JP2001354427A - Method for manufacturing high purity ferric chloride aqueous solution - Google Patents

Method for manufacturing high purity ferric chloride aqueous solution

Info

Publication number
JP2001354427A
JP2001354427A JP2000172465A JP2000172465A JP2001354427A JP 2001354427 A JP2001354427 A JP 2001354427A JP 2000172465 A JP2000172465 A JP 2000172465A JP 2000172465 A JP2000172465 A JP 2000172465A JP 2001354427 A JP2001354427 A JP 2001354427A
Authority
JP
Japan
Prior art keywords
ferric chloride
aqueous solution
aqueous
solution
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000172465A
Other languages
Japanese (ja)
Other versions
JP4505952B2 (en
Inventor
Nakao Denda
仲男 伝田
Keizo Hayashi
桂三 林
Akihiro Sakata
昭博 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000172465A priority Critical patent/JP4505952B2/en
Publication of JP2001354427A publication Critical patent/JP2001354427A/en
Application granted granted Critical
Publication of JP4505952B2 publication Critical patent/JP4505952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high purity ferric chloride aqueous solution containing extremely little impurities which can be used for a water purification plant, or the like. SOLUTION: In the method for manufacturing a high purity ferric chloride aqueous solution, an aqueous solution of ferric chloride containing impurity metals is reacted with an iron material to reduce ferric chloride into ferrous chloride, then concentrated and cooled to precipitate ferrous chloride. The precipitated ferrous chloride is separated, dissolved in water and then oxidized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高純度塩化第二鉄水
溶液の製造方法に関し、より詳しくは上水処理等におけ
る凝集剤としての用途等に適した、不純物を著しく低減
化した高純度塩化第二鉄水溶液の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity aqueous ferric chloride solution, and more particularly, to a high-purity ferric chloride aqueous solution which is suitable for use as a flocculant in water treatment and the like, and has extremely reduced impurities. The present invention relates to a method for producing a ferrous aqueous solution.

【0002】[0002]

【従来の技術】上水処理に使用される凝集剤としては、
ポリ塩化アルミニウム水溶液(PAC)や、硫酸アルミ
ニウム水溶液(硫酸バンド)等が使用されているが、近
年、アルミニウムがアルツハイマー病の原因物質と考え
られるようになり、上水におけるかかる凝集剤の使用も
問題視されてきている。一方、塩化第二鉄水溶液はポリ
塩化アルミニウム水溶液や、硫酸アルミニウム水溶液と
並び無機系凝集剤で有名ではあるが、上水での使用実績
は殆どなく、主に下水処理等に使用されている。上水で
の使用がない理由として、重金属等の不純物を多く含む
ことが挙げられる。
2. Description of the Related Art Coagulants used for water treatment include:
Polyaluminum chloride aqueous solution (PAC), aluminum sulfate aqueous solution (sulfuric acid band), etc. are used. In recent years, aluminum has been considered to be a causative agent of Alzheimer's disease, and the use of such a flocculant in water supply is problematic. Has been seen. On the other hand, an aqueous ferric chloride solution is famous for an inorganic coagulant along with a polyaluminum chloride aqueous solution and an aluminum sulfate aqueous solution, but has hardly been used in tap water, and is mainly used for sewage treatment and the like. The reason for not being used in tap water is that it contains a large amount of impurities such as heavy metals.

【0003】塩化第二鉄水溶液の製造方法としては、鉄
材を塩酸に溶解して得た塩化第一鉄水溶液に塩素ガスを
吹き込む等の酸化反応をさせて得る方法が挙げられる。
現在では鉄鋼の酸洗廃液に鉄(くず鉄)を投入した後、
塩素を吹き込み塩化第二鉄水溶液とする等の廃棄物のリ
サイクルによって得ることが多い。この方法では、使用
する鉄材の不純物がそのまま塩化第二鉄水溶液に混入し
てくる。一般的に、鉄材にはマンガン等の金属不純物を
多く含んでいる。
As a method for producing an aqueous ferric chloride solution, a method in which an iron material is dissolved in hydrochloric acid to perform an oxidation reaction such as blowing chlorine gas into an aqueous ferrous chloride solution can be mentioned.
At present, iron (waste iron) is added to steel pickling waste liquid,
It is often obtained by recycling waste such as blowing chlorine into ferric chloride aqueous solution. In this method, impurities of the iron material used are directly mixed into the aqueous ferric chloride solution. Generally, iron materials contain many metal impurities such as manganese.

【0004】塩化第二鉄水溶液の主要な用途としては、
各種の金属をエッチングするためのエッチャントが挙げ
られる。鉄材、ニッケル含有の鉄鋼、銅製プリント基板
等を前記エッチャントを用いてエッチングすると、エッ
チングされた金属がエッチャントに溶解すると共に、溶
液中の塩化第二鉄は塩化第一鉄に還元されてエッチング
効果が失われる。エッチング効果がなくなった廃液は、
含有する金属不純分を除去しつつ再生され塩化第二鉄水
溶液として再使用される。この再生法は、溶解してくる
金属不純物の種類により各種のものが提案されており、
殆どが金属鉄を使用する方法である。
[0004] The main uses of aqueous ferric chloride are:
There are etchants for etching various metals. When an iron material, nickel-containing steel, copper printed circuit board or the like is etched using the etchant, the etched metal dissolves in the etchant, and the ferric chloride in the solution is reduced to ferrous chloride to improve the etching effect. Lost. Waste liquid that has lost its etching effect
It is regenerated while removing the contained metal impurities and reused as an aqueous ferric chloride solution. For this regenerating method, various ones have been proposed depending on the kind of the metal impurities to be dissolved.
Most of these methods use metallic iron.

【0005】例えば、特開平5−255869号は、廃
液中にニッケルを含む場合の再生法を、特開平1−16
7235号は銅およびニッケルを含む場合の再生法を開
示している。これらの方法を採用し、塩化第二鉄水溶液
を再生した場合においては、塩化第二鉄水溶液は最初の
量に比べて増加することとなるため、この増加分を凝集
剤用途等に使用すると効率的である。しかしながら、当
該再生法によって得られた塩化第二鉄水溶液は、不純物
成分が含まれるため、エッチャントとして使用するため
には問題がなくても、凝集剤として使用した場合には問
題となり、特に上水での場合には、重金属類が極めて少
ない凝集剤が望まれるため、前記再生された塩化第二鉄
水溶液の使用は困難であった。
[0005] For example, Japanese Patent Application Laid-Open No. 5-255869 discloses a regeneration method when nickel is contained in a waste liquid.
No. 7235 discloses a regeneration method involving copper and nickel. When these methods are employed to regenerate the aqueous ferric chloride solution, the amount of the aqueous ferric chloride solution increases compared to the initial amount. It is a target. However, since the aqueous ferric chloride solution obtained by the regeneration method contains impurity components, there is no problem in using it as an etchant, but it becomes a problem when it is used as a flocculant, In this case, it is difficult to use the regenerated aqueous ferric chloride solution because a coagulant containing extremely few heavy metals is desired.

【0006】即ち、前述のとおり、エッチャントとして
使用された廃液には、被エッチング金属中に含まれる不
純物が混入している。この廃液の再生に関して、従来の
鉄材等を投入して不純物金属と鉄材をイオン交換して除
去する方法では、イオン化傾向の大きい金属の除去には
不適であると同時に鉄材に含まれる不純物が逆に液に溶
け込むことになる。従って、この方法による再生には限
界がある。そこで、塩化第二鉄水溶液を更に高純度化す
るための方法が望まれていた。
That is, as described above, impurities contained in the metal to be etched are mixed in the waste liquid used as the etchant. Regarding the regeneration of this waste liquid, the conventional method of introducing iron material or the like and removing the impurity metal and iron material by ion exchange is not suitable for removing metals having a high ionization tendency, and at the same time impurities contained in the iron material are adversely affected. It will dissolve in the liquid. Therefore, there is a limit to the reproduction by this method. Therefore, a method for further purifying the aqueous ferric chloride solution has been desired.

【0007】一般的に、溶液中の不純物を低減する方法
としては晶析法が使用されるが、これを塩化第二鉄水溶
液に適用した場合においては次の問題がある。塩化第二
鉄水溶液から塩化第二鉄結晶を析出させると通常6水塩
の結晶が得られるので、この結晶を取得して溶解させれ
ば、高純度の塩化第二鉄水溶液を得ることが理論的には
可能である。しかし、濃度60質量%以上の溶液では、
すべての塩化第二鉄が結晶となるために不純物の除去は
不可能であり、実際55質量%以上で析出させると結晶
がシャーベット状となり液との分離が難しくなる。従っ
て、これ以下の濃度で行わなければならないが、一方で
冷却費用が少なくて済む20℃での結晶析出濃度は48
質量%であるから、晶析法の場合は、極めて狭い濃度範
囲での操作が必要となり、また効率的ではない。また、
本来的に晶析法では、濃縮のためのエネルギーコストが
大きいのが欠点である。
In general, a crystallization method is used as a method for reducing impurities in a solution. However, when this method is applied to an aqueous ferric chloride solution, there are the following problems. When ferric chloride crystals are precipitated from an aqueous ferric chloride solution, crystals of hexahydrate are usually obtained. Therefore, if these crystals are obtained and dissolved, it is theoretically possible to obtain a high-purity aqueous ferric chloride solution. It is possible. However, in a solution having a concentration of 60% by mass or more,
It is impossible to remove impurities because all the ferric chloride is crystallized. In practice, when the ferric chloride is precipitated at 55% by mass or more, the crystal becomes sherbet-like and is difficult to separate from the liquid. Therefore, the concentration must be lower than this, but on the other hand, the crystal precipitation concentration at 20 ° C. which requires less cooling cost is 48.
In the case of the crystallization method, the operation is required in an extremely narrow concentration range, and the method is not efficient. Also,
The disadvantage of the crystallization method is that the energy cost for concentration is large.

【0008】また、アルカリあるいは各種のアニオンを
含有する溶液を投入して、金属を水酸化物等にして除去
する方法がある。特開平7−165427号には、アル
カリを用いて中和して水酸化物の沈殿を得て、その後塩
酸にて溶解し精製塩化第二鉄水溶液を得る方法が開示さ
れている。しかし、この方法は、すべての金属不純物に
適応できるという訳ではなく、例えばアルカリで沈殿反
応する金属不純物は除去できず、アルカリ中の不純物も
問題となる。また、アルカリを多量に必要とすることも
欠点である。
There is also a method in which a solution containing an alkali or various anions is charged to convert the metal to a hydroxide or the like. JP-A-7-165427 discloses a method of obtaining a precipitate of hydroxide by neutralization with an alkali, and then dissolving with hydrochloric acid to obtain a purified aqueous solution of ferric chloride. However, this method cannot be applied to all metal impurities. For example, metal impurities that undergo a precipitation reaction with alkali cannot be removed, and impurities in alkali also pose a problem. Another disadvantage is that a large amount of alkali is required.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、従来
の再生方法で得られる塩化第二鉄水溶液における不純物
の問題点を解決し、上水場等で使用が可能となる不純物
が極めて少ない高純度塩化第二鉄水溶液を製造する方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of impurities in an aqueous ferric chloride solution obtained by a conventional regenerating method, and to minimize the amount of impurities that can be used in a waterworks or the like. An object of the present invention is to provide a method for producing a high-purity aqueous ferric chloride solution.

【0010】[0010]

【課題を解決するための手段】本発明者等はエッチング
に使用され不純物を多く含有する塩化第二鉄水溶液を原
料として、不純物の少ない高純度塩化第二鉄液を製造す
る方法に関して、鋭意検討を重ねた結果、本発明を完成
するに至った。
Means for Solving the Problems The present inventors diligently study a method for producing a high-purity ferric chloride solution with a small amount of impurities from a ferric chloride aqueous solution used for etching and containing a large amount of impurities. As a result, the present invention has been completed.

【0011】即ち本発明は、不純物金属を含む塩化第二
鉄水溶液を、鉄材と反応させて塩化第二鉄を塩化第一鉄
に還元した後、濃縮、冷却し、析出した塩化第一鉄結晶
を分離し、当該分離した結晶を水に溶解した後、酸化す
ることを特徴とする高純度塩化第二鉄水溶液の製造法で
ある。
That is, according to the present invention, an aqueous ferric chloride solution containing an impurity metal is reacted with an iron material to reduce ferric chloride to ferrous chloride, and then concentrated and cooled to form precipitated ferrous chloride crystals. And then oxidizing the separated crystals after dissolving the separated crystals in water.

【0012】[0012]

【発明の実施の形態】本発明の具体的手段は次のとおり
である。例えばエッチング等に使用された不純物金属を
多量に含む塩化第二鉄水溶液に、鉄材(板状、塊状およ
び/または粉状)を投入すると、当該不純物金属の一部
が除去され同時に塩化第二鉄が塩化第一鉄に還元され、
塩化第一鉄水溶液を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific means of the present invention are as follows. For example, when an iron material (plate, block, and / or powder) is put into an aqueous ferric chloride solution containing a large amount of an impurity metal used for etching or the like, a part of the impurity metal is removed, and at the same time, ferric chloride is removed. Is reduced to ferrous chloride,
An aqueous ferrous chloride solution is obtained.

【0013】次に、その塩化第一鉄水溶液を濃縮し冷却
することにより、塩化第一鉄結晶を得る。濃縮すること
により、より多くの結晶を得ることができる。次に得ら
れた結晶をフィルタープレス、遠心分離等の手段により
液より分離した後、水に溶解する。溶解した塩化第一鉄
水溶液は、塩素の吹き込み等により酸化することで純度
の高い塩化第二鉄水溶液を得ることができる。通常の工
業的製造法による塩素には金属不純物は殆ど含まれてい
ないので、塩素から不純物が増加することはない。
Next, the ferrous chloride aqueous solution is concentrated and cooled to obtain ferrous chloride crystals. By concentrating, more crystals can be obtained. Next, the obtained crystals are separated from the liquid by means such as a filter press or centrifugation, and then dissolved in water. The dissolved ferrous chloride aqueous solution can be oxidized by blowing chlorine or the like to obtain a highly pure ferric chloride aqueous solution. Since chlorine produced by ordinary industrial production methods contains almost no metallic impurities, impurities do not increase from chlorine.

【0014】本発明を更に詳しく説明する。エッチング
に使用された塩化第二鉄水溶液は、還元された塩化第一
鉄およびエッチングした鉄鋼等を由来とする不純物を含
む水溶液である。不純物としては、例えばインバー鋼
(鉄:64質量%、ニッケル:36質量%)をエッチン
グした場合はニッケルが、銅をエッチングした場合には
銅を大量に含む。これらの不純物は、鉄材(板状、塊状
および/または粉状)を投入することによって、金属鉄
とのイオン交換反応によって鉄表面に金属体として析出
させ、濾過により除去される。この技術としては、例え
ば特開平5-255869号等が挙げられる。
The present invention will be described in more detail. The aqueous ferric chloride solution used for etching is an aqueous solution containing impurities derived from reduced ferrous chloride and etched steel or the like. As impurities, for example, nickel is contained in a large amount when etching Invar steel (iron: 64% by mass, nickel: 36% by mass), and a large amount of copper is contained when copper is etched. By introducing an iron material (plate, lump and / or powder), these impurities are precipitated as a metal on the iron surface by an ion exchange reaction with metallic iron, and removed by filtration. As this technique, for example, JP-A-5-255869 can be cited.

【0015】しかしこの方法では、鉄よりもイオン化傾
向の大きい金属は除去できず、更に系内に投入した鉄材
の溶解によってこれらに含まれる金属が塩化鉄水溶液に
溶出することとなる。鉄材中の不純物としては、マンガ
ン、亜鉛、鉛、アルミニウム、砒素等が挙げられるが、
これらの不純物はすべて鉄よりもイオン化傾向が大き
く、従ってこの工程では除去することは不可能である。
これら不純分は反応を進めていくうちに徐々に貯えられ
て、系内での濃度が高くなっていく。
However, in this method, metals having a higher ionization tendency than iron cannot be removed, and the metals contained therein are eluted into the aqueous iron chloride solution by dissolving the iron material charged into the system. Examples of impurities in the iron material include manganese, zinc, lead, aluminum, and arsenic.
All of these impurities have a higher ionization tendency than iron and therefore cannot be removed in this step.
These impurities are gradually stored as the reaction proceeds, and the concentration in the system increases.

【0016】そこで、本発明は上記の鉄材によるイオン
化傾向の低い金属の除去が終わった後の塩化第一鉄水溶
液から晶析によって塩化第一鉄結晶を生成させる。晶析
させるためには塩化第一鉄水溶液を濃縮する。濃度とし
ては35質量%以上にするのが好ましく、更に好ましく
は40質量%以上である。40質量%以上の濃度にすれ
ば室温まで冷却すれば簡単に結晶が析出する。濃縮は通
常の加熱濃縮の他真空濃縮でも良い。
Therefore, in the present invention, ferrous chloride crystals are formed by crystallization from the aqueous ferrous chloride solution after the removal of the metal having a low ionization tendency by the iron material. The aqueous ferrous chloride solution is concentrated for crystallization. The concentration is preferably 35% by mass or more, and more preferably 40% by mass or more. When the concentration is 40% by mass or more, crystals are easily precipitated when cooled to room temperature. Concentration may be vacuum concentration other than ordinary heat concentration.

【0017】金属不純物の殆どは液相側に存在し、固相
側に蓄積することは少ない。そこで、その結晶をフィル
タープレスや遠心分離等によって濾過分離すれば、金属
不純物が濃縮された塩化第一鉄水溶液と、金属不純物の
少ない塩化第一鉄結晶が得られる。
Most of the metal impurities are present on the liquid phase side and rarely accumulate on the solid phase side. Thus, if the crystals are separated by filtration using a filter press, centrifugation or the like, a ferrous chloride aqueous solution in which metal impurities are concentrated and a ferrous chloride crystal having few metal impurities can be obtained.

【0018】分離した塩化第一鉄結晶には溶液が付着し
ているので、水洗することにより更に金属不純物の少な
い結晶を得ることができるので好ましい。この場合、結
晶の溶解も同時に起きるので、その効果とロスとの見合
いで水洗の度合いを決める必要がある。上記工程で得ら
れた不純物の少ない塩化第一鉄結晶を、水に溶解後、塩
素等による酸化により、金属不純物の少ない高純度塩化
第二鉄水溶液を製造することができる。得られた高純度
塩化第二鉄水溶液は、上水処理等における凝集剤として
の用途に特に適したものであるが、エッチャント等の通
常の用途にも使用可能である。
Since the solution is attached to the separated ferrous chloride crystals, washing with water is preferable because crystals with less metal impurities can be obtained. In this case, since the dissolution of the crystal occurs at the same time, it is necessary to determine the degree of water washing in consideration of the effect and loss. After dissolving the ferrous chloride crystals with little impurities obtained in the above step in water, oxidation with chlorine or the like can produce a high-purity aqueous solution of ferric chloride with little metallic impurities. The obtained high-purity ferric chloride aqueous solution is particularly suitable for use as a flocculant in water treatment or the like, but can also be used for ordinary uses such as an etchant.

【0019】[0019]

【実施例】以下実施例により本発明を具体的に説明す
る。但し、本発明は実施例のみに限定されるものではな
い。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited only to the examples.

【0020】実施例1 エッチング廃液である塩化鉄水溶液(塩化第二鉄、塩化
第一鉄、ニッケルを主成分)を、鉄材にて処理し、脱ニ
ッケルした後の塩化第一鉄水溶液を得た。当該塩化第一
鉄水溶液(FeCl2濃度41.9質量%)3000g
を20℃に冷却したところ304gの塩化第一鉄の結晶
を得た(結晶取得率10.1%)。この結晶を水に溶解
し、液中の不純物を分析したところ表1の通りであっ
た。この水溶液を塩素で酸化することにより高純度の塩
化第二鉄水溶液を得ることができた。
EXAMPLE 1 An aqueous ferrous chloride solution (mainly composed of ferric chloride, ferrous chloride and nickel), which is an etching waste liquid, was treated with an iron material to obtain a ferrous chloride aqueous solution after denickelization. . 3000 g of the aqueous ferrous chloride solution (FeCl 2 concentration: 41.9% by mass)
Was cooled to 20 ° C. to obtain 304 g of ferrous chloride crystals (crystal acquisition rate: 10.1%). The crystals were dissolved in water, and the impurities in the solution were analyzed. By oxidizing this aqueous solution with chlorine, a high-purity aqueous ferric chloride solution could be obtained.

【0021】実施例2 実施例1と同様の脱ニッケルした後の塩化第一鉄水溶液
をFeCl2濃度45質量%に真空濃縮した。当該水溶
液1400gを20℃に冷却したところ400gの塩化
第一鉄の結晶を得た(結晶取得率28.6%)。この結晶
を水に溶解し、液中の不純物を分析したところ表1の通
りであった。この水溶液を塩素で酸化することにより高
純度の塩化第二鉄水溶液を得ることができた。
Example 2 The ferrous chloride aqueous solution after denickelization as in Example 1 was concentrated in vacuo to an FeCl 2 concentration of 45% by mass. When 1,400 g of the aqueous solution was cooled to 20 ° C., 400 g of ferrous chloride crystals were obtained (crystal acquisition rate: 28.6%). The crystals were dissolved in water, and the impurities in the solution were analyzed. By oxidizing this aqueous solution with chlorine, a high-purity aqueous ferric chloride solution could be obtained.

【0022】比較例1 実施例1および実施例2で用いた脱ニッケルした後の塩
化第一鉄水溶液を室温にて結晶しない程度まで水で希釈
した。当該水溶液を分析した結果を表1に示す。
Comparative Example 1 The aqueous solution of ferrous chloride after denickelization used in Examples 1 and 2 was diluted with water at room temperature to such an extent that it did not crystallize. Table 1 shows the results of analysis of the aqueous solution.

【0023】[0023]

【表1】 [Table 1]

【0024】なお、次の金属は、各実施例、比較例共、
下記測定限界以下であった。 Cu:1ppm以下、Al:1ppm以下、Cd:0.1p
pm以下、Pb:1ppm以下、Hg:0.01ppm
以下
The following metals were used in each of Examples and Comparative Examples.
It was below the measurement limit below. Cu: 1 ppm or less, Al: 1 ppm or less, Cd: 0.1 p
pm or less, Pb: 1 ppm or less, Hg: 0.01 ppm
Less than

【0025】比較例2 塩化第二鉄水溶液(FeCl3濃度44質量%)を55
質量%まで濃縮した。当該水溶液794gを室温(20℃)
にて冷却、放置したが、4日経過しても結晶は析出しな
かった。5日以降徐々に結晶の析出をはじめ、10日後に
は、ほぼ完全に結晶が析出した。
Comparative Example 2 An aqueous solution of ferric chloride (FeCl 3 concentration: 44% by mass) was added to 55
Concentrated to mass%. 794 g of the aqueous solution at room temperature (20 ° C.)
After cooling for 4 days, no crystals were precipitated even after 4 days. After 5 days, crystals began to precipitate gradually, and after 10 days, crystals were almost completely precipitated.

【0026】この結果からわかるように、各実施例にお
いてはいずれの金属不純物も比較例と比べると、大幅に
減少していることが分かる。
As can be seen from the results, in each of the examples, all the metal impurities are significantly reduced as compared with the comparative example.

【0027】特に注目に値するのは、有毒であるが除去
が困難である非金属のヒ素や、上水での使用を考えた時
に問題となるアルミニウム、マンガン等の卑金属濃度が
大幅に減少するということである。従って、本発明を用
いて高純度塩化第二鉄水溶液を製造することは、極めて
価値があるということが理解できる。
It is particularly noteworthy that the concentration of nonmetallic arsenic, which is toxic but difficult to remove, and the concentration of base metals such as aluminum and manganese, which are problematic when used in tap water, are greatly reduced. That is. Therefore, it can be understood that producing a high-purity ferric chloride aqueous solution using the present invention is extremely valuable.

【0028】[0028]

【発明の効果】本発明によれば、金属不純物の少ない高
純度塩化第二鉄水溶液を製造することが可能であり、当
該水溶液は、上水場等の広範囲な用途が期待できるもの
である。
According to the present invention, it is possible to produce a high-purity aqueous solution of ferric chloride containing a small amount of metal impurities, and the aqueous solution can be expected to be used in a wide range of uses such as a waterworks.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D015 BA10 BB05 CA14 DA13 DC02 4D062 BA10 BB05 CA14 DA13 DC02 4G048 AA06 AB02 AC08 AE01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D015 BA10 BB05 CA14 DA13 DC02 4D062 BA10 BB05 CA14 DA13 DC02 4G048 AA06 AB02 AC08 AE01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不純物金属を含む塩化第二鉄水溶液を、
鉄材と反応させて塩化第二鉄を塩化第一鉄に還元した
後、濃縮、冷却し、析出した塩化第一鉄結晶を分離し、
当該分離した結晶を水に溶解した後、酸化することを特
徴とする高純度塩化第二鉄水溶液の製造法。
An aqueous ferric chloride solution containing an impurity metal,
After reducing ferric chloride to ferrous chloride by reacting with iron material, concentrating and cooling, separating precipitated ferrous chloride crystals,
A method for producing a high-purity aqueous ferric chloride solution, comprising dissolving the separated crystals in water and oxidizing the crystals.
【請求項2】 不純物金属を含む塩化第二鉄水溶液が、
金属エッチングに使用した後の廃液であることを特徴と
する請求項1の高純度塩化第二鉄水溶液の製造法。
2. An aqueous ferric chloride solution containing an impurity metal,
The method for producing a high-purity ferric chloride aqueous solution according to claim 1, wherein the waste liquid is used after metal etching.
JP2000172465A 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution Expired - Fee Related JP4505952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172465A JP4505952B2 (en) 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172465A JP4505952B2 (en) 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution

Publications (2)

Publication Number Publication Date
JP2001354427A true JP2001354427A (en) 2001-12-25
JP4505952B2 JP4505952B2 (en) 2010-07-21

Family

ID=18674862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172465A Expired - Fee Related JP4505952B2 (en) 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP4505952B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180059600A (en) * 2016-11-25 2018-06-05 (주) 케이엠씨 Circulation concentrating method for producing highly concentrated iron chloride recycling waste etching solution
CN112850797A (en) * 2020-10-26 2021-05-28 斯瑞尔环境科技股份有限公司 Production method of ultrapure ferric trichloride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104912A (en) * 1990-08-24 1992-04-07 Daido Chem Eng Kk Method for treating and recovering etching waste liquor
JPH09156930A (en) * 1995-12-11 1997-06-17 Tsurumi Soda Co Ltd Treatment of ferric chloride waste liquor
JPH09235684A (en) * 1995-12-28 1997-09-09 Fuji Kasui Kogyo Kk Method for regenerating waste liquid etchant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104912A (en) * 1990-08-24 1992-04-07 Daido Chem Eng Kk Method for treating and recovering etching waste liquor
JPH09156930A (en) * 1995-12-11 1997-06-17 Tsurumi Soda Co Ltd Treatment of ferric chloride waste liquor
JPH09235684A (en) * 1995-12-28 1997-09-09 Fuji Kasui Kogyo Kk Method for regenerating waste liquid etchant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180059600A (en) * 2016-11-25 2018-06-05 (주) 케이엠씨 Circulation concentrating method for producing highly concentrated iron chloride recycling waste etching solution
KR102006249B1 (en) * 2016-11-25 2019-08-02 (주)케이엠씨 Circulation concentrating method for producing highly concentrated iron chloride recycling waste etching solution
CN112850797A (en) * 2020-10-26 2021-05-28 斯瑞尔环境科技股份有限公司 Production method of ultrapure ferric trichloride

Also Published As

Publication number Publication date
JP4505952B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP2697778B2 (en) Treatment of cupric chloride waste liquid
TW201043581A (en) Process for the recovery of phosphate values from a waste solution
CN101545050A (en) A method to comprehensively recover the solid material containing copper and vanadium
JPH05132304A (en) Method for recovering sulfuric acid from waste sulfuric acid containing metal sulfate
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JP2001010815A (en) Recovery of cerium from solution containing both chromium and cerium
JP4154052B2 (en) Method for producing ferric sulfate solution
CN114480853A (en) Method for removing aluminum by strong alkaline solution and application
JP2004203695A (en) Method for recovering tantalum compound and/or niobium compound from waste and/or its solution containing tantalum fluoride and/or niobium fluoride
JPH0489315A (en) Method for recovering copper sulfate and alkali chloride from aqueous copper chloride solution containing hydrochoric acid
JP3459863B2 (en) Waste hydrochloric acid treatment method
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
JPS589820B2 (en) Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores
JP4322008B2 (en) Method for recovering tantalum compound and / or niobium compound
WO2003072505A1 (en) Purification method for producing high purity niobium compound and/or tantalum compound
JP2003212548A (en) Refining method for iron containing solution
JP4279022B2 (en) Manufacturing method of high purity iron oxide powder
JPH03291388A (en) Treatment of used etching solution
JP2988650B2 (en) Method of treating hydrochloric acid-phosphoric acid waste liquid containing aluminum
JPS6314883A (en) Treatment of spent cupric chloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees