JP2001353214A - Dialysis system - Google Patents

Dialysis system

Info

Publication number
JP2001353214A
JP2001353214A JP2000178046A JP2000178046A JP2001353214A JP 2001353214 A JP2001353214 A JP 2001353214A JP 2000178046 A JP2000178046 A JP 2000178046A JP 2000178046 A JP2000178046 A JP 2000178046A JP 2001353214 A JP2001353214 A JP 2001353214A
Authority
JP
Japan
Prior art keywords
dialysis
purified water
dialysate
line
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000178046A
Other languages
Japanese (ja)
Other versions
JP4332829B2 (en
Inventor
Shigeto Haraguchi
成人 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Medical Co Ltd
Original Assignee
Toray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Medical Co Ltd filed Critical Toray Medical Co Ltd
Priority to JP2000178046A priority Critical patent/JP4332829B2/en
Publication of JP2001353214A publication Critical patent/JP2001353214A/en
Application granted granted Critical
Publication of JP4332829B2 publication Critical patent/JP4332829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dialysis system with superior operability and economic efficiency and enabling a good quality dialysis treatment causing no pollution with bacteria and an endotoxin. SOLUTION: In this dialysis system composed of a purified water manufacturing device for obtaining purified water by purifying raw water with a reverse osmotic membrane, a dialysis fluid supply device for manufacturing a prescribed dialysis fluid by adding a dialysis undiluted agent to the purified water manufactured by the purified water manufacturing device and a dialysis monitor for dialyzing blood by the dialysis fluid compounded by the dialysis fluid supply device, the dialysis system on and after a dialysis undiluted agent-added part is provided with a dialysis fluid line chlorine type sterilizing agent injector for sterilizing bacteria in an effective chlorine concentration not less than 300 ppm and a purified water line sterilizing agent adding device in a purified water line on the upstream side of the dialysis undiluted agent-added part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は透析治療において、
高度に清浄な透析液を調合する透析システムに関するも
のであり、特に透析治療後の滅菌技術に関わるものであ
る。詳しくは安価にかつ透析システムの構成部材に腐食
等の悪影響を与えず、かつ残留した滅菌剤による医療安
全上の問題を発生することなしに、細菌やエンドトキシ
ン汚染のないクリーンな透析液供給を可能にした透析シ
ステムに関するものである。
TECHNICAL FIELD The present invention relates to dialysis treatment,
The present invention relates to a dialysis system for preparing a highly clean dialysate, and particularly to a sterilization technique after dialysis treatment. For more details, it is possible to supply clean dialysis fluid at low cost, without causing corrosion or other adverse effects on dialysis system components, and without causing medical safety problems due to residual sterilant, free of bacteria and endotoxin contamination. The present invention relates to a dialysis system.

【0002】[0002]

【従来の技術】図3は一般的な透析システムを示すフロ
ー図である。原水A(一般には水道水)は精製水製造装
置B(一般には逆浸透法精製水製造装置)において、原
水A中の不純物・異物を除去され、精製水Cを得る。こ
の精製水Cの大半は透析液供給装置Dに送液されるが、
一部はA粉末溶解装置EあるいはB粉末溶解装置Fへも
供給される。製造された透析液Gは透析用監視装置Hを
経て、ダイアライザーI内で透析膜(図示せず)を介し
て患者からの血液Jと接触して、血液を浄化する。ダイ
アライザーI内で血液から移行した老廃物を含んだ廃透
析液は再び透析用監視装置Hを経て排出される。透析用
監視装置Hでは、ダイアライザーIで血液側から除去さ
れる水分量や血液の圧力等を監視している。また精製水
Cは個人用供給装置Kにも送液されることがあるが、個
人用供給装置Kは透析液供給装置Dと透析用監視装置H
の機能を合わせ持ったものであり、特に詳述しない。
2. Description of the Related Art FIG. 3 is a flowchart showing a general dialysis system. Raw water A (generally tap water) is subjected to a purified water production apparatus B (generally a reverse osmosis purified water production apparatus) to remove impurities and foreign substances in the raw water A to obtain purified water C. Most of the purified water C is sent to the dialysate supply device D,
A part is also supplied to the A powder melting device E or the B powder melting device F. The dialysate G thus produced passes through the dialysis monitoring device H and contacts the blood J from the patient through the dialysis membrane (not shown) in the dialyzer I to purify the blood. The waste dialysate containing waste matter transferred from the blood in the dialyzer I is discharged again through the dialysis monitoring device H. In the monitoring device H for dialysis, the amount of water removed from the blood side, the pressure of blood, and the like are monitored by the dialyzer I. The purified water C may also be sent to the personal supply device K, but the personal supply device K includes the dialysate supply device D and the dialysis monitoring device H.
, And will not be described in detail.

【0003】図4は精製水製造装置Aの一例を示すフロ
ー図である。基本的な動作を説明すると、原水Aは軟水
機1で硬度成分をイオン交換された後、活性炭濾過機2
で残留塩素を除去され、ROポンプ3により所定の圧力
に昇圧されて、ROモジュール4に供給される。ROモ
ジュール4は逆浸透(RO)膜からなるエレメント部
と、これを収納するケーシングから構成される。逆浸透
膜を透過して、各種イオン・微粒子・細菌・エンドトキ
シンを除去され清浄化された精製水は、精製水タンク5
に貯蔵される。一方、塩分等の不純物が濃縮された濃縮
水は、一部は排水されるが、大半はROモジュール4内
の液流速を維持するため、再びROポンプ3に還流され
る。精製水槽5に貯蔵された精製水は供給ポンプ6を経
て、精製水Cとして下流の装置へ供給される。その途中
の供給ポンプ出にエンドトキシン除去フィルター7が設
置されることもある。一方、万一ROポンプ3等に異常
を生じても透析治療が継続できるように、活性炭濾過機
2出からROモジュール4をバイパスする軟水ライン8
が設けられており、軟水ラインバルブ9を開ければ、除
菌フィルター10を経て精製水ラインに無菌の軟水を供
給することができる。
FIG. 4 is a flowchart showing an example of a purified water producing apparatus A. To explain the basic operation, the raw water A is subjected to ion exchange of the hardness component in the water softener 1 and then to the activated carbon filter 2.
Then, the residual chlorine is removed, and the pressure is raised to a predetermined pressure by the RO pump 3 and supplied to the RO module 4. The RO module 4 is composed of an element part made of a reverse osmosis (RO) membrane and a casing that houses the element part. Purified water that has been purified through the reverse osmosis membrane to remove various ions, fine particles, bacteria, and endotoxin is purified water tank 5
Stored in On the other hand, the concentrated water in which impurities such as salts are concentrated is partially drained, but most is returned to the RO pump 3 again in order to maintain the liquid flow rate in the RO module 4. The purified water stored in the purified water tank 5 is supplied as purified water C to a downstream device via a supply pump 6. An endotoxin removal filter 7 may be installed in the middle of the supply pump. On the other hand, a soft water line 8 that bypasses the RO module 4 from the activated carbon filter 2 so that the dialysis treatment can be continued even if an abnormality occurs in the RO pump 3 or the like.
If the soft water line valve 9 is opened, aseptic soft water can be supplied to the purified water line via the sterilization filter 10.

【0004】図5は従来の透析液供給装置Dの一例を示
すフロー図である。精製水製造装置Aから送液された精
製水Cは、供給水ポンプ21、ヒータ22、脱気筒23
を経て、透析液調合槽24aまたは24bに供給され
る。ヒータ22は精製水を患者の体温近くまで昇温する
ためのものである。脱気筒23はダイアライザーI内で
精製水C中に溶存していた気体が顕在化して透析効率を
低下させないように、予め余剰の溶存酸素を除去するた
めのものであり、脱気筒23に内臓された脱気膜を介し
て真空ポンプ(図示せず)に接続されている。この透析
液調合槽24aおよび24bは交互に切り替えられて作
動するが、A粉末溶解装置EからはA液ポンプ25を経
て、B粉末溶解装置FからはB液ポンプ26を経て、調
合槽24aおよび24bへ2種類の透析原液が供給され
る(粉末剤として供給されることもある)。途中にはこ
の2系列の調合槽24aおよび24bを交互に切り替え
るための切替弁(図示せず)がある。精製水Cを含めた
3種の液は、調合槽24aおよび24b内で所定濃度に
なるように定比率混合され、正常な組成であることが確
認されれば透析液貯層27へ移液される。次いでこの調
合された液は、透析液ポンプ28により、透析液Gとし
て後続する透析用監視装置Hへ送液され、透析患者の治
療に供される。これらの調合槽24aおよび24bの交
互切替や、調合結果の良否の判定、ヒータ22での温度
制御等は、透析液調合コントロール装置29で監視・制
御されている。
FIG. 5 is a flowchart showing an example of a conventional dialysate supply device D. The purified water C sent from the purified water production device A is supplied to the supply water pump 21, the heater 22, and the degassing cylinder 23.
Is supplied to the dialysate preparation tank 24a or 24b. The heater 22 is for raising the temperature of the purified water to near the body temperature of the patient. The degassing cylinder 23 is for removing excess dissolved oxygen in advance so that the gas dissolved in the purified water C in the dialyzer I does not become apparent and lower the dialysis efficiency. It is connected to a vacuum pump (not shown) through a degassing membrane. The dialysate preparation tanks 24a and 24b are alternately operated and operated. However, from the A powder dissolution apparatus E via the A liquid pump 25, and from the B powder dissolution apparatus F via the B liquid pump 26, the preparation tanks 24a and 24b Two kinds of dialysis stock solution are supplied to 24b (sometimes supplied as a powder). On the way, there is a switching valve (not shown) for alternately switching the two series of mixing tanks 24a and 24b. The three kinds of liquids including the purified water C are mixed at a predetermined ratio in the mixing tanks 24a and 24b so as to have a predetermined concentration, and are transferred to the dialysate reservoir 27 when it is confirmed that they have a normal composition. You. Next, the prepared liquid is sent as the dialysate G to the subsequent dialysis monitoring device H by the dialysate pump 28, and is used for treatment of the dialysis patient. The alternate switching of the mixing tanks 24a and 24b, the determination of the quality of the mixing result, the temperature control by the heater 22, and the like are monitored and controlled by the dialysate mixing control device 29.

【0005】なお、透析液調合槽24aおよび24bに
は、滅菌液貯層30から透析液ライン滅菌剤ポンプ31
を経て滅菌用薬剤が供給されるように構成されている。
一般的にはこの滅菌用薬剤としては、5%の次亜塩素酸
ソーダ水溶液が使われるがこれに限定されない。全ての
患者の透析治療が終ると、精製水は通水したままで透析
原液の供給を停止し、30分程で透析液を精製水と置換
する。その後滅菌液貯層30から滅菌液が、透析液調合
槽24aおよび24b以降の有効塩素濃度が300〜
1,500ppmの滅菌液になるように、滅菌液ポンプ
31で供給される。この調合された滅菌液は透析液ライ
ンに供給され、後続する透析用監視装置Hを含めた透析
液調合槽24aおよび24b以降の配管・装置を滅菌す
る。30分程の滅菌液通液後にポンプ31は停止し、残
留滅菌液を排出するため再び精製水のみで水洗される
が、残留塩素が残らないように、例えば30分位の十分
な時間を掛ける。何故なら1ppmレベル以下の微量な
塩素でも、もし透析治療時の透析液に混入していると、
透析患者の赤血球を破壊するためである。微量でも塩素
が残留していると、隔日に透析治療を受ける造血能力が
低下した患者にとっては重大なことである。
The dialysis fluid preparation tanks 24a and 24b are provided with a dialysis fluid line sterilizer pump 31 from a sterilization fluid reservoir 30.
And the sterilizing agent is supplied through this.
Generally, a 5% aqueous sodium hypochlorite solution is used as the sterilizing agent, but is not limited thereto. When the dialysis treatment for all patients is completed, the supply of the undiluted dialysis solution is stopped while the purified water is still flowing, and the dialysate is replaced with the purified water in about 30 minutes. Thereafter, the sterilizing solution is supplied from the sterilizing solution reservoir 30 so that the effective chlorine concentration after the dialysate preparation tanks 24a and 24b becomes 300 to 300.
The sterilized liquid is supplied by a sterilized liquid pump 31 so as to obtain a sterilized liquid of 1,500 ppm. The prepared sterilized liquid is supplied to the dialysate line, and sterilizes piping and devices subsequent to the dialysate preparation tanks 24a and 24b including the subsequent dialysis monitoring device H. After passing the sterilizing liquid for about 30 minutes, the pump 31 is stopped, and the remaining sterilizing liquid is discharged. Then, the pump 31 is washed again with only purified water. However, sufficient time such as about 30 minutes is applied so that residual chlorine does not remain. . Because even a trace amount of chlorine below 1 ppm level is mixed in the dialysate at the time of dialysis treatment,
This is for destroying red blood cells of a dialysis patient. Chlorine persistence, even in trace amounts, is critical for patients with reduced hematopoietic capacity to receive dialysis treatment every other day.

【0006】透析治療技術法の発展に伴い、一層高いレ
ベルの清浄度を要求されるようになった。すなわち、従
来の透析療法が取除いて尿毒素成分より更に分子量の大
きい成分が見出され、よりサイズの大きい物質を血液中
から除去する必要が生じ、例えばHPM(ハイパフォー
マンスメンブレン)という透析膜の孔径(ポアサイズ)
の大きなダイアライザーが使用され始めた。しかしこの
ことは、従来は透析膜で阻止されていた透析液中の不純
物が血液側に混入する危険性が高くなることを意味す
る。さらにはオンラインHDFという、血液中の血漿成
分を積極的に取り出し、それとほぼ当量の補液を血液に
還流させる際に、透析液をクリーンに浄化することによ
り、患者の傍で補液を製造する療法も普及し始めてい
る。
[0006] With the development of dialysis treatment techniques, higher levels of cleanliness have been required. That is, a component having a higher molecular weight than the uretoxin component is found by removing the conventional dialysis therapy, and it is necessary to remove a substance having a larger size from the blood. For example, the pore size of a dialysis membrane called HPM (high performance membrane) is required. (Pore size)
Large dialysers have begun to be used. However, this means that there is a high risk that impurities in the dialysate, which were conventionally blocked by the dialysis membrane, are mixed into the blood side. In addition, online HDF, a therapy that actively removes blood plasma components from blood and replenishes the blood with an equivalent amount of replacement fluid to the blood, purifies the dialysate cleanly to produce a replacement fluid near the patient. It is beginning to spread.

【0007】そのため透析液が従来以上に高清浄度であ
ることが要求されるが、透析液中の細菌のみならず、細
菌の一種であるグラム陰性菌から派生するエンドトキシ
ンも問題となってきた。エンドトキシンは、症状的には
パイロジェンとよばれる発熱を引起こす毒素成分の総称
である。グラム陰性菌自体は特別危険な細菌でなくと
も、それが代謝あるいは死滅した際に、細胞壁から剥離
して生成されるエンドトキシンは、非常に取扱の難しい
物質である。多量のエンドトキシンが体内に混入した場
合には、患者に血圧低下や発熱をもたらし、さらに重篤
な場合は患者の生命を危険な状態に陥れるものである。
さらにこのエンドトキシンが細かく分裂した破片(フラ
グメント)による慢性的な障害が指摘されている。毎週
10〜15時間の治療を生存期間中受けねばならない透
析患者にとっては、何十年にも渡る長期治療での慢性的
な疾患を考慮すると、重大な問題である。
For this reason, the dialysate is required to have a higher degree of cleanliness than before. However, not only bacteria in the dialysate but also endotoxins derived from gram-negative bacteria, which is a kind of bacteria, have become a problem. Endotoxin is a general term for a toxin component that causes fever, which is symptomatically called pyrogen. Although gram-negative bacteria are not particularly dangerous bacteria, endotoxins produced by exfoliating from cell walls when they are metabolized or killed are very difficult substances to handle. When a large amount of endotoxin is contaminated in the body, it causes a decrease in blood pressure and fever in the patient, and in severe cases, puts the patient's life at risk.
In addition, chronic damage due to finely divided fragments of this endotoxin has been pointed out. This is a significant problem for dialysis patients who must receive 10-15 hours of treatment each week for their lifetime, given the chronic disease of long-term treatment for decades.

【0008】このフラグメントの最小分子量は5,00
0ダルトンとされており、患者から除去すべき尿毒素成
分のサイズ(分子量)に相当するものであり、これは優
に透析膜を透過する(例えば、50,000ダルトンの
物質を透過させる透析膜も利用されている)。従ってこ
のような高性能な透析治療を安全に実施するには、透析
液中のエンドトキシン数を極小化しなければならない。
The minimum molecular weight of this fragment is 5,000
0 daltons, which corresponds to the size (molecular weight) of the uretoxin component to be removed from the patient, which is well permeable to dialysis membranes (eg, dialysis membranes that allow 50,000 daltons of material to permeate) Is also used). Therefore, in order to safely perform such a high-performance dialysis treatment, the number of endotoxins in the dialysate must be minimized.

【0009】そのため、透析液ラインでエンドトキシン
が生成しないように種々の検討がなされてきた。しかし
透析液中には豊富な栄養源を含むため細菌は容易に繁殖
し、その結果エンドトキシンが生成し易い。従って従来
は「エンドトキシンは透析液ラインで発生する」という
ごく常識的な概念に基づいて、透析液ラインの滅菌方法
が研究されてきた。現在一般的に透析治療後には、30
0〜1,500ppmという高濃度の塩素での滅菌が行
われている。しかしそれでもエンドトキシンの発生が抑
えられないため、一部で過酢酸等の薬剤が使用されてい
るが(例えば、第42回日本透析医学会雑誌「P−13
1」)、非常に高価な薬剤であるに加えて、それだけで
は依然エンドトキシンの低減に限界があるとの示唆もあ
る(例えば、第42回日本透析医学会雑誌「O−108
4」)。また、強酸性水生成装置のような、塩化ナトリ
ウムを含有した液を電気分解して、滅菌作用を持つ次亜
塩素酸を発生させるという、新規な電解水製造技術も提
案されているが(例えば、第41回日本透析医学会雑誌
「W−10−1」)、装置が高価でかつ酸性条件下で次
亜塩素酸を流すため、ヒータ等の配管が腐食して電流が
洩れるという、医療において避けなければならない致命
的な課題を抱えており、またその効果を疑問視する指摘
もある(例えば、第41回日本透析医学会雑誌「O−2
45」)。さらには強酸性水中の次亜塩素酸濃度が低い
ため、透析液中に必然的に存在するブドウ糖や、透析膜
を通して透析液中に排除された患者からの蛋白成分の分
解に折角の次亜塩素酸が消費され、滅菌のために残され
ている有効塩素が十分でないとの課題もある。
For this reason, various studies have been made to prevent endotoxin from being produced in the dialysate line. However, since the dialysate contains abundant nutrients, bacteria easily propagate, and as a result, endotoxin is easily produced. Therefore, conventionally, a method of sterilizing a dialysate line has been studied based on a very common concept that "endotoxin is generated in a dialysate line". Currently, generally 30 days after dialysis treatment,
Sterilization is performed with chlorine having a high concentration of 0 to 1,500 ppm. However, since the generation of endotoxin still cannot be suppressed, some drugs such as peracetic acid are used (for example, see the 42nd Japan Dialysis Medical Association Magazine “P-13”).
1)), in addition to being a very expensive drug, there is also a suggestion that there is still a limit to the reduction of endotoxin by itself (for example, the 42nd Annual Meeting of the Japanese Society for Dialysis Medicine “O-108”).
4 "). In addition, a new electrolytic water production technique has been proposed, such as a strong acid water generator, in which a solution containing sodium chloride is electrolyzed to generate hypochlorous acid having a sterilizing effect (for example, The 41st Japan Dialysis Medical Association Magazine "W-10-1"), in medical treatment where the equipment is expensive and hypochlorous acid flows under acidic conditions, causing leakage of current due to corrosion of piping such as heaters. It has fatal issues that must be avoided, and there are indications that its effects may be questioned (for example, the 41st Japan Dialysis Medical Association Magazine O-2
45 "). In addition, the hypochlorous acid concentration in the strongly acidic water is low, so the hypochlorite which is indispensable for the decomposition of glucose which is inevitably present in the dialysate and the protein component from the patient which is excluded into the dialysate through the dialysis membrane is used. There is also a problem that acid is consumed and available chlorine remaining for sterilization is not enough.

【0010】一方、透析液ラインの管理が十分であって
も、エンドトキシンの9割以上がRO精製水に由来する
との報告もある(例えば、第43回透析医学会雑誌「P
−360」)。最大の要因として、ROモジュ−ルの物
理的な疲労によって生じたミクロなリークにより、多量
のエンドトキシンを含有する原水から混入するエンドト
キシンがあることを指摘している(例えば「透析液水質
管理&オンラインHDF」(メディカルレビュー
社))。これに対しては、本発明者らは特願平9−28
7703号により、ROモジュールの物理的な疲労を大
幅に低減する技術を提案している。これにより良好な精
製水を得られるようになったが、さらに高度の精製水を
安定して得るには課題が残った。
[0010] On the other hand, it has been reported that even if the dialysis fluid line is adequately managed, 90% or more of endotoxin is derived from RO purified water (for example, the 43rd Dialysis Medical Association Magazine “P.
-360 "). It is pointed out that the biggest factor is endotoxin contaminated from raw water containing a large amount of endotoxin due to micro leak caused by physical fatigue of RO module (for example, “Dialysate Water Quality Management & Online”). HDF "(Medical Review). In response to this, the present inventors have filed Japanese Patent Application No. 9-28.
No. 7703 proposes a technique for greatly reducing the physical fatigue of an RO module. As a result, good purified water can be obtained, but there is still a problem in stably obtaining higher purified water.

【0011】このエンドトキシンを放出する緑膿菌のよ
うなグラム陰性菌は特別な細菌ではなく、一般生活環境
に生存している常在菌である。そのため栄養源の豊富な
透析液ラインでは容易に増殖する。しかし本発明者は、
毎透析後に確実に滅菌される限り、従来研究の対象とな
っていた透析液ラインでの増殖は抑制されていることを
確認した。すなわち、透析液ラインが正しく滅菌されて
いる限り、透析液ラインで検出されるエンドトキシンの
多くがそれより上流側から由来するものであり、「透析
液調合の母液となるRO精製水に由来するものが大き
い」ことを見出した。しかもこのRO精製水から由来す
るエンドトキシンが、従来行われてきたRO膜リークの
チェックや、精製水の常時循環によりRO装置内での滞
留水の発生を防止しても、多量に発生する事例があるこ
とを見出した。さらに研究を進めた結果、それが「低濃
度貧栄養性細菌がRO精製水ラインで棲息しているため
である」ことを突き止めた。
[0011] Gram-negative bacteria such as Pseudomonas aeruginosa, which release endotoxin, are not special bacteria but are resident bacteria that live in general living environments. Therefore, it grows easily in a dialysate line rich in nutrients. However, the inventor
It was confirmed that the growth in the dialysate line, which had been the subject of the conventional research, was suppressed as long as it was surely sterilized after each dialysis. That is, as long as the dialysate line is correctly sterilized, most of the endotoxins detected in the dialysate line are derived from the upstream side, and are derived from the RO purified water that is the mother liquor of the dialysate preparation. Is big ". In addition, endotoxin derived from RO purified water is generated in large quantities even if RO membrane leaks are checked conventionally and the generation of retained water in the RO device is prevented by constantly circulating purified water. I found something. As a result of further research, they found that "this is because low-concentration oligotrophic bacteria live in the RO purified water line."

【0012】すなわち、RO膜により原水中の有機物栄
養源は勿論、各種のイオン成分も殆どが排除されるた
め、RO精製水中には細菌は繁殖し難いと考えられてき
た。そのため、RO膜自体が塩素滅菌に耐えないことも
あって、RO精製水ラインの滅菌は殆ど実施されなかっ
た。しかしRO精製水を含めた純水のような貧栄養環境
下にも棲息する細菌は存在し、我々はその内の一種であ
る、「Pseudomonas stutzeri
2」の存在を突き止めた。しかもこの細菌は「グラム陰
性ブドウ糖非発酵かん菌」であり、これに代表される貧
栄養環境下のRO精製水ラインには、エンドトキシンを
発生するグラム陰性かん菌が多い(例えば、「膜処理技
術大系下巻」(フジ・テクノシステム))。さらにこれ
が図5のヒータ22でRO精製水が昇温される結果、細
菌の増殖する20〜30℃という好適な温度環境を与え
られ、増殖していることが判った(例えば「工業用水」
第345号)。
[0012] That is, since the RO membrane removes not only organic nutrients but also various ionic components in raw water, it has been considered that bacteria are difficult to propagate in RO purified water. Therefore, the RO purified water line was hardly sterilized because the RO membrane itself could not withstand chlorine sterilization. However, there are bacteria that live in an oligotrophic environment such as pure water including RO purified water, and we are one of them, "Pseudomonas stutzeri."
2 ". In addition, this bacterium is a "gram-negative glucose non-fermenting bacillus", and in the RO purified water line represented by the oligotrophic environment, there are many gram-negative bacilli that generate endotoxin (for example, "membrane treatment technology"). Taikei Vol.2 (Fuji Techno System)). Further, as a result of raising the temperature of the RO purified water by the heater 22 in FIG. 5, a suitable temperature environment of 20 to 30 ° C. where bacteria grow is given, and it is found that the water is growing (for example, “industrial water”).
No. 345).

【0013】[0013]

【発明が解決しようとする課題】上記課題を解決するに
は、現在透析原剤が注入される透析液ラインに実施され
ている高濃度塩素滅菌を上流のRO精製水ラインから実
施すれば増殖を抑制できるが、従来はこの事実を重要視
していなかった上に、下記の課題があったため、実施で
きなかった。 (1)RO精製水ラインに設置されるヒータや脱気膜等
は、高濃度な塩素滅菌剤に耐えられないものが多い。も
しヒータが腐蝕すると、漏洩電流の発生という、医療機
器にとって避けなければならない重大事故をもたらす恐
れがある。 (2)図3に見られるようにRO精製水は透析液供給装
置Dだけでなく、色々な装置に供給されるが、それらの
装置は製造元が異なることもあって、従来は全ての透析
システムが同期して滅菌が行われることはなかった(と
いうよりもRO精製水ライン滅菌の重要性に気付かれな
かったため、必ずしも透析液ライン以外は滅菌される仕
様になっていない)。したがって、RO精製水ラインに
注入した滅菌剤が透析液供給装置D以外に混入し、患者
血液の溶血という重大な医療事故に繋がる恐れがあっ
た。
In order to solve the above-mentioned problems, high-concentration chlorine sterilization, which is currently performed in the dialysate line into which the dialysis base material is injected, is performed from the upstream RO purified water line to increase the proliferation. Although it can be suppressed, conventionally, this fact was not regarded as important, and it could not be implemented because of the following problems. (1) Many heaters, degassing membranes, and the like installed in the RO purified water line cannot withstand a high concentration of a chlorine sterilant. If the heater erodes, it can lead to serious accidents that must be avoided for medical devices, the generation of leakage current. (2) As shown in FIG. 3, RO purified water is supplied not only to the dialysis fluid supply device D but also to various devices. Was not synchronized (rather than noticing the importance of RO purified water line sterilization, so that it was not necessarily designed to sterilize except the dialysate line). Therefore, the sterilant injected into the RO purified water line may be mixed into a device other than the dialysate supply device D, leading to a serious medical accident of hemolysis of the patient's blood.

【0014】したがって、本発明の目的は、多くのエン
ドトキシンを生成するグラム陰性菌が棲息する部位が、
従来考えられていた部位以外のところにあることを見出
したことにより、効果的にこれを抑制する全く新規な滅
菌技術を提供するものである。さらに安価にかつ構成部
材に腐食等の悪影響を与えず、また残留した滅菌剤によ
る医療安全上の問題を発生することのない高性能な滅菌
技術を提供することにより、従来以上に操作性や経済性
に優れた、細菌やエンドトキシン汚染のない良質な透析
治療を可能にする透析システムを提供するものである。
[0014] Accordingly, an object of the present invention is to provide a method in which a site inhabiting many endotoxin-producing Gram-negative bacteria is:
By discovering that it is located at a site other than the site that has been conventionally considered, the present invention provides a completely novel sterilization technique for effectively suppressing this. Furthermore, by providing a high-performance sterilization technology that is inexpensive, does not cause adverse effects such as corrosion on constituent members, and does not cause medical safety problems due to the remaining sterilant, operability and economy are higher than before. An object of the present invention is to provide a dialysis system which is capable of performing high-quality dialysis treatment free of bacteria and endotoxin contamination.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は以下の構成を採用する。すなわち、 (1)逆浸透膜により原水を精製して精製水を得る精製
水製造装置と、該精製水製造装置で製造された精製水に
透析原剤を添加して所定の透析液を製造する透析液供給
装置と、該透析液供給装置で調合された透析液により血
液透析を実施する透析用監視装置からなる透析システム
において、前記透析原剤が添加された部位以降の透析シ
ステムを、有効塩素濃度が300ppm以上で滅菌する
透析液ライン塩素系滅菌剤注入装置を設け、かつ透析原
剤が添加される部位より上流の精製水ラインには、精製
水ライン滅菌剤添加装置を設けたことを特徴とする透析
システム。
In order to achieve the above object, the present invention employs the following constitution. That is, (1) a purified water producing apparatus for purifying raw water by a reverse osmosis membrane to obtain purified water, and a dialysate is added to purified water produced by the purified water producing apparatus to produce a predetermined dialysate. In a dialysis system comprising a dialysis fluid supply device and a dialysis monitoring device for performing hemodialysis with the dialysis fluid prepared by the dialysis fluid supply device, the dialysis system after the site where the dialysis base material is added is treated with available chlorine. A dialysis fluid line that sterilizes at a concentration of 300 ppm or more is provided with a chlorine-based sterilant injecting device, and a purified water line upstream of the site where the dialysis base material is added is provided with a purified water line sterilant adding device. And dialysis system.

【0016】(2)前記の透析液ライン塩素系滅菌剤注
入装置および前記の精製水ライン滅菌剤添加装置は、前
記の精製水および透析液を利用する透析システムからの
滅菌許可信号を受けて作動するようになし、かつ前記の
透析液ライン塩素系滅菌剤注入装置および前記の精製水
ライン滅菌剤添加装置が作動中は、前記の精製水および
透析液を利用する透析システムに所定の動作を行わせる
信号を発するようにしたことを特徴とする前記(1)項
記載の透析システム。
(2) The dialysis fluid line chlorine-based sterilant injection device and the purified water line sterilant addition device operate upon receiving a sterilization permission signal from the dialysis system using the purified water and dialysate. When the dialysis fluid line chlorinated sterilant injection device and the purified water line sterilant addition device are operating, a predetermined operation is performed on the dialysis system using the purified water and the dialysate. The dialysis system according to the above (1), wherein the dialysis system is adapted to emit a signal for causing the dialysis.

【0017】(3)前記の透析液ラインに注入する滅菌
剤が次亜塩素酸ソーダ水溶液であり、かつ精製水ライン
滅菌剤添加装置は、1週間当たりの有効塩素濃度が20
ppm×時間以下であるように次亜塩素酸ソーダ水溶液
を注入するようにしたことを特徴とする前記(1)項記
載の透析システム。
(3) The sterilant to be injected into the dialysate line is an aqueous sodium hypochlorite solution, and the apparatus for adding a sterilant to a purified water line has an effective chlorine concentration of 20 per week.
The dialysis system according to the above (1), wherein the sodium hypochlorite aqueous solution is injected so as to be not more than ppm × time.

【0018】[0018]

【発明の実施の形態】本発明者は鋭意調査の結果、この
RO精製水ラインおよびそこで棲息する細菌の下記の特
性に注目して本発明に至った。 (1)RO精製水ラインに棲息する貧栄養菌の増殖速度
は遅く、透析液ラインの細菌と異なって、成長に数日を
必要とすることを見出した。したがって透析液ラインの
ように必ずしも毎日の滅菌は必要とせず、週一回の滅菌
でも十分な効果を発揮できる。それに伴い滅菌後の塩素
追い出しのためのRO精製水による洗い出しも、毎日の
厳しいスケジュールの合間に実施するのではなく、例え
ば土曜日等の、次回の透析までに十分な時間的余裕のあ
る時に実施できる。 (2)透析液ラインはブドウ糖等の塩素を消費する有機
物を多量に含む。またダイアライザーIの後では患者か
ら輩出された老廃蛋白質や、場合によってはB型肝炎ウ
ィルスを含む。そのため高濃度の塩素注入が必要とな
る。しかしRO精製水ラインには細菌以外の塩素を消費
する夾雑物が殆どない(そのために貧栄養菌が繁殖する
のであるが)。さらにこの貧栄養菌は低濃度の塩素滅菌
により容易に死滅する。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of diligent investigation, the present inventors have focused on the following characteristics of this RO purified water line and the bacteria living therein, and have reached the present invention. (1) It was found that the growth rate of oligotrophic bacteria inhabiting the RO purified water line was slow and, unlike the bacteria in the dialysate line, required several days for growth. Therefore, unlike the dialysis solution line, daily sterilization is not always required, and even a weekly sterilization can exert a sufficient effect. Accordingly, washing with RO purified water for purging chlorine after sterilization can be carried out when there is sufficient time before the next dialysis, for example, on Saturday, etc., rather than between strict daily schedules. . (2) The dialysate line contains a large amount of chlorine-consuming organic substances such as glucose. After dialyzer I, it contains waste protein produced by the patient and, in some cases, hepatitis B virus. Therefore, high-concentration chlorine injection is required. However, the RO purified water line has few contaminants that consume chlorine other than bacteria (thus causing oligotrophs to propagate). Furthermore, the oligotrophic bacteria are easily killed by low-concentration chlorine sterilization.

【0019】[0019]

【実施例】[第一の実施例]図1は請求項1記載の本発
明に係る透析液供給装置の第一の実施例を示すフロー図
である。供給水ポンプ21、ヒータ22、脱気筒23、
透析液調合槽24aおよび24b、A液ポンプ25、B
液ポンプ26、透析液貯槽27、透析液ポンプ28、透
析液調合コントロール装置29、滅菌剤貯層30、透析
液ライン滅菌剤ポンプ31の機能とその相互関係は、図
5と同じである。滅菌剤貯層30には5%次亜塩素酸ソ
ーダ液が貯留されているが塩素系滅菌剤であればこれに
限定されない。本発明においてはさらに精製水ライン滅
菌剤ポンプ51を設け、滅菌剤貯層30の濃厚次亜塩素
酸ソーダ液を精製水Cラインの注入点52へ注入する。
2つの滅菌剤ポンプ31および51はいずれも定量ポン
プであるが、滅菌洗浄コントロール装置53からの電気
信号54および55により作動時期を制御される。また
精製水Cは、注入点52の上流で、図3に示されたよう
に、A粉末溶解装置EやB粉末溶解装置F、さらには個
人用透析装置Kにも分岐している。
[First Embodiment] FIG. 1 is a flow chart showing a first embodiment of a dialysate supply apparatus according to the present invention. Feed water pump 21, heater 22, deaeration cylinder 23,
Dialysate preparation tanks 24a and 24b, solution A pump 25, B
The functions of the liquid pump 26, the dialysate storage tank 27, the dialysate pump 28, the dialysate preparation control device 29, the sterilant storage layer 30, and the dialysate line sterilant pump 31 and their interrelation are the same as those in FIG. A 5% sodium hypochlorite solution is stored in the sterilant storage layer 30, but is not limited thereto as long as it is a chlorine-based sterilant. In the present invention, a purified water line sterilant pump 51 is further provided, and the concentrated sodium hypochlorite solution in the sterilant reservoir 30 is injected into the injection point 52 of the purified water C line.
Although the two sterilant pumps 31 and 51 are both metering pumps, their operation timing is controlled by electric signals 54 and 55 from a sterilization / washing control device 53. The purified water C is also branched upstream of the injection point 52 into the A powder dissolving device E, the B powder dissolving device F, and the personal dialysis device K, as shown in FIG.

【0020】次に滅菌剤ポンプ31および51、および
滅菌洗浄コントロール装置53の動作を説明する。透析
システムが滅菌・洗浄工程にはいると、滅菌洗浄コント
ロール装置53からの信号は、透析液調合コントロール
装置29へ電気信号56として伝達され、透析液調合コ
ントロール装置29はA液ポンプ25、B液ポンプ26
を停止して透析原液の調合槽24aおよび24bへの供
給を停止するとともに、ヒータ22をオフにし、所定の
滅菌・洗浄操作に入る。具体的にはまず前水洗工程とし
て、透析液ラインの透析液を30分で追い出しRO精製
水と置換する。この時同時に滅菌剤ポンプ51も作動
し、注入点52以降の有効塩素濃度が2ppmになるよ
うに、貯層30から次亜塩素酸ソーダ液を注入し、ヒー
タを含めた貧栄養菌が棲息する可能性のある精製水ライ
ンを滅菌する。この低濃度塩素液は透析液ラインにも供
給される。透析液ラインにはまだ透析液が一部残留して
いるが、塩素濃度が低いため特に問題はない。
Next, the operations of the sterilizing agent pumps 31 and 51 and the sterilizing and washing control device 53 will be described. When the dialysis system enters the sterilization / washing process, a signal from the sterilization / wash control device 53 is transmitted as an electrical signal 56 to the dialysate preparation control device 29, and the dialysate preparation control device 29 transmits the A solution pump 25 and the B solution Pump 26
Is stopped to stop supplying the undiluted dialysis solution to the preparation tanks 24a and 24b, the heater 22 is turned off, and a predetermined sterilization and washing operation is started. Specifically, as a pre-water washing step, the dialysate in the dialysate line is expelled in 30 minutes and replaced with RO purified water. At this time, the sterilant pump 51 is also operated, and sodium hypochlorite solution is injected from the reservoir 30 so that the available chlorine concentration after the injection point 52 becomes 2 ppm, and oligotrophic bacteria including the heater inhabit. Sterilize potential purified water lines. This low concentration chlorine solution is also supplied to the dialysate line. Although some dialysate still remains in the dialysate line, there is no particular problem because the chlorine concentration is low.

【0021】RO精製水置換が完了すると滅菌剤ポンプ
51は停止し、代わりに滅菌剤ポンプ31が作動する。
これにより調合槽24以降は300ppmの高い塩素濃
度となり、透析液環境下にあった富栄養菌ラインを滅菌
する。併せてダイアライザーから膜を通して透析液ライ
ンに混入した蛋白類(細菌増殖の源となる)も、塩素に
より分解される。この高濃度塩素滅菌を30分程実施し
た後、滅菌剤ポンプ31は再び停止し、RO精製水のみ
で30分程後水洗工程が実施される。さらに翌日の透析
治療開始前には30分程事前水洗され、その後残留塩素
のないことを確認した上で、再び透析治療に供される。
When the replacement of the RO purified water is completed, the sterilant pump 51 is stopped, and the sterilant pump 31 is operated instead.
As a result, the concentration of chlorine becomes as high as 300 ppm after the mixing tank 24, and the eutrophic bacteria line which was in the dialysate environment is sterilized. At the same time, proteins mixed in the dialysate line from the dialyzer through the membrane (the source of bacterial growth) are also decomposed by chlorine. After the high-concentration chlorine sterilization is performed for about 30 minutes, the sterilant pump 31 is stopped again, and the water washing step is performed for about 30 minutes using only RO purified water. Further, before the start of the dialysis treatment on the next day, it is washed with water for about 30 minutes, and after confirming that there is no residual chlorine, the dialysis treatment is performed again.

【0022】上記実施例においては、滅菌剤ポンプ51
からRO精製水ラインへ添加される塩素濃度は、透析液
ライン以降の滅菌塩素濃度の300分の2、すなわち1
50分の1であり、ヒータ22や脱気筒23等へ悪影響
することはない。また停止状態にある各種周辺機器E・
F・Kには、拡散により塩素が一部混入する恐れもある
が、この塩素濃度が低いために非常に微量であり、また
後水洗時に再びRO精製水に置換されることもあり、実
用上の問題はない。もしこれら周辺装置E・F・Kが透
析液供給装置と同期せずに精製水を利用していても、塩
素濃度が微量でありかつ添加されている時間も短いた
め、若干の後水洗を実施すれば塩素残留の懸念はない。
In the above embodiment, the sterilant pump 51
The concentration of chlorine added to the RO purified water line is 2/300 of the sterile chlorine concentration after the dialysate line, that is, 1
It is 1/50, and does not adversely affect the heater 22, the degassing cylinder 23, and the like. In addition, various peripheral devices E
There is a possibility that chlorine may be partially mixed into the F · K due to diffusion. However, since the chlorine concentration is low, the amount is very small, and may be replaced with RO purified water again at the time of post-water washing. No problem. Even if these peripheral devices E, F, and K use purified water without synchronizing with the dialysate supply device, slight post-water washing is performed because the chlorine concentration is very small and the addition time is short. Then there is no concern about chlorine residue.

【0023】さらに本発明は新たな効果を発揮する。上
記実施例では毎日RO精製水ラインを滅菌するとした
が、透析液ライン以外は富栄養環境下になく、必ずしも
細菌増殖に好条件下ではない。そのため貧栄養菌が棲息
してもその成長速度は非常に遅い。したがって、透析液
ラインの滅菌は毎日あるいは透析治療終了毎に実施する
が、RO精製水ラインの滅菌は、週1回、例えば時間的
に十分な水洗時間が得られる土曜日に実施してもよい。
Further, the present invention exhibits a new effect. In the above example, the RO purified water line was sterilized every day. However, the lines other than the dialysate line were not in a eutrophic environment, and were not always in favorable conditions for bacterial growth. Therefore, even if oligotrophs inhabit, their growth rate is very slow. Thus, the sterilization of the dialysate line is performed every day or every time the dialysis treatment is completed. However, the sterilization of the RO purified water line may be performed once a week, for example, on Saturday when a sufficient time for washing can be obtained.

【0024】この場合、1週間の間に曝される「塩素濃
度×時間」は、毎日滅菌した場合と同一水準かややそれ
より多い40ppm×30分程度以下(20ppm×時
間程度以下)であることが好ましく、より好ましくは2
0ppm×30分程度以下とする。具体的な濃度は透析
システムが設置される環境に合わせて決定されるが、毎
日滅菌する場合の塩素濃度(例えば2ppm×30分×
6日)より若干高い方が望ましいのは、滅菌されない6
日の間に、僅かでも細菌が増殖するからであり、滅菌す
べき細菌の総数量が増えているためである。これにより
毎日のRO精製水ラインの滅菌後の残留塩素濃度確認は
不要になるし、同時に滅菌および後洗浄のために高価な
RO水を使用することもない。
In this case, the “chlorine concentration × time” exposed during one week should be the same level as that when sterilized every day or slightly higher than about 40 ppm × 30 minutes or less (about 20 ppm × hour or less). And more preferably 2
0 ppm × 30 minutes or less. The specific concentration is determined according to the environment in which the dialysis system is installed, but the chlorine concentration when sterilized every day (for example, 2 ppm × 30 minutes ×
6 days) is slightly higher, because non-sterilized
During the day, even a small amount of bacteria grows, because the total amount of bacteria to be sterilized is increasing. This eliminates the need to check the residual chlorine concentration after sterilization of the RO purified water line every day, and at the same time does not use expensive RO water for sterilization and post-washing.

【0025】次に上記装置を某病院での透析システムに
採用した臨床使用例を、データにより説明する。当該透
析システムにおいては、透析液ラインの塩素系滅菌剤と
して過酢酸等の種々の薬剤を検討してきた。しかし精製
水製造装置B出のエンドトキシンが8〜22EU/Lと
いう「極めて良好」とされるレベルにあるにも拘わら
ず、透析液供給装置出および透析用監視装置入りでは7
00〜1,100EU/Lという、「不良」とされるレ
ベルであった。そのため図1の方法・装置によって毎週
土曜日に、精製水ラインの塩素濃度が20ppmになる
ように次亜塩素酸ソーダ液を30分注入した。一方並行
して毎治療後には従来実施されていた方法により、透析
液ラインが有効塩素濃度300ppmになるように次亜
塩素酸ソーダ液を30分間注入し、滅菌終了後に所定の
後水洗を30分実施した。
Next, a clinical use example in which the above-described apparatus is used in a dialysis system in a certain hospital will be described with reference to data. In the dialysis system, various agents such as peracetic acid have been studied as a chlorine-based sterilant for the dialysate line. However, despite the fact that the endotoxin from the purified water production apparatus B is at a level of "very good" of 8 to 22 EU / L, the endotoxin from the dialysate supply apparatus and the monitoring apparatus for dialysis is 7 to 7
The level was "bad", ie, 00 to 1,100 EU / L. Therefore, sodium hypochlorite solution was injected for 30 minutes every Saturday using the method and apparatus of FIG. 1 so that the chlorine concentration in the purified water line became 20 ppm. On the other hand, after each treatment, sodium hypochlorite solution is injected for 30 minutes so that the effective chlorine concentration of the dialysate line becomes 300 ppm by a conventionally performed method, and after completion of sterilization, predetermined post-water washing is performed for 30 minutes. Carried out.

【0026】その結果、注入を開始した2週間後には透
析液供給装置出および透析用監視装置入りとも10〜2
0EU/Lという「極めて良好」とされるレベルまでに
劇的に改善できた。これは前述したRO精製水のレベル
8〜22EU/Lとほぼ同じレベルである。その後この
良好な状態が得られていることを2ヶ月間に亙って確認
した後、精製水製造装置B内のROモジュールを全数交
換し、引き続き毎週土曜日に低濃度塩素注入を実施し
た。その結果数ヶ月に亙って、精製水製造装置から透析
用監視装置までの全域で、エンドトキシンレベルは検出
感度以下〜4EU/Lという、「理想的な目標値」とさ
れるレベルに到達できた。このことから、透析液供給装
置が的確に滅菌され、かつ精製水製造装置からのエンド
トキシン持込がなければ、本発明を実施することにより
非常に良好なクリーン度を得られることが判明した。逆
にいえは、透析液供給装置や精製水製造装置単体が如何
に良好な状態であっても、それだけで「良好な透析シス
テム」は得られないことを意味する。 [第二の実施例]他の実施例を図2で説明する。図2で
は精製水ライン滅菌剤ポンプ51として図1に見られた
特別なものはない。代わりに31に代わる滅菌剤ポンプ
131として電気信号で流量を2段以上に切替可能な定
量ポンプと、その吐出ラインに設置された3方切替電磁
弁141がある。切替弁の一方は図1と同様に、ライン
142により一対の透析液調合槽24へ接続されている
が、他方は新たにライン143を経て供給水ポンプ21
の上流の注入点52で、精製水ラインCに接続されてい
る。滅菌洗浄コントロール装置144は図1の53に相
当するものであるが、電気信号145には新たに滅菌剤
ポンプ131の流量設定信号も含まれる。またコントロ
ール装置144からは切替電磁弁141へも電気信号1
46が伝送される。
As a result, two weeks after the start of the infusion, the dialysate supply device and the dialysis monitoring device were both set to 10-2.
Dramatically improved to a level of "very good" of 0 EU / L. This is almost the same level as the above-mentioned level of RO purified water of 8 to 22 EU / L. After confirming that this good condition was obtained over a period of two months, all of the RO modules in the purified water producing apparatus B were exchanged, and low concentration chlorine injection was carried out every Saturday. As a result, over several months, the endotoxin level in the entire range from the purified water producing apparatus to the dialysis monitoring apparatus was able to reach a level that is below the detection sensitivity to 4 EU / L, which is the "ideal target value". . From this, it was found that if the dialysate supply device was accurately sterilized and endotoxin was not brought in from the purified water production device, a very good cleanness could be obtained by implementing the present invention. Conversely, it means that no matter how good the dialysate supply device or purified water production device alone is, a “good dialysis system” cannot be obtained by itself. [Second Embodiment] Another embodiment will be described with reference to FIG. In FIG. 2, there is no special one shown in FIG. 1 as the purified water line sterilant pump 51. Instead of this, a sterilizing agent pump 131 instead of 31 includes a metering pump capable of switching the flow rate to two or more stages by an electric signal, and a three-way switching solenoid valve 141 installed in its discharge line. One of the switching valves is connected to the pair of dialysate preparation tanks 24 by a line 142 as in FIG. 1, while the other is newly provided via a line 143 to the supply water pump 21.
Is connected to the purified water line C at an injection point 52 upstream of The sterilization / cleaning control device 144 corresponds to 53 in FIG. 1, but the electric signal 145 further includes a flow rate setting signal for the sterilant pump 131. The control device 144 also sends an electric signal 1 to the switching solenoid valve 141.
46 is transmitted.

【0027】次に滅菌剤ポンプ131、切替電磁弁14
1、滅菌洗浄コントロール装置144、の動作を説明す
る。滅菌に先立つ前水洗に入ると滅菌剤ポンプ131は
電気信号145により低流量側に設定される。同時に切
替電磁弁141は電気信号146によりライン143側
に切り替えられ、これによりポンプ21以降の精製水ラ
インの塩素濃度が2ppmになるように、貯層30から
次亜塩素酸ソーダ液が注入される。30分後に前水洗工
程が完了し滅菌工程に入ると、弁141はライン142
側に、滅菌剤ポンプ131は高流量側に切り替えられ、
透析剤が添加される以降の透析液ラインを300ppm
の次亜塩素酸ソーダで滅菌する。これにより1台の滅菌
剤ポンプにより本発明の請求項1記載の透析システムが
可能になる。
Next, the sterilant pump 131 and the switching solenoid valve 14
1. The operation of the sterilization / cleaning control device 144 will be described. When the washing is started before the sterilization, the sterilizing agent pump 131 is set to the low flow rate by the electric signal 145. At the same time, the switching solenoid valve 141 is switched to the line 143 side by the electric signal 146, so that the sodium hypochlorite solution is injected from the reservoir 30 so that the chlorine concentration of the purified water line after the pump 21 becomes 2 ppm. . Thirty minutes later, when the pre-washing step is completed and the sterilization step is started, the valve 141 is switched to the line 142.
Side, the sterilant pump 131 is switched to the high flow side,
300 ppm of dialysate line after dialysate is added
Sterilize with sodium hypochlorite. This enables a dialysis system according to claim 1 of the present invention with one sterilant pump.

【0028】なお、前水洗時の精製水ラインの塩素濃度
が安定して2ppmである必要はない、要は2ppm×
30分の積分値が得られればよく、例えばポンプ131
の吐出量は透析液ライン注入時と変えず、その動作周期
(吐出間隔)を変えてもよい。何故なら滅菌効果は単に
濃度によるものではなく、濃度×時間の積分値によるも
のであり、このことから必ずしも滅菌剤ポンプは連続的
に定流量であるような高価なポンプである必要はない。
It is not necessary that the chlorine concentration in the purified water line at the time of pre-washing be 2 ppm in a stable manner.
It is sufficient that an integrated value of 30 minutes is obtained.
The operation amount (discharge interval) may be changed without changing the discharge amount during the dialysate line injection. Because the sterilization effect is not simply a function of the concentration, but of the integrated value of concentration × time, the sterilant pump does not necessarily have to be an expensive pump having a continuous and constant flow rate.

【0029】このことは本発明をさらに効果のあるもの
とする。図4の精製水製造装置Bにおいて、エンドトキ
シン除去フィルター7が設置されれば、RO膜の少々の
経時劣化に拘わらず、RO膜リークによって精製水ライ
ンへ混入するエンドトキシンを阻止できる。この場合に
は本発明は非常に効果的である。低濃度塩素供給ライン
143は、フィルター7の上流側で精製水ラインに接続
する。何故ならフィルター7は0.01μm程度のポア
サイズを有した、広い表面積を有した中空糸束から構成
されることが多い。しかしこの中空糸表面では、ROモ
ジュールから到来した貧栄養菌を同時に捕捉するため、
これが増殖し、エンドトキシンを産出する。また中空糸
の2次側でも下流側で増殖した細菌が装置停機時に逆流
し、増殖することもある。そのため上流側から持ち込ま
れるエンドトキシンを除去するためのフィルター7が、
かえってエンドトキシンの発生源となる危険性がある。
したがって、通常時には良好なエンドトキシン阻止性能
を有しても、例えば予想外の圧力ショック・振動が付与
された場合や、中空糸が部分的にでも切断した時に、そ
れまでに蓄積・産出していた大量のエンドトキシンを一
挙に放出し、治療上危険な状態を作り出すこともある。
This makes the present invention more effective. In the purified water producing apparatus B of FIG. 4, if the endotoxin removal filter 7 is provided, endotoxin mixed into the purified water line by the RO membrane leak can be prevented irrespective of a slight deterioration with time of the RO membrane. In this case, the present invention is very effective. The low-concentration chlorine supply line 143 is connected to a purified water line on the upstream side of the filter 7. This is because the filter 7 is often composed of a hollow fiber bundle having a large surface area and a pore size of about 0.01 μm. However, on the surface of this hollow fiber, to simultaneously capture oligotrophic bacteria coming from the RO module,
This proliferates and produces endotoxin. Also, on the secondary side of the hollow fiber, bacteria grown on the downstream side may flow back and grow when the device is stopped. Therefore, the filter 7 for removing endotoxin brought in from the upstream side,
There is a danger of becoming a source of endotoxin.
Therefore, even if it has good endotoxin inhibition performance at normal times, for example, when unexpected pressure shock or vibration was applied or when the hollow fiber was cut even partially, it had accumulated and produced by then. It can release large amounts of endotoxin at once, creating a potentially dangerous condition.

【0030】このような場合には、精製水ラインへの塩
素注入点52はエンドトキシン除去フィルター7の上流
とし、中空糸表面で貧栄養菌が棲息しないように、透析
後に低濃度塩素で滅菌してやることが望ましい。この時
フィルター7は全てのRO精製水を利用する装置の上流
部に設置されているため、このラインに注入された塩素
は関連するすべての装置に供給され、潜在的に残留塩素
問題を抱えている。しかし本発明では塩素濃度は僅か2
ppmであり、前述したように若干の後水洗を実施すれ
ば問題ない。
In such a case, the chlorine injection point 52 to the purified water line should be upstream of the endotoxin removal filter 7 and sterilized with low-concentration chlorine after dialysis so that oligotrophs do not inhabit on the surface of the hollow fiber. Is desirable. At this time, since the filter 7 is installed in the upstream part of the apparatus using all the RO purified water, the chlorine injected into this line is supplied to all the related apparatuses, and there is a potential residual chlorine problem. I have. However, in the present invention, the chlorine concentration is only 2
ppm, and there is no problem if slight post-water washing is performed as described above.

【0031】次にさらに医療安全性を向上させた請求項
2記載の実施態様を図2で説明する。透析が終了して患
者が離脱し、全ての透析用監視装置Hから「滅菌開始O
K」の電気信号201が到来し、さらに精製水Cを利用
する粉末溶解装置E・F、個人用供給装置K等からも
「滅菌開始OK」の電気信号202を受けると、コント
ロール装置144は逆に全ての透析用監視装置Hに電気
信号203を伝送し、またE・F・K等に対しては電気
信号204を伝送し、精製水・透析液を共用する装置を
同期して滅菌・洗浄操作を行う。具体的には透析用監視
装置Hや個人用供給装置Kにおいては患者との接続を禁
止し、また粉末溶解装置E・Fにおいては、透析用薬剤
の溶解操作を禁止する。その後コントロール装置29へ
電気信号156を発し、まず30分の前水洗工程、続い
て30分の透析液ライン滅菌工程に入る。この間透析液
調合コントロール装置29、滅菌剤ポンプ131および
切替弁141は、コントロール装置144から到来する
各々の電気信号156、145、146に基づき、精製
水ラインおよび透析液ラインの滅菌を行う。30分間の
透析液ライン滅菌の後、滅菌剤ポンプ131を停止し
て、後水洗工程に入る。後水洗を一定時間(例えば30
分)実施後、あるいは各部位の残留塩素が無くなったこ
とを検出して、電気信号204によりE・F・Kへの透
析治療に関わる操作禁止を解除する。次に透析工程に入
ることが必要であれば、透析液の調合を開始し、所定の
透析液濃度・温度に達したら、透析用監視装置Hに「透
析開始OK」の許可信号203を発する。
Next, an embodiment according to claim 2 in which medical safety is further improved will be described with reference to FIG. After the dialysis is completed, the patient withdraws, and all of the dialysis monitoring devices H indicate "Start sterilization O".
When the electric signal 201 of “K” arrives and further receives the electric signal 202 of “Start sterilization OK” from the powder dissolving devices EF using the purified water C, the personal supply device K, etc., the control device 144 reverses. The electric signal 203 is transmitted to all the dialysis monitoring devices H, and the electric signal 204 is transmitted to E, F, K, etc., and the devices that share the purified water and the dialysate are synchronized and sterilized and washed. Perform the operation. Specifically, the connection to the patient is prohibited in the dialysis monitoring device H and the personal supply device K, and the dissolution operation of the dialysis drug is prohibited in the powder dissolution devices EF. Thereafter, an electric signal 156 is issued to the control device 29, and then a pre-washing step for 30 minutes and a sterilizing step for a dialysate line for 30 minutes are started. During this time, the dialysate preparation control device 29, the sterilant pump 131 and the switching valve 141 sterilize the purified water line and the dialysate line based on the respective electric signals 156, 145, and 146 coming from the control device 144. After the dialysis fluid line is sterilized for 30 minutes, the sterilant pump 131 is stopped, and a post-water washing process is started. After washing with water for a certain time (for example, 30
Minutes) After execution or when it is detected that the residual chlorine in each part has been exhausted, the operation prohibition related to the dialysis treatment for EFK is released by the electric signal 204. Next, if it is necessary to enter the dialysis step, the preparation of the dialysate is started, and when the dialysate concentration / temperature reaches a predetermined value, the dialysis monitoring device H issues a "dialysis start OK" permission signal 203.

【0032】なお、透析液ラインの塩素系滅菌剤は大量
に使用されるため、経済性の面から次亜塩素酸ソーダ液
が望ましいが、精製水ラインに注入される滅菌剤は微量
であるため他の方法でもよい。例えば図1の滅菌剤ポン
プ51に代えて、所謂電解機能水と呼ばれる電解水を生
成する装置を設置してもよい。電解水生成装置は、例え
ば特許第2626778号で公知の強酸性水生成装置で
もよい。これは食塩を含んだ原水を電気分解し、次亜塩
素酸と塩素分子を生成するものである。またこの食塩水
に塩酸を添加して電気分解し、次亜塩素酸を生成する弱
酸性水生成装置でもよい。さらには一般水道水を電気分
解して次亜塩素酸とオゾンを発生する弱アルカリ水生成
装置でもよい。この弱アルカリ水生成装置は例えば特開
平9−234238号公報に見られるもので、水道水中
には塩素イオンを含有するため、電気分解によって同様
に次亜塩素酸を発生する。勿論前2者の酸性水生成装置
に比較してその発生量は少ないが、本発明の骨子は精製
水ラインに微量の塩素を注入することにあり、問題な
い。
Since a large amount of chlorine-based sterilizing agent is used in the dialysate line, sodium hypochlorite solution is desirable from the viewpoint of economy, but a small amount of sterilizing agent is injected into the purified water line. Other methods may be used. For example, instead of the sterilizing agent pump 51 of FIG. 1, an apparatus for generating electrolyzed water called so-called electrolyzed functional water may be installed. The electrolyzed water generator may be, for example, a strongly acidic water generator known in Japanese Patent No. 2,626,778. It electrolyzes raw water containing salt and produces hypochlorous acid and chlorine molecules. Alternatively, a weakly acidic water generating apparatus that generates hydrochloric acid by adding hydrochloric acid to the salt solution and electrolyzing it may be used. Further, a weak alkaline water generator which generates hypochlorous acid and ozone by electrolyzing common tap water may be used. This weak alkaline water generator is, for example, disclosed in Japanese Patent Application Laid-Open No. 9-234238. Since tap water contains chlorine ions, hypochlorite is similarly generated by electrolysis. Of course, the amount of generated acid water is smaller than that of the former two, but the gist of the present invention is to inject a small amount of chlorine into the purified water line, and there is no problem.

【0033】また、この弱アルカリ水生成装置を図4の
軟水ラインにおいて除菌フィルター10の上流側に設置
することもできる。この場合にはフィルター10で濾過
された滅菌液を精製水ラインに注入できる。また透析液
にも塩素イオンを含むため、透析液貯槽内の透析液が精
製水へ置換される前水洗時に、置換途中の透析液の一部
を電解水装置の原水とし、生成された電解水を注入点5
2へ供給してもよい。これらの電解水によりRO精製水
を滅菌することの利点は、これらの電解水が経時的に容
易に分解することにある。したがって、塩素残留の問題
は一層軽減できる。
Further, this weak alkaline water generator can be installed upstream of the sterilization filter 10 in the soft water line of FIG. In this case, the sterilized liquid filtered by the filter 10 can be injected into the purified water line. In addition, since the dialysate also contains chloride ions, part of the dialysate that is being replaced is used as raw water for the electrolyzed water device during washing with water before the dialysate in the dialysate storage tank is replaced with purified water, and the generated electrolyzed water is used. Injection point 5
2 may be supplied. The advantage of sterilizing RO purified water with these electrolyzed waters is that these electrolyzed waters are easily decomposed over time. Therefore, the problem of chlorine residue can be further reduced.

【0034】なお、一般的に市販されている次亜塩素酸
ソーダ液における有効塩素が次亜塩素酸イオン(OCl
−)であるのに対し、上記の電解水生成装置で発生する
有効塩素の形態は、次亜塩素酸(HOCl)および塩素
分子(Cl2)であり、滅菌速度が数十倍早いといわれ
ている。しかし微量の共存がさけられない有機物で塩素
が消費されるため、いずれの有効塩素であっても、本発
明の実施例に記載された濃度レベルの塩素であることが
望ましい。むしろ本来金属腐食性が少ないため、次亜塩
素酸イオンは高濃度(従って少々の有機物存在の影響を
受け難い)状態が可能であり、こちらの方が望ましい。
さらに滅菌処理時間が凡そ30分に亙ることも考慮すれ
ば、この滅菌速度の遅さは時に問題とならない。
The available chlorine in a commercially available sodium hypochlorite solution is generally hypochlorite ion (OCl
On the other hand, the forms of available chlorine generated in the above electrolyzed water generator are hypochlorous acid (HOCl) and chlorine molecules (Cl2), and the sterilization rate is said to be several tens times faster. . However, since chlorine is consumed by a trace amount of organic matter that cannot be coexisted, it is desirable that any available chlorine be chlorine having the concentration level described in the examples of the present invention. Rather, since the metal corrosivity is originally low, hypochlorite ions can be in a high concentration state (thus, it is hardly affected by the presence of a small amount of organic substances), and this is more preferable.
Considering that the sterilization time is about 30 minutes, this slow sterilization rate is sometimes not a problem.

【0035】さらには精製水ライン滅菌剤としては、例
えば特許第3001551号の、RO精製水から電気分
解によりオゾン水を生成する装置でもよい。この場合に
は、生成装置を直接精製水ラインに設置し、電源のON
/OFFによりオゾン水の発生を制御できるため、複雑
な配管を設置する必要もなく、利便性が向上する。
Furthermore, as a purified water line sterilant, for example, a device for generating ozone water from RO purified water by electrolysis as disclosed in Japanese Patent No. 3001551 may be used. In this case, install the generator directly on the purified water line and turn on the power.
Since generation of ozone water can be controlled by / OFF, there is no need to install complicated piping, and convenience is improved.

【0036】また、後水洗時に再び滅菌剤ポンプ51を
稼動させ、「次回透析治療までは低濃度塩素を透析シス
テム内に滞留させる」こともできる。この場合、停止期
間中に発生する細菌の増殖を抑制できるとともに、拡散
効果により系内の隅々まで滅菌剤が浸透し、安全に一層
クリーンな透析治療を提供できる。
Further, the sterilizing agent pump 51 can be operated again at the time of post-water washing to "retain low-concentration chlorine in the dialysis system until the next dialysis treatment". In this case, the growth of bacteria generated during the suspension period can be suppressed, and the sterilizing agent can penetrate into every corner of the system due to the diffusion effect, thereby providing safer and cleaner dialysis treatment.

【0037】さらに図1において、透析液ポンプ28の
出に、透析液供給装置に内臓あるいは付属させてエント
トキシン除去フィルター(図示せず)を設置することも
できる。従来は「透析液ラインで大量にエンドトキシン
が発生する」と考えられてきたため、最末端にある透析
用監視装置の直前にエンドトキシン除去フィルターが設
置されることが多かった。すなわち、個々の透析用監視
装置に対応して設置されていたため経済的でなく、また
透析液配管(多くがシリコンチューブ)の途中に設置さ
れるため、保持や管理が難しかった。しかし本発明によ
り「精製水ラインで多くのエンドトキシンが発生する」
ことが明らかになったため、できるだけ上流側が望まし
いこととなる。
Further, in FIG. 1, at the outlet of the dialysate pump 28, an entotoxin removing filter (not shown) may be installed in or attached to the dialysate supply device. Conventionally, it has been considered that "a large amount of endotoxin is generated in the dialysate line", so that an endotoxin removal filter is often installed immediately before the dialysis monitoring device at the end. That is, it is not economical because it is installed corresponding to each dialysis monitoring device, and it is difficult to hold and manage it because it is installed in the middle of the dialysate pipe (mostly a silicon tube). However, according to the present invention, "many endotoxins are generated in the purified water line"
Therefore, the upstream side is desirable as much as possible.

【0038】さらに「従来エンドトキシンフィルターは
塩素では失活しないため、捕捉されたエンドトキシンは
蓄積する」と考えられてきた。そのため定期的にフィル
ターエレメントを交換したり、一次側滞留水をパージす
る等のエンドトキシン蓄積対策が取られてきた。しかし
本発明者の研究によれば、「エンドトキシンは数百pp
mレベルの非常に濃度の高い塩素に遭遇するとかなりの
部分が失活する」ことが見出された。したがって、毎日
滅菌される透析液ラインで、かつできるだけ上流にエン
ドトキシン除去フィルターを設置すれば、医療用具とし
ての一体管理が可能とした上で、透析液のクリーン化に
繋がることを見出した。
Further, it has been considered that "captured endotoxin accumulates because a conventional endotoxin filter is not inactivated by chlorine." For this reason, endotoxin accumulation countermeasures such as replacing the filter element periodically and purging the stagnant water on the primary side have been taken. However, according to the study of the present inventor, "endotoxin has several hundred pp
A significant portion of the chlorine is deactivated when very high levels of chlorine are encountered at m levels. " Therefore, it has been found that installing an endotoxin removal filter in the dialysate line that is sterilized every day and as upstream as possible enables the integrated management as a medical device and leads to a cleaner dialysate.

【0039】[0039]

【発明の効果】本発明は、上記の構成とすることによ
り、従来考えられていた部位以外のところにある多くの
エンドトキシンを生成するグラム陰性菌の棲息を、効果
的に抑制する全く新規な滅菌技術を提供することがで
き、さらに安価にかつ構成部材に腐食等の悪影響を与え
ず、また残留した滅菌剤による医療安全上の問題を発生
することのない高性能な滅菌技術を提供することができ
るとともに、従来以上に操作性や経済性に優れた、細菌
やエンドトキシン汚染のない良質な透析治療を可能にす
ることができる。
According to the present invention, a novel sterilization method, which has the above-mentioned structure, can effectively suppress the inhabitation of many endotoxin-producing Gram-negative bacteria at sites other than those conventionally considered. It is possible to provide a high-performance sterilization technique which can provide a technique, is inexpensive, has no adverse effects such as corrosion on constituent members, and does not cause a medical safety problem due to a residual sterilant. In addition, it is possible to perform high-quality dialysis treatment free of bacteria and endotoxin contamination, which is more excellent in operability and economy than ever before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る透析液供給装置の実施例を示すフ
ロー図である。
FIG. 1 is a flowchart showing an embodiment of a dialysate supply device according to the present invention.

【図2】本発明に係る透析液供給装置の他の実施例を示
すフロー図である。
FIG. 2 is a flowchart showing another embodiment of the dialysate supply device according to the present invention.

【図3】一般的な透析システムを示すフロー図である。FIG. 3 is a flowchart showing a general dialysis system.

【図4】精製水製造装置Aの一例を示すフロー図であるFIG. 4 is a flowchart showing an example of a purified water producing apparatus A.

【図5】従来の透析液供給装置Dの一例を示すフロー図
である。
FIG. 5 is a flowchart showing an example of a conventional dialysate supply device D.

【符号の説明】[Explanation of symbols]

A:原水 B:精製水製造装置 C:精製水 D:透析液供給装置 E:A粉末溶解装置 F:B粉末溶解装置 G:透析液 H:透析用監視装置 I:ダイアライザー J:患者からの血液 K:個人用供給装置 1:軟水機 2:活性炭濾過機 3:ROポンプ 4:ROモジュール 5:精製水タンク 7:エンドトキシン除去フィルター 8:軟水ライン 9:軟水ラインバルブ 10:除菌フィルター 21:供給水ポンプ 22:ヒータ 23:脱気筒 24a、24b:透析液調合槽 25:A液ポンプ 26:B液ポンプ 27:透析液貯層 28:透析液ポンプ 29:透析液調合コントロール装置 30:滅菌液貯層 31、51:透析液ライン滅菌剤ポンプ 52:精製水ラインへの塩素注入点 53:滅菌洗浄コントロール装置 56:透析液調合コントロール装置への電気信号 131:滅菌剤ポンプ 141:切替電磁弁 142、143:ライン 144:滅菌洗浄コントロール装置 145、146、201〜204:電気信号 A: Raw water B: Purified water production device C: Purified water D: Dialysate supply device E: A powder dissolution device F: B powder dissolution device G: Dialysate H: Dialysis monitor I: Dialyzer J: Blood from patient K: Personal feeding device 1: Soft water filter 2: Activated carbon filter 3: RO pump 4: RO module 5: Purified water tank 7: Endotoxin removal filter 8: Soft water line 9: Soft water line valve 10: Disinfection filter 21: Supply Water pump 22: heater 23: degassing cylinder 24a, 24b: dialysate preparation tank 25: A liquid pump 26: B liquid pump 27: dialysate reservoir 28: dialysate pump 29: dialysate preparation control device 30: sterile liquid storage Layer 31, 51: dialysate line sterilant pump 52: chlorine injection point into purified water line 53: sterilization washing control device 56: dialysate preparation control device Electrical signal 131 to: sterilant Pump 141: switching electromagnetic valve 142, 143: Line 144: sterile cleaning control device 145,146,201~204: electrical signal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 H 1/50 510 1/50 510A 520 520B 531 531P 540 540B 550 550C 560 560E 560D 560B Fターム(参考) 4C058 AA12 AA17 BB07 JJ08 JJ21 JJ22 4C077 AA05 BB01 DD30 EE01 EE03 GG03 GG04 KK09 4D006 GA03 KB11 KB12 KB17 KD24 PA02 PB06 PB24 PB42 PB43 PB54 PC44 PC47 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/44 C02F 1/44 H 1/50 510 1/50 510A 520 520B 531 531P 540 540B 550 550C 560 560E 560D 560B F-term (reference) 4C058 AA12 AA17 BB07 JJ08 JJ21 JJ22 4C077 AA05 BB01 DD30 EE01 EE03 GG03 GG04 KK09 4D006 GA03 KB11 KB12 KB17 KD24 PA02 PB06 PB24 PB42 PB43 PB54 PC44

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】逆浸透膜により原水を精製して精製水を得
る精製水製造装置と、該精製水製造装置で製造された精
製水に透析原剤を添加して所定の透析液を製造する透析
液供給装置と、該透析液供給装置で調合された透析液に
より血液透析を実施する透析用監視装置からなる透析シ
ステムにおいて、前記透析原剤が添加された部位以降の
透析システムを、有効塩素濃度が300ppm以上で滅
菌する透析液ライン塩素系滅菌剤注入装置を設け、かつ
透析原剤が添加される部位より上流の精製水ラインに
は、精製水ライン滅菌剤添加装置を設けたことを特徴と
する透析システム。
1. A purified water producing apparatus for purifying raw water by a reverse osmosis membrane to obtain purified water, and a dialysis base material is added to purified water produced by the purified water producing apparatus to produce a predetermined dialysate. In a dialysis system comprising a dialysis fluid supply device and a dialysis monitoring device for performing hemodialysis with the dialysis fluid prepared by the dialysis fluid supply device, the dialysis system after the site where the dialysis base material is added is treated with available chlorine. A dialysis fluid line that sterilizes at a concentration of 300 ppm or more is provided with a chlorine-based sterilant injecting device, and a purified water line upstream of the site where the dialysis base material is added is provided with a purified water line sterilant adding device. And dialysis system.
【請求項2】前記の透析液ライン塩素系滅菌剤注入装置
および前記の精製水ライン滅菌剤添加装置は、前記の精
製水および透析液を利用する透析システムからの滅菌許
可信号を受けて作動するようになし、かつ前記の透析液
ライン塩素系滅菌剤注入装置および前記の精製水ライン
滅菌剤添加装置が作動中は、前記の精製水および透析液
を利用する透析システムに所定の動作を行わせる信号を
発するようにしたことを特徴とする請求項1項記載の透
析システム。
2. The apparatus for injecting a chlorinated sterilant in a dialysate line and the apparatus for adding a purified water line in a sterilizing agent receive a sterilization permission signal from a dialysis system using the purified water and dialysate. As such, and while the dialysate line chlorine sterilant injection device and the purified water line sterilant addition device are operating, the dialysis system using the purified water and dialysate performs a predetermined operation. The dialysis system according to claim 1, wherein the dialysis system emits a signal.
【請求項3】前記の透析液ラインに注入する滅菌剤が次
亜塩素酸ソーダ水溶液であり、かつ精製水ライン滅菌剤
添加装置は、1週間当たりの有効塩素濃度が20ppm
×時間以下であるように次亜塩素酸ソーダ水溶液を注入
するようにしたことを特徴とする請求項1項記載の透析
システム。
3. The sterilizing agent to be injected into the dialysate line is an aqueous sodium hypochlorite solution, and the purified water line sterilizing agent adding device has an effective chlorine concentration of 20 ppm per week.
2. The dialysis system according to claim 1, wherein an aqueous solution of sodium hypochlorite is injected so that the time is equal to or less than x hours.
JP2000178046A 2000-06-14 2000-06-14 Dialysis system Expired - Lifetime JP4332829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000178046A JP4332829B2 (en) 2000-06-14 2000-06-14 Dialysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000178046A JP4332829B2 (en) 2000-06-14 2000-06-14 Dialysis system

Publications (2)

Publication Number Publication Date
JP2001353214A true JP2001353214A (en) 2001-12-25
JP4332829B2 JP4332829B2 (en) 2009-09-16

Family

ID=18679549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000178046A Expired - Lifetime JP4332829B2 (en) 2000-06-14 2000-06-14 Dialysis system

Country Status (1)

Country Link
JP (1) JP4332829B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142436A (en) * 2007-12-13 2009-07-02 Tsutomu Sanaka Aqueous solution for dialysis
JP2011217965A (en) * 2010-04-09 2011-11-04 Nipro Corp Contamination prevention method in piping for dialysis
JP2013220191A (en) * 2012-04-16 2013-10-28 Iti co ltd Dialysis-treating apparatus monitoring system and dialysis-treating apparatus monitoring method
JP2016174668A (en) * 2015-03-19 2016-10-06 国立大学法人滋賀医科大学 General-purpose method for eliminating endotoxin
CN112384264A (en) * 2018-07-02 2021-02-19 甘布罗伦迪亚股份公司 Medical device for introducing a fluid into the blood circulation system of a patient and method for controlling a leakage current in a medical device provided with or combined with a warming unit
US11957890B2 (en) 2018-07-02 2024-04-16 Gambro Lundia Ab Medical device for introduction of a fluid into the blood circulation system of a patient and method for controlling leakage currents in a medical device provided or combined with a warming unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204995B2 (en) * 2006-06-22 2013-06-05 日機装株式会社 Central system for dialysis treatment and its disinfection method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131753A (en) * 1984-11-30 1986-06-19 横河電機株式会社 Disinfection apparatus for artificial dialytic apparatus
JPS63238868A (en) * 1987-03-26 1988-10-04 株式会社クラレ Dialytic liquid feeder
JPH04135559A (en) * 1990-09-26 1992-05-11 Akira Nakajima Disinfecting detergent for medical treating equipment for artificial dialysis or the like
JPH0724064A (en) * 1993-07-16 1995-01-27 Sanyo Electric Works Ltd Organic function helping substitute apparatus
JPH07171212A (en) * 1993-12-16 1995-07-11 Akihisa Minato Method for cleaning artificial dialysis therapeutic apparatus and its apparatus
JPH0871147A (en) * 1994-09-08 1996-03-19 Nissho Corp Method for disinfecting dialysis device
JPH09122229A (en) * 1995-07-04 1997-05-13 Noriaki Tanaka Cleaning/disinfecting device for blood dialyzer
JPH1043758A (en) * 1996-08-05 1998-02-17 Nippon Uootaa Syst Kk Method for purifying apparatus for producing water for dialysis
JPH10127760A (en) * 1996-10-02 1998-05-19 Fresenius Medical Care Deutsche Gmbh Disinfecting method and device for medical apparatus
JPH11104639A (en) * 1997-10-03 1999-04-20 Toray Kiki Kk Reverse osmosis membrane type pure water-making apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131753A (en) * 1984-11-30 1986-06-19 横河電機株式会社 Disinfection apparatus for artificial dialytic apparatus
JPH0533063B2 (en) * 1984-11-30 1993-05-18 Yokogawa Electric Corp
JPS63238868A (en) * 1987-03-26 1988-10-04 株式会社クラレ Dialytic liquid feeder
JPH04135559A (en) * 1990-09-26 1992-05-11 Akira Nakajima Disinfecting detergent for medical treating equipment for artificial dialysis or the like
JPH0724064A (en) * 1993-07-16 1995-01-27 Sanyo Electric Works Ltd Organic function helping substitute apparatus
JPH07171212A (en) * 1993-12-16 1995-07-11 Akihisa Minato Method for cleaning artificial dialysis therapeutic apparatus and its apparatus
JPH0871147A (en) * 1994-09-08 1996-03-19 Nissho Corp Method for disinfecting dialysis device
JPH09122229A (en) * 1995-07-04 1997-05-13 Noriaki Tanaka Cleaning/disinfecting device for blood dialyzer
JPH1043758A (en) * 1996-08-05 1998-02-17 Nippon Uootaa Syst Kk Method for purifying apparatus for producing water for dialysis
JPH10127760A (en) * 1996-10-02 1998-05-19 Fresenius Medical Care Deutsche Gmbh Disinfecting method and device for medical apparatus
JPH11104639A (en) * 1997-10-03 1999-04-20 Toray Kiki Kk Reverse osmosis membrane type pure water-making apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142436A (en) * 2007-12-13 2009-07-02 Tsutomu Sanaka Aqueous solution for dialysis
JP2011217965A (en) * 2010-04-09 2011-11-04 Nipro Corp Contamination prevention method in piping for dialysis
JP2013220191A (en) * 2012-04-16 2013-10-28 Iti co ltd Dialysis-treating apparatus monitoring system and dialysis-treating apparatus monitoring method
CN103372237A (en) * 2012-04-16 2013-10-30 爱倜国际贸易有限公司 Dialysis treatment instrument monitoring system and dialysis treatment instrument monitoring method
US9509963B2 (en) 2012-04-16 2016-11-29 I. T. I. Co., Ltd. Independent wireless dialysis instrument monitoring system and method using camera with programmable camera control mechanism
JP2016174668A (en) * 2015-03-19 2016-10-06 国立大学法人滋賀医科大学 General-purpose method for eliminating endotoxin
CN112384264A (en) * 2018-07-02 2021-02-19 甘布罗伦迪亚股份公司 Medical device for introducing a fluid into the blood circulation system of a patient and method for controlling a leakage current in a medical device provided with or combined with a warming unit
US11957890B2 (en) 2018-07-02 2024-04-16 Gambro Lundia Ab Medical device for introduction of a fluid into the blood circulation system of a patient and method for controlling leakage currents in a medical device provided or combined with a warming unit

Also Published As

Publication number Publication date
JP4332829B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US5032265A (en) Method and system for producing sterile aqueous solutions
EP0152051B1 (en) Process and system for producing sterile water and sterile aqueous solutions
JP5204995B2 (en) Central system for dialysis treatment and its disinfection method
AU2012202387B2 (en) RO (Reverse Osmosis) System
US5585003A (en) Treatment of dialysis feedwater using ozone
JPH08252310A (en) Washing and disinfecting method of artificial dialyzing device using electrolytically generated acidic water, and device therefor
JP2007252396A (en) Manufacturing device and manufacturing method of medical purpose dialysis fluid
US20150231571A1 (en) Reverse osmosis system
CN110582308B (en) System and method for producing microbial controlled fluids
JP2001000969A (en) Reverse osmosis membrane type refined water making apparatus
JP4440989B1 (en) Method for producing purified water
JP4174753B2 (en) Dialysis system
JP3403258B2 (en) Fluid flow path cleaning method and cleaning device
EP2456722B1 (en) Water decontamination system
Tanaka et al. The cleaning and disinfecting of hemodialysis equipment using electrolyzed strong acid aqueous solution
JP4332829B2 (en) Dialysis system
JP5028397B2 (en) Method for producing medical purified water
JP2018118033A (en) Method for post-processing and processing cycle preparation on extracorporeal blood treatment device with combined disinfection and decalcification using acidic concentrate
JPH11104639A (en) Reverse osmosis membrane type pure water-making apparatus
JP4296534B2 (en) Method and apparatus for producing purified water by reverse osmosis membrane module
JP2997099B2 (en) System for producing sterile aqueous solution
KR101696215B1 (en) Water Treatment Apparatus Capable of Sterilizing of Water Tank and Control Method Thereof
JP2694503B2 (en) Blood circulation in artificial dialysis, sterilization and purification method for dialysate piping pipeline
CN111417418B (en) Adsorber regeneration method and dialysis system
JP2005296158A (en) Method and device for washing and sterilizing hemodialysis system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4332829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term