JP2001351661A - Driving method of fuel cell power generating device - Google Patents

Driving method of fuel cell power generating device

Info

Publication number
JP2001351661A
JP2001351661A JP2000172933A JP2000172933A JP2001351661A JP 2001351661 A JP2001351661 A JP 2001351661A JP 2000172933 A JP2000172933 A JP 2000172933A JP 2000172933 A JP2000172933 A JP 2000172933A JP 2001351661 A JP2001351661 A JP 2001351661A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
value
gas
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000172933A
Other languages
Japanese (ja)
Other versions
JP4304829B2 (en
Inventor
Makoto Mikami
誠 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000172933A priority Critical patent/JP4304829B2/en
Publication of JP2001351661A publication Critical patent/JP2001351661A/en
Application granted granted Critical
Publication of JP4304829B2 publication Critical patent/JP4304829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a driving method of a fuel cell power generating device which prevents original fuel system, air system, and electric system of a fuel cell from temporary disturbance in the case of INV re-try at system irregularity, and aims to prevent the deterioration of the fuel cell. SOLUTION: At the system interconnection operation of the fuel cell, in the case of system irregularity, when standby operation of the fuel cell is carried out until system irregularity recovers, by instantaneously stopping an inverter, and restarting after prescribed period (T1), the system irregularity is detected at a system irregularity detecting part 31, and control indication value at an indicated/ measured value switching indication part 33 of INV re-try treatment part 32, such as current, voltage, flowing volume of original fuel, flowing volume of air, and a control indication value of fuel gas and oxidant gas at the supply system such as an original fuel valve and an air system blower, are switched from the existing value to the estimated value for the time of standby (time of re-try) at a switching part 36, and standby operation is continued after operating the fuel cell for a prescribed period (T2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力会社系統と
インバータを介して系統連系を行う燃料電池発電装置の
運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a fuel cell power generation system for interconnecting a power company system and an inverter via an inverter.

【0002】[0002]

【従来の技術】周知のとおり燃料電池は、水素リッチの
燃料改質ガスおよび酸化剤ガス(空気)を連続的に供給
して、燃料のもつエネルギーを電気化学的に電気エネル
ギーに変換するものである。かかる燃料電池を、電力会
社系統とインバータを介して系統連系運転を行うことも
周知である。
2. Description of the Related Art As is well known, a fuel cell continuously supplies a hydrogen-rich fuel reforming gas and an oxidizing gas (air) to electrochemically convert the energy of the fuel into electric energy. is there. It is also well known that such a fuel cell performs a system interconnection operation with an electric power company system via an inverter.

【0003】図2は、従来の燃料電池発電装置の概略シ
ステム系統図の一例を示すもので、燃料電池本体20
は、燃料極21および酸化剤極22を有する単電池を5
から8個積層する毎に冷却水を通流する冷却板を積層し
てなり、燃料極21および酸化剤極22にはそれぞれ燃
料ガスおよび酸化剤ガスが供給されて発電を行う。図2
において燃料ガスは、改質器4から、CO濃度を低下さ
せるためにCO変成器5を介して供給される。
FIG. 2 shows an example of a schematic system diagram of a conventional fuel cell power generator.
Is a cell having a fuel electrode 21 and an oxidant electrode 22
A cooling plate through which cooling water flows is laminated for every eight layers, and a fuel gas and an oxidizing gas are supplied to the fuel electrode 21 and the oxidizing electrode 22, respectively, to generate power. FIG.
, The fuel gas is supplied from the reformer 4 through the CO shift converter 5 to reduce the CO concentration.

【0004】燃料電池は発電に伴って熱を発生するので
発電中は冷却を要し、その冷却水40は水蒸気分離器7
からポンプ50および熱交換器30を経て燃料電池本体
20に供給される。この冷却水の温度は通常、燃料電池
の運転中は約160℃で、加圧水の状態で流れ、水蒸気
分離器7で気液分離される。水蒸気分離器7から出た水
は、熱交換器30で冷却水温度が制御された後、燃料電
池本体20を冷却し、水蒸気分離器7に戻される。
[0004] Since the fuel cell generates heat with power generation, cooling is required during power generation, and its cooling water 40 is supplied to the steam separator 7.
Is supplied to the fuel cell body 20 via the pump 50 and the heat exchanger 30. The temperature of the cooling water is usually about 160 ° C. during the operation of the fuel cell, flows in the state of pressurized water, and is separated into gas and liquid by the steam separator 7. The water that has flowed out of the steam separator 7 cools the fuel cell body 20 after the temperature of the cooling water is controlled by the heat exchanger 30, and is returned to the steam separator 7.

【0005】水蒸気分離器7で気液分離された蒸気は、
蒸気配管9によりエゼクタ3に導入され、原燃料供給ラ
イン8から原燃料(ガス)を前記水蒸気流のエゼクタ吸
引力により吸引して、原燃料と水蒸気の混合物を改質器
4に導入する。原燃料は改質器における改質反応により
水素リッチなガスに改質される。
[0005] The vapor separated by the steam separator 7 is
The raw fuel (gas) is introduced into the ejector 3 by the steam pipe 9, and is sucked from the raw fuel supply line 8 by the ejector suction force of the steam flow, and the mixture of the raw fuel and the steam is introduced into the reformer 4. The raw fuel is reformed into a hydrogen-rich gas by a reforming reaction in a reformer.

【0006】原燃料供給ライン8は、原燃料供給源15
とエゼクタ3との間に、原燃料遮断弁10,原燃料調節
弁1および脱硫器2を有し、原燃料調節弁1により燃料
電池の負荷に応じて燃料(ガス)供給量が調節される。
都市ガスなどの原燃料は腐臭剤としてイオウ成分を含ん
でいるので、これを除去するために、脱硫器2が設けら
れている。酸化剤ガスの供給量も負荷に応じて調節され
る。通常、図示しない空気系ブロアにより空気流量が制
御される。上記のように、燃料ガスと酸化剤ガスの供給
系統は、燃料電池の出力電圧と出力電流に基づいて制御
される。
[0006] The raw fuel supply line 8 is provided with a raw fuel supply source 15.
A fuel and gas shutoff valve 10, a raw fuel control valve 1, and a desulfurizer 2 are provided between the fuel and the ejector 3, and the fuel (gas) supply amount is adjusted by the raw fuel control valve 1 according to the load of the fuel cell. .
Raw fuel such as city gas contains a sulfur component as a deodorant, and therefore a desulfurizer 2 is provided to remove the sulfur component. The supply amount of the oxidizing gas is also adjusted according to the load. Normally, the air flow rate is controlled by an air system blower (not shown). As described above, the supply system of the fuel gas and the oxidizing gas is controlled based on the output voltage and the output current of the fuel cell.

【0007】原燃料の一部は、助燃ガス供給ライン14
から改質器4にも供給される。助燃ガス供給ライン14
は、原燃料供給ライン8の前記原燃料遮断弁10と原燃
料調節弁1との間から分岐し,助燃ガス遮断弁13を備
える。改質器4の反応は吸熱反応であるために熱の供給
が必要であり、この熱は、燃料電池で発電反応に消費さ
れなかった燃料ガスのオフガス燃焼により主にまかなわ
れるが、特に燃料電池の起動時は補助燃料が必要であ
り、この補助燃料として、前記助燃ガスが使用される。
[0007] A part of the raw fuel is supplied to the auxiliary combustion gas supply line 14.
Is also supplied to the reformer 4. Auxiliary gas supply line 14
The fuel supply line 8 branches from the raw fuel cutoff valve 10 and the raw fuel control valve 1 in the raw fuel supply line 8 and includes an auxiliary gas shutoff valve 13. Since the reaction of the reformer 4 is an endothermic reaction, heat needs to be supplied. This heat is mainly provided by off-gas combustion of fuel gas not consumed in the power generation reaction in the fuel cell. At the time of startup, auxiliary fuel is required, and the auxiliary combustion gas is used as the auxiliary fuel.

【0008】図3は、従来の燃料電池発電設備を需要家
構内で電力会社系統に連系運転して用いる場合の概略構
成を示す。図3は、紙面の関係で、同(a)図、(b)
図に別けて記載しているが、(a)図右端と(b)図左
端に示すu点が接続されて、一つの系統を構成している
(詳細は、特願平11−166311号参照)。
FIG. 3 shows a schematic configuration in a case where a conventional fuel cell power generation system is used in a customer premises by being connected to a power company system. FIGS. 3A and 3B show the relationship between the drawing and FIG.
Although separately shown in the figure, the right end of the figure (a) and the u point shown at the left end of the figure (b) are connected to constitute one system (for details, refer to Japanese Patent Application No. 11-166311). ).

【0009】図3において、100は燃料電池、200
は燃料電池の直流電力を電力会社系統の周波数に同期さ
せた交流電力に変換するインバータである。ここでは、
インバータ自身の構成や制御回路は省略している。41
はインバータ出力電圧を検出する電圧検出器で、51は
インバータ出力電流を検出する電流検出器である。
In FIG. 3, reference numeral 100 denotes a fuel cell;
Is an inverter that converts the DC power of the fuel cell into AC power synchronized with the frequency of the power company system. here,
The configuration of the inverter itself and the control circuit are omitted. 41
Is a voltage detector for detecting the inverter output voltage, and 51 is a current detector for detecting the inverter output current.

【0010】300は、インバータ2の出力有効電力設
定値であるP設定値と,出力無効電力設定値であるQ設
定値と,前記電圧検出器41の出力信号v1と,前記電
流検出器の出力信号i1とが入力され、インバータ20
0の出力有効電力値と出力無効電力値のフィードバック
制御を行うために,P設定値とインバータの有効電力出
力間の偏差指令信号pおよびQ設定値とインバータの無
効電力出力間の偏差指令信号qを出力するPQ指令制御
装置である。
Reference numeral 300 denotes a P set value as an output active power set value of the inverter 2, a Q set value as an output reactive power set value, an output signal v1 of the voltage detector 41, and an output of the current detector. Signal i1 is input to the inverter 20
In order to perform feedback control of the output active power value and the output reactive power value of 0, a deviation command signal p between the P set value and the active power output of the inverter and a deviation command signal q between the Q set value and the reactive power output of the inverter Is a PQ command control device that outputs

【0011】80は電力会社系統に異常が発生した時
に、燃料電池発電装置を解列するための解列用開閉器
で、90は燃料電池発電装置内に短絡事故などが発生し
た時に、短絡電流を遮断する遮断器で、110は燃料電
池発電装置プラントを維持するための図示しないポンプ
やブロワなどの,電力消費のある補機類を示す。
Reference numeral 80 denotes a disconnecting switch for disconnecting the fuel cell power generator when an abnormality occurs in the power company system. Reference numeral 90 denotes a short-circuit current when a short circuit accident or the like occurs in the fuel cell power generator. Reference numeral 110 denotes auxiliary devices that consume electric power, such as a pump and a blower (not shown) for maintaining the fuel cell power plant.

【0012】また、130は電力会社系統を示し、需要
家受電設備における遮断器121と受電トランス120
を介して様々な図示しない構内負荷に対し、負荷フィー
ダー線123によって電力を供給している。燃料電池発
電装置も電力会社系統130に対して遮断器121と受
電トランス120と遮断器122を介して系統周波数に
同期して連系運転をしている。
Reference numeral 130 denotes a power company system, in which a breaker 121 and a power receiving transformer 120 in a customer power receiving facility are provided.
, Power is supplied to various in-house loads (not shown) by the load feeder line 123. The fuel cell power generation device also performs an interconnection operation with the power company system 130 in synchronization with the system frequency via the circuit breaker 121, the power receiving transformer 120, and the circuit breaker 122.

【0013】需要家受電設備から燃料電池発電装置まで
は屋内か屋外配線である燃料電池フィーダー線111が
布線されており、燃料電池発電装置の発電電力はこのフ
ィーダー線111で需要家構内に供給されている。
[0013] A fuel cell feeder line 111, which is an indoor or outdoor wiring, is laid from the customer's power receiving equipment to the fuel cell power generator. Power generated by the fuel cell power generator is supplied to the customer premises via the feeder line 111. Have been.

【0014】上記のように、燃料ガスと酸化剤ガスの反
応により直流電力を発生する燃料電池と、この燃料電池
の直流出力を交流出力に変換し、電力会社系統と連系運
転させるために、系統周波数に同期して運転するインバ
ータとを備えた燃料電池発電装置において、系統に異常
が発生した場合には、解列用開閉器によりインバータを
瞬時に停止し、所定時間(T1)後、例えば約200m
s後に再起動して、系統異常が回復するまで前記燃料電
池をスタンバイ運転することが通常行われる。
As described above, a fuel cell that generates DC power by the reaction between a fuel gas and an oxidant gas, and a DC output of this fuel cell that is converted into an AC output and connected to an electric power company system for operation. In a fuel cell power generator including an inverter that operates in synchronization with the system frequency, when an abnormality occurs in the system, the inverter is instantaneously stopped by a disconnection switch, and after a predetermined time (T1), for example, About 200m
Normally, the fuel cell is restarted after s, and the fuel cell is in standby operation until the system abnormality is recovered.

【0015】この場合、インバータから燃料電池の補機
類に電力を供給し、必要に応じてダミー負荷を用いて、
低負荷運転を継続してスタンバイする。
In this case, power is supplied from the inverter to the auxiliary equipment of the fuel cell, and if necessary, a dummy load is used.
Standby by continuing low load operation.

【0016】[0016]

【発明が解決しようとする課題】ところで、上記のよう
な系統連携運転において、系統異常時にインバータを瞬
停し再起動(以下、INVリトライともいう。)する際
に、従来の運転方法の場合、補機などを除き通常のメイ
ンの負荷が存在しないために、一時的に燃料電池の検出
電流値が大幅に減少し、電圧は増加する。原燃料流量、
酸化剤ガス流量などの、燃料ガスと酸化剤ガスの供給系
統の制御は、この検出値に基づいて制御指令値を出力し
ていた。
By the way, in the above-described system cooperative operation, when the inverter is momentarily stopped and restarted (hereinafter also referred to as INV retry) when the system is abnormal, in the case of the conventional operation method, Since there is no normal main load except for auxiliary equipment, the detected current value of the fuel cell temporarily decreases significantly and the voltage increases. Raw fuel flow,
The control of the supply system of the fuel gas and the oxidizing gas, such as the flow rate of the oxidizing gas, outputs a control command value based on the detected value.

【0017】そのため、燃料電池の原燃料系、空気系、
電気系が一時的な擾乱を生じており、燃料電池にストレ
スを与え、燃料電池を劣化させて寿命を短縮する一因と
なっていた。
Therefore, the raw fuel system, the air system,
The electrical system has been temporarily disturbed, stressing the fuel cell, degrading the fuel cell and shortening its life.

【0018】この発明は、上記のような問題点を解決す
るためになされたもので、本発明の課題は、系統異常時
のINVリトライにおける燃料電池の原燃料系、空気
系、電気系の一時的な擾乱を防止し、ひいては燃料電池
の劣化防止を図った燃料電池発電装置の運転方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a temporary fuel system, air system, and electric system for a fuel cell in an INV retry at the time of system abnormality. It is an object of the present invention to provide a method of operating a fuel cell power generation device which prevents mechanical disturbance and eventually prevents deterioration of a fuel cell.

【0019】[0019]

【課題を解決するための手段】前述の課題を解決するた
めこの発明においては、燃料ガスと酸化剤ガスの反応に
より直流電力を発生する燃料電池と、この燃料電池の直
流出力を交流出力に変換し、電力会社系統と連系運転さ
せるために、系統周波数に同期して運転するインバータ
とを備えた燃料電池発電装置の運転方法において、系統
異常時に前記インバータを瞬時に停止し、所定時間(T
1)後に再起動して、系統異常が回復するまで前記燃料
電池をスタンバイ運転する際に、再起動時の燃料電池の
出力電圧値と電流値とを一時的に、燃料電池の補機など
の運転に必要な所定の値に設定し、この設定値に基づい
て燃料ガスと酸化剤ガスの供給系統を制御し、燃料電池
を所定時間(T2)運転した後、スタンバイ運転を継続
することとする(請求項1の発明)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a fuel cell which generates DC power by a reaction between a fuel gas and an oxidizing gas, and converts a DC output of the fuel cell into an AC output. Then, in order to operate the fuel cell power generator including an inverter that operates in synchronization with the system frequency in order to perform an interconnection operation with the power company system, the inverter is instantaneously stopped when a system abnormality occurs, and the operation is stopped for a predetermined time (T
1) When the fuel cell is restarted later and the fuel cell is in standby operation until the system abnormality is recovered, the output voltage value and the current value of the fuel cell at the time of the restart are temporarily changed to the auxiliary equipment of the fuel cell. A predetermined value required for the operation is set, the supply system of the fuel gas and the oxidizing gas is controlled based on the set value, and after the fuel cell is operated for a predetermined time (T2), the standby operation is continued. (Invention of claim 1).

【0020】上記により、INVリトライにおいて、現
実に必要な補機などの低負荷に応じて予測された燃料電
池の出力電圧値と電流値とが所定時間(T2)設定さ
れ、この設定値に基づいて燃料ガスと酸化剤ガスの供給
系統が制御されるので、前述のような燃料電池の原燃料
系、空気系、電気系が一時的な擾乱を生じない。前記所
定時間(T2)は、インバータのソフトスタートに要す
る時間、例えば500〜600msを超える約1秒程度
が望ましい。
As described above, in the INV retry, the output voltage value and the current value of the fuel cell predicted according to the low load of the necessary auxiliary equipment and the like are set for a predetermined time (T2), and based on this set value. Thus, the supply system of the fuel gas and the oxidizing gas is controlled, so that the raw fuel system, the air system, and the electric system of the fuel cell as described above do not cause temporary disturbance. The predetermined time (T2) is desirably about 1 second, which exceeds the time required for soft start of the inverter, for example, 500 to 600 ms.

【0021】また、前記請求項1記載の運転方法におい
て、前記再起動時に、電圧値と電流値に加えて、原燃料
流量、酸化剤ガス流量などの燃料ガスと酸化剤ガスの供
給系統の制御指令値も、燃料電池の補機などの運転に必
要な予測された所定の値に設定し、燃料電池を所定時間
(T2)運転した後、スタンバイ運転を継続することと
する(請求項2の発明)。これにより、設定電圧値と電
流値と、ガス供給系統の制御の時間おくれを解消して、
より好ましいINVリトライ運転が可能となる。
In the operating method according to the first aspect of the present invention, at the time of the restart, in addition to the voltage value and the current value, control of a fuel gas and an oxidizing gas supply system such as a raw fuel flow rate and an oxidizing gas flow rate. The command value is also set to a predicted predetermined value necessary for operation of the auxiliary equipment of the fuel cell, and after the fuel cell has been operated for a predetermined time (T2), the standby operation is continued. invention). This eliminates the set voltage value and the current value, and the time delay of the control of the gas supply system,
A more favorable INV retry operation becomes possible.

【0022】[0022]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1は、この発明の実施例に関わる燃料電
池発電装置における制御装置の機能ブロック図を示す。
図1に示す制御装置は、系統異常検出部31と、INV
リトライ処理部32とからなる。INVリトライ処理部
32は、系統連系運転において、例えば異常1ないし5
のいずれかを検出すると、図3に示す解列用開閉器80
によりインバータを解列し、所定時間(T1)後、例え
ば200ms後に再起動する。これにより、図3に示す
補機110に電力を供給し、燃料電池100をスタンバ
イ(待機)運転する。
FIG. 1 is a functional block diagram of a control device in a fuel cell power generator according to an embodiment of the present invention.
The control device illustrated in FIG. 1 includes a system abnormality detection unit 31 and an INV
And a retry processing unit 32. In the system interconnection operation, the INV retry processing unit 32 outputs, for example, an abnormality 1 to 5
Is detected, the disconnecting switch 80 shown in FIG.
To restart the inverter after a predetermined time (T1), for example, 200 ms. As a result, electric power is supplied to the auxiliary device 110 shown in FIG. 3, and the fuel cell 100 is operated in a standby mode.

【0024】また、INVリトライ処理部32は、指令
/計測値切換指令部33を有し、例えば、電流、電圧な
らびに原燃料流量、空気流量、原燃料バルブ、空気系ブ
ロアなどの燃料ガスと酸化剤ガスの供給系統の制御指令
値を、切換部36において、現状値から待機時(リトラ
イ時)の予測設定値に切換て、燃料電池を所定時間(T
2)例えば、1秒運転した後、スタンバイ運転を継続す
る制御を行う機能を備える。
The INV retry processing section 32 has a command / measurement value switching command section 33. For example, the current, voltage, raw fuel flow rate, air flow rate, fuel gas such as raw fuel valve, air system blower, etc. The control command value of the agent gas supply system is switched from the current value to the predicted set value at the time of standby (at the time of retry) in the switching unit 36, and the fuel cell is operated for a predetermined time (T
2) For example, a function is provided for performing control to continue standby operation after driving for 1 second.

【0025】上記によれば、燃料電池の原燃料系、空気
系、電気系に一時的な擾乱を生ずることなく、リーズナ
ブルなINVリトライ運転ができる。
According to the above, a reasonable INV retry operation can be performed without causing any temporary disturbance in the raw fuel system, air system, and electric system of the fuel cell.

【0026】[0026]

【発明の効果】上記のように、この発明は、燃料ガスと
酸化剤ガスの反応により直流電力を発生する燃料電池
と、この燃料電池の直流出力を交流出力に変換し、電力
会社系統と連系運転させるために、系統周波数に同期し
て運転するインバータとを備えた燃料電池発電装置の運
転方法において、系統異常時に前記インバータを瞬時に
停止し、所定時間(T1)後に再起動して、系統異常が
回復するまで前記燃料電池をスタンバイ運転する際に、
再起動時の燃料電池の出力電圧値と電流値とを一時的
に、燃料電池の補機などの運転に必要な所定の値に設定
し、この設定値に基づいて燃料ガスと酸化剤ガスの供給
系統を制御し、燃料電池を所定時間(T2)運転した
後、スタンバイ運転を継続することにより、系統異常時
のINVリトライにおける燃料電池の原燃料系、空気
系、電気系の一時的な擾乱を防止し、ひいては燃料電池
の劣化防止を図ることができる。
As described above, the present invention relates to a fuel cell that generates DC power by the reaction between a fuel gas and an oxidizing gas, and converts the DC output of the fuel cell into an AC output, which is linked to a power company system. In the operation method of the fuel cell power generator including an inverter that operates in synchronization with the system frequency in order to perform system operation, the inverter is instantaneously stopped when a system abnormality occurs, and restarted after a predetermined time (T1). When performing standby operation of the fuel cell until the system abnormality is recovered,
The output voltage value and the current value of the fuel cell at the time of restart are temporarily set to predetermined values necessary for the operation of auxiliary equipment of the fuel cell, and the fuel gas and the oxidizing gas are set based on the set values. By controlling the supply system and operating the fuel cell for a predetermined period of time (T2), the standby operation is continued to temporarily disturb the raw fuel system, air system, and electric system of the fuel cell during INV retry when the system is abnormal. Can be prevented, and the deterioration of the fuel cell can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に関わる制御装置の機能ブロ
ック図
FIG. 1 is a functional block diagram of a control device according to an embodiment of the present invention.

【図2】従来の燃料電池発電装置の一例を示す概略シス
テム系統図
FIG. 2 is a schematic system diagram showing an example of a conventional fuel cell power generator.

【図3】従来の系統連系を行う燃料電池発電装置の概略
システム系統図
FIG. 3 is a schematic system diagram of a conventional fuel cell power generator that performs system interconnection.

【符号の説明】[Explanation of symbols]

31:系統異常検出部、32:INVリトライ処理部、
33:指令/計測値切換指令部、36:切換部、80:
解列用開閉器、100:燃料電池、110:補機、13
0:電力会社系統、200:インバータ。
31: system abnormality detecting unit, 32: INV retry processing unit,
33: command / measured value switching command section, 36: switching section, 80:
Switch for disconnection, 100: fuel cell, 110: auxiliary machine, 13
0: Power company system, 200: Inverter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスと酸化剤ガスの反応により直流
電力を発生する燃料電池と、この燃料電池の直流出力を
交流出力に変換し、電力会社系統と連系運転させるため
に、系統周波数に同期して運転するインバータとを備え
た燃料電池発電装置の運転方法において、系統異常時に
前記インバータを瞬時に停止し、所定時間(T1)後に
再起動して、系統異常が回復するまで前記燃料電池をス
タンバイ運転する際に、再起動時の燃料電池の出力電圧
値と電流値とを一時的に、燃料電池の補機などの運転に
必要な所定の値に設定し、この設定値に基づいて燃料ガ
スと酸化剤ガスの供給系統を制御し、燃料電池を所定時
間(T2)運転した後、スタンバイ運転を継続すること
を特徴とする燃料電池発電装置の運転方法。
1. A fuel cell for generating DC power by a reaction between a fuel gas and an oxidizing gas, and a system frequency for converting a DC output of the fuel cell into an AC output and for interconnecting operation with a power company system. In a method of operating a fuel cell power generator including an inverter that operates in synchronization with a fuel cell, the inverter is instantaneously stopped when a system abnormality occurs, restarted after a predetermined time (T1), and the fuel cell is restarted until the system abnormality recovers. When the standby operation is performed, the output voltage value and the current value of the fuel cell at the time of restart are temporarily set to predetermined values required for the operation of the auxiliary equipment of the fuel cell, and based on this set value. A method for operating a fuel cell power generator, comprising: controlling a fuel gas and oxidizing gas supply system, operating a fuel cell for a predetermined time (T2), and continuing standby operation.
【請求項2】 請求項1記載の運転方法において、前記
再起動時に、電圧値と電流値に加えて、原燃料流量、酸
化剤ガス流量などの燃料ガスと酸化剤ガスの供給系統の
制御指令値も、燃料電池の補機などの運転に必要な所定
の値に設定し、燃料電池を所定時間(T2)運転した
後、スタンバイ運転を継続することを特徴とする燃料電
池発電装置の運転方法。
2. The operating method according to claim 1, wherein at the time of the restart, a control command for a fuel gas and oxidizing gas supply system such as a raw fuel flow rate and an oxidizing gas flow rate in addition to a voltage value and a current value. A method for operating a fuel cell power generator, comprising setting a value to a predetermined value required for operation of an auxiliary device of a fuel cell, and operating the fuel cell for a predetermined time (T2), and then continuing standby operation. .
JP2000172933A 2000-06-09 2000-06-09 Operation method of fuel cell power generator Expired - Fee Related JP4304829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172933A JP4304829B2 (en) 2000-06-09 2000-06-09 Operation method of fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172933A JP4304829B2 (en) 2000-06-09 2000-06-09 Operation method of fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2001351661A true JP2001351661A (en) 2001-12-21
JP4304829B2 JP4304829B2 (en) 2009-07-29

Family

ID=18675244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172933A Expired - Fee Related JP4304829B2 (en) 2000-06-09 2000-06-09 Operation method of fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4304829B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159506A (en) * 2006-12-26 2008-07-10 Kyocera Corp Fuel cell device and its operation method
WO2010001702A1 (en) * 2008-06-30 2010-01-07 トヨタ自動車株式会社 Fuel battery system
WO2013054496A1 (en) * 2011-10-14 2013-04-18 パナソニック株式会社 Hydrogen producing device and control method therefor, and fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159506A (en) * 2006-12-26 2008-07-10 Kyocera Corp Fuel cell device and its operation method
WO2010001702A1 (en) * 2008-06-30 2010-01-07 トヨタ自動車株式会社 Fuel battery system
JP2010010050A (en) * 2008-06-30 2010-01-14 Aisin Seiki Co Ltd Fuel cell system
US8597839B2 (en) 2008-06-30 2013-12-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2013054496A1 (en) * 2011-10-14 2013-04-18 パナソニック株式会社 Hydrogen producing device and control method therefor, and fuel cell system

Also Published As

Publication number Publication date
JP4304829B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
CN108093658B (en) System and method for fuel cell system ride through for grid disturbances
JP4102572B2 (en) Fuel cell power generation system
WO2014002798A1 (en) Solid polymer fuel cell system
JPH0668891A (en) Fuel cell generator and control thereof
JP2002063927A (en) Control method of fuel cell system and its device
JP6574696B2 (en) Power control apparatus, power control method, and fuel cell system
JP2011519545A (en) Emergency power supply system including fuel cell
JP2007207661A (en) Power supply system having fuel cell system
JP4967380B2 (en) Fuel cell power generation system
JP2015186408A (en) Operation method for fuel cell system, and fuel cell system
JP6208660B2 (en) Solid oxide fuel cell system
JP3502940B2 (en) Operating method of fuel cell power generator and auxiliary power supply circuit
JP4251287B2 (en) Power supply method for self-supporting load in fuel cell power generator
JP6174578B2 (en) Solid oxide fuel cell system
JP5675675B2 (en) Combined power generation system and method of operating combined power generation system
JP3519899B2 (en) Uninterruptible power system
JP2001351661A (en) Driving method of fuel cell power generating device
JP2009259578A (en) Fuel cell power generation system and its control method
JP6942565B2 (en) Power generator, control device and control program
JP3607025B2 (en) Fuel cell power generation system and operation control method thereof
JP2013143212A (en) Fuel cell power generation system and operation method thereof
JP2008029044A (en) Dc multiterminal distribution system and its operating method
JP2002083619A (en) Control method of fuel cell composite power generating system
JP2017162655A (en) Fuel cell system
JPH08317659A (en) Power-supply apparatus making use of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Ref document number: 4304829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees