JPH11104639A - Reverse osmosis membrane type pure water-making apparatus - Google Patents

Reverse osmosis membrane type pure water-making apparatus

Info

Publication number
JPH11104639A
JPH11104639A JP28770397A JP28770397A JPH11104639A JP H11104639 A JPH11104639 A JP H11104639A JP 28770397 A JP28770397 A JP 28770397A JP 28770397 A JP28770397 A JP 28770397A JP H11104639 A JPH11104639 A JP H11104639A
Authority
JP
Japan
Prior art keywords
water
supply pump
pure water
reverse osmosis
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28770397A
Other languages
Japanese (ja)
Inventor
Wataru Atsumi
弥 渥美
Taizo Hara
泰三 原
Shigeto Haraguchi
成人 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Kiki KK
Original Assignee
Toray Kiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Kiki KK filed Critical Toray Kiki KK
Priority to JP28770397A priority Critical patent/JPH11104639A/en
Publication of JPH11104639A publication Critical patent/JPH11104639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably supply high purity water by driving an RO supply pump by an ejection amt. variable apparatus and operating the delivery amt. variable apparatus corresponding to the consumption amt. of purified water to operate the same in water making amts. of two or more stages. SOLUTION: The rotational speed of an RO supply pump 5 is controlled in a multistage fasion by the control signal from a liquid level meter 13 or the like not only to reduce the stop frequency of the RO supply pump 5 to a large extent but also to enhance the durability of an RO module 6 and the quality of pure water is enhanced and stabilized. Concretely, when the liquid level in a tank lowers to reach a lower LC, the signal from a liquid level meter 113 transmits the high speed rotation signal of the RO supply pump 5 to an inverter 121 through a signal line 120. The RO supply pump 5 rotates in proportion to the frequency formed by the inverter 121. Generally, it is pref. to set Q1 >Q0 >Q2 with respect to the flow rate Q0 of pure water steadily consumed at the use point and, in this case, the RO supply pump 5 is almost continuously operated so that the number of rotations thereof is set to the rotational speeds corresponding to Q1 and Q2 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透析等の医療分野
において、洗浄、配合、希釈用途に使用される高度に精
製された純水を製造するための逆浸透膜式純水製造装置
に関わり、特に細菌やエンドトキシン汚染のない透析用
純水製造装置を提供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse osmosis membrane type pure water production apparatus for producing highly purified pure water used for washing, blending and dilution in the medical field such as dialysis. In particular, it is an object of the present invention to provide an apparatus for producing pure water for dialysis which is free from bacteria and endotoxin contamination.

【0002】[0002]

【従来の技術】図4は従来の透析用逆浸透膜式純水製造
装置のフロー図の一例である。
2. Description of the Related Art FIG. 4 is an example of a flow chart of a conventional reverse osmosis membrane type pure water producing apparatus for dialysis.

【0003】図4において、水道水等の原水は原水ポン
プ(1)により昇圧され、軟水器(2)、活性炭濾過器(3)、
フィルター(4)の順で通水される。この(1)〜(4)で前処
理部(A)を形成し、原水中の懸濁物質や残留塩素等を
除去する。この前処理水は、RO供給ポンプ(5)で所定
の高圧に昇圧され、ROモジュール(6)に供給される。
ROモジュール(6)は、スパイラル状や中空糸状の逆浸
透(RO)膜からなるエレメント部とこれを収納するケ
ーシングから構成され、両者の間はOリング等の手段に
より、流密にシールされている。
[0003] In FIG. 4, raw water such as tap water is pressurized by a raw water pump (1), and is softened (2), activated carbon filter (3),
Water is passed in the order of the filter (4). The pretreatment section (A) is formed by these (1) to (4) to remove suspended substances, residual chlorine and the like in the raw water. The pretreatment water is boosted to a predetermined high pressure by the RO supply pump (5) and supplied to the RO module (6).
The RO module (6) is composed of a spiral or hollow fiber reverse osmosis (RO) membrane element part and a casing for accommodating the element part, and the space between the two is hermetically sealed by means such as an O-ring. I have.

【0004】逆浸透膜の表面を通過する前処理水の一部
は、逆浸透膜を透過し精製された純水となって流量計(1
4)に達する。一方塩分等の不純物が濃縮された濃縮水
は、圧力調節弁(18)を経て系外に排出される。このRO
モジュール(6)を中核とした部分が水精製部(B)であ
る。逆浸透膜で前処理水中の無機イオン、有機物、更に
は細菌を含めた微粒子を除去された高度の純水は、RO
水タンク(7)に貯溜される。
[0004] A part of the pretreated water passing through the surface of the reverse osmosis membrane becomes purified water that has been permeated through the reverse osmosis membrane and becomes purified water.
Reach 4). On the other hand, the concentrated water in which impurities such as salt are concentrated is discharged out of the system via the pressure control valve (18). This RO
The part with the module (6) at the core is the water purification part (B). High purity pure water from which inorganic ions, organic matter and fine particles including bacteria have been removed from the pretreated water by the reverse osmosis membrane is RO RO
It is stored in the water tank (7).

【0005】(8)は紫外線殺菌装置で、RO水タンク(7)
に貯溜された純水に紫外線を照射し、貯溜中に細菌が発
生することを抑止する。RO水タンク(7)からは、供給
ポンプ(9)及び供給ライン(10)を通って、中央透析液調
合装置や患者に接続された透析装置(末端ユースポイン
ト)(11)に純水が供給される。
[0005] (8) is an ultraviolet sterilizer, RO water tank (7)
Irradiates the pure water stored in the container with ultraviolet rays to prevent bacteria from being generated during the storage. From the RO water tank (7), pure water is supplied through a supply pump (9) and a supply line (10) to a central dialysate preparation device and a dialysis device (end point of use) (11) connected to a patient. Is done.

【0006】一方RO水タンク(7)内の純水は、純水循
環ライン(12)により常時タンク循環されている。これ
は、ユースポイントでの純水消費がなくなった場合にタ
ンクや配管内の純水が長時間滞留して、細菌が繁殖した
り、配管からイオン成分が微量溶出し、水質が劣化する
ことを防止するためである。
On the other hand, the pure water in the RO water tank (7) is constantly circulated through a pure water circulation line (12). This is because if the consumption of pure water at the point of use disappears, the pure water in the tanks and pipes will stay for a long time, bacteria will proliferate, and a small amount of ionic components will be eluted from the pipes, degrading the water quality. This is to prevent it.

【0007】RO水タンク(7)からの純水流量は、(11)
以降で透析治療が施される患者の数によって変動するた
め、RO水タンク(7)の液面計(13)により液面レベルを
検知し、RO供給ポンプ(5)の稼動を制御する。すなわ
ち液面計(13)からの信号は、ポンプ制御信号ライン(20)
によりRO供給ポンプ(5)に到来するが、設定下段(L
C)でRO供給ポンプ(5)を起動して造水を開始し、設
定上段(HC)でRO供給ポンプ(5)を停止して造水を
中断する。
[0007] The flow rate of pure water from the RO water tank (7) is (11)
Thereafter, the liquid level varies depending on the number of patients to be subjected to the dialysis treatment. Therefore, the liquid level is detected by the liquid level gauge (13) of the RO water tank (7), and the operation of the RO supply pump (5) is controlled. That is, the signal from the level gauge (13) is transmitted to the pump control signal line (20).
Arrives at the RO supply pump (5) due to the
In C), the RO supply pump (5) is started to start fresh water generation, and the RO supply pump (5) is stopped in the upper setting (HC) to interrupt fresh water generation.

【0008】水精製部(B)では、ROモジュール(6)
を所定の条件下で操作すべく、透過水流量計(14)及び濃
縮水流量計(15)を見ながらRO供給ポンプ(5)出の流量
調節弁(16)を操作し、圧力計(17)を見ながら圧力調節弁
(18)を操作する。なお濃縮液の一部は、所定のROモジ
ュール(6)内流速を得るため、濃縮液循環ライン(19)に
よりポンプ循環する。
In the water purification section (B), the RO module (6)
Operating the flow control valve (16) of the RO supply pump (5) while watching the permeated water flow meter (14) and the concentrated water flow meter (15), to operate the pressure gauge (17). )
Operate (18). A part of the concentrate is pump-circulated through a concentrate circulation line (19) in order to obtain a predetermined flow rate in the RO module (6).

【0009】周知の通り透析治療では、ダイアライザー
内の透析膜を介して血液と透析液(所定の電解質分を含
んだ原液に上記純水を調合して製造される)を接触さ
せ、両液の物質濃度差により、透析患者の血液中の老廃
物を除去するとともに、透析液からは必要なイオン性電
解物質等が血液側に補給される。従って、当然ながらこ
の透析液には高い清浄度が要求される。
[0009] As is well known, in dialysis treatment, blood and a dialysate (prepared by mixing the above pure water with a stock solution containing a predetermined electrolyte component) are brought into contact with each other through a dialysis membrane in a dialyzer. The difference in substance concentration removes waste products in the blood of the dialysis patient, and replenishes the blood side with necessary ionic electrolytes and the like from the dialysate. Therefore, naturally, the dialysate is required to have high cleanliness.

【0010】更に、透析治療技術法の発展に伴い、更に
高いレベルの清浄度を要求されるようになった。すなわ
ち、従来の透析療法が取除いていた成分より更に分子量
の大きい尿毒素成分が見出され、長期的な患者の様態の
改善には、このようなよりサイズの大きい物質を除去す
る必要が判明してきた。これには上記透析膜の孔径(ポ
アサイズ)を大きくしてやる必要がある。このことは、
逆に従来は透析膜で阻止されていた透析液中の微粒子等
の不純物が血液側に混入する危険性が高くなることを示
唆する。更にはオンライン・ヘモダイアフィルトレーシ
ョンと呼ばれる、血液中の血漿成分を積極的に取り出
し、それと当量の透析液を患者に注入する療法も普及し
始めている。
[0010] Further, with the development of dialysis treatment technology, a higher level of cleanliness has been required. In other words, a uretoxin component having a higher molecular weight than the components removed by conventional dialysis therapy was found, and it was necessary to remove such a larger substance in order to improve the long-term patient condition. I've been. To this end, it is necessary to increase the pore size (pore size) of the dialysis membrane. This means
Conversely, it suggests that there is a high risk that impurities such as fine particles in the dialysate, which have been conventionally blocked by the dialysis membrane, are mixed into the blood side. Furthermore, a therapy called on-line hemodiafiltration, which actively removes plasma components in blood and injects a dialysate in an amount equivalent to that, into a patient has also begun to spread.

【0011】上記から明らかなように、これらの透析治
療で利用される水が従来以上に高清浄度(クリーン)で
あることが要求され始め、新たな技術課題が生じ始め
た。すなわち透析中の細菌のみならず、細菌の一種であ
るグラム陰性菌が死滅した後に、その細胞壁外膜から剥
離したエンドトキシン成分が問題となってきた。エンド
トキシンは、症状的にはパイロジェン物質とも呼ばれ、
患者に発熱を引起こす毒素成分である。これは謂わばO
−157におけるベロー毒素のように、細菌の死滅によ
って発生する非常に取扱の難しい物質である。エンドト
キシンが多量に血液に混入した場合の短期的な問題とし
ては患者に血圧低下や発熱等、患者にとって好ましくな
い症状をもたらす。
As is apparent from the above, the water used in these dialysis treatments has been required to have higher cleanliness (cleanness) than ever before, and new technical problems have begun to arise. That is, not only the bacteria during dialysis but also the endotoxin component peeled off from the outer membrane of the cell wall after the gram-negative bacteria, which is a kind of bacteria, have been killed. Endotoxins are also symptomatically called pyrogens,
A toxin component that causes fever in patients. This is a so-called O
It is a very difficult substance to handle, such as the bellow toxin at -157, generated by the killing of bacteria. As a short-term problem when a large amount of endotoxin is mixed into blood, the patient suffers from undesired symptoms such as a decrease in blood pressure and fever.

【0012】更に最近はこのエンドトキシンが更に細か
く分裂した破片(フラグメント)による慢性的な障害が
指摘されている。毎週10〜15時間の治療を生存期間
中受けねばならない透析患者にとっては、短期間の治療
では顕在しなくても、十年以上にも渡る長期治療での慢
性的な疾患を考慮すると、避けて通れない重大な問題で
ある。このフラグメントの最小分子量は5,000ダル
トンとされており、患者から除去すべき尿毒素成分のサ
イズ(分子量)に匹敵するか、さらには小さいものであ
る。例えば、現在50,000ダルトンの尿毒素成分を
透過させる透析膜が利用されている。従ってこのような
高性能な透析治療をより一層安全に実施するには、透析
液中のエンドトキシン量を極小化しなければならない。
[0012] More recently, chronic damage has been pointed out due to finer fragments of this endotoxin. For dialysis patients who have to receive 10 to 15 hours of treatment each week for their lifetime, avoid them if they are not manifested in short-term treatment, but in view of chronic disease in long-term treatment for more than 10 years. It is a serious problem that cannot be passed. This fragment has a minimum molecular weight of 5,000 daltons, which is comparable to or even smaller than the size (molecular weight) of the uretoxin component to be removed from the patient. For example, dialysis membranes that are permeable to 50,000 dalton uremic toxin components are currently used. Therefore, in order to carry out such a high-performance dialysis treatment more safely, the amount of endotoxin in the dialysate must be minimized.

【0013】一方このエンドトキシンを放出するグラム
陰性菌は特別な細菌ではなく、一般生活環境に生存して
いる常在菌であり、純水や透析液中で容易に増殖する。
従って一旦エンドトキシンを完全に除去しても、万一グ
ラム陰性菌が混入すれば急速に増殖し、新たにエンドト
キシンを発生させる。このように細菌に由来する問題
は、一般の無機・有機の不純物と異なって、混入した量
以上に増え、また滅菌処理もやり方を間違えれば、細菌
自体は滅菌出来ても逆効果となることにある。
On the other hand, Gram-negative bacteria that release this endotoxin are not special bacteria but are resident bacteria that live in a general living environment, and easily grow in pure water or dialysate.
Therefore, even if endotoxin is completely removed, if gram-negative bacteria are mixed in, it will grow rapidly and generate new endotoxin. In this way, the problem derived from bacteria is different from general inorganic and organic impurities, and increases more than the amount mixed in.In addition, if the sterilization process is wrong, even if the bacteria themselves can be sterilized, it will have the opposite effect. is there.

【0014】これらの課題は、透析用の純水装置が置か
れた下記の状況を考慮すると、従来装置では解決が非常
に難しい問題であった。
[0014] These problems have been extremely difficult to solve with the conventional apparatus in consideration of the following situation in which a pure water apparatus for dialysis is placed.

【0015】(1)透析液中に塩素が残留していれば患
者の血液を損傷する(赤血球を破壊する)。従って、細
菌発生を抑制するため原水中に添加されている残留塩素
は、前処理部(A)の活性炭濾過器(3)で完全に除去さ
れる。そのため系全体が細菌汚染に弱い。一方病院施設
の環境は細菌的に必ずしも好ましいものではなく、大気
中やオペレータから細菌が混入する恐れがある。
(1) If chlorine remains in the dialysate, the blood of the patient is damaged (red blood cells are destroyed). Therefore, the residual chlorine added to the raw water to suppress bacterial generation is completely removed by the activated carbon filter (3) in the pretreatment section (A). Therefore, the whole system is vulnerable to bacterial contamination. On the other hand, the environment of a hospital facility is not necessarily bacterially favorable, and there is a possibility that bacteria may enter the atmosphere or from an operator.

【0016】(2)電子工業分野と異なって小規模であ
るため、精製水の無菌性を管理する専任の技術者を擁す
ることが難しい。
(2) Unlike the electronics industry, the scale is small, and it is difficult to have a dedicated engineer to control the sterility of purified water.

【0017】(3)当該純水装置は夜間停止する。更に
上述したように、治療中もユースポイントでの消費量に
合わせて断続の造水運転を行なう。またシステムが複雑
なこともあって、配管にデッドスペースを生じ易い。こ
のような水が滞留する箇所や時間帯では、容易に細菌が
増殖しやすい。
(3) The pure water apparatus is stopped at night. Further, as described above, the intermittent fresh water generation operation is performed according to the consumption at the use point during the treatment. In addition, due to the complexity of the system, dead space is easily generated in the piping. Bacteria are easily proliferated in places where such water stays and in time zones.

【0018】(4)ROモジュールは約10kg/cm2
程度の圧力で操作されるが、RO供給ポンプ(5)のオン
・オフに伴って逆浸透膜に圧力ショックが掛って膜が伸
張し、これが長期に繰返されると膜表面に亀裂が生じ、
細菌汚染のある前処理水がリークする恐れがある。RO
水タンク(7)の容量を大きくするとRO供給ポンプ(5)の
発停頻度を緩和出来るが、逆にタンク内での純水滞留時
間が長くなり、細菌発生防止の面から好ましくない。
(4) RO module is about 10 kg / cm 2
Although it is operated at about the same pressure, pressure shock is applied to the reverse osmosis membrane as the RO feed pump (5) is turned on and off, and the membrane is stretched.If this is repeated for a long time, cracks occur on the membrane surface,
Pretreatment water with bacterial contamination may leak. RO
Increasing the capacity of the water tank (7) can reduce the frequency of starting and stopping the RO supply pump (5), but conversely increases the pure water residence time in the tank, which is not preferable from the viewpoint of preventing bacterial generation.

【0019】(5)同時に急激に高圧が付与される時の
ショックにより、デッドゾーンで生成した細菌やエンド
トキシンが一時的に多量に排出される恐れがある。。
(5) At the same time, there is a possibility that a large amount of bacteria and endotoxin produced in the dead zone are temporarily discharged due to a shock when a high pressure is suddenly applied. .

【0020】(6)ROモジュールの逆浸透膜は耐塩素
性能が低いため、滅菌操作として簡便な塩素滅菌を定常
的に実施し難い。そのため長期に渡って滅菌処理されな
いことも稀ではなく、細菌が増殖し易い。
(6) Since the reverse osmosis membrane of the RO module has low chlorine resistance, it is difficult to routinely perform simple chlorine sterilization as a sterilization operation. Therefore, it is not rare that the sterilization treatment is not performed for a long period of time, and the bacteria easily grow.

【0021】(7)同様に逆浸透膜が塩素に堪えないた
め、これに供給する水は活性炭濾過器(3)で原水中の塩
素除去処理を行なう。従って活性炭濾過器内では無塩素
状態となり、細菌の温床になり易く、またそれに付帯し
てエンドトキシンが発生する危険性が高い。そのため逆
浸透膜に僅かな欠陥があると、これが二次側(純水側)
にリークする。更に逆浸透膜には異常がなくても、エレ
メント部とケーシング部を流体的にシールするOリング
等の経時機能低下があると、ROポンプのオン・オフ稼
動時の急激な圧力ショックにより、汚染された一次原水
が洩れ込む。
(7) Similarly, since the reverse osmosis membrane cannot tolerate chlorine, the water supplied to the reverse osmosis membrane is subjected to a treatment for removing chlorine from raw water by an activated carbon filter (3). Therefore, the activated carbon filter is in a chlorine-free state, easily becoming a breeding ground for bacteria, and associated with it, there is a high risk of generating endotoxin. Therefore, if there is a slight defect in the reverse osmosis membrane, this is the secondary side (pure water side)
To leak. Even if there is no abnormality in the reverse osmosis membrane, if there is a deterioration in the function over time such as an O-ring that fluidly seals the element and the casing, contamination may occur due to a sudden pressure shock when the RO pump is turned on and off. The leaked primary raw water leaks.

【0022】(8)エンドトキシンは謂わば細菌の死骸
である。従って細菌発生が認められた場合には適切な滅
菌処理を施さないと、グラム陰性菌は死滅させても、か
えって高濃度なエンドトキシンをばら撒くことになる。
(8) Endotoxin is a so-called dead body of bacteria. Therefore, if bacterial outbreaks are observed, unless proper sterilization is performed, gram-negative bacteria will be killed, but rather, a high concentration of endotoxin will be dispersed.

【0023】[0023]

【発明が解決しようとする課題】本発明は、従来装置の
問題点を改善し、医学界の要請に応えられる安定して高
度な純水を供給出来る逆浸透膜式純水製造装置を提供す
ることにある。更には従来装置以上に操作性や経済性に
優れた逆浸透膜式純水製造装置を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional apparatus and provides a reverse osmosis membrane-type pure water producing apparatus capable of supplying a stable and highly pure water that meets the needs of the medical community. It is in. It is still another object of the present invention to provide a reverse osmosis membrane type pure water producing apparatus which is more operable and economical than the conventional apparatus.

【0024】[0024]

【課題を解決するための手段】本発明者らが鋭意検討の
結果、本発明の上記課題は、次の構成を有する本発明に
よって工業的に有利に達成された。
As a result of intensive studies by the present inventors, the above object of the present invention has been industrially advantageously achieved by the present invention having the following constitution.

【0025】すなわち、その構成とは、「原水中の残留
塩素を除去する前処理部と、RO供給ポンプ及び逆浸透
膜を内蔵したROモジュールにより前記前処理部で処理
された原水を精製する水精製部と、前記水精製部で得ら
れた精製水を貯溜するRO水タンク部からなり、前記R
O供給ポンプを吐出量可変装置で駆動し、精製水の消費
量に応じて前記吐出量可変装置を操作し、2段階以上の
造水量で運転するごとくなした逆浸透膜式純水製造装
置。」である。
That is, the constitution is defined as “a pretreatment unit for removing residual chlorine in raw water, and a water for purifying raw water treated in the pretreatment unit by an RO module having a RO supply pump and a reverse osmosis membrane. A purification unit, and an RO water tank unit for storing purified water obtained in the water purification unit.
A reverse osmosis membrane type pure water production apparatus wherein the O supply pump is driven by a variable discharge amount device, the variable discharge amount device is operated in accordance with the consumption of purified water, and the operation is performed at two or more levels of fresh water. ".

【0026】本発明の最大の特徴は、RO供給ポンプを
吐出量可変装置で駆動し、精製水の消費量に応じてこの
吐出量可変装置を操作し、2段階以上の造水量で運転す
るごとくなした点にある。
The most important feature of the present invention is that the RO supply pump is driven by the variable discharge amount device, and the variable discharge amount device is operated in accordance with the consumption of purified water. There is a point.

【0027】[0027]

【発明の実施の形態】本発明では、液面計(13)等からの
制御信号により、RO供給ポンプ(5)の回転速度を多段
階に制御し、ROポンプ(5)の停止頻度を大幅に低減す
るとともに、ROモジュール(6)の耐久性を向上させ、
精製される純水の向上及び安定化を図る。 [第一の実施態様]以下に本発明の第一の実施態様を図
1のフロー図により説明する。(1)から(12)、(14)(1
5)、(17)から(19)は、図4と全く同じ構成部材である。
図4に示された流量調節弁(16)は除外されている。(11
3)は液面計であるが、上段(HC)、下段(LC)に加
えて、中段(MC)の3点の検出信号を有する。この液
面計(113)の検出信号は、ポンプ制御信号ライン(120)を
経て、インバータ(121)に到来し、ROポンプ(5)の回転
速度を調節する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the rotation speed of an RO supply pump (5) is controlled in multiple stages by a control signal from a liquid level gauge (13) or the like, and the stop frequency of the RO pump (5) is greatly increased. And improve the durability of the RO module (6),
Improve and stabilize purified water. [First Embodiment] The first embodiment of the present invention will be described below with reference to the flowchart of FIG. (1) to (12), (14) (1
5) and (17) to (19) are the same components as those in FIG.
The flow control valve (16) shown in FIG. 4 is omitted. (11
Reference numeral 3) denotes a liquid level gauge, which has detection signals at three points of a middle stage (MC) in addition to an upper stage (HC) and a lower stage (LC). The detection signal of the liquid level gauge (113) reaches the inverter (121) via the pump control signal line (120), and adjusts the rotation speed of the RO pump (5).

【0028】以下図面に基づいて詳細にその動作を説明
する。今RO水タンク(7)には前処理部(A)及び水精
製部(B)で製造された純水が貯溜され、その液面はH
C〜LC間のいずれかの位置にあり、ROポンプ(5)は
停止している。ユースポイント(11)での純水消費に伴
い、タンク内の液面が低下し下段LCに達すると、液面
計(113)からの信号は信号ライン(120)を経てインバータ
(121)へRO供給ポンプ(5)の高速回転信号を送信する。
これにより所定の造水流量Q1で純水の製造を始め、タ
ンク内の液面は上昇(回復)し始める。これが中段MC
に達した時点で造水流量をQ2に低下させ、造水を継続
する。更に液面が上昇し上段HCに達すれば、ROポン
プ(5)を停止させる。
Hereinafter, the operation will be described in detail with reference to the drawings. Now, the RO water tank (7) stores pure water produced in the pretreatment section (A) and the water purification section (B), and its liquid level is H.
In any position between C and LC, the RO pump (5) is stopped. With the consumption of pure water at the use point (11), when the liquid level in the tank drops and reaches the lower LC, the signal from the liquid level gauge (113) is sent to the inverter via the signal line (120).
A high-speed rotation signal of the RO supply pump (5) is transmitted to (121).
Thus began the manufacture of pure water at a predetermined water production rate Q 1, the liquid level in the tank begins to rise (recovery). This is the middle MC
The desalination rate upon reaching decreased to Q 2, to continue the desalination. When the liquid level further rises and reaches the upper stage HC, the RO pump (5) is stopped.

【0029】ここで使用されるインバータ(121)は特別
なものではなく、商用電源(50/60Hz)から任意
の周波数を作り出すことが出来ればよい。この周波数に
比例してROポンプ供給(5)が回転する。精製水切換え
弁(122)は3方弁であり、RO供給ポンプ(5)の運転開始
直後の精製水には、配管部滞留箇所で生成した不純物を
含む恐れがある。そのため運転開始後数分間は、生成水
を排水ライン(123)から系外に排出する。
The inverter (121) used here is not special, and it is sufficient that an arbitrary frequency can be generated from a commercial power supply (50/60 Hz). The RO pump supply (5) rotates in proportion to this frequency. The purified water switching valve (122) is a three-way valve, and the purified water immediately after the start of the operation of the RO supply pump (5) may include impurities generated at the stagnation portion of the pipe. Therefore, the generated water is discharged from the drainage line (123) to the outside of the system for several minutes after the start of operation.

【0030】なお、一般的にはユースポイントで定常的
に消費される純水流量Q0に対し、Q1>Q0>Q2と設定
されるのが好ましい。この場合は、RO供給ポンプ(5)
回転数はQ1とQ2に相当する回転速度で切換えられ、ほ
ぼ連続して運転される。
Generally, it is preferable to set Q 1 > Q 0 > Q 2 with respect to the pure water flow rate Q 0 constantly consumed at the use point. In this case, RO feed pump (5)
Rotational speed is switched at a rotational speed corresponding to Q 1, Q 2, is operated almost continuously.

【0031】逆浸透膜の特性は、一般的には図2のよう
な圧力依存性がある。従ってRO供給ポンプ(5)の回転
数を低下させることにより、逆浸透膜に付与される圧力
が変わり、ROモジュールでの造水流量もほぼ圧力に比
例して低下する。一方この圧力の低下に伴い造水された
純水の電導度も悪化する。例えば操作圧力がK点の10
kg/cm2で運転されていたものがL点の5kg/c
2に低下すると、下図(E)に見られるように、造水
流量がほぼ半分になる。一方上図(D)に示すように、
1価イオンの代表物質であるNacl排除率は、K’点
の99.1%から98.7%に低下(透過率としては
0.9%から1.3%に上昇し、4割強透過量が上昇)
し、精製された純水の水質が変化する。そのため従来の
透析用純水装置は一定の圧力条件で運転させていた。
The characteristics of the reverse osmosis membrane generally have a pressure dependency as shown in FIG. Therefore, by reducing the rotation speed of the RO supply pump (5), the pressure applied to the reverse osmosis membrane changes, and the flow rate of fresh water in the RO module also decreases substantially in proportion to the pressure. On the other hand, as the pressure decreases, the conductivity of the produced pure water also deteriorates. For example, if the operating pressure is K point 10
What was operated at kg / cm 2 was 5kg / c at point L
When it is reduced to m 2 , as shown in the following figure (E), the fresh water flow rate becomes almost half. On the other hand, as shown in FIG.
The NaCl exclusion rate, which is a representative of monovalent ions, decreased from 99.1% to 98.7% at the K 'point (the transmittance increased from 0.9% to 1.3%, and the transmission rate exceeded 40%) Amount rises)
Then, the quality of the purified pure water changes. Therefore, the conventional pure water apparatus for dialysis was operated under a constant pressure condition.

【0032】この一定条件での操業は、最終ユースポイ
ントにおいて比抵抗16MΩ・cm以上(電導度0.0
63μS/cm以下)のほぼ理論純水を必要とする電子
工業分野での運転ノウハウによるものである。この分野
では水質安定を最優先するため、水質変動は許容される
ものではない。そのため常に一定の条件で操業され、ユ
ースポイントで消費量変動が発生した場合は、純水をオ
ーバーフローさせて排水することが多い。
The operation under the constant conditions is such that the specific resistance is 16 MΩ · cm or more (conductivity of 0.0
(Less than 63 μS / cm) due to the operational know-how in the electronics industry which requires almost theoretical pure water. In this field, water quality fluctuations are not acceptable because water quality stability is a top priority. Therefore, the operation is always performed under a constant condition, and when the consumption amount fluctuates at the use point, the pure water is often overflown and drained.

【0033】しかし透析医療用の純水製造装置において
は、この程度の電導度の変化は本質的に問題ない。何故
なら一般的な透析用RO装置においては、水道水の電導
度300μS/cmレベルのものを、ROモジュール
(6)出で3μS/cmレベル(排除率として99%)に
まで精製する。しかしRO水タンク(7)の下流側の透析
装置等のユースポイントにおいては、この純水に多量の
電解質成分(Nacl等)を注入し、血液と同レベルの
電導度を有した透析液に調整する。そのため最終的には
14mS/cm(=14,000μS/cm)に調合さ
れる。従ってROモジュールでの造水量低下に伴う操作
圧力低下により、若干Nacl分が純水中に透過し、4
μS/cm(従って3割強の透過量アップ)になって
も、最終の透析液としてはパーセント以下の変動であ
り、患者の電導度のばらつきや、電解質調合の精度から
して問題ないからである。
However, in a pure water producing apparatus for dialysis medical treatment, such a change in electric conductivity is essentially no problem. The reason is that in a general RO device for dialysis, tap water having an electric conductivity of 300 μS / cm level is
(6) Purify to 3 μS / cm level (exclusion rate: 99%). However, at the point of use of a dialysis device or the like downstream of the RO water tank (7), a large amount of an electrolyte component (such as NaCl) is injected into the pure water to adjust the dialysate to have the same level of conductivity as blood. I do. Therefore, it is finally adjusted to 14 mS / cm (= 14,000 μS / cm). Therefore, due to a decrease in the operating pressure due to a decrease in the amount of fresh water in the RO module, a small amount of NaCl permeates into pure water and
Even when μS / cm (percentage of permeate is increased by more than 30%), the final dialysate has a fluctuation of less than percent, and there is no problem in terms of the dispersion of the electric conductivity of the patient and the accuracy of the electrolyte preparation. is there.

【0034】透析用RO装置における水精製の役割は、
アルミニウムイオン等の重金属イオン類、細菌やエンド
トキシンを確実にかつ安定して除去することにあり、ユ
ースポイントで多量に添加される1価の塩類の除去性能
のこの程度の変動は問題とならない。1価の塩分が測定
されるのは、電導度測定法が簡便でかつ装置が安価であ
るため、その便宜性から、逆浸透膜の性能劣化(例えば
逆浸透膜破損による一次側の水のリーク)の発生の異常
管理の指標とされるものである。すなわち、膜にリーク
が発生した結果に基づく電導度の低下を管理しているも
のであり、電導度の低下の全ての要因が膜リークではな
い。逆浸透膜が正常である限り、管理された圧力条件や
流水条件の変化による若干の1価イオンの透過量変動
(従って電導度)は、透析用のRO装置では問題とされ
ない。
The role of water purification in the RO device for dialysis is as follows:
In order to reliably and stably remove heavy metal ions such as aluminum ions, bacteria and endotoxin, such a change in the removal performance of monovalent salts which are added in large amounts at the point of use does not pose a problem. The monovalent salt is measured because the conductivity measurement method is simple and the apparatus is inexpensive. Therefore, the performance of the reverse osmosis membrane is deteriorated (for example, leakage of water on the primary side due to breakage of the reverse osmosis membrane). )) Is used as an index for abnormality management of the occurrence of That is, a decrease in the electrical conductivity based on the result of the occurrence of the leak in the film is managed, and all the factors of the decrease in the electrical conductivity are not film leaks. As long as the reverse osmosis membrane is normal, a slight change in the permeation amount of monovalent ions (accordingly, conductivity) due to a change in the controlled pressure condition or flowing water condition is not a problem in the RO device for dialysis.

【0035】以上のように本発明の装置によれば、1つ
にはインバータによりRO供給ポンプ(5)を可変制御す
ることにより、細菌繁殖やエンドトキシン発生の引金と
なる装置停止を極小にすることが出来るが、更に優れた
2、3の特徴を有する。
As described above, according to the apparatus of the present invention, in part, the RO supply pump (5) is variably controlled by an inverter, thereby minimizing the stoppage of the apparatus which triggers bacterial growth and endotoxin generation. However, it has a few more excellent characteristics.

【0036】2つには、一般的に使用されている合成膜
使いの逆浸透膜は、全体としては約200μmの膜厚さ
があるが、純水製造に関わる脱塩素機能層はその僅か1
000分の1の表面の0.2μm程度であり、これが下
層の支持層或いは基材の上に塗布されている。従って頻
繁な圧力の繰返し付与の都度に、この脱塩素機能層に伸
張/収縮が起り、表面に皺を発生しその部分に亀裂を発
生したり、下層の支持層との界面で剥離が起る懸念があ
る。もしこの様な亀裂が発生すると、これらは一次側の
汚染された原水の二次側へのリークに繋がるものであ
る。
Secondly, a reverse osmosis membrane generally using a synthetic membrane has a thickness of about 200 μm as a whole, but the dechlorination functional layer involved in pure water production has only one layer.
It is about 0.2 μm on the surface of 1 / 000th, and this is applied on the lower supporting layer or substrate. Therefore, each time frequent pressure is repeatedly applied, the dechlorination functional layer expands / contracts, causing wrinkles on the surface and cracks at the portion, and peeling at the interface with the lower supporting layer. There are concerns. If such cracks occur, they can lead to leakage of the contaminated raw water on the primary side to the secondary side.

【0037】3つには、直接的には精製水のクリーン度
には関係しないが、これを利用する施設側への利点であ
る。従来装置は図4の流量調節弁(16)で操作されてい
た。そのため流量調節弁(16)での圧力損失分を含めて更
に高い圧力、例えば15kg/cm2程度でRO供給ポ
ンプ(5)は操作されていた。従ってRO供給ポンプの回
転数が高くなり、RO供給ポンプ(5)自体の騒音が高く
なる。更に、流量調節弁(16)での急激な減圧に伴う金属
的なキャビテーション音がうるさく、装置のオペレータ
のみならず、病室で安静に治療を受けている患者からク
レームを受けることがあった。本発明はこのような問題
を解決するとともに、必要最低のエネルギーで操作され
るため、電力消費量も大幅に低減出来る。
The third is not directly related to the degree of cleanliness of purified water, but is advantageous to facilities utilizing the same. The conventional device was operated by the flow control valve (16) in FIG. Therefore, the RO supply pump (5) was operated at a higher pressure including the pressure loss at the flow rate control valve (16), for example, about 15 kg / cm 2 . Therefore, the rotational speed of the RO supply pump increases, and the noise of the RO supply pump (5) itself increases. Further, the metallic cavitation noise accompanying the rapid depressurization of the flow control valve (16) is noisy, and there are cases where complaints are received not only from the operator of the apparatus but also from patients who are undergoing treatment in a hospital room. The present invention solves these problems and operates with the minimum required energy, so that the power consumption can be significantly reduced.

【0038】なお透析治療は一般的には夜間は実施され
ない。特に土曜日の夜半から月曜日の早朝まで、連続し
て32時間以上、造水の要求はない。そのため排出弁(1
30)を設け、1時間以上連続して造水要求のない場合、
すなわちRO供給ポンプ(5)の稼動要求がない場合に、
排出弁(130)を約数分間だけ開放し、活性炭濾過器(3)内
の滞留水を系外に排出する。更に、当該装置の運転開始
に先立って、排出弁(130)を一時的に開放し、細菌等で
汚染された原水がROモジュールに供給されるのを抑制
している。また例えば4〜8時間に渡って連続して停止
した場合は、RO供給ポンプ(5)も十数分程度運転して
新しい原水を受入れ、系全体の滞留水を追出してやる。
これにより滞留中に発生する細菌増殖の影響を軽微にし
ている。 [第二の実施態様]全く装置を停止しない第二の実施態
様を、図3により説明する。
[0038] Dialysis treatment is generally not performed at night. In particular, there is no demand for fresh water for more than 32 hours in a row, from midnight on Saturday to early morning on Monday. Therefore, the discharge valve (1
30), if there is no demand for fresh water for more than one hour,
That is, when there is no operation request of the RO supply pump (5),
The discharge valve (130) is opened only for about several minutes, and the water retained in the activated carbon filter (3) is discharged out of the system. Further, prior to the start of the operation of the apparatus, the discharge valve (130) is temporarily opened to suppress supply of raw water contaminated with bacteria and the like to the RO module. In addition, for example, when the operation is stopped continuously for 4 to 8 hours, the RO supply pump (5) is also operated for about ten and several minutes to receive fresh raw water and expel remaining water of the entire system.
As a result, the influence of bacterial growth occurring during the stay is reduced. [Second Embodiment] A second embodiment in which the apparatus is not stopped at all will be described with reference to FIG.

【0039】図3において、(1)〜(15)、(17)〜(19)
は、図4の同一番号の構成品と同じである。新たに原水
タンク(224)が設けられ、水道水は一旦この原水タンク
(225)に貯溜される。液面計(13)は図4と同様に2点と
なっている。従って、下限LCでRO水タンク(7)内へ
純水が供給されるが、上限HCに達すると、精製水切換
え弁(222)をライン(223)に切換え、精製水を原水タンク
(224)に還流するとともに、濃縮水切換え弁(225)をライ
ン(226)に切換え、同様に原水タンク(224)に還流する。
この時、各構成部材の寿命や電力消費量を低減させるた
め、信号ライン(220)を経てインバータ(221)へ送信し、
ROポンプ(5)の回転速度を低速にする。従って、水は
一旦ROモジュール(6)で精製水と濃縮水に分離される
が、原水タンク(224)で会合し、循環使用されることに
なる。
In FIG. 3, (1) to (15), (17) to (19)
Are the same as the components with the same numbers in FIG. A new raw water tank (224) is provided, and tap water is temporarily stored in this raw water tank.
Stored at (225). The liquid level gauge (13) has two points as in FIG. Accordingly, pure water is supplied into the RO water tank (7) at the lower limit LC, but when the upper limit HC is reached, the purified water switching valve (222) is switched to the line (223), and the purified water is supplied to the raw water tank.
While returning to (224), the concentrated water switching valve (225) is switched to the line (226), and the same is returned to the raw water tank (224).
At this time, in order to reduce the life and power consumption of each component, the signal is transmitted to the inverter (221) via the signal line (220),
Reduce the rotation speed of the RO pump (5). Therefore, the water is once separated into purified water and concentrated water by the RO module (6), but is associated with the raw water tank (224) and is recycled.

【0040】液面計(13)が再びLCに達した時、インバ
ータ(221)によりRO供給ポンプ(5)を高速回転させる。
同時に切換え弁(222)と切換え弁(225)を切換え、精製水
はRO水タンク(7)へ受入れられるとともに、流量計(1
5)を経た濃縮水は全量系外へ排水される。なお切換え弁
(222)は数分遅れて切換えてもよい。これにより全系が
高速条件下に安定した後に純水として受入れることが出
来、精製水の水質がより安定する。この切換え弁(222)
は第一の実施態様(図2)の切換え弁(122)と同様の作
動をさせるものであるが、第一の実施態様と違って、こ
の間の過渡的な純水は原水タンク(224)に戻るため、水
道水を有効に利用出来る。
When the liquid level gauge (13) reaches LC again, the RO supply pump (5) is rotated at a high speed by the inverter (221).
At the same time, the switching valve (222) and the switching valve (225) are switched, the purified water is received into the RO water tank (7), and the flow meter (1
The concentrated water passed through 5) is drained out of the system. Switching valve
(222) may be switched several minutes later. This allows the whole system to be accepted as pure water after being stabilized under high-speed conditions, and the quality of purified water is more stable. This switching valve (222)
Operates in the same manner as the switching valve (122) of the first embodiment (FIG. 2), but unlike the first embodiment, the transient pure water during this period is stored in the raw water tank (224). To return, tap water can be used effectively.

【0041】なお、本発明の主旨は上記で判る通り、従
来は一定条件下での運転が常識とされ、これをオン・オ
フ運転していた透析用RO装置を、インバータにより多
段での変速運転を可能にしたことにある。従って上記の
実施態様に制限されるものではなく、下記の応用が可能
であり、これらも本発明に含まれるものである。
As can be seen from the above, the gist of the present invention is that it is common practice to operate under a certain condition in the past. Is made possible. Therefore, the present invention is not limited to the above-described embodiment, and the following applications are possible, and these are also included in the present invention.

【0042】例えば、第一の実施態様の液面計(13)は3
点検出であるが、これ以上の多点検出であってもよく、
また連続的に液面を検出して、多段階でRO供給ポンプ
(5)の回転数を制御してもよい。更には透析装置(11)側
から所要流量の信号や治療中の患者数の信号を貰って、
連続的にRO供給ポンプ(5)の回転速度を制御してもよ
い。上述したように、この回転速度変化による水質の変
化は、透析医療分野においては許容されるものである
が、RO供給ポンプ(5)の高速回転速度と、低速回転速
度の比は、3:1、好ましくは2:1程度が望ましい。
For example, the liquid level gauge (13) of the first embodiment
Although it is point detection, more multipoint detection may be used.
Also continuously detects the liquid level and multi-stage RO supply pump
The rotation speed of (5) may be controlled. Furthermore, a signal of the required flow rate and a signal of the number of patients being treated are obtained from the dialysis machine (11),
The rotation speed of the RO supply pump (5) may be controlled continuously. As described above, the change in water quality due to this change in rotation speed is acceptable in the field of dialysis medicine, but the ratio between the high-speed rotation speed and the low-speed rotation speed of the RO supply pump (5) is 3: 1. , Preferably about 2: 1.

【0043】またRO供給ポンプ(5)の運転或いは速度
変更時には、当該インバータの特性を利用して、スロー
スタート/スローダウンさせれば、急激な圧力ショック
をより緩和出来、一層逆浸透膜の耐久性向上に効果的で
ある。
When the RO supply pump (5) is operated or its speed is changed, if the speed is slow-started / slow-down by utilizing the characteristics of the inverter, a sudden pressure shock can be alleviated more and the durability of the reverse osmosis membrane can be further reduced. It is effective in improving the performance.

【0044】更に逆浸透膜は供給される水の温度によ
り、造水量及びNacl排除率は変化する。従って第一
の実施態様におけるQ1及びQ2の精製水流量を得るため
の圧力従ってRO供給ポンプ(5)の回転速度は、外部か
ら設定可能とし、夏・冬で変更可能としてもよい。また
病院での治療患者数は曜日や時間帯で異なる。従ってそ
れに合わせた標準流量QSに相当する回転速度を外部か
ら入力し、その値を中心に上下にある幅をもった2種の
回転速度に切換えるようにしてもよい。
Further, in the reverse osmosis membrane, the amount of fresh water and the NaCl rejection change depending on the temperature of the supplied water. Thus the rotational speed of the pressure therefore RO feed pump for obtaining a purified water flow rate of Q 1 and Q 2 in the first embodiment (5) is to be set from the outside, it may be changed in summer and winter. The number of patients treated at hospitals varies depending on the day of the week and time of day. Therefore, the rotation speed corresponding to the standard flow rate QS may be inputted from the outside, and the rotation speed may be switched to two rotation speeds having widths above and below the value.

【0045】第二の実施態様においては、ROモジュー
ル(6)の入口や循環ライン、或いは原水タンク(224)にU
V滅菌灯を設けることが出来る。これによりROモジュ
ール(6)へ供給される原水中の細菌を極小化出来る。更
に図では原水タンク(224)は軟水器(2)及び活性炭濾過器
(3)の上流側にあるが、これを下流側とすることも出来
る。この場合は、ライン(223)及び(226)の循環水は活性
炭濾過器(3)を経由しないため、純水造水の要求のない
時に、この原水タンク(224)にホルマリン等の滅菌剤を
添加して洗浄用薬液タンクとして利用し、ROモジュー
ル(6)の滅菌・洗浄に供することが出来る。
In the second embodiment, the inlet or the circulation line of the RO module (6) or the raw water tank (224) is
A V-sterilizing light can be provided. Thereby, the bacteria in the raw water supplied to the RO module (6) can be minimized. In the figure, the raw water tank (224) is a water softener (2) and an activated carbon filter.
Although it is on the upstream side of (3), this can be the downstream side. In this case, since the circulating water of the lines (223) and (226) does not pass through the activated carbon filter (3), a sterilizing agent such as formalin is supplied to the raw water tank (224) when there is no demand for pure water. It can be added and used as a cleaning chemical tank, and can be used for sterilization and cleaning of the RO module (6).

【0046】[0046]

【発明の効果】原水中のエンドトキシン量が10,00
0IU/mlレベルのものに対し、従来は透析用RO装
置では50IU/mlレベルであり、時には200IU
/mlに達することもあった精製純水中のエンドトキシ
ン量を、上記第一及び第二の実施態様に示した装置によ
り、滅菌操作等の煩雑な作業を伴わずに、長期的に安定
して5IU/ml以下に維持することが可能になった。
The endotoxin content in raw water is 10,000
Conventionally, the RO apparatus for dialysis has a level of 50 IU / ml, whereas the level of 0 IU / ml, and sometimes 200 IU / ml.
/ Ml in purified pure water, which can sometimes reach to 1 ml / ml, for a long period of time by the apparatus shown in the first and second embodiments without complicated operations such as sterilization operation. It became possible to maintain it at 5 IU / ml or less.

【0047】これは透析患者の治療安全性を確実するた
めに大きさ成果が得られたが、これに留らない。上述し
たごとく現在検討中の種々の新しい治療法は透析液のク
リーン化を必然的に伴うものであり、これらの高性能な
治療法を実用化するのに役立つ。
This has been, but not limited to, significant results to ensure the therapeutic safety of dialysis patients. As described above, various new therapies currently being studied necessarily involve a clean dialysate, which is useful for putting these high-performance therapies into practical use.

【0048】更に施設側にとっては、省エネルギー化
(電力・水の消費量低減)を可能にするとともに、高価
なROモジュールの耐久性を向上させる等、経済的な効
果も大きい。また低騒音化により、病室の環境を改善出
来る。
Further, for the facility side, it is possible to save energy (reduce the consumption of electric power and water) and to improve the durability of the expensive RO module, which has great economic effects. In addition, the environment of the hospital room can be improved by reducing noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】:本発明にかかる第一の実施態様のフローであ
る。
FIG. 1 is a flowchart of a first embodiment according to the present invention.

【図2】:逆浸透膜の性能説明図である。FIG. 2 is a diagram illustrating the performance of a reverse osmosis membrane.

【図3】:本発明にかかる第二の実施態様のフローであ
る。
FIG. 3: Flow of a second embodiment according to the present invention.

【図4】:従来の装置のフローである。FIG. 4 is a flow of a conventional apparatus.

【符号の説明】[Explanation of symbols]

1:原水ポンプ 2:軟水器 3:活性炭濾過器 4:フィルター 5:RO供給ポンプ 6:ROモジュール 7:RO水タンク 13:液面計 113:液面計 120:ポンプ制御信号ライン 121:インバータ 220:ポンプ制御信号ライン 221:インバータ 1: Raw water pump 2: Water softener 3: Activated carbon filter 4: Filter 5: RO supply pump 6: RO module 7: RO water tank 13: Liquid level gauge 113: Liquid level gauge 120: Pump control signal line 121: Inverter 220 : Pump control signal line 221 : Inverter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原水中の残留塩素を除去する前処理部と、
RO供給ポンプ及び逆浸透膜を内蔵したROモジュール
により前記前処理部で処理された原水を精製する水精製
部と、前記水精製部で得られた精製水を貯溜するRO水
タンク部からなり、前記RO供給ポンプを吐出量可変装
置で駆動し、精製水の消費量に応じて前記吐出量可変装
置を操作し、2段階以上の造水量で運転するごとくなし
た逆浸透膜式純水製造装置。
1. A pretreatment section for removing residual chlorine in raw water,
A water purification unit for purifying raw water treated in the pretreatment unit by an RO module incorporating a RO supply pump and a reverse osmosis membrane, and an RO water tank unit for storing purified water obtained in the water purification unit; A reverse osmosis membrane type pure water production apparatus in which the RO supply pump is driven by a variable discharge amount device, the variable discharge amount device is operated in accordance with the consumption of purified water, and the operation is performed at two or more stages of fresh water production. .
JP28770397A 1997-10-03 1997-10-03 Reverse osmosis membrane type pure water-making apparatus Pending JPH11104639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28770397A JPH11104639A (en) 1997-10-03 1997-10-03 Reverse osmosis membrane type pure water-making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28770397A JPH11104639A (en) 1997-10-03 1997-10-03 Reverse osmosis membrane type pure water-making apparatus

Publications (1)

Publication Number Publication Date
JPH11104639A true JPH11104639A (en) 1999-04-20

Family

ID=17720653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28770397A Pending JPH11104639A (en) 1997-10-03 1997-10-03 Reverse osmosis membrane type pure water-making apparatus

Country Status (1)

Country Link
JP (1) JPH11104639A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353214A (en) * 2000-06-14 2001-12-25 Toray Medical Co Ltd Dialysis system
JP2006305499A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2006305500A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Water treatment method
JP2006305498A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2007175603A (en) * 2005-12-27 2007-07-12 Miura Co Ltd Method for operating membrane filtration system
WO2009087828A1 (en) * 2008-01-07 2009-07-16 Olympus Corporation Analyzer and control method
JP2011245371A (en) * 2010-05-24 2011-12-08 Tohzai Chemical Industry Co Ltd Apparatus and method for producing pure water
JP2012196678A (en) * 2012-07-25 2012-10-18 Miura Co Ltd Operation method for membrane filtration system, and membrane filtration system
JP2014188437A (en) * 2013-03-27 2014-10-06 Miura Co Ltd Membrane separation apparatus
CN109399825A (en) * 2018-12-26 2019-03-01 中山市史麦斯净水科技有限公司 The adjustable water purifier of water yield and its runoff investigation control method
JP2019089018A (en) * 2017-11-14 2019-06-13 オルガノ株式会社 Method of operating pure production apparatus and pure water production apparatus
JP2019107612A (en) * 2017-12-19 2019-07-04 ダイセン・メンブレン・システムズ株式会社 Wastewater treatment method and wastewater recycling method
JP2021003368A (en) * 2019-06-26 2021-01-14 日機装株式会社 Water treatment device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353214A (en) * 2000-06-14 2001-12-25 Toray Medical Co Ltd Dialysis system
JP4544020B2 (en) * 2005-04-28 2010-09-15 三浦工業株式会社 Operation method of membrane filtration system
JP2006305500A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Water treatment method
JP2006305498A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2006305499A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2007175603A (en) * 2005-12-27 2007-07-12 Miura Co Ltd Method for operating membrane filtration system
WO2009087828A1 (en) * 2008-01-07 2009-07-16 Olympus Corporation Analyzer and control method
JP2011245371A (en) * 2010-05-24 2011-12-08 Tohzai Chemical Industry Co Ltd Apparatus and method for producing pure water
JP2012196678A (en) * 2012-07-25 2012-10-18 Miura Co Ltd Operation method for membrane filtration system, and membrane filtration system
JP2014188437A (en) * 2013-03-27 2014-10-06 Miura Co Ltd Membrane separation apparatus
JP2019089018A (en) * 2017-11-14 2019-06-13 オルガノ株式会社 Method of operating pure production apparatus and pure water production apparatus
JP2019107612A (en) * 2017-12-19 2019-07-04 ダイセン・メンブレン・システムズ株式会社 Wastewater treatment method and wastewater recycling method
CN109399825A (en) * 2018-12-26 2019-03-01 中山市史麦斯净水科技有限公司 The adjustable water purifier of water yield and its runoff investigation control method
JP2021003368A (en) * 2019-06-26 2021-01-14 日機装株式会社 Water treatment device

Similar Documents

Publication Publication Date Title
JP2001000969A (en) Reverse osmosis membrane type refined water making apparatus
US5032265A (en) Method and system for producing sterile aqueous solutions
CN1119291C (en) Medicinal water, method of production thereof, and dialysis apparatus using water as dialysis liquid
US20130126430A1 (en) Systems, Apparatus, and Methods for a Water Purification System
JPH11104639A (en) Reverse osmosis membrane type pure water-making apparatus
JP2000126767A (en) Method and apparatus for producing purified water
JP2007252396A (en) Manufacturing device and manufacturing method of medical purpose dialysis fluid
JP2010279870A (en) Method for producing purified water
Kawanishi et al. The central dialysis fluid delivery system (CDDS): is it specialty in Japan?
JP5028397B2 (en) Method for producing medical purified water
JP4174753B2 (en) Dialysis system
JP2001293471A (en) Purified water making device
JP2606910B2 (en) Ultrapure water production and supply equipment
CN113105042A (en) Central pure water centralized quality-divided water supply system for hospitals
JP4332829B2 (en) Dialysis system
CN205528194U (en) Second grade medicine purification wetting system
Martin et al. Design and technical adjustment of a water treatment system: 15 years of experience
JP3299093B2 (en) Pure water production method and pure water production equipment
JP6956223B2 (en) Purified water supply system and its operation method
JP2004049977A (en) Refined water making method by reverse osmosis module and refined water making apparatus employing the method
JP2997099B2 (en) System for producing sterile aqueous solution
JP2021178297A (en) Pharmaceutical water production system and its sterilization method
JP2020156674A (en) Water treatment unit for dialysis and water treatment device for dialysis
JP4361984B2 (en) Water purification system and method for cleaning water purification system
Aoike Characteristics of central dialysis fluid delivery system and single patient dialysis machine for HDF

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040421

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20040421

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040421

A977 Report on retrieval

Effective date: 20051005

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A02