JP2013143212A - Fuel cell power generation system and operation method thereof - Google Patents

Fuel cell power generation system and operation method thereof Download PDF

Info

Publication number
JP2013143212A
JP2013143212A JP2012001937A JP2012001937A JP2013143212A JP 2013143212 A JP2013143212 A JP 2013143212A JP 2012001937 A JP2012001937 A JP 2012001937A JP 2012001937 A JP2012001937 A JP 2012001937A JP 2013143212 A JP2013143212 A JP 2013143212A
Authority
JP
Japan
Prior art keywords
fuel cell
power
power generation
generation system
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012001937A
Other languages
Japanese (ja)
Inventor
Hirofumi Naka
洋 史 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2012001937A priority Critical patent/JP2013143212A/en
Publication of JP2013143212A publication Critical patent/JP2013143212A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generation system that stably conducts a self-sustained operation when a commercial power source has a failure, and also suppresses the increase of a device cost.SOLUTION: A fuel cell power generation system conducts an interconnected operation interconnected with a commercial power source 105, and a self-sustained operation when the commercial power source 105 has a failure. The fuel cell power generation system comprises: a fuel cell power generation device 10 that generates electric power by the supply of air and fuel gas; an inverter 101 that converts direct-current power generated by the fuel cell power generation device 10, into alternating-current power; and a control part 100 that increases an amount of air or fuel gas to be supplied to a fuel cell in the fuel cell power generation device 10 when the power failure of the commercial power source 105 is detected.

Description

本発明の実施形態は、燃料電池発電システム及びその運転方法に関する。   Embodiments described herein relate generally to a fuel cell power generation system and an operation method thereof.

燃料電池発電システムは、燃料処理装置により生成された水素と酸素の結合エネルギーを直接電気エネルギーに変換するものであり、化学反応であるために発電効率が高く、汚染物質の排出が少ない環境性に優れた発電システムとして評価されている。   The fuel cell power generation system directly converts the combined energy of hydrogen and oxygen generated by the fuel processor into electrical energy, and since it is a chemical reaction, it has high power generation efficiency and low environmental pollution. It is evaluated as an excellent power generation system.

燃料電池発電システムは、燃料電池本体を内蔵するだけでなく、都市ガスやLPガス等に代表される炭化水素系燃料から水素ガスを取り出すための燃料処理装置、出力した直流電力を交流電力に変換する電気制御装置(インバータ)、発電に伴う発熱を回収する熱利用装置、システム全体を制御するための制御装置等を備え、一般家庭への送電を行っている。通常、燃料電池発電システムは、商用電源と連系した運転(連系運転)を行っている。   The fuel cell power generation system not only has a built-in fuel cell body, but also a fuel processing device for extracting hydrogen gas from hydrocarbon fuels typified by city gas and LP gas, and converts the output DC power to AC power. An electric control device (inverter), a heat utilization device that recovers heat generated by power generation, a control device for controlling the entire system, and the like are provided to transmit power to a general household. Usually, the fuel cell power generation system performs an operation linked to a commercial power source (interconnected operation).

近年、災害等により商用電源に停電が発生した場合において、燃料電池発電システムが自ら交流電圧を発生させて運転を行い、送電を継続する自立運転の必要性が高まっている。自立運転時は、燃料電池発電システムが家庭で使用される電力を送電するため、例えばリビングの照明を点灯すると、家庭の電力使用量が増加し、燃料電池発電システムの電力出力は急上昇する。また、リビングの照明を消灯すると、家庭の電力使用量が減少し、燃料電池発電システムの電力出力は急低下する。従来の燃料電池発電システムでは、自立運転時に、このような負荷の急変に対応できず、燃料電池発電システムが発電停止となるおそれがあった。   In recent years, when a power failure occurs in a commercial power source due to a disaster or the like, there is an increasing need for a self-sustained operation in which a fuel cell power generation system operates by generating an alternating voltage by itself and continues power transmission. During the self-sustained operation, the fuel cell power generation system transmits power used at home. For example, when a living room lighting is turned on, the amount of power used at home increases, and the power output of the fuel cell power generation system increases rapidly. Moreover, when the living room lights are turned off, the amount of power consumed at home decreases, and the power output of the fuel cell power generation system sharply decreases. The conventional fuel cell power generation system cannot cope with such a sudden change in load during the self-sustaining operation, and the fuel cell power generation system may stop generating power.

燃料電池発電システムにバッテリー(安定用蓄電池)を別途設けることで、負荷の急変に対応することは出来るが、燃料電池発電システムのコスト増加と筐体の大型化を伴うという問題があった。   By separately providing a battery (stabilizing storage battery) in the fuel cell power generation system, it is possible to cope with a sudden change in load, but there is a problem that the cost of the fuel cell power generation system is increased and the casing is enlarged.

特開2008−152959号公報JP 2008-152959 A

本発明が解決しようとする課題は、商用電源の停電時に、安定的に自立運転を行い、かつコスト増加を抑制できる燃料電池発電システム及びその運転方法を提供することである。   The problem to be solved by the present invention is to provide a fuel cell power generation system capable of stably performing independent operation and suppressing cost increase during a power failure of a commercial power supply, and an operation method thereof.

本実施形態によれば、燃料電池発電システムは、商用電源と連系した連系運転及び前記商用電源の停電時に自立運転を行う。この燃料電池発電システムは、空気及び燃料ガスが供給され、発電を行う燃料電池と、前記燃料電池で発電した直流電力を交流電力に変換するインバータと、前記商用電源の停電を検出したときに、前記燃料電池への空気又は燃料ガスの供給量を増やす制御部と、を備える。   According to this embodiment, the fuel cell power generation system performs a self-sustained operation at the time of a grid connection operation linked to a commercial power source and a power failure of the commercial power source. This fuel cell power generation system is supplied with air and fuel gas, detects a fuel cell that generates power, an inverter that converts DC power generated by the fuel cell into AC power, and a power failure of the commercial power source, And a controller that increases the amount of air or fuel gas supplied to the fuel cell.

本実施形態に係る燃料電池発電システムの概略構成図である。1 is a schematic configuration diagram of a fuel cell power generation system according to an embodiment. 本実施形態に係る燃料電池発電装置の概略構成図である。It is a schematic block diagram of the fuel cell power generator concerning this embodiment. 本実施形態に係る燃料電池発電システムの運転方法を説明するフローチャートである。It is a flowchart explaining the operating method of the fuel cell power generation system which concerns on this embodiment. 本実施形態に係る燃料電池発電システムの、連系運転時における出力電力、燃料利用率、酸素利用率の変遷の一例を示すグラフである。It is a graph which shows an example of transition of output electric power at the time of interconnection operation, fuel utilization rate, and oxygen utilization rate of the fuel cell power generation system concerning this embodiment. 本実施形態に係る燃料電池発電システムの、自立運転時における出力電力、燃料利用率、酸素利用率の変遷の一例を示すグラフである。It is a graph which shows an example of transition of output electric power at the time of self-sustained operation, fuel utilization rate, and oxygen utilization rate of a fuel cell power generation system concerning this embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る燃料電池発電システムの概略構成を示す。燃料電池発電システムは、燃料電池発電装置10と、燃料電池発電装置10から出力された直流電力を交流電力に変換するインバータ101と、送電遮断器103と、系統遮断器104と、燃料電池発電システムの全体を制御する制御部100とを備えている。インバータ101には、半導体スイッチ等で構成されるゲート102が設けられている。   FIG. 1 shows a schematic configuration of a fuel cell power generation system according to this embodiment. The fuel cell power generation system includes a fuel cell power generation device 10, an inverter 101 that converts DC power output from the fuel cell power generation device 10 into AC power, a power transmission breaker 103, a system breaker 104, and a fuel cell power generation system. The control part 100 which controls the whole is provided. The inverter 101 is provided with a gate 102 composed of a semiconductor switch or the like.

燃料電池発電システムは、電力系統(商用電源)105の電圧及び周波数に同期した連系運転を行う。また、燃料電池発電システムは、電力系統105の停電時に、自立運転を行う。   The fuel cell power generation system performs an interconnection operation synchronized with the voltage and frequency of the power system (commercial power source) 105. Further, the fuel cell power generation system performs a self-sustained operation at the time of a power failure of the power system 105.

図2に示すように、燃料電池発電装置10では、触媒が充填された改質器15に、燃料ブロア12により供給される燃料と、水タンク13から水ポンプ14を通じて供給される水とが混合して供給され、燃料から水素が取り出される。改質器15には、バーナ空気ブロア19によりバーナ空気が供給され、水素リッチなガスを取り出すために有効な温度に上昇し、以下のような改質反応が生じる。
2CH+3HO → 7H+CO+CO
As shown in FIG. 2, in the fuel cell power generation apparatus 10, the fuel supplied from the fuel blower 12 and the water supplied from the water tank 13 through the water pump 14 are mixed into the reformer 15 filled with the catalyst. And hydrogen is extracted from the fuel. The reformer 15 is supplied with burner air by a burner air blower 19 and rises to a temperature effective for taking out hydrogen-rich gas, and the following reforming reaction occurs.
2CH 4 + 3H 2 O → 7H 2 + CO 2 + CO

改質器15において改質反応により生じるCOは、CO変成器16およびCO選択酸化器17を通過することで、数ppmレベルにまで低減する。なお、CO変成器16では、以下のような平衡反応により、CO濃度が低減する。
2CO+HO → H+CO+CO
CO generated by the reforming reaction in the reformer 15 passes through the CO converter 16 and the CO selective oxidizer 17, and is reduced to a level of several ppm. In the CO transformer 16, the CO concentration is reduced by the following equilibrium reaction.
2CO + H 2 O → H 2 + CO 2 + CO

また、CO選択酸化器17では、以下のような平衡反応により、CO濃度が数ppmレベルまで低減する。
3CO+O → 2CO+CO
In the CO selective oxidizer 17, the CO concentration is reduced to several ppm level by the following equilibrium reaction.
3CO + O 2 → 2CO 2 + CO

CO変成器16およびCO選択酸化器17を通過した水素リッチなガスが、燃料電池11の燃料極に導入される。また、燃料電池11の酸化剤極には空気ブロア18により空気(酸素)が導入される。燃料電池11は、図示しない電解質膜と、電解質膜を挟んで対向して設けられた燃料極及び酸化剤極とを有している。酸化剤極に空気が導入され、燃料極に水素リッチなガスが導入されると、両極における電気化学反応によって電気(直流電力)と熱エネルギーが発生する。熱エネルギーは図示しない冷却水によって回収され、直流電力は図1のインバータ101に供給される。   The hydrogen-rich gas that has passed through the CO converter 16 and the CO selective oxidizer 17 is introduced into the fuel electrode of the fuel cell 11. Air (oxygen) is introduced into the oxidant electrode of the fuel cell 11 by the air blower 18. The fuel cell 11 has an electrolyte membrane (not shown), and a fuel electrode and an oxidant electrode that are provided to face each other with the electrolyte membrane interposed therebetween. When air is introduced into the oxidizer electrode and hydrogen-rich gas is introduced into the fuel electrode, electricity (DC power) and thermal energy are generated by an electrochemical reaction at both electrodes. Thermal energy is recovered by cooling water (not shown), and DC power is supplied to the inverter 101 in FIG.

なお、燃料電池11における余剰水素リッチガスは、バーナ空気ブロア19により供給されるバーナ空気と混合されて、改質器15に供給される。   The surplus hydrogen rich gas in the fuel cell 11 is mixed with the burner air supplied by the burner air blower 19 and supplied to the reformer 15.

図1に示すように、インバータ101は、燃料電池発電装置10の燃料電池11から出力される直流電力を交流電力に変換し、送電遮断器103を介して電力負荷106に電力を供給し、送電遮断器103、系統遮断器104を介して電力負荷107に電力を供給する。電力負荷106は、電力系統105の停電時に、燃料電池発電システムの自立運転により電力を供給する負荷である。電力負荷106は、例えば災害情報を取得するためのパソコン、テレビ、生活のための照明などである。一方、電力負荷107は、電力負荷105の停電時に自立運転する燃料電池発電システムから電力が供給されない負荷である。   As shown in FIG. 1, the inverter 101 converts DC power output from the fuel cell 11 of the fuel cell power generation apparatus 10 into AC power, supplies power to the power load 106 via the power transmission breaker 103, and transmits power. Power is supplied to the power load 107 through the circuit breaker 103 and the system circuit breaker 104. The power load 106 is a load that supplies power by a self-sustained operation of the fuel cell power generation system at the time of a power failure of the power system 105. The power load 106 is, for example, a personal computer for acquiring disaster information, a television set, lighting for daily life, or the like. On the other hand, the power load 107 is a load to which power is not supplied from the fuel cell power generation system that operates independently during a power failure of the power load 105.

制御部100は、電力系統105の監視を行うとともに、ゲート102、送電遮断器103、及び系統遮断器104の解列/連結の切り替えを行う。例えば、制御部100は、電力系統105の停電を検知すると、ゲート102、送電遮断器103、及び系統遮断器104を解列し、ゲートブロックを行い、その後、ゲート102を閉じてゲートブロックを解除し、燃料電池発電システムがアイドル運転を行うようにする。ここで、アイドル運転とは、自己電力供給のためだけの運転状態をいう。   The control unit 100 monitors the power system 105 and switches the disconnection / connection of the gate 102, the power transmission circuit breaker 103, and the system circuit breaker 104. For example, when detecting a power failure in the power system 105, the control unit 100 disconnects the gate 102, the power transmission circuit breaker 103, and the system circuit breaker 104, performs a gate block, then closes the gate 102 and releases the gate block. The fuel cell power generation system performs idle operation. Here, idle operation refers to an operation state only for self-power supply.

また、制御部100は、電力系統105の停電中に、電力負荷106の電源オンを検知したり、ユーザから電力供給を要求されたりした際に、送電遮断器103を接続し、燃料電池発電装置10により発電された電力が電力負荷106に供給されるようにし、燃料電池発電システムが自立運転を行うようにする。制御部100は、燃料電池発電システムが自立運転を行う際に、燃料電池発電装置10に供給される燃料ガス(水素リッチな改質ガス)及び/又は空気の流量を、連系運転時と比較して、増やす。具体的には、制御部100は燃料ブロア102及び/又は空気ブロア108を制御し、燃料ガス及び/又は空気の供給量を増やす。   In addition, the control unit 100 connects the power transmission circuit breaker 103 when the power supply of the power load 106 is detected during a power failure of the power system 105 or when a power supply is requested by the user, and the fuel cell power generator The power generated by 10 is supplied to the power load 106 so that the fuel cell power generation system performs a self-sustaining operation. The control unit 100 compares the flow rate of the fuel gas (hydrogen-rich reformed gas) and / or air supplied to the fuel cell power generation apparatus 10 when the fuel cell power generation system performs a self-sustained operation with that during the interconnection operation. And increase. Specifically, the control unit 100 controls the fuel blower 102 and / or the air blower 108 to increase the supply amount of fuel gas and / or air.

燃料ガス及び/又は空気の流量を増やすことで、燃料電池発電装置10における燃料利用率/酸素利用率が下がり、電力負荷106の使用電力が急変しても、燃料利用率/酸素利用率が許容上限を超えることを防止できる。ここで、燃料利用率は燃料を発電に消費する割合をいい、酸素利用率は空気中の酸素を発電に消費する割合をいう。   By increasing the flow rate of the fuel gas and / or air, the fuel utilization rate / oxygen utilization rate in the fuel cell power generation apparatus 10 decreases, and the fuel utilization rate / oxygen utilization rate is allowed even if the power consumption of the power load 106 changes suddenly. It is possible to prevent the upper limit from being exceeded. Here, the fuel utilization rate refers to the rate at which fuel is consumed for power generation, and the oxygen utilization rate refers to the rate at which oxygen in the air is consumed for power generation.

また、制御部100は、電力系統105が停電から復帰した場合、系統遮断器104を接続して、燃料電池発電システムが連系運転を行うようにする。また、この時、制御部100は、燃料電池発電装置10に供給される燃料ガス及び/又は空気の流量を、自立運転時と比較して、減らす。すなわち、電力系統105が通常状態のときに燃料電池発電装置10に供給されていた燃料ガス及び/又は空気の流量に戻す。   In addition, when the power system 105 returns from a power failure, the control unit 100 connects the system circuit breaker 104 so that the fuel cell power generation system performs the interconnection operation. At this time, the control unit 100 reduces the flow rate of the fuel gas and / or air supplied to the fuel cell power generation apparatus 10 as compared with the self-sustained operation. That is, the flow rate of the fuel gas and / or air supplied to the fuel cell power generator 10 when the power system 105 is in the normal state is restored.

次に、図3に示すフローチャートを用いて、電力系統105の停電発生から停電復旧までの燃料電池発電システムの運転方法を説明する。   Next, the operation method of the fuel cell power generation system from the occurrence of a power failure of the power system 105 to the recovery from the power failure will be described using the flowchart shown in FIG.

(ステップS101)電力系統105が通常状態のとき、燃料電池発電システムは、電力系統105の電圧及び周波数に同期した連系運転を行う。図4は、燃料電池発電システムの、連系運転時における出力電力、燃料利用率、酸素利用率の変遷の一例を示している。図4に示すように、連系運転時は、燃料利用率および酸素利用率の許容上限(図中一点鎖線)付近で発電を行っていることがわかる。これは、電力負荷106、107に対して電力系統105からも給電を行い、使用電力のばらつきに対応できることで、燃料電池発電システムの出力制御をゆるやかに行っているためである。許容上限にする理由は、燃料使用量を抑えることにより発電効率を高く維持することができるためである。   (Step S <b> 101) When the power system 105 is in a normal state, the fuel cell power generation system performs an interconnection operation synchronized with the voltage and frequency of the power system 105. FIG. 4 shows an example of the transition of output power, fuel utilization rate, and oxygen utilization rate during the interconnected operation of the fuel cell power generation system. As shown in FIG. 4, it can be seen that power generation is performed in the vicinity of the allowable upper limit of the fuel utilization rate and oxygen utilization rate (dashed line in the figure) during the interconnected operation. This is because the output control of the fuel cell power generation system is gently performed by supplying power from the power system 105 to the power loads 106 and 107 to cope with variations in the power used. The reason for setting the allowable upper limit is that the power generation efficiency can be kept high by reducing the amount of fuel used.

(ステップS102)電力系統105に停電が発生した場合はステップS103に進む。   (Step S102) When a power failure occurs in the power system 105, the process proceeds to Step S103.

(ステップS103)制御部100が、ゲート102を開きゲートブロックを行う。   (Step S103) The control unit 100 opens the gate 102 and performs gate block.

(ステップS104)制御部100が、送電遮断器103及び系統遮断器104を解列する。   (Step S <b> 104) The control unit 100 disconnects the power breaker 103 and the system breaker 104.

(ステップS105)制御部100が、ゲート102を接続し、ゲートブロックを解除する。これにより、燃料電池発電システムはアイドル運転を行う。   (Step S105) The control unit 100 connects the gate 102 and releases the gate block. Thereby, the fuel cell power generation system performs idle operation.

(ステップS106)電力負荷106に電力を供給する場合はステップS107へ進む。   (Step S106) When power is supplied to the power load 106, the process proceeds to Step S107.

(ステップS107)制御部100が、送電遮断器103を接続する。これにより、燃料電池発電システムは自立運転を行う。   (Step S107) The control unit 100 connects the power breaker 103. Thereby, the fuel cell power generation system performs a self-sustained operation.

なお、このとき、制御部100は、燃料電池発電装置10に供給される燃料ガス及び/又は空気の流量を増やす。自立運転時は、電力負荷106のオン/オフ動作が燃料電池発電装置10の運転に直接影響する。   At this time, the control unit 100 increases the flow rate of the fuel gas and / or air supplied to the fuel cell power generation device 10. During the independent operation, the on / off operation of the power load 106 directly affects the operation of the fuel cell power generation apparatus 10.

図5は、連系運転からアイドル運転を経て自立運転となった場合における、出力電力、燃料利用率、酸素利用率の変遷の一例を示している。図4に示す連系運転時とは異なり、自立運転時は、電力負荷106のオン/オフ動作の影響により、安定した燃料利用率および酸素利用率とならない。燃料電池発電装置10に供給される燃料ガス及び/又は空気の流量が連系運転時と同じである場合、電力負荷106の使用電力が急上昇すると、燃料利用率や酸素利用率が許容限界を超え、燃料電池発電装置10での発電が停止する。しかし、本実施形態では、自立運転時に、燃料電池発電装置10に供給される燃料ガス及び/又は空気の流量を増やすことで、燃料利用率及び酸素利用率に余裕を持たせ、電力負荷106の使用電力が急上昇しても、燃料利用率及び酸素利用率が許容限界を超えることを防止し、自立運転を安定継続することができる。   FIG. 5 shows an example of changes in output power, fuel utilization rate, and oxygen utilization rate when the operation is switched from the grid operation to the independent operation through the idle operation. Unlike the interconnected operation shown in FIG. 4, during the independent operation, the fuel utilization rate and the oxygen utilization rate are not stable due to the influence of the on / off operation of the power load 106. When the flow rate of the fuel gas and / or air supplied to the fuel cell power generation apparatus 10 is the same as that in the interconnected operation, if the power consumption of the power load 106 increases rapidly, the fuel utilization rate and the oxygen utilization rate exceed the allowable limits. Then, power generation in the fuel cell power generation device 10 is stopped. However, in the present embodiment, during the self-sustained operation, the flow rate of the fuel gas and / or air supplied to the fuel cell power generation apparatus 10 is increased, so that the fuel utilization rate and the oxygen utilization rate are given a margin. Even if the power consumption increases rapidly, it is possible to prevent the fuel utilization rate and the oxygen utilization rate from exceeding the allowable limits and to continue the independent operation stably.

(ステップS108)電力系統105が停電から復旧した場合はステップS109に進む。   (Step S108) When the power system 105 is recovered from the power failure, the process proceeds to Step S109.

(ステップS109)制御部100が、ゲート102を開きゲートブロックを行う。   (Step S109) The control unit 100 opens the gate 102 and performs gate block.

(ステップS110)インバータ101が、電力系統105の電圧及び周波数に同期した交流電力を出力する。   (Step S110) The inverter 101 outputs AC power synchronized with the voltage and frequency of the power system 105.

(ステップS111)制御部100が、ゲート102を接続し、ゲートブロックを解除する。   (Step S111) The control unit 100 connects the gate 102 and releases the gate block.

(ステップS112)制御部100が、系統遮断器104を接続する。これにより、燃料電池発電システムの連系運転が再開される。   (Step S <b> 112) The control unit 100 connects the system breaker 104. Thereby, the interconnection operation of the fuel cell power generation system is resumed.

このように、本実施形態によれば、自立運転時に燃料電池発電装置10に供給される燃料ガス及び/又は空気の流量を増やすことで、電力負荷106の使用電力が急変しても、燃料利用率及び酸素利用率が許容限界を超えることを防止し、自立運転を安定継続することができる。従って、商用電源の停電時に、安定的に自立運転を行うことができる。また、バッテリーを別途設ける必要がないため、装置コストの増加を抑制することができる。   As described above, according to the present embodiment, even if the power consumption of the power load 106 changes suddenly by increasing the flow rate of the fuel gas and / or air supplied to the fuel cell power generation apparatus 10 during the self-sustaining operation, It is possible to prevent the rate and the oxygen utilization rate from exceeding the allowable limit, and to continue the independent operation stably. Therefore, it is possible to stably carry out independent operation at the time of a power failure of the commercial power source. Moreover, since it is not necessary to provide a battery separately, an increase in apparatus cost can be suppressed.

上記実施形態では、送電遮断器103、系統遮断器104の接続を制御部100が行っていたが、これらをブレーカ等で構成し、ユーザが接続できるようにしてもよい。   In the above embodiment, the control unit 100 connects the power transmission circuit breaker 103 and the system circuit breaker 104. However, these may be configured by a breaker or the like so that the user can connect them.

なお、上記実施形態において、燃料ガス及び/又は空気の流量を増やすことは、燃料極に導入される水素及び/又は酸化剤極に導入される酸素の流量を増やすことであることは言うまでもない。   In the above embodiment, it goes without saying that increasing the flow rate of the fuel gas and / or air is increasing the flow rate of hydrogen introduced into the fuel electrode and / or oxygen introduced into the oxidizer electrode.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although the embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 燃料電池発電装置
11 燃料電池
12 燃料ブロア
13 水タンク
14 水ポンプ
15 改質器
16 CO変成器
17 CO選択酸化器
18 空気ブロア
19 バーナ空気ブロア
100 制御部
101 インバータ
102 ゲート
103 送電遮断器
104 系統遮断器
105 電力系統
106、107 電力負荷
DESCRIPTION OF SYMBOLS 10 Fuel cell power generation device 11 Fuel cell 12 Fuel blower 13 Water tank 14 Water pump 15 Reformer 16 CO converter 17 CO selective oxidizer 18 Air blower 19 Burner air blower 100 Control unit 101 Inverter 102 Gate 103 Transmission breaker 104 System Circuit breaker 105 Power system 106, 107 Power load

Claims (5)

商用電源と連系した連系運転及び前記商用電源の停電時に自立運転を行う燃料電池発電システムであって、
空気及び燃料ガスが供給され、発電を行う燃料電池と、
前記燃料電池で発電した直流電力を交流電力に変換するインバータと、
前記商用電源の停電を検出したときに、前記燃料電池への空気又は燃料ガスの供給量を増やす制御部と、
を備えることを特徴とする燃料電池発電システム。
A fuel cell power generation system that performs a self-sustained operation at the time of a power failure of the commercial power supply and the commercial power supply,
A fuel cell that is supplied with air and fuel gas to generate electricity;
An inverter that converts DC power generated by the fuel cell into AC power;
A control unit that increases the amount of air or fuel gas supplied to the fuel cell when a power failure of the commercial power source is detected;
A fuel cell power generation system comprising:
前記インバータに接続された第1遮断器と、
前記第1遮断器と前記商用電源との間に設けられた第2遮断器と、
をさらに備え、
前記制御部は、前記商用電源の停電を検出したときに、前記第1遮断器及び前記第2遮断器を解列し、自立運転を行うにあたり前記第1遮断器を連結することを特徴とする請求項1に記載の燃料電池発電システム。
A first circuit breaker connected to the inverter;
A second circuit breaker provided between the first circuit breaker and the commercial power source;
Further comprising
The control unit disconnects the first circuit breaker and the second circuit breaker when detecting a power failure of the commercial power supply, and connects the first circuit breaker when performing a self-sustaining operation. The fuel cell power generation system according to claim 1.
前記制御部は、前記商用電源の停電からの復旧を検出したときに、前記燃料電池への空気又は燃料ガスの供給量を前記連系運転時の空気又は燃料ガスの供給量に戻すことを特徴とする請求項1又は2に記載の燃料電池発電システム。   The control unit returns the supply amount of air or fuel gas to the fuel cell to the supply amount of air or fuel gas during the interconnection operation when detecting recovery from a power failure of the commercial power source. The fuel cell power generation system according to claim 1 or 2. 商用電源と連系した連系運転及び前記商用電源の停電時に自立運転を行う燃料電池発電システムの運転方法であって、
燃料電池に空気及び燃料ガスを供給して直流電力を発電するステップと、
インバータにより、前記燃料電池で発電した直流電力を交流電力に変換するステップと、
前記商用電源を監視するステップと、
前記商用電源の停電を検出したときに、前記燃料電池への空気又は燃料ガスの供給量を増やすステップと、
を備えることを特徴とする燃料電池発電システムの運転方法。
An operation method of a fuel cell power generation system that performs a grid-operated operation linked to a commercial power source and a self-sustained operation at the time of a power failure of the commercial power source,
Supplying air and fuel gas to the fuel cell to generate DC power; and
A step of converting DC power generated by the fuel cell into AC power by an inverter;
Monitoring the commercial power source;
Increasing the supply amount of air or fuel gas to the fuel cell when detecting a power failure of the commercial power source;
A method of operating a fuel cell power generation system comprising:
前記商用電源の停電からの復旧を検出したときに、前記燃料電池への空気又は燃料ガスの供給量を前記連系運転時の空気又は燃料ガスの供給量に戻すステップをさらに備えることを特徴とする請求項4に記載の燃料電池発電システムの運転方法。   The method further comprises the step of returning the supply amount of air or fuel gas to the fuel cell to the supply amount of air or fuel gas at the time of the interconnection operation when the recovery from the power failure of the commercial power source is detected. The operation method of the fuel cell power generation system according to claim 4.
JP2012001937A 2012-01-10 2012-01-10 Fuel cell power generation system and operation method thereof Pending JP2013143212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012001937A JP2013143212A (en) 2012-01-10 2012-01-10 Fuel cell power generation system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001937A JP2013143212A (en) 2012-01-10 2012-01-10 Fuel cell power generation system and operation method thereof

Publications (1)

Publication Number Publication Date
JP2013143212A true JP2013143212A (en) 2013-07-22

Family

ID=49039688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001937A Pending JP2013143212A (en) 2012-01-10 2012-01-10 Fuel cell power generation system and operation method thereof

Country Status (1)

Country Link
JP (1) JP2013143212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098153A (en) * 2015-11-26 2017-06-01 京セラ株式会社 Fuel cell device and control method of the same
JP2019029108A (en) * 2017-07-26 2019-02-21 東芝燃料電池システム株式会社 Fuel cell power generation system and method for controlling fuel cell power generation system
JP2019145394A (en) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 Combined power generation system, combined power generation system operation switching method, and combined power generation system operation switching program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304126A (en) * 1991-04-01 1992-10-27 Nippon Telegr & Teleph Corp <Ntt> Device for supplying electric power from fuel cell
JPH08236134A (en) * 1995-02-23 1996-09-13 Mitsubishi Heavy Ind Ltd Power supply control device for fuel cell
JPH10210685A (en) * 1997-01-24 1998-08-07 Toshiba Corp Controlling method for system-interconnected power converter for fuel cell
JP2002171671A (en) * 2000-12-04 2002-06-14 Mitsubishi Electric Corp Non-interruptible self-changeover power generator system
US20030124400A1 (en) * 2001-12-26 2003-07-03 Koichiro Hara Fuel cell power generation system and control method thereof
JP2005203145A (en) * 2004-01-13 2005-07-28 Fuji Electric Holdings Co Ltd Power feeding method for self-sustaining load of fuel cell power generating device
JP2005268149A (en) * 2004-03-22 2005-09-29 Osaka Gas Co Ltd Power supply system
JP2008152997A (en) * 2006-12-15 2008-07-03 Toshiba Corp Fuel cell power generating device and its control method
JP2009100520A (en) * 2007-10-15 2009-05-07 Central Res Inst Of Electric Power Ind Electric power generating system provided with momentary drop countermeasure function
JP2010021024A (en) * 2008-07-10 2010-01-28 Aisin Seiki Co Ltd Operation control method of fuel cell system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304126A (en) * 1991-04-01 1992-10-27 Nippon Telegr & Teleph Corp <Ntt> Device for supplying electric power from fuel cell
JPH08236134A (en) * 1995-02-23 1996-09-13 Mitsubishi Heavy Ind Ltd Power supply control device for fuel cell
JPH10210685A (en) * 1997-01-24 1998-08-07 Toshiba Corp Controlling method for system-interconnected power converter for fuel cell
JP2002171671A (en) * 2000-12-04 2002-06-14 Mitsubishi Electric Corp Non-interruptible self-changeover power generator system
US20030124400A1 (en) * 2001-12-26 2003-07-03 Koichiro Hara Fuel cell power generation system and control method thereof
JP2003197231A (en) * 2001-12-26 2003-07-11 Toyota Motor Corp Fuel cell power generation system and its control method
JP2005203145A (en) * 2004-01-13 2005-07-28 Fuji Electric Holdings Co Ltd Power feeding method for self-sustaining load of fuel cell power generating device
JP2005268149A (en) * 2004-03-22 2005-09-29 Osaka Gas Co Ltd Power supply system
JP2008152997A (en) * 2006-12-15 2008-07-03 Toshiba Corp Fuel cell power generating device and its control method
JP2009100520A (en) * 2007-10-15 2009-05-07 Central Res Inst Of Electric Power Ind Electric power generating system provided with momentary drop countermeasure function
JP2010021024A (en) * 2008-07-10 2010-01-28 Aisin Seiki Co Ltd Operation control method of fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098153A (en) * 2015-11-26 2017-06-01 京セラ株式会社 Fuel cell device and control method of the same
JP2019029108A (en) * 2017-07-26 2019-02-21 東芝燃料電池システム株式会社 Fuel cell power generation system and method for controlling fuel cell power generation system
JP7010616B2 (en) 2017-07-26 2022-01-26 株式会社東芝 Fuel cell power generation system and control method of fuel cell power generation system
JP2019145394A (en) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 Combined power generation system, combined power generation system operation switching method, and combined power generation system operation switching program
JP7043288B2 (en) 2018-02-22 2022-03-29 三菱重工業株式会社 Combined power generation system, combined cycle system operation switching method, and combined cycle system operation switching program

Similar Documents

Publication Publication Date Title
US7250231B2 (en) Auxiliary fuel cell system
US20060035116A1 (en) Equipment with a built-in fuel cell
WO2014002798A1 (en) Solid polymer fuel cell system
JP2015065009A (en) Cogeneration apparatus
KR100641126B1 (en) Extinguishing system for fuel cell
JP2007207661A (en) Power supply system having fuel cell system
JP6174578B2 (en) Solid oxide fuel cell system
JP2015186408A (en) Operation method for fuel cell system, and fuel cell system
JP6208660B2 (en) Solid oxide fuel cell system
KR101287105B1 (en) Fuel cell system and driving method thereof
JP2013143212A (en) Fuel cell power generation system and operation method thereof
JP6111855B2 (en) Fuel cell system
JP5809844B2 (en) FUEL CELL POWER GENERATION SYSTEM AND METHOD FOR POWERING UP ELECTRIC HEATER IN FUEL CELL POWER GENERATION SYSTEM
JP2013157189A (en) Energy management device
JP2017162655A (en) Fuel cell system
JP5145313B2 (en) Fuel cell system
JP2008108666A (en) Fuel cell system
JP2006147588A (en) Fuel cell system
JP5895073B2 (en) FUEL CELL POWER GENERATION SYSTEM AND METHOD FOR POWERING UP ELECTRIC HEATER IN FUEL CELL POWER GENERATION SYSTEM
JP5655549B2 (en) Fuel cell system
JP5837957B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP6452022B2 (en) Control device and fuel cell system
JP2011049053A (en) Power generation system
JP2002008697A (en) Operation starting method of fuel cell system and its equipment
JP2016207289A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150410