) 1993-01-15 2007-01-11 The Public Health Research Institute Of The City Of New York, Inc. Diagnostischer nachweis von rna und reagentiensätze unter verwendung binärer rna proben und einer rna-abhängigen rna ligase
JP3778925B2 (ja) 1993-01-15 2006-05-24 ザ パブリック ヘルス リサーチ インスティチュート オブ ザ シティー オブ ニューヨーク インク 高感度核酸サンドイッチハイブリダイゼーション検定法及びキット
US5925517A (en) 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
JP2664878B2 (ja) 1994-01-31 1997-10-22 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体チップパッケージおよびその製造方法
US5506115A (en) 1994-04-29 1996-04-09 G. D. Searle & Co. Reagent and method for determining activity of herpes protease
US5723288A (en) 1994-05-06 1998-03-03 The University Of North Carolina At Chapel Hill Method of fluorescent detection of nucleic acids and cytoskeleton elements using bis-dicationic aryl furans, and kits useful therefor
US5681821A (en) * 1994-10-18 1997-10-28 Georgia Tech Research Corp. Fluorescent 1-peptidylaminoalkanephosphonate derivatives
US5605809A (en) * 1994-10-28 1997-02-25 Oncoimmunin, Inc. Compositions for the detection of proteases in biological samples and methods of use thereof
US5871946A (en) 1995-05-18 1999-02-16 Coulter Corporation Method for determining activity of enzymes in metabolically active whole cells
US5733719A (en) 1995-05-18 1998-03-31 Coulter Corporation Method of making an assay compound
US5776720A (en) 1995-05-18 1998-07-07 Coulter Corporation Assay reagent
US5698411A (en) 1995-05-18 1997-12-16 Coulter Corporation Method for determining activity of enzymes in metabolically active whole cells
US5804395A (en) 1995-12-01 1998-09-08 The United States Of America As Represented By The Secretary Of The Navy Fluorescence polarization assays of enzymes and substrates therefore
AU2735797A (en) 1996-04-12 1998-03-26 Public Health Research Institute Of The City Of New York, Inc., The Detection probes, kits and assays
CA2252048C (en) 1996-04-12 2008-03-11 The Public Health Research Institute Of The City Of New York, Inc. Detection probes, kits and assays
US5912137A (en) 1996-07-16 1999-06-15 The Regents Of The University Of California Assays for protein kinases using fluorescent
US5925558A (en) 1996-07-16 1999-07-20 The Regents Of The University Of California Assays for protein kinases using fluorescent protein substrates
US5714392A (en) * 1996-07-26 1998-02-03 Advanced Micro Devices, Inc. Rapid thermal anneal system and method including improved temperature sensing and monitoring
US6037103A (en) 1996-12-11 2000-03-14 Nitto Denko Corporation Method for forming hole in printed board
US7312302B2 (en) 1997-02-20 2007-12-25 Oncolmmunin, Inc. Compositions for the detection of enzyme activity in biological samples and methods of use thereof
US6893868B2 (en) 1997-02-20 2005-05-17 Onco Immunin, Inc. Homo-doubly labeled compositions for the detection of enzyme activity in biological samples
US6037137A (en) 1997-02-20 2000-03-14 Oncoimmunin, Inc. Fluorogenic peptides for the detection of protease activity
US5998204A (en) 1997-03-14 1999-12-07 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
US6037130A (en) 1998-07-28 2000-03-14 The Public Health Institute Of The City Of New York, Inc. Wavelength-shifting probes and primers and their use in assays and kits
US6410255B1 (en) 1999-05-05 2002-06-25 Aurora Biosciences Corporation Optical probes and assays
EP1185681A1 (en) 1999-05-24 2002-03-13 The Public Health Research Institute Of The City Of New York, Inc. High specificity hairpin antisense oligonucleotides
US6277607B1 (en) 1999-05-24 2001-08-21 Sanjay Tyagi High specificity primers, amplification methods and kits
JP2003508080A (ja) 1999-09-10 2003-03-04 オンコイミューニン,インコーポレイティド 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法
CA2387306C (en) 1999-10-22 2010-04-27 The Public Health Research Institute Of The City Of New York, Inc. Assays for short sequence variants

Also Published As

Publication number Publication date
DE69841419D1 (de) 2010-02-11
WO1998037226A1 (en) 1998-08-27
US6936687B1 (en) 2005-08-30
JP4298796B2 (ja) 2009-07-22
US6037137A (en) 2000-03-14
CA2280811C (en) 2015-11-03
AU745148B2 (en) 2002-03-14
US7879574B2 (en) 2011-02-01
EP0988394A1 (en) 2000-03-29
EP0988394A4 (en) 2003-04-23
ATE453722T1 (de) 2010-01-15
EP0988394B1 (en) 2009-12-30
AU6656798A (en) 1998-09-09
CA2280811A1 (en) 1998-08-27
US20080199898A1 (en) 2008-08-21
JP2008167757A (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
JP2001514492A (ja) 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法
JP3771262B2 (ja) 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法
US6893868B2 (en) Homo-doubly labeled compositions for the detection of enzyme activity in biological samples
CA1086614A (en) Substrate for the determination of plasminogen activators
US7312302B2 (en) Compositions for the detection of enzyme activity in biological samples and methods of use thereof
US6787329B1 (en) Fluorogenic protease substrates based on dye-dimerization
JP2003508080A (ja) 生物学的サンプル中のプロテアーゼの検出のための組成物及びその使用方法
US20040024178A1 (en) Bacterial signal peptidase inhibitors and uses thereof
Vidal et al. Solid‐phase synthesis and cellular localization of a C‐and/or N‐terminal labelled peptide
US5063152A (en) Synthetic peptidic substrate for determination of trypsin and α1
US6955891B2 (en) Reagents for assaying Bacillus anthracis lethal factor protease
AU2006200291A1 (en) Compositions for the detection of enzyme activity in biological samples and methods of use thereof
WO2023105224A1 (en) Fap detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071030

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081028

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees