JP3519899B2 - Uninterruptible power system - Google Patents

Uninterruptible power system

Info

Publication number
JP3519899B2
JP3519899B2 JP08100197A JP8100197A JP3519899B2 JP 3519899 B2 JP3519899 B2 JP 3519899B2 JP 08100197 A JP08100197 A JP 08100197A JP 8100197 A JP8100197 A JP 8100197A JP 3519899 B2 JP3519899 B2 JP 3519899B2
Authority
JP
Japan
Prior art keywords
power supply
fuel cell
load
inverter
commercial power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08100197A
Other languages
Japanese (ja)
Other versions
JPH10285831A (en
Inventor
収 田島
浩二 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08100197A priority Critical patent/JP3519899B2/en
Publication of JPH10285831A publication Critical patent/JPH10285831A/en
Application granted granted Critical
Publication of JP3519899B2 publication Critical patent/JP3519899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する分野】本発明は無停電電源装置の改良に
関する。 【0002】 【従来の技術】無停電電源装置はコンピュータシステム
等の重要負荷に給電するために使用されており、商用電
源が停電しても瞬時に切替わり給電することが可能であ
る。しかし、無停電電源装置自体を定期的に保守・点検
する必要があり、その点検中に商用電源が停電すると重
要負荷に対する無停電給電を保障し得なくなる。 【0003】これに対処するため、従来は無停電電源装
置に複数の蓄電池とインバータを組み込んで一つの蓄電
池、インバータを点検中に商用電源が停電しても残りの
蓄電池、インバータによって給電できるようにしてい
た。 【0004】 【発明が解決しようとする課題】ところで、無停電電源
装置に複数の蓄電池を組込むことは装置の大型化、高コ
スト化、回路の複雑化を招くし、また、蓄電池では長時
間の停電に対応できないという課題があった。本発明は
以上の諸点に鑑み装置の大型化、高コスト化、回路の複
雑化を招くことなく、それでいて保守・点検中に商用電
源が停電した場合にあっても無停電給電を保障し得、ま
た、長時間の停電にも対応できる有用な無停電電源装置
を提供することを目的としている。 【0005】 【課題が解決するための手段】上記目的を達成するため
に本発明は、直流電源装置の出力にインバータを接続し
た交流電圧生成回路と商用電源とが負荷に対して無瞬断
切替スイッチを介して択一的に給電可能に接続され、前
記直流電源装置は蓄電池と燃料電池の直流出力端子とを
並列接続した構成であり、前記燃料電池は商用電源電圧
と位相合わせすることが可能な内蔵インバータと、直流
発電電圧を内蔵のインバータで交流に変換した交流電圧
を出力する端子とを有し、一方、前記商用電源から前記
切替スイッチを介することなく直接交流負荷に給電する
第1のバイパス線が配線され、また前記燃料電池の交流
出力端子から交流負荷に第2のバイパス線が配線され、
商用電源の停電時には無瞬断切替スイッチの無瞬断の切
替え動作により交流電圧生成回路によって交流負荷に給
電し、無瞬断切替スイッチ、蓄電池、インバータのいず
れかの保守、点検時には第1、第2のバイパス線を通じ
て商用電源及び燃料電池から負荷に給電されることを特
徴としている。 【0006】 【発明の実施の形態】図1は本発明の一実施の形態とし
ての無停電電源装置の回路図である。切替スイッチ1は
常時商用同期無瞬断切替方式により無瞬断で商用電源か
ら交流電圧生成回路2への切替を行うスイッチである。
この常時商用同期無瞬断切替方式の切替スイッチは公知
であるので構成の説明は省略する。 【0007】交流電圧生成回路2は燃料電池FCの直流
出力回路と蓄電池Batとが並列接続された直流電源装
置13にインバータ8、充電器9を接続した構成であ
る。燃料電池FCは、水素ガスと酸素との反応を利用し
て発電する燃料電池本体3を主体とする公知のもので、
概略構成は図2に示すように燃料電池本体3に供給する
水素ガスを貯蔵したボンベ4と燃料電池本体3の出力回
路に接続されたDC/DCコンバータ5、インバータ6
並びに制御回路11からなる。水素ボンベ4から燃料電
池本体3への配管中には開閉バルブ10が設けられてい
る。このバルブは燃料電池本体3を起動する際に開弁操
作される。DC/DCコンバータ5は燃料電池本体3の
直流発電電圧を蓄電池Batと同一の電圧まで昇圧若し
くは降圧するためのものである。インバータ6は燃料電
池本体3の直流発電電圧を商用電源の電圧値及び周波数
・位相と等しい交流電圧に変換するものである。インバ
ータ6の出力電圧を商用電源電圧と位相合わせをするた
めに、商用電源から交流負荷Lに至るバイパス線路l1
に電流検出器7を設け、ここで検出する位相とインバー
タ6の出力電圧を同相となるよう調整している。尚、イ
ンバータ6としてはIGBT又はGTOが用いられる。 【0008】制御回路11は商用電源が停電した場合に
燃料電池本体3を起動したり、停電が解消した場合に燃
料電池本体3の運転を停止する制御を行う回路である。
この制御回路11には商用電源の停電を監視するために
商用電源から停電検出線l3が分岐され制御回路11ま
で引込まれている。制御回路11はこの検出線l3 を通
じて停電を検出すると、バルブ10を開弁し、水素ガス
を燃料電池本体3内に供給すると共に、図示しないファ
ンを内蔵電池により駆動し、空気を燃料電池本体3へ導
入する。これによって燃料電池本体3は起動し、徐々に
電池温度が上昇する。燃料電池が定格出力可能領域に達
すると、これを検出し、スイッチSW3をONにする。
以後、商用電源が停電中はこの状態で運転を持続し、負
荷へ給電を行う。一方、停電が解消すると、検出線l3
を通じてそれを検出し、バルブ10を閉じて水素の供給
を断ち、続いてファンを停止して空気の供給を断つ。こ
れによって燃料電池本体3の運転が停止する。また、制
御回路11には手動により燃料電池本体3を起動し、停
止するボタンスイッチ12、13が設けられており、こ
れらのスイッチを操作することにより強制的に燃料電池
本体3の起動、運転停止を行うことができる。通常燃料
電池本体3は制御回路11により自動起動、自動運転終
了させられるが、切替スイッチ1、蓄電池Batインバ
ータ8の保守点検時には手動操作により行われる。 【0009】次に、インバータ8はインバータ6と同様
な素子が用いられ、燃料電池FCの直流出力電圧及び蓄
電池直流電圧を商用電源と同一電圧、同一周波数の交流
電圧に変換して出力する。蓄電池Batと商用電源との
間には充電器9が接続され、非停電時に蓄電池Batを
充電するようにしてある。 【0010】図中、SW1はバイパス線l1を通じて負
荷Lに給電する際にオン操作されるスイッチ、SW2は
燃料電池FCの交流出力端子から負荷に給電する際にオ
ン操作されるスイッチで、前記燃料電池の交流出力端子
とバイパス線l1との間の保守バイパス線l2中に挿入
されている。次に、上記構成による動作を商用電源が正
常に給電している正常時、停電時、切替スイッチ1等の
保守点検時に分けて説明する。 (1)正常時、 切替スイッチ1を通じて商用電源から負荷に給電され
る。このため、SW1,SW2,SW3ともこの時点で
はオフ状態になっている。また、蓄電池Batは充電器
9を通じて充電され、満充電状態になっている。 (2)商用電源停電時、 停電の発生した瞬時に切替スイッチ1が無瞬断で交流電
圧生成回路2側に切替わる。このため、蓄電池Batの
直流出力をインバータ8で交流に変換した電圧が負荷L
に給電される。これによって負荷は商用電源の停電にも
拘らず無停電状態で給電される。 【0011】停電発生と同時に燃料電池FC内の制御回
路11が停電を検出し、燃料電池FCの起動を開始す
る。この起動は、既述したように先ず、バルブ10を開
弁して水素ガスを燃料電池本体3内に供給すると共に、
燃料電池本体3内のファンを駆動して空気を取込む。こ
れによって燃料電池本体3が発電を開始し、時間の経過
に伴って電池温度が上昇する。燃料電池本体3が起動
後、5〜10分経過し電池温度が所定温度に達するとス
イッチSW3をオンする。これによって以後は燃料電池
FCによる負荷Lへの給電が行われる。 【0012】商用電源が復旧すると、切替スイッチ1が
無瞬断で切替わり、商用電源から負荷への給電が再開す
る。また、商用電源の復旧により燃料電池FCは運転を
停止する。 (3)保守点検時 年に1〜2回、インバータ8、蓄電池Bat及び切替ス
イッチ1の保守点検を行うが、このときはこれらインバ
ータ8、切替スイッチ1を使用することができない。こ
のような保守点検時はスイッチSW3をオフし、蓄電池
Bat、インバータ8を運転停止した後、スイッチSW
1をオンして、バイパス線l1 通じて商用電源により交
流負荷Lに給電すると共に、燃料電池FCを手動により
起動する。燃料電池FCの出力が所定出力に達すると、
燃料電池FCの交流出力を商用電源と同期させた後スイ
ッチSW2をオンする。そして、切替スイッチ1を運転
停止させると共に、電流検出器7を監視し、電流が逆流
しない範囲で燃料電池FCの出力を増加させる。この
後、保守点検作業を行う。かくして、保守、点検中は交
流負荷Lに商用電源と燃料電池FCとの双方で給電を行
うこととなる。従って、保守、点検中に商用電源が停電
するような事態が起こったとしても交流負荷Lに対して
給電を継続することができる。この場合、商用ライン
は、図示しない断路器により切り離されている。 【0013】保守、点検を終了すると、燃料電池FCの
出力を減少させ、スイッチSW2をオフして、バイパス
線l1 を通じての商用電源による交流負荷への給電を行
いつつ、切替スイッチ1を作動し、給電経路をバイパス
線l1 から切替スイッチ1へと切替える。そしてスイッ
チSW1をオフして後、蓄電池Bat,インバータ8の
運転を再開する。 【0014】尚、燃料電池の燃料は、水素に限ったもの
ではなく、メタノール、天然ガス、LPG、ナフサ、プ
ロパン、ブタン等の燃料をリホーマに供給して改質した
水素ガスを使用しても良い。また、本実施例図1の蓄電
池は、充電器9により充電を行っているが、燃料電池に
よりコンバータ5を介して充電を行っても良い。 【0015】 【発明の効果】本発明は以上のように直流電源装置の出
力にインバータを接続した交流電圧生成回路と商用電源
とが負荷に対して無瞬断切替スイッチを介して択一的に
給電可能に接続され、前記直流電源装置は蓄電池と燃料
電池の発電回路とを並列接続した構成であり、前記燃料
電池は商用電源電圧と位相合わせすることが可能な内蔵
インバータと、発電電圧を内蔵のインバータで交流に変
換した交流電圧を出力する端子とを有し、一方、前記商
用電源から前記切替スイッチを介することなく直接交流
負荷に給電する第1のバイパス線が配線され、また前記
燃料電池の交流出力端子から交流負荷に第2のバイパス
線が配線され、商用電源の停電時には無瞬断切替スイッ
チの無瞬断の切替え動作により直流電源装置にインバー
タを接続した回路によって交流負荷に給電し、無瞬断切
替スイッチ、蓄電池、インバータのいずれかの保守、点
検時には第1、第2のバイパス 線を通じて商用電源及
び燃料電池から負荷に給電される構成としたので、商用
電源が停電したら最初は蓄電池で、続いて燃料電池によ
り負荷への給電ができ、長時間の停電に対処できるとい
った効果がある。 【0016】加えて、切替スイッチや蓄電池等の保守点
検時においてはバイパス線を通じて商用電源と燃料電池
の両方で負荷に給電するので、保守、点検時に万一商用
電源が停電した治しても残った燃料電池により給電を継
続して、コンピュータ等の重要負荷に対する無停電電源
装置として頗る利用価値高いものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an uninterruptible power supply. 2. Description of the Related Art Uninterruptible power supplies are used to supply power to important loads such as computer systems, and can be switched instantaneously to supply power even when a commercial power supply fails. However, it is necessary to periodically maintain and check the uninterruptible power supply itself, and if the commercial power supply stops during the check, uninterruptible power supply to important loads cannot be guaranteed. In order to cope with this, conventionally, a plurality of storage batteries and an inverter are incorporated in an uninterruptible power supply so that even if a commercial power supply fails during inspection of one storage battery or the inverter, power can be supplied by the remaining storage batteries and the inverter. I was [0004] By incorporating a plurality of storage batteries into an uninterruptible power supply, the size and cost of the device are increased, and the circuit is complicated. There was a problem that it was not possible to cope with power outages. In view of the above points, the present invention does not increase the size of the device, increase the cost, and does not complicate the circuit, but can guarantee uninterrupted power supply even if the commercial power supply is interrupted during maintenance and inspection, It is another object of the present invention to provide a useful uninterruptible power supply that can cope with a long-term power failure. In order to achieve the above object, the present invention provides an AC voltage generating circuit in which an inverter is connected to the output of a DC power supply, and a commercial power supply that switches to a load without instantaneous interruption. The power supply is alternatively connected via a switch, and the DC power supply device has a configuration in which a storage battery and a DC output terminal of a fuel cell are connected in parallel, and the fuel cell can be in phase with a commercial power supply voltage. A built-in inverter, and a terminal that outputs an AC voltage obtained by converting a DC power generation voltage into an AC by the built-in inverter, and a first power supply that directly supplies an AC load from the commercial power supply without passing through the changeover switch. A bypass line is wired, and a second bypass line is wired from an AC output terminal of the fuel cell to an AC load,
In the event of a commercial power outage, the AC load is fed by the AC voltage generation circuit by the instantaneous interruption switching operation of the instantaneous interruption switching switch. The electric power is supplied to the load from the commercial power supply and the fuel cell through the second bypass line. FIG. 1 is a circuit diagram of an uninterruptible power supply according to an embodiment of the present invention. The changeover switch 1 is a switch that switches from the commercial power supply to the AC voltage generation circuit 2 without any instantaneous interruption by a commercial synchronous instantaneous interruption interruption switching method.
Since the changeover switch of the continuous commercial synchronous non-stop switching method is known, the description of the configuration is omitted. The AC voltage generation circuit 2 has a configuration in which an inverter 8 and a charger 9 are connected to a DC power supply 13 in which a DC output circuit of a fuel cell FC and a storage battery Bat are connected in parallel. The fuel cell FC is a known fuel cell that mainly includes a fuel cell body 3 that generates power by utilizing a reaction between hydrogen gas and oxygen.
As shown in FIG. 2, a schematic configuration of a cylinder 4 storing hydrogen gas to be supplied to the fuel cell body 3, a DC / DC converter 5 connected to an output circuit of the fuel cell body 3, and an inverter 6
And a control circuit 11. An on-off valve 10 is provided in a pipe from the hydrogen cylinder 4 to the fuel cell main body 3. This valve is opened when the fuel cell body 3 is started. The DC / DC converter 5 is for increasing or decreasing the DC power generation voltage of the fuel cell body 3 to the same voltage as the storage battery Bat. The inverter 6 converts a DC power generation voltage of the fuel cell main body 3 into an AC voltage having the same voltage value, frequency, and phase as the commercial power supply. In order to align the output voltage of the inverter 6 with the commercial power supply voltage, a bypass line 11 extending from the commercial power supply to the AC load L is used.
Is provided with a current detector 7, and the phase detected here and the output voltage of the inverter 6 are adjusted to be the same. Note that IGBT or GTO is used as the inverter 6. [0008] The control circuit 11 is a circuit for starting the fuel cell main body 3 when the commercial power supply is interrupted, and for stopping the operation of the fuel cell main body 3 when the interruption is resolved.
Power failure detection line l 3 from the commercial power source has been drawn to the control circuit 11 is branched to monitor a power failure of the commercial power supply to the control circuit 11. When the control circuit 11 detects a power failure through the detecting line l 3, opening the valve 10, the hydrogen gas is supplied to the fuel cell body 3, driven by the internal battery the fan not shown, the fuel cell main body air Introduce to 3. As a result, the fuel cell body 3 is started, and the cell temperature gradually rises. When the fuel cell reaches the rated output possible area, this is detected and the switch SW3 is turned on.
Thereafter, the operation is continued in this state during the power failure of the commercial power supply, and power is supplied to the load. On the other hand, when the power outage is resolved, the detection line l 3
And shuts off the supply of hydrogen by closing the valve 10, and then stops the supply of air by stopping the fan. As a result, the operation of the fuel cell main body 3 stops. The control circuit 11 is provided with button switches 12 and 13 for manually starting and stopping the fuel cell main body 3, and forcibly starting and stopping the fuel cell main body 3 by operating these switches. It can be performed. Normally, the fuel cell main body 3 is automatically started and automatically stopped by the control circuit 11, but is manually operated at the time of maintenance and inspection of the changeover switch 1 and the storage battery Bat inverter 8. Next, the inverter 8 uses the same elements as the inverter 6, and converts the DC output voltage of the fuel cell FC and the DC voltage of the storage battery into an AC voltage having the same voltage and the same frequency as the commercial power supply, and outputs them. A charger 9 is connected between the storage battery Bat and the commercial power supply so that the storage battery Bat is charged when there is no power failure. In FIG. 1, SW1 is a switch that is turned on when power is supplied to the load L through the bypass line 11, and SW2 is a switch that is turned on when power is supplied to the load from the AC output terminal of the fuel cell FC. It is inserted into a maintenance bypass line 12 between the AC output terminal of the battery and the bypass line 11. Next, the operation of the above configuration will be described separately for normal operation when the commercial power supply is supplying power normally, during a power failure, and during maintenance and inspection of the changeover switch 1 and the like. (1) In normal operation, power is supplied from the commercial power supply to the load through the changeover switch 1. Therefore, SW1, SW2, and SW3 are all off at this time. The storage battery Bat is charged through the charger 9 and is in a fully charged state. (2) In the event of a commercial power failure, the changeover switch 1 switches to the AC voltage generation circuit 2 without any instantaneous interruption at the moment of the power failure. Therefore, the voltage obtained by converting the DC output of the storage battery Bat into AC by the inverter 8 is equal to the load L.
Power is supplied to As a result, the load is supplied with no power failure in spite of the commercial power failure. At the same time as the power failure occurs, the control circuit 11 in the fuel cell FC detects the power failure and starts the fuel cell FC. As described above, first, the valve 10 is opened to supply hydrogen gas into the fuel cell main body 3 as described above.
The fan in the fuel cell body 3 is driven to take in air. As a result, the fuel cell body 3 starts power generation, and the cell temperature rises with time. The switch SW3 is turned on when the battery temperature reaches a predetermined temperature 5 to 10 minutes after the fuel cell main body 3 is started. As a result, power is supplied to the load L by the fuel cell FC thereafter. When the commercial power supply is restored, the changeover switch 1 is switched without interruption, and power supply from the commercial power supply to the load is resumed. In addition, the operation of the fuel cell FC stops when the commercial power supply is restored. (3) Maintenance and Inspection The maintenance and inspection of the inverter 8, the storage battery Bat and the changeover switch 1 are performed once or twice a year, but at this time, the inverter 8 and the changeover switch 1 cannot be used. At the time of such maintenance and inspection, the switch SW3 is turned off, and the operation of the storage battery Bat and the inverter 8 is stopped.
1 is turned on and with power the AC load L by the commercial power supply through the bypass line l 1, to start the fuel cell FC manually. When the output of the fuel cell FC reaches a predetermined output,
After synchronizing the AC output of the fuel cell FC with the commercial power supply, the switch SW2 is turned on. Then, the operation of the changeover switch 1 is stopped, and the current detector 7 is monitored, and the output of the fuel cell FC is increased within a range where the current does not flow backward. After that, maintenance work is performed. Thus, during maintenance and inspection, the AC load L is supplied with power from both the commercial power supply and the fuel cell FC. Therefore, even if a power failure occurs in the commercial power supply during maintenance and inspection, power supply to the AC load L can be continued. In this case, the commercial line is disconnected by a disconnector (not shown). [0013] maintenance, when to end the inspection to reduce the output of the fuel cell FC, and turns off the switch SW2, while performing the power supply to the AC load by a commercial power source through the bypass line l 1, and actuates the changeover switch 1 , switch the power supply path from the bypass line l 1 to the switching switch 1. Then, after the switch SW1 is turned off, the operations of the storage battery Bat and the inverter 8 are restarted. The fuel used in the fuel cell is not limited to hydrogen. Even if a fuel such as methanol, natural gas, LPG, naphtha, propane, or butane is supplied to a reformer and reformed hydrogen gas is used. good. Further, the storage battery of the embodiment shown in FIG. 1 is charged by the charger 9, but may be charged by the fuel cell via the converter 5. As described above, according to the present invention, an AC voltage generating circuit in which an inverter is connected to the output of a DC power supply and a commercial power supply are selectively connected to a load via a non-interruptible switch. The DC power supply device is connected so that power can be supplied, and the DC power supply device has a configuration in which a storage battery and a power generation circuit of a fuel cell are connected in parallel. A first bypass line for directly supplying an AC load from the commercial power supply without passing through the changeover switch, and a terminal for outputting an AC voltage converted to AC by the inverter. A second bypass line is wired from the AC output terminal to the AC load, and the inverter is connected to the DC power supply by the instantaneous interruption switching operation of the instantaneous interruption switching switch in the event of a commercial power failure. Power is supplied to the AC load by the connected circuit, and power is supplied to the load from the commercial power supply and the fuel cell through the first and second bypass lines during maintenance and inspection of any of the instantaneous interruption switch, storage battery, and inverter. Therefore, when the commercial power supply fails, power can be supplied to the load by the storage battery first and then by the fuel cell, and there is an effect that a long-term power failure can be dealt with. In addition, during maintenance and inspection of the changeover switch and the storage battery, etc., the power is supplied to the load by both the commercial power supply and the fuel cell through the bypass line. The power supply by the fuel cell is continued, and it is very useful as an uninterruptible power supply for an important load such as a computer.

【図面の簡単な説明】 【図1】本発明の一実施の形態としての無停電電源装置
の構成を示す回路図である。 【図2】燃料電池の構成を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing a configuration of an uninterruptible power supply as one embodiment of the present invention. FIG. 2 is a diagram showing a configuration of a fuel cell.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−37488(JP,A) 特開 平7−336894(JP,A) 特開 昭62−12337(JP,A) 特開 昭62−2820(JP,A) 特開 昭52−350(JP,A) 実開 平4−111247(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02J 9/00 - 11/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-37488 (JP, A) JP-A-7-336894 (JP, A) JP-A-62-1337 (JP, A) JP-A-62-33784 2820 (JP, A) JP-A-52-350 (JP, A) JP-A-4-111247 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 9/00-11 / 00

Claims (1)

(57)【特許請求の範囲】 【請求項1】直流電源装置の出力にインバータを接続し
た交流電圧生成回路と商用電源とが交流負荷に対して無
瞬断切替スイッチを介して択一的に給電可能に接続さ
れ、 前記直流電源装置は蓄電池と燃料電池の直流電圧出力端
子とを並列接続した構成であり、 前記燃料電池は商用電源電圧と位相合わせすることが可
能な内蔵インバータと、直流発電電圧を内蔵のインバー
タで交流に変換して出力する交流出力端子とを有し、 一方、前記商用電源から前記切替スイッチを介すること
なく直接交流負荷に給電する第1のバイパス線が配線さ
れ、また前記燃料電池の交流出力端子から交流負荷に第
2のバイパス線が配線され、 商用電源の停電時には無瞬断切替スイッチの無瞬断の切
替え動作により直流電源装置にインバータを接続した回
路によって交流負荷に給電し、 無瞬断切替スイッチ、蓄電池、インバータのいずれかの
保守、点検時には第1、第2のバイパス線を通じて商用
電源及び燃料電池から交流負荷に給電されることを特徴
とする無停電電源装置。
(57) [Claim 1] An AC voltage generating circuit in which an inverter is connected to an output of a DC power supply device or a commercial power supply is selectively connected to an AC load via an instantaneous interruption switch. The DC power supply device is connected so that power can be supplied, and the DC power supply device has a configuration in which a storage battery and a DC voltage output terminal of a fuel cell are connected in parallel. An AC output terminal for converting a voltage into AC by a built-in inverter and outputting the AC power, and a first bypass line for directly supplying power from the commercial power supply to the AC load without passing through the changeover switch is wired; A second bypass line is wired from an AC output terminal of the fuel cell to an AC load, and when a commercial power supply fails, an instantaneous interruption switching operation of an instantaneous interruption switching switch causes the DC power supply to be inverted. To power the AC load by a circuit connected to, hitless switching switch, battery, or maintenance of the inverter, that at the time of inspection is fed to the AC load from the commercial power source and the fuel cell through the first, second bypass line Uninterruptible power supply.
JP08100197A 1997-03-31 1997-03-31 Uninterruptible power system Expired - Fee Related JP3519899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08100197A JP3519899B2 (en) 1997-03-31 1997-03-31 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08100197A JP3519899B2 (en) 1997-03-31 1997-03-31 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JPH10285831A JPH10285831A (en) 1998-10-23
JP3519899B2 true JP3519899B2 (en) 2004-04-19

Family

ID=13734284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08100197A Expired - Fee Related JP3519899B2 (en) 1997-03-31 1997-03-31 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP3519899B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111764A (en) * 1998-10-12 2000-08-29 Sanyo Denki Co., Ltd. Power failure-free power supply apparatus
KR100467153B1 (en) * 2001-11-22 2005-01-24 이종한 Ac/dc combined charger of battery used machine
KR101204118B1 (en) * 2006-05-16 2012-11-22 엘지전자 주식회사 Method and Apparatus of Power Control
JP5114265B2 (en) * 2008-03-27 2013-01-09 株式会社日立製作所 Fuel cell system, backup power supply system and control method thereof
DE102008020356A1 (en) * 2008-04-23 2009-10-29 Fraport Ag Frankfurt Airport Services Worldwide Emergency power supply system with fuel cell
JP6303642B2 (en) * 2014-03-13 2018-04-04 ブラザー工業株式会社 AC uninterruptible power supply system
JP6340892B2 (en) * 2014-04-22 2018-06-13 オムロン株式会社 Switching device and power supply system
JP6577355B2 (en) * 2015-12-15 2019-09-18 東芝三菱電機産業システム株式会社 Power conversion system
JP7447524B2 (en) * 2020-02-12 2024-03-12 株式会社豊田自動織機 hydrogen station

Also Published As

Publication number Publication date
JPH10285831A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
TWI406466B (en) Emergency power supply system using fuel cell, and distributor
KR101367490B1 (en) Emergency power supply system using fuel cell
US20140152097A1 (en) Power supply system, power distribution apparatus, and power control method
WO2015015798A1 (en) Power control device, power control method, and power control system
US20140232194A1 (en) Power supply system and method of controlling the same
WO2011042781A1 (en) Power supply system
JP3519899B2 (en) Uninterruptible power system
JP2002063927A (en) Control method of fuel cell system and its device
JP5207060B2 (en) Self-sustaining operation system using power storage / emergency power generator
JP2004357377A (en) Distributed power generation system
JPH11191424A (en) Operating method for fuel cell generating device
WO2013046685A1 (en) Power supply system and power control method
JPS6121516A (en) Fuel battery power generating system
JP4251287B2 (en) Power supply method for self-supporting load in fuel cell power generator
KR101047022B1 (en) Power control method and apparatus for grid-connected fuel cell system
JP3839643B2 (en) Uninterrupted self-sustained power generation system
JP2015057022A (en) Dispersed power supply device, power switching device and power supply system
JP2016127777A (en) Storage battery system
JP4442228B2 (en) Operation method of fuel cell power generator
JP2015084625A (en) Power supply system and power supply method
JP3607025B2 (en) Fuel cell power generation system and operation control method thereof
JP4304829B2 (en) Operation method of fuel cell power generator
JPH0847175A (en) Generating system and operating method of cogeneration system
JP7206126B2 (en) Distributed power system
JP6677916B1 (en) Uninterruptible power supply system and control method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees