JPH04304126A - Device for supplying electric power from fuel cell - Google Patents

Device for supplying electric power from fuel cell

Info

Publication number
JPH04304126A
JPH04304126A JP3068132A JP6813291A JPH04304126A JP H04304126 A JPH04304126 A JP H04304126A JP 3068132 A JP3068132 A JP 3068132A JP 6813291 A JP6813291 A JP 6813291A JP H04304126 A JPH04304126 A JP H04304126A
Authority
JP
Japan
Prior art keywords
fuel cell
loads
output
power
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3068132A
Other languages
Japanese (ja)
Inventor
Misuo Takahashi
高橋 美寿夫
Makoto Tanaka
良 田中
Yasuyuki Koizumi
小泉 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3068132A priority Critical patent/JPH04304126A/en
Publication of JPH04304126A publication Critical patent/JPH04304126A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To continuously supply electric power to a DC load and specific AC load and, at the same time, to continuously utilize the thermal energy of a fuel cell by efficiently operating the fuel cell under rated conditions even when a power failure occurs in a device for supplying electric power of fuel cell which is connected in parallel with a commercial source and supplies electric power to a plurality of DC and AC loads. CONSTITUTION:The output of a fuel cell 2 is connected in parallel with commercial power supply 1 through a DC-AC inverter 3. AC loads 51-5n and DC loads 41-4n provided with rectifiers 81-8n and batteries 91-9n are respectively connected to the connecting points of the battery 2 with the power supply 1 through switches 121-12n and a switch 101 and electric power is usually supplied to the loads from the fuel cell 2 operated under rated conditions and power source 1. When the commercial power supply 1 is failed, an inverter control circuit 31 supplies electric power to the DC loads 41-4n without hit by opening the switch 101 and specific switches 121-12n and continuously supplies electric power to the AC loads 51-5n from the fuel cell 2 operated at a rated rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、燃料電池と商用電源と
の連系により複数の直流負荷および複数の交流負荷に電
力を供給する供給装置に関し、特に停電時において燃料
電池の運転を一定出力状態で高効率で継続できる燃料電
池電力供給装置に関するものである。
[Industrial Application Field] The present invention relates to a supply device that supplies power to multiple DC loads and multiple AC loads by interconnecting a fuel cell with a commercial power source, and in particular, operates a fuel cell at a constant output during a power outage. The present invention relates to a fuel cell power supply device that can continue to operate with high efficiency under various conditions.

【0002】0002

【従来の技術】燃料電池は都市ガス等を改質して得られ
る水素と空気中の酸素を化学的に反応させ、水の電気分
解の逆の反応を利用して電力を取り出す発電装置である
。この燃料電池は発電効率が高く、反応に伴う排出ガス
がクリーンで低公害であるとともに、反応に伴って発生
する熱を空調や給湯等に利用することができるため、ク
リーンで高効率な次世代のコージェネレーションシステ
ムとして近年脚光をあびるようになってきた。ところで
、燃料電池をエネルギー源に用い、電気出力および熱出
力をともに利用するシステムを構築した場合、電気出力
に変動が生じると取り出せる熱容量が変化し必要な熱エ
ネルギーが得られなくなったり、また、低出力状態での
運転が続くと、発電効率が低くなってしまうという欠点
がある。従って、一般的には燃料電池の出力は常に定格
で使用する方法が最も効率が良い。そこで、従来は燃料
電池の出力を交流に変換し、これと商用電源の出力電圧
,周波数および位相を相等しくしてそれぞれの出力を並
列に接続し(以後この動作を「連系」、この接続点を「
連系点」と呼ぶ)、電力を供給するシステム構成が採用
されていた。これにより、電力の変動分は商用電源から
供給し、燃料電池からは一定の電力を供給していた。
[Prior Art] A fuel cell is a power generation device that generates electricity by chemically reacting hydrogen obtained by reforming city gas, etc. with oxygen in the air, and using a reaction that is the reverse of the electrolysis of water. . This fuel cell has high power generation efficiency, the exhaust gas associated with the reaction is clean and low pollution, and the heat generated through the reaction can be used for air conditioning, hot water heating, etc., making it a clean and highly efficient next generation. In recent years, it has been attracting attention as a cogeneration system. By the way, when building a system that uses fuel cells as an energy source and uses both electrical output and thermal output, if the electrical output fluctuates, the heat capacity that can be taken out changes and the necessary thermal energy cannot be obtained, or the There is a drawback that if the operation continues in the output state, the power generation efficiency will decrease. Therefore, in general, it is most efficient to always use the rated output of the fuel cell. Conventionally, the output of a fuel cell is converted to alternating current, and the output voltage, frequency, and phase of the commercial power source are made equal to each other, and the respective outputs are connected in parallel. The point is ``
A system configuration was adopted in which power was supplied through the network (called a "connection point"). As a result, fluctuations in power were supplied from the commercial power source, and constant power was supplied from the fuel cell.

【0003】図3に上記従来の燃料電池電力供給装置の
システム構成を示す。図において、1は商用電源、2は
燃料電池、3は直流電力を交流電力に変換するDC−A
Cインバータ、41〜4nは直流負荷、51〜5nは交
流負荷、6,7はスイッチ、81〜8nは整流装置、9
1〜9nは蓄電池、11は商用同期信号検出部、21は
電力検出部、31は演算機能を持ったDC−ACインバ
ータ制御部である。従来の燃料電池供給装置は燃料電池
2の出力に出力電力検出部21を介してDC−ACイン
バータ3,スイッチ7を直列に接続している。また、商
用電源1の出力に商用同期信号検出部11を介して、ス
イッチ6を直列に接続し、スイッチ6の出力とスイッチ
7の連系点の出力より整流装置81〜8nを介して直流
負荷41〜4nが接続され、各整流装置81〜8nと各
直流負荷41〜4nの間にバックアップ用の蓄電池91
〜9nがそれぞれ接続される。その他、前記整流装置8
1〜8nと並列には交流負荷51〜5nが接続されてい
る。なお、スイッチ6,7は燃料電池1,DC−ACイ
ンバータ故障時および交流負荷故障時のしゃ断器として
のしゃ断機能も併せ持っている。また、商用同期信号検
出部11、電力検出部21およびスイッチ6,7のしゃ
断信号検出線はDC−ACインバータ制御部31に接続
されている。
FIG. 3 shows the system configuration of the conventional fuel cell power supply device. In the figure, 1 is a commercial power supply, 2 is a fuel cell, and 3 is a DC-A that converts DC power to AC power.
C inverter, 41 to 4n are DC loads, 51 to 5n are AC loads, 6 and 7 are switches, 81 to 8n are rectifiers, 9
1 to 9n are storage batteries, 11 is a commercial synchronization signal detection section, 21 is a power detection section, and 31 is a DC-AC inverter control section having an arithmetic function. In the conventional fuel cell supply device, a DC-AC inverter 3 and a switch 7 are connected in series to the output of the fuel cell 2 via an output power detection section 21 . In addition, a switch 6 is connected in series to the output of the commercial power supply 1 via the commercial synchronization signal detection unit 11, and the output of the switch 6 and the output of the interconnection point of the switch 7 are connected to the DC load via the rectifiers 81 to 8n. 41 to 4n are connected, and a backup storage battery 91 is connected between each rectifier 81 to 8n and each DC load 41 to 4n.
~9n are connected respectively. In addition, the rectifier 8
AC loads 51-5n are connected in parallel with 1-8n. The switches 6 and 7 also have a breaker function when the fuel cell 1, DC-AC inverter fails, or AC load fails. Further, the commercial synchronization signal detection section 11, the power detection section 21, and the cutoff signal detection lines of the switches 6 and 7 are connected to the DC-AC inverter control section 31.

【0004】このようなシステム構成の燃料電池電力供
給装置における商用電源と燃料電池等の自家用発電装置
の連系運転方法としては、一定電力を燃料電池から供給
し、変動負荷分を商用電源から供給するベースカット給
電方式と、この逆のピークカット方式によって電力を供
給する方式が用いられている。しかしながら、一般に燃
料電池と商用電源を連系する場合、燃料電池出力容量は
負荷容量に比べ小さく、また負荷変動特性等の点からベ
ースカット給電方式が用いられている。従って、ここで
もベースカット給電方式を適用した回路で装置を構成し
た場合について記述する。
[0004] In a fuel cell power supply device having such a system configuration, a method of interconnecting a commercial power source and a private power generating device such as a fuel cell is to supply constant power from the fuel cell and supply variable load from the commercial power source. A base-cut power supply method is used, and a peak-cut method, which is the opposite of this method, is used to supply power. However, in general, when interconnecting a fuel cell and a commercial power source, the fuel cell output capacity is smaller than the load capacity, and a base cut power supply method is used from the viewpoint of load fluctuation characteristics. Therefore, the case where the device is configured with a circuit to which the base-cut power feeding method is applied will be described here as well.

【0005】図4は上記従来の燃料電池電力供給装置の
動作モード図である。図において、横軸は時間、縦軸は
電力量を表している。図中の(1)は商用電源1の出力
電力量、(2)は燃料電池2のDC−ACインバータ側
の入力電力量を示している。本燃料電池電力供給装置の
動作モードは、スイッチ6,スイッチ7に接続されてい
る直流負荷41〜4nと交流負荷51〜5nに対しては
DC−ACインバータ3と商用電源1より必要な電力を
供給する。このような電力供給に於いて、DC−ACイ
ンバータ3は商用同期信号検出部11より商用同期信号
を検出して常時連系運転がされており、たとえば交流負
荷51〜5nが増大した場合、図4中の(1)に示した
ように商用電源1の出力電力が増大し、燃料電池2の出
力電力は一定に保たれる。即ち、燃料電池2の出力電力
は電力検出部21で検出した信号によってインバータ制
御部31に送出され、インバータ制御部31は図4中の
(2)に示したように燃料電池2の出力電力が常に一定
出力状態を維持するようにDC−ACインバータ3を制
御している。逆に交流負荷51〜5nが減少した場合に
おいても、商用電源1の出力が減少し、燃料電池2の出
力電力は常に一定に保たれる。
FIG. 4 is an operational mode diagram of the conventional fuel cell power supply device. In the figure, the horizontal axis represents time and the vertical axis represents electric energy. In the figure, (1) shows the output power amount of the commercial power source 1, and (2) shows the input power amount of the fuel cell 2 on the DC-AC inverter side. The operation mode of this fuel cell power supply device is such that the DC-AC inverter 3 and the commercial power supply 1 supply the necessary power to the DC loads 41 to 4n and AC loads 51 to 5n connected to the switches 6 and 7. supply In such power supply, the DC-AC inverter 3 detects a commercial synchronizing signal from the commercial synchronizing signal detection unit 11 and is constantly operated in a connected manner.For example, when the AC loads 51 to 5n increase, As shown in (1) of 4, the output power of the commercial power source 1 increases, and the output power of the fuel cell 2 is kept constant. That is, the output power of the fuel cell 2 is sent to the inverter control section 31 according to the signal detected by the power detection section 21, and the inverter control section 31 detects the output power of the fuel cell 2 as shown in (2) in FIG. The DC-AC inverter 3 is controlled to always maintain a constant output state. Conversely, even when the AC loads 51 to 5n decrease, the output of the commercial power source 1 decreases, and the output power of the fuel cell 2 is always kept constant.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の技術による燃料電池電力供給装置では、商用電源1
が停電した場合、前述したとおり燃料電池の出力容量は
負荷容量より小さいため、瞬時的に燃料電池2の出力は
全ての整流装置81〜8nを介した直流負荷41〜4n
および交流負荷51〜5nに電力を供給することとなり
、燃料電池2は過負荷となって最悪装置故障をまねく恐
れがある。このため、停電信号を検出し、スイッチ6,
7を開放して、商用電源1の停電時には全ての負荷への
電力供給を停止しなければならなかった。つまり、従来
例の燃料電池電力供給装置は、商用電源1と燃料電池2
からDC−ACインバータ3を介した出力の出力電圧,
周波数および位相を相等しくし各々並列接続して負荷に
電力を供給しているが、商用電源1が停電すると、負荷
41〜4n,51〜5nへの電力供給ができなくなるば
かりでなく、熱エネルギーの供給も停止してしまうとい
う欠点があった。
[Problems to be Solved by the Invention] However, in the fuel cell power supply device according to the above-mentioned conventional technology, the commercial power supply 1
If there is a power outage, the output capacity of the fuel cell 2 is smaller than the load capacity as described above, so the output of the fuel cell 2 is instantaneously reduced to the DC load 41 to 4n through all the rectifiers 81 to 8n.
In addition, power is supplied to the AC loads 51 to 5n, and the fuel cell 2 becomes overloaded, which may lead to device failure in the worst case. Therefore, when a power outage signal is detected, the switch 6
7 was opened, and power supply to all loads had to be stopped in the event of a power outage of the commercial power supply 1. In other words, the conventional fuel cell power supply device consists of a commercial power source 1 and a fuel cell 2.
The output voltage of the output via the DC-AC inverter 3 from
Power is supplied to the loads by connecting them in parallel with the same frequency and phase, but if the commercial power supply 1 has a power outage, not only will it be impossible to supply power to the loads 41 to 4n and 51 to 5n, but thermal energy will also be lost. The disadvantage was that the supply of

【0007】本発明は、このような欠点を改善するため
に創案したものであり、その目的は、商用電源の停電時
においても、燃料電池の運転を定格出力で継続すること
ができるとともに、直流負荷システムならびに特定の交
流負荷に対して電力供給を継続させ、かつ燃料電池の熱
エネルギーの供給も途絶えることなく継続できる燃料電
池電力供給装置を提供することにある。
The present invention was devised to improve these drawbacks, and its purpose is to enable fuel cells to continue operating at their rated output even during a commercial power outage, and to It is an object of the present invention to provide a fuel cell power supply device that can continuously supply power to a load system and a specific AC load, and can also continue to supply thermal energy from a fuel cell without interruption.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の燃料電池電力供給装置においては、燃料電
池の出力にDC−ACインバータを直列に接続し、該D
C−ACインバータの出力に商用電源を並列接続し、該
並列接続出力に整流器および該整流器出力より浮動充電
される蓄電池および該整流器と該蓄電池より電力の供給
を受ける直流負荷より成る直流負荷システムと交流負荷
とを各々複数並列接続し、前記燃料電池の出力容量は該
複数の直流負荷システムおよび該複数の交流負荷の容量
に比べ小さく、かつ前記燃料電池の出力は前記複数の直
流負荷および前記複数の交流負荷の変動にかかわらず一
定出力を送出するよう構成した燃料電池電力供給装置に
おいて、前記商用電源の出力に直列に第1のスイッチを
接続し、前記DC−ACインバータ出力に直列に第2の
スイッチを接続し、かつ前記DC−ACインバータと前
記商用電源の並列に接続された接続点と前記複数の整流
器との間に直列に各々第3のスイッチを接続し、かつ前
記接続点と前記複数の交流負荷の間に直列に各々第4の
スイッチを接続し、常時は前記DC−ACインバータの
出力電圧,周波数および位相を前記商用電源と相等しく
するとともに前記複数の直流負荷および前記複数の交流
負荷に前記燃料電池出力と前記商用電源から電力を供給
し、該商用電源が停電した場合は前記第1のスイッチお
よび前記第3のスイッチを瞬時に全て開放すると同時に
前記複数の交流負荷に停電発生前に供給されていた電力
の和が前記燃料電池の予め設定された出力容量よりも多
い場合、前記電力の和と該燃料電池の予め設定された出
力容量の差に応じて前記第4の複数のスイッチを予め定
めた優先順に従って開放し、前記複数の交流負荷のうち
特定の交流負荷に無瞬断で電力の供給を継続させる制御
部を具備することを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, in the fuel cell power supply device of the present invention, a DC-AC inverter is connected in series to the output of the fuel cell, and the
A DC load system comprising a commercial power supply connected in parallel to the output of a C-AC inverter, a rectifier connected to the parallel connection output, a storage battery floatingly charged from the rectifier output, and a DC load supplied with power from the rectifier and the storage battery. A plurality of AC loads are each connected in parallel, and the output capacity of the fuel cell is smaller than the capacity of the plurality of DC load systems and the plurality of AC loads, and the output of the fuel cell is smaller than the capacity of the plurality of DC loads and the plurality of AC loads. In a fuel cell power supply device configured to send out a constant output regardless of fluctuations in AC load, a first switch is connected in series with the output of the commercial power source, and a second switch is connected in series with the output of the DC-AC inverter. a third switch is connected in series between the connection point of the DC-AC inverter and the commercial power supply connected in parallel and the plurality of rectifiers, and a third switch is connected in series between the connection point and the plurality of rectifiers, and A fourth switch is connected in series between the plurality of AC loads, so that the output voltage, frequency and phase of the DC-AC inverter are always equal to those of the commercial power supply, and the output voltage, frequency and phase of the DC-AC inverter are always made equal to those of the commercial power supply, and Electric power is supplied to an AC load from the fuel cell output and the commercial power supply, and when the commercial power supply fails, the first switch and the third switch are all opened instantly, and at the same time, the power is supplied to the plurality of AC loads. If the sum of the electric power supplied before generation is greater than the preset output capacity of the fuel cell, the fourth The present invention is characterized by comprising a control unit that opens a plurality of switches according to a predetermined priority order to continue supplying power to a specific AC load among the plurality of AC loads without momentary interruption.

【0009】[0009]

【作用】本発明の燃料電池電力供給装置では、商用電源
停電時には整流器と停電時バックアップ用蓄電池を備え
た直流負荷システムを無瞬断でシステムから切離し、直
流負荷にはバックアップ用蓄電池から給電するとともに
、燃料電池定格出力電力と同等の交流負荷に対しては無
瞬断で燃料電池からの電力供給を継続させる。このよう
に、商用電源停電時にも燃料電池の定格出力運転を継続
することにより、熱エネルギー供給の継続を図るととも
に、発電効率および熱エネルギーの利用率の向上を図れ
るようにする。
[Operation] In the fuel cell power supply device of the present invention, in the event of a commercial power outage, the DC load system equipped with a rectifier and a backup storage battery in case of a power outage is disconnected from the system without momentary interruption, and power is supplied to the DC load from the backup storage battery. , the fuel cell continues to supply power without interruption to an AC load equivalent to the fuel cell's rated output power. In this way, by continuing the rated output operation of the fuel cell even during a commercial power outage, it is possible to continue supplying thermal energy and improve power generation efficiency and utilization rate of thermal energy.

【0010】0010

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0011】図1は本発明の一実施例の構成図を示す。 図において、1は商用電源、2は燃料電池、3は直流電
力を交流電力に変換するDC−ACインバータ、41〜
4nは直流負荷、51〜5nは交流負荷、6,7はスイ
ッチ、81〜8nは整流装置、91〜9nは蓄電池、1
01,121〜12nはスイッチ、111,131〜1
3nは交流出力検出部、11は商用同期信号検出部、2
1は電力検出部、31は演算機能を持ったDC−ACイ
ンバータ制御回路である。以上の構成部分のうち、従来
の技術で説明した図3の構成部分と共通しているところ
は同一番号を付してある。ただし、DC−ACインバー
タ制御回路31は後記のように停電を検出した時の制御
機能として、DC−ACインバータ3を自立して一定出
力で運転を継続させる機能と、スイッチ6およびスイッ
チ101を瞬時に全て開放すると同時に複数の交流負荷
51〜5nに停電発生前に供給されていた電力の和が燃
料電池2の予め設定された出力容量よりも多い場合、前
記電力の和と燃料電池2の予め設定された出力容量の差
に応じて複数のスイッチ121〜12nを予め定めた優
先順に従って開放する機能が付加される。
FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, 1 is a commercial power source, 2 is a fuel cell, 3 is a DC-AC inverter that converts DC power to AC power, 41 to
4n is a DC load, 51 to 5n are AC loads, 6 and 7 are switches, 81 to 8n are rectifiers, 91 to 9n are storage batteries, 1
01,121-12n are switches, 111,131-1
3n is an AC output detection section, 11 is a commercial synchronization signal detection section, 2
Reference numeral 1 represents a power detection unit, and 31 represents a DC-AC inverter control circuit having an arithmetic function. Among the above-mentioned constituent parts, the parts which are common to the constituent parts of FIG. 3 described in the related art are given the same numbers. However, as described later, the DC-AC inverter control circuit 31 has a control function when a power outage is detected, including a function to make the DC-AC inverter 3 independent and continue operation at a constant output, and a function to instantly turn on the switch 6 and the switch 101. At the same time, if the sum of the power supplied to the plurality of AC loads 51 to 5n before the power outage is greater than the preset output capacity of the fuel cell 2, the sum of the power and the preset output capacity of the fuel cell 2 A function is added to open the plurality of switches 121 to 12n in accordance with a predetermined priority order according to a set difference in output capacitance.

【0012】本実施例の構成では、燃料電池2の出力に
DC−ACインバータ3を接続し、DC−ACインバー
タ3の出力にスイッチ7が接続される。また、商用電源
1の出力に商用同期信号検出部11を介してスイッチ6
が直列に接続され、スイッチ6の出力とスイッチ7の連
系点より交流出力検出部111、スイッチ101および
整流装置81〜8nを介して直流負荷41〜4nが接続
され、交流出力検出部131〜13n、スイッチ121
〜12nを介して交流負荷51〜5nが接続される。ま
た、整流装置81〜8nと直流負荷41〜4nの間に交
流電力停電時のバックアップ用電源として蓄電池91〜
9nが接続されている。DC−ACインバータ3の入力
には電力検出部21が接続され、演算機能を備えたイン
バータ制御回路31に信号線が接続されている。インバ
ータ制御回路31には商用電源1の同期信号を得るため
商用同期信号検出部11の信号線が接続され、直流負荷
41〜4nおよび各交流負荷51〜5nの電力を検出す
る交流出力検出部111,131〜13nの信号線が接
続されている。
In the configuration of this embodiment, a DC-AC inverter 3 is connected to the output of the fuel cell 2, and a switch 7 is connected to the output of the DC-AC inverter 3. In addition, a switch 6 is connected to the output of the commercial power supply 1 via a commercial synchronization signal detection unit 11.
are connected in series, and DC loads 41-4n are connected from the output of switch 6 and the interconnection point of switch 7 via AC output detection section 111, switch 101 and rectifiers 81-8n, and AC output detection sections 131-4n are connected in series. 13n, switch 121
AC loads 51 to 5n are connected through 12n. Additionally, storage batteries 91 to 8 are used as backup power sources in the event of an AC power outage between the rectifiers 81 to 8n and the DC loads 41 to 4n.
9n is connected. A power detection section 21 is connected to the input of the DC-AC inverter 3, and a signal line is connected to an inverter control circuit 31 having an arithmetic function. The inverter control circuit 31 is connected to a signal line of a commercial synchronization signal detection unit 11 to obtain a synchronization signal of the commercial power supply 1, and an AC output detection unit 111 that detects the power of the DC loads 41 to 4n and each AC load 51 to 5n. , 131 to 13n are connected to the signal lines.

【0013】以上のように構成した一実施例の動作およ
び作用を述べる。
The operation and effect of one embodiment configured as above will be described.

【0014】図2は上記実施例の動作を説明するための
動作モード図である。図において、横軸は時間、縦軸は
電力量を表している。図中の(1)は商用電源1の出力
電力量、(2)は燃料電池2のDC−ACインバータ3
側の入力電力量であり、電力検出部21により検出され
る。(2)′は停電中に供給される燃料電池2のDC−
ACインバータ3側の入力電力量であり、交流負荷51
〜5nのいずれかに供給される。まず、本実施例の動作
を図1,図2をもとに説明する。
FIG. 2 is an operation mode diagram for explaining the operation of the above embodiment. In the figure, the horizontal axis represents time and the vertical axis represents electric energy. In the figure, (1) is the output power amount of the commercial power supply 1, and (2) is the DC-AC inverter 3 of the fuel cell 2.
This is the input power amount on the side, and is detected by the power detection unit 21. (2)' is the DC- of the fuel cell 2 supplied during a power outage.
This is the input power amount on the AC inverter 3 side, and the AC load 51
~5n. First, the operation of this embodiment will be explained based on FIGS. 1 and 2.

【0015】常時は、直流負荷41〜4nおよび交流負
荷51〜5nに対して燃料電池2と商用電源1より電力
が供給されている。この時、燃料電池2からの出力電力
量は、DC−ACインバータ3の入力側に設けた電力検
出部21により検出され、その信号は演算機能を保持し
ているインバータ制御回路31に送信される。DC−A
Cインバータ3は、商用同期信号検出部11より信号を
受けたインバータ制御回路31により常に商用電源1と
同期して運転されている。この状態においては、直流負
荷41〜4nのスイッチ101および交流負荷51〜5
nのスイッチ121〜12nは全て閉じている。図2に
示すように、交流負荷51〜5nは時間とともに変化し
、たとえば交流負荷51〜5nの使用電力量が増大した
場合、商用電源1の出力電力が増大し、交流出力検出部
131〜13nより演算機能を備えたインバータ制御回
路31へ信号が送出される。インバータ制御回路31で
は燃料電池2の出力電力が常に一定出力状態を維持する
ようにDC−ACインバータ3を制御する。交流負荷5
1〜5nの使用電力が減少した場合においても、商用電
源1の出力が減少し、燃料電池2の出力電力を一定に保
つ。
Power is normally supplied from the fuel cell 2 and the commercial power supply 1 to the DC loads 41 to 4n and the AC loads 51 to 5n. At this time, the amount of output power from the fuel cell 2 is detected by the power detection unit 21 provided on the input side of the DC-AC inverter 3, and the signal is sent to the inverter control circuit 31 that has a calculation function. . DC-A
The C inverter 3 is always operated in synchronization with the commercial power supply 1 by an inverter control circuit 31 that receives a signal from the commercial synchronization signal detection section 11. In this state, the switches 101 for the DC loads 41 to 4n and the switches 101 for the AC loads 51 to 5n
All of the n switches 121 to 12n are closed. As shown in FIG. 2, the AC loads 51 to 5n change over time. For example, when the amount of power used by the AC loads 51 to 5n increases, the output power of the commercial power supply 1 increases, and the AC output detection units 131 to 13n A signal is sent to an inverter control circuit 31 equipped with arithmetic functions. The inverter control circuit 31 controls the DC-AC inverter 3 so that the output power of the fuel cell 2 always maintains a constant output state. AC load 5
Even when the used power of 1 to 5n decreases, the output of the commercial power source 1 decreases and the output power of the fuel cell 2 is kept constant.

【0016】次に、商用電源1が停電した場合の動作を
述べる。商用電源1の停電は、例えば商用同期信号検出
部11を通してインバータ制御回路31で検出される。 ここで、インバータ制御回路31は、スイッチ6および
商用電源1の停電時のバックアップ用の蓄電池91…9
nを有している直流負荷41〜41nの入力スイッチ1
01を全て瞬時に開放する。それとともに、常時は商用
電源1と同期を採り運転していたDC−ACインバータ
3を停電と同時に自立して継続運転させる。また、演算
機能をもったインバータ制御回路31は、商用電源1が
停電する直前の交流負荷51〜5nの電力量を検出部1
31〜13nの信号から得る。これにより、インバータ
制御回路31では、燃料電池2の出力電力と交流負荷5
1〜5nの使用電力量を比較し、燃料電池2の予め設定
した出力電力より多い場合は、重要度の低い交流負荷5
1〜5nのいずれかのスイッチ121〜12nを瞬時に
開放する。以上によって燃料電池2の出力電力は、一定
出力運転を継続するように動作する。これらの演算はイ
ンバータ制御回路31にて行われる。以後、インバータ
制御回路31は、常時交流負荷の使用電力量を監視し、
常に燃料電池2の出力が設定された一定出力運転を継続
するように制御する。なお、上記において、スイッチ6
,7および101,121〜12nは装置故障時や、商
用電源異常時に、速やかにしゃ断するしゃ断器としての
機能を併せ持っている。
Next, the operation when the commercial power supply 1 is out of power will be described. A power outage of the commercial power supply 1 is detected by the inverter control circuit 31 through the commercial synchronization signal detection section 11, for example. Here, the inverter control circuit 31 includes the switch 6 and backup storage batteries 91 .
Input switch 1 of DC loads 41 to 41n having n
Instantly release all 01. At the same time, the DC-AC inverter 3, which normally operates in synchronization with the commercial power source 1, is allowed to continue operating independently at the same time as the power outage. In addition, the inverter control circuit 31 having an arithmetic function detects the amount of power of the AC loads 51 to 5n immediately before the commercial power supply 1 loses power to the detection unit 1.
31 to 13n signals. As a result, the inverter control circuit 31 uses the output power of the fuel cell 2 and the AC load 5.
1 to 5n, and if it is greater than the preset output power of the fuel cell 2, the less important AC load 5
Any one of the switches 121 to 12n of switches 1 to 5n is opened instantly. As described above, the output power of the fuel cell 2 operates to continue constant output operation. These calculations are performed by the inverter control circuit 31. Thereafter, the inverter control circuit 31 constantly monitors the amount of power used by the AC load,
Control is performed so that the output of the fuel cell 2 is always maintained at a set constant output operation. In addition, in the above, switch 6
, 7 and 101, 121 to 12n also have the function of a circuit breaker that promptly shuts off the circuit in the event of a device failure or an abnormality in the commercial power supply.

【0017】以上に述べたように、本実施例では、商用
電源1が停電した場合でも、燃料電池の定格運転状態を
継続することができる。また、直流負荷41〜4nに対
しても特定の交流負荷51〜5nに対しても電力を供給
を継続することが可能になるとともに、継続して安定な
熱エネルギーを供給することができる。すなわち、燃料
電池2の電気エネルギーおよび熱エネルギーを効率的に
利用することが可能な運転を行える。また、燃料電池2
は負荷の変動や商用電源1の停電等にかかわらず、常に
定格運転されるため、最も発電効率の良い運転が可能に
なる。
As described above, in this embodiment, the rated operating state of the fuel cell can be continued even if the commercial power supply 1 is out of power. Further, it is possible to continue supplying power to both the DC loads 41 to 4n and the specific AC loads 51 to 5n, and it is also possible to continuously supply stable thermal energy. That is, an operation can be performed in which the electrical energy and thermal energy of the fuel cell 2 can be used efficiently. In addition, fuel cell 2
Since it is always operated at the rated value regardless of load fluctuations or power outages of the commercial power supply 1, it is possible to operate with the highest power generation efficiency.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明の
燃料電池電力供給装置は、燃料電池からDC−ACイン
バータを介した出力と商用電源の出力とを連系して、整
流装置を介した複数の直流負荷と複数の交流負荷とに電
力を供給する場合において、商用電源が停電した場合、
無瞬断で商用電源の出力側のスイッチおよびバックアッ
プ用の蓄電池をもった直流負荷の入力側のスイッチを開
放し、燃料電池の定格出力に見合う交流負荷には燃料電
池から継続して電力を供給できるようにしたので、燃料
電池は常に最も効率の良い定格出力運転が継続でき、安
定な熱エネルギー利用と、電力供給の高効率化が図れる
という利点を有している。
Effects of the Invention As is clear from the above explanation, the fuel cell power supply device of the present invention connects the output from the fuel cell via the DC-AC inverter and the output of the commercial power source, and connects the output of the commercial power source to the rectifier. When supplying power to multiple DC loads and multiple AC loads through a power supply, if the commercial power supply fails,
The switch on the output side of the commercial power supply and the switch on the input side of the DC load with a backup storage battery are opened without momentary interruption, and power is continuously supplied from the fuel cell to the AC load that corresponds to the rated output of the fuel cell. As a result, the fuel cell can always maintain the most efficient rated output operation, and has the advantage of stable use of thermal energy and highly efficient power supply.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す構成図[Fig. 1] A configuration diagram showing an embodiment of the present invention.

【図2】上記実
施例の動作を説明するための動作モード図
[Fig. 2] Operation mode diagram for explaining the operation of the above embodiment.

【図3】従来例を示す構成図[Figure 3] Configuration diagram showing a conventional example

【図4】上記従来例の動作モード図[Figure 4] Operation mode diagram of the above conventional example

【符号の説明】[Explanation of symbols]

1…商用電源、2…燃料電池、3…DC−ACインバー
タ、6,7…スイッチ、11…商用同期信号検出部、2
1…電力検出部、31…インバータ制御回路、41〜4
n…直流負荷、51〜5n…交流負荷、81〜8n…整
流装置、91〜9n…蓄電池、101…スイッチ、11
1…交流出力検出部、121〜12n…スイッチ、13
1〜13n…交流出力検出部。
DESCRIPTION OF SYMBOLS 1... Commercial power supply, 2... Fuel cell, 3... DC-AC inverter, 6, 7... Switch, 11... Commercial synchronization signal detection part, 2
1...Power detection unit, 31...Inverter control circuit, 41-4
n... DC load, 51-5n... AC load, 81-8n... Rectifier, 91-9n... Storage battery, 101... Switch, 11
1...AC output detection section, 121-12n...switch, 13
1 to 13n...AC output detection section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  燃料電池の出力にDC−ACインバー
タを直列に接続し、該DC−ACインバータの出力に商
用電源を並列接続し、該並列接続出力に整流器および該
整流器出力より浮動充電される蓄電池および該整流器と
該蓄電池より電力の供給を受ける直流負荷より成る直流
負荷システムと交流負荷とを各々複数並列接続し、前記
燃料電池の出力容量は該複数の直流負荷システムおよび
該複数の交流負荷の容量に比べ小さく、かつ前記燃料電
池の出力は前記複数の直流負荷および前記複数の交流負
荷の変動にかかわらず一定出力を送出するよう構成した
燃料電池電力供給装置において、前記商用電源の出力に
直列に第1のスイッチを接続し、前記DC−ACインバ
ータ出力に直列に第2のスイッチを接続し、かつ前記D
C−ACインバータと前記商用電源の並列に接続された
接続点と前記複数の整流器との間に直列に各々第3のス
イッチを接続し、かつ前記接続点と前記複数の交流負荷
の間に直列に各々第4のスイッチを接続し、常時は前記
DC−ACインバータの出力電圧,周波数および位相を
前記商用電源と相等しくするとともに前記複数の直流負
荷および前記複数の交流負荷に前記燃料電池出力と前記
商用電源から電力を供給し、該商用電源が停電した場合
は前記第1のスイッチおよび前記第3のスイッチを瞬時
に全て開放すると同時に前記複数の交流負荷に停電発生
前に供給されていた電力の和が前記燃料電池の予め設定
された出力容量よりも多い場合、前記電力の和と該燃料
電池の予め設定された出力容量の差に応じて前記第4の
複数のスイッチを予め定めた優先順に従って開放し、前
記複数の交流負荷のうち特定の交流負荷に無瞬断で電力
の供給を継続させる制御部を具備することを特徴とする
燃料電池電力供給装置。
Claim 1: A DC-AC inverter is connected in series to the output of a fuel cell, a commercial power source is connected in parallel to the output of the DC-AC inverter, a rectifier is connected to the parallel-connected output, and a floating charge is applied from the rectifier output. A plurality of DC load systems each consisting of a storage battery, a rectifier, and a DC load supplied with power from the storage battery and an AC load are connected in parallel, and the output capacity of the fuel cell is equal to the output capacity of the plurality of DC load systems and the plurality of AC loads. In the fuel cell power supply device, the fuel cell has a capacity smaller than that of the commercial power supply, and is configured such that the output of the fuel cell is a constant output regardless of fluctuations in the plurality of DC loads and the plurality of AC loads. A first switch is connected in series, a second switch is connected in series to the output of the DC-AC inverter, and the D
A third switch is connected in series between the connection point of the C-AC inverter and the commercial power supply connected in parallel and the plurality of rectifiers, and a third switch is connected in series between the connection point and the plurality of AC loads. A fourth switch is connected to each of the DC-AC inverters so that the output voltage, frequency and phase of the DC-AC inverter are always equal to the commercial power supply, and the fuel cell output is connected to the plurality of DC loads and the plurality of AC loads. Electric power is supplied from the commercial power source, and when the commercial power source experiences a power outage, the first switch and the third switch are all opened instantly, and at the same time, the power that was being supplied to the plurality of AC loads before the power outage occurs. is greater than the preset output capacity of the fuel cell, the fourth plurality of switches are given a predetermined priority according to the difference between the sum of the electric powers and the preset output capacity of the fuel cell. 1. A fuel cell power supply device, comprising: a control unit that opens the AC loads in accordance with the order of the AC loads and continues supplying power to a specific AC load among the plurality of AC loads without momentary interruption.
JP3068132A 1991-04-01 1991-04-01 Device for supplying electric power from fuel cell Pending JPH04304126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068132A JPH04304126A (en) 1991-04-01 1991-04-01 Device for supplying electric power from fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068132A JPH04304126A (en) 1991-04-01 1991-04-01 Device for supplying electric power from fuel cell

Publications (1)

Publication Number Publication Date
JPH04304126A true JPH04304126A (en) 1992-10-27

Family

ID=13364910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068132A Pending JPH04304126A (en) 1991-04-01 1991-04-01 Device for supplying electric power from fuel cell

Country Status (1)

Country Link
JP (1) JPH04304126A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228439A (en) * 1995-02-22 1996-09-03 Nec Corp Power receiving device
JP2002027670A (en) * 2000-07-10 2002-01-25 Mitsubishi Electric Corp Non-break self-standing shift type power generation system
JP2004525594A (en) * 2001-02-13 2004-08-19 ユーティーシー フューエル セルズ,エルエルシー A system that supplies reliable power to important loads
JP2005038791A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Power supply device
JP2005038792A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Power supply device
US6902837B2 (en) * 2002-09-13 2005-06-07 Proton Energy Systems, Inc. Method and system for balanced control of backup power
US7060379B2 (en) 2001-10-12 2006-06-13 Proton Energy Systems, Inc. Method and system for controlling and recovering short duration bridge power to maximize backup power
JP2007503706A (en) * 2003-06-09 2007-02-22 アイダテック, エル.エル.シー. Auxiliary fuel cell system
JP2007265778A (en) * 2006-03-28 2007-10-11 Osaka Gas Co Ltd Power supply equipment
GB2443289A (en) * 2006-10-24 2008-04-30 Toyota Motor Co Ltd Fuel Cell System
JP2008135204A (en) * 2006-11-27 2008-06-12 Mitsubishi Materials Corp Fuel-cell power generator, and its control method/control program
JP2009043525A (en) * 2007-08-08 2009-02-26 Panasonic Corp Device for generating fuel cell power
JP2010052633A (en) * 2008-08-29 2010-03-11 Fuji Electric Systems Co Ltd System for operating carrier using fuel cell
JP2013143212A (en) * 2012-01-10 2013-07-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228439A (en) * 1995-02-22 1996-09-03 Nec Corp Power receiving device
JP2002027670A (en) * 2000-07-10 2002-01-25 Mitsubishi Electric Corp Non-break self-standing shift type power generation system
JP2004525594A (en) * 2001-02-13 2004-08-19 ユーティーシー フューエル セルズ,エルエルシー A system that supplies reliable power to important loads
US7060379B2 (en) 2001-10-12 2006-06-13 Proton Energy Systems, Inc. Method and system for controlling and recovering short duration bridge power to maximize backup power
US7244524B2 (en) 2002-09-13 2007-07-17 Proton Energy Systems, Inc. Method and system for balanced control of backup power
US6902837B2 (en) * 2002-09-13 2005-06-07 Proton Energy Systems, Inc. Method and system for balanced control of backup power
JP2007503706A (en) * 2003-06-09 2007-02-22 アイダテック, エル.エル.シー. Auxiliary fuel cell system
JP2005038792A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Power supply device
JP2005038791A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Power supply device
JP2007265778A (en) * 2006-03-28 2007-10-11 Osaka Gas Co Ltd Power supply equipment
GB2443289A (en) * 2006-10-24 2008-04-30 Toyota Motor Co Ltd Fuel Cell System
GB2443289B (en) * 2006-10-24 2009-02-11 Toyota Motor Co Ltd Fuel cell system
US8343673B2 (en) 2006-10-24 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE102007000546B4 (en) * 2006-10-24 2016-02-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling a fuel cell system
JP2008135204A (en) * 2006-11-27 2008-06-12 Mitsubishi Materials Corp Fuel-cell power generator, and its control method/control program
JP2009043525A (en) * 2007-08-08 2009-02-26 Panasonic Corp Device for generating fuel cell power
JP2010052633A (en) * 2008-08-29 2010-03-11 Fuji Electric Systems Co Ltd System for operating carrier using fuel cell
JP2013143212A (en) * 2012-01-10 2013-07-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method thereof

Similar Documents

Publication Publication Date Title
CN108093658B (en) System and method for fuel cell system ride through for grid disturbances
JP3656531B2 (en) Solar power system
JP6162835B2 (en) Power distribution system and electrical system
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
JP7113267B2 (en) storage system
JPH04304126A (en) Device for supplying electric power from fuel cell
JP3254839B2 (en) Parallel operation control method of grid connection inverter
JP2000358330A (en) Photovoltaic power generating apparatus
CN101421898A (en) Emergency power system using fuel cell, and distribution panel
WO2011039608A1 (en) Electric power distribution system
US20220368132A1 (en) Microgrid controllers and associated methodologies
JP2008113500A (en) Power supply system at disaster time
KR20180127771A (en) Military microgrid system
JP2002354679A (en) Power conversion device, and power supply system using it
JPH0951638A (en) Distributed power supply
JP4116229B2 (en) Power system
JPH04222420A (en) Fuel cell power supply system
JP2002171671A (en) Non-interruptible self-changeover power generator system
JP4193091B2 (en) Control method of combined fuel cell power generation system
JP6704479B2 (en) POWER SUPPLY SYSTEM, POWER SUPPLY DEVICE, AND POWER SUPPLY SYSTEM CONTROL METHOD
JPH0946912A (en) Distributed power unit
JPH09182316A (en) Decentralized power facility
RU2576664C1 (en) Device for uninterrupted power supply
JPH04299025A (en) Dc power unit
US11888344B2 (en) Reversed power and grid support with a modular approach