JP2000358330A - Photovoltaic power generating apparatus - Google Patents

Photovoltaic power generating apparatus

Info

Publication number
JP2000358330A
JP2000358330A JP11166499A JP16649999A JP2000358330A JP 2000358330 A JP2000358330 A JP 2000358330A JP 11166499 A JP11166499 A JP 11166499A JP 16649999 A JP16649999 A JP 16649999A JP 2000358330 A JP2000358330 A JP 2000358330A
Authority
JP
Japan
Prior art keywords
system
disconnection
distributed power
switching device
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11166499A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsukawa
Norio Sakae
Yukio Shimomura
幸男 下村
満 松川
紀雄 栄
Original Assignee
Nissin Electric Co Ltd
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, 日新電機株式会社 filed Critical Nissin Electric Co Ltd
Priority to JP11166499A priority Critical patent/JP2000358330A/en
Publication of JP2000358330A publication Critical patent/JP2000358330A/en
Application status is Granted legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To parallel off distributed power supplies at two points by providing a controller with a parallel-off control means, which transmits an open command for switches for parallel-off based on detection of a single operation of the distributed power supplies at times of system troubles. SOLUTION: N number of distributed power supplies #1 to #n 14 are provided with a solar cell 15 and a power conversion section 16, and the power conversion sections 16 are formed of inverters 17 as inversion devices. The inverters 17 are small-capacitance inverters and provided on the alternating-current output side with a first switch 18 for parallel-off. A first parallel-off point is formed at the switch 18. A second switch 19 for parallel-off, which forms a second parallel-off point, is installed in series with the first switch 19 for parallel-off, and the inverters 17 of the distributed power supplies 14 are connected with a power system 1 via the switches 18 and 19 for parallel-off. Thus the distributed power supplies 14 can be paralleled off from the power system 1.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、電力系統に太陽電池の複数の分散型電源を連系し、これらの分散型電源の運転を1台の制御装置で集中制御する太陽光発電装置に関し、詳しくはその系統異常時の各分散型電源の解列に関する。 BACKGROUND OF THE INVENTION The present invention provides a plurality of dispersed power of the solar cell and the interconnection to the power grid, relates photovoltaic device for centrally controlling the operation of these distributed power in a single controller, for more information about disconnection of the dispersed power source at the time of system abnormality.

【0002】 [0002]

【従来の技術】従来、太陽光発電装置の分野においては、例えば本出願人の既出願(特願平8−327851 Conventionally, in the field of solar power generation device, for example, the applicant already filed (Japanese Patent Application No. 8-327851
号)の明細書,図面等に記載されているように、工場, Specification, as described in drawings and the like, plant No.)
ビル或いは一般住宅等の屋根や側壁等に大型,大電力出力の大規模の太陽電池を設置できない場合、この大規模の太陽電池を複数の小規模,小型の太陽電池とし、これらの小型の太陽電池と,静止型の逆変換装置としての小型,小容量のインバータとを組合せた太陽電池構成の複数の分散型電源を前記の屋根や側壁に分散設置することが行われる。 Building or large in general such as a house of roof and side wall, etc., if you can not install a large-scale solar cell of high power output, the large scale of solar cells a multiple of small-scale, and a small solar cell, the sun of these small a battery, a small as static inverters of be decentralized installation plurality of distributed power to the roof and the side walls of the solar cell structure which combines a small capacity inverter is performed.

【0003】そして、この複数の分散型電源構成の従来の太陽光発電装置は、ほぼ図2に示すように形成される。 [0003] Then, the plurality of distributed conventional photovoltaic device of the power supply configuration is formed as shown in nearly FIG.

【0004】図2は電力系統1に#1,#2,…,#n [0004] # 1 in FIG. 2, the power system 1, # 2, ..., # n
のn個の分散型電源2が連系した場合を示し、各分散型電源2は、それぞれ数KW程度の太陽電池3と、静止型の逆変換装置としての例えば10KWのインバータ4が形成する電力変換部5とを備える。 Power of n distributed power supply 2 of shows the case of interconnection, the distributed power supply 2, the solar cell 3, respectively several KW, as static inverters for example to 10KW inverter 4 form and a conversion unit 5.

【0005】そして、各分散型電源2のインバータ4は交流出力側(系統側)にそれぞれの内部コンタクタ等からなる解列用開閉器6が設けられ、この開閉器6を介して電力系統1に接続される。 [0005] Then, the inverter 4 of the dispersed type power supply 2 is provided with disconnection switching device 6 consisting of such respective internal contactor AC output side (system side), the electric power system 1 through the switch 6 It is connected.

【0006】さらに、各分散型電源2と電力系統1の変電所等の系統電源7との間に各分散型電源2の共通の系統連系保護装置8が設けられ、この連系保護装置8は系統連系保護リレー9の系統電圧の検出結果等に基づき、 Furthermore, a common system interconnection protection device 8 of each distributed power supply 2 is provided between each distributed power supply 2 and the system power supply 7 of the substation or the like of the power system 1, the interconnection protective device 8 based on the detection results of the system voltage of the grid interconnection protection relay 9,
各分散型電源2の共通の制御装置10により系統停電等の系統異常の有無を監視・検出する。 The common control unit 10 of the distributed power supply 2 for monitoring and detecting the presence or absence of system abnormality such as mains failure.

【0007】そして、制御装置10は通信線11を介した有線通信,又は無線通信により、各分散型電源2にインバータ4の駆動制御信号を伝送して各分散型電源2の運転を集中制御し、系統正常時は各分散型電源2のインバータ4を系統電圧に同期して連系運転する。 [0007] Then, the control device 10 by wired communication or wireless communication via the communication line 11, the distributed power supply 2 by transmitting a driving control signal of the inverter 4 to the central control the operation of the dispersed type power supply 2 to the , when the system normally operates interconnection inverter 4 of each distributed power supply 2 in synchronization with the system voltage.

【0008】ところで、この種の太陽光発電装置においては、系統停電等の系統異常が発生したときの各分散型電源2の単独運転を防止するため、いわゆる太陽光発電システムのガイドライン(系統連系技術要件ガイドライン)の規格に基づき、各分散型電源2それぞれの解列点を2点設ける必要がある。 By the way, in the solar power generation apparatus of this type, in order to prevent the independent operation of each distributed power supply 2 when the system abnormality, such as a mains failure occurs, the guidelines (grid-connected so-called photovoltaic system based on the standard of technical requirements guidelines), there must a disconnection point of each of the dispersed type power supply 2 providing two points.

【0009】そして、各分散型電源2の解列用開閉器6 [0009] Then, the switch for disconnection of the dispersed type power supply 2 6
がそれぞれの第1の解列点を形成することから、従来は系統連系保護装置8に第2の解列点を形成する共通の解列用開閉器12が設けられ、各分散型電源2がそれぞれの解列用開閉器6と共通の解列用開閉器12とを介して系統電源7に接続される。 There the forming of the first disconnection point of each conventional common disconnection switching device 12 to form a second disconnection point to system interconnection protection device 8 is provided, each distributed power supply 2 There is connected to the system power supply 7 through the respective disconnection switching device 6 and a common disconnection switching device 12.

【0010】さらに、前記ガイドラインの規格によると、各分散型電源2の単独運転は、能動的方式と受動的方式とを組合せて検出して防止することが望ましいとされる。 Furthermore, according to the standard of the guidelines, the isolated operation the dispersed type power supply 2, is that it is desirable to prevent detecting a combination of the active method and the passive method.

【0011】そのため、制御装置10は能動的方式の単独運転検出により制御線11を介して各分散型電源2にそれぞれの解列用開閉器6の開放指令を伝送し、これらの解列用開閉器6を開放するとともに、受動的方式の単独運転検出により内部の制御線13を介して解列用開閉器12に開放指令を伝送し、この解列用開閉器12を開放する。 [0011] Therefore, the control unit 10 transmits an open command for each disconnection switching device 6 via a control line 11 by the islanding detection of active schemes to each distributed power supply 2, for opening and closing these disconnection thereby opening the vessel 6, the opening command to the disconnection switching device 12 via an internal control line 13 is transmitted by islanding detection of passive schemes, opening the disconnecting switching device 12.

【0012】なお、能動的方式の単独運転検出は、各分散型電源2のインバータ4の交流出力の周波数,有効電力又は無効電力を周期的に強制変動させ、有線又は無線で各分散型電源2から伝送されたそれぞれのインバータの交流出力の電圧,電流又は周波数の急変動を監視してそれらの急変動から単独運転への移行を検出するものである。 [0012] Incidentally, islanding detection of active schemes, each distributed frequency of the AC output of the power supply 2 of the inverter 4, forcibly change the active power or reactive power periodically, each distributed power supply 2 in a wired or wireless each of the voltage of the AC output of the inverter transmitted from, and detects the shift to the sole operation from rapid fluctuations thereof by monitoring the abrupt variation of the current or frequency.

【0013】また、受動的方式の単独運転検出は、系統電圧の位相,3次高調波又は周波数を監視し、それらの急変動から単独運転への移行を検出するものである。 Further, islanding detection of passive schemes monitors the phase, third harmonic or frequency of the system voltage, and detects the shift to the sole operation from their rapid variations.

【0014】そして、系統異常が発生すると、単独運転移行の検出に基づく各分散型電源2の解列用開閉器6の開放,系統連系保護装置8の解列用開閉器12の開放のいずれか一方又は両方により、各分散型電源2が電力系統1から解列される。 [0014] When the system abnormality occurs, the opening of the disconnection switching device 6 of each distributed power supply 2 based on the detection of the isolated operation proceeds, any opening of the disconnection switching device 12 of the system interconnection protection device 8 by one or both or each dispersed type power supply 2 is Kairetsu from the power system 1.

【0015】このとき、各分散型電源2のインバータ4 [0015] At this time, the inverter 4 of the dispersed type power supply 2
は交流出力側の接続が図示省略された非常負荷(重要負荷)に切換わるとともに、制御装置10により運転モードが自立運転に切換わる。 Together with switched very load connection of the AC output side is not shown (critical load), the operation mode is switched to the isolated operation by the control device 10.

【0016】そして、系統停電中等は各分散型電源2の自立運転出力が電力系統1から切離された非常負荷に給電される。 [0016] Then, mains failure secondary is fed to very load autonomous operation the output of each dispersed type power supply 2 is disconnected from the power system 1.

【0017】 [0017]

【発明が解決しようとする課題】前記図2の従来装置の場合、各分散型電源2の第2の解列点が系統連系保護装置8に設けた共通の解列用開閉器12により形成されるため、各分散型電源2の容量,台数によっては解列用開閉器12として、系統連系保護装置8の盤内に極めて大容量,大型の開閉器を設ける必要がある。 [SUMMARY OF THE INVENTION When the conventional apparatus of FIG. 2, formed by a common disconnection switching device 12 in which the second disconnection point of the dispersed type power supply 2 is provided in the system interconnection protection device 8 since the capacity of the dispersed type power supply 2, as switch 12 for disconnecting by volume, it is necessary to provide a very large capacity, large switches in the panel of the system interconnection protection device 8.

【0018】この場合、解列用開閉器12が大型,高価になるだけでなく、系統連系保護装置8の盤サイズが大きくなってこの装置8が大型,高価になる問題点がある。 [0018] In this case, disconnection switching device 12 is large, not only expensive, board size of the grid interconnection protection device 8 increases the device 8 is large, there is a problem to be expensive.

【0019】また、分散型電源2を増設等する際には、 Further, when adding such a dispersed type power supply 2,
同時に系統連系保護装置8の解列用開閉器12を容量アップしなければならず、場合によっては系統連系保護装置8の盤の取換え又は増設が必要になる問題点がある。 Simultaneously disconnecting switching device 12 of the system interconnection protection device 8 must be increased capacity, in some cases board of replacement or problems will require expansion of the grid interconnection protection device 8.

【0020】さらに、分散型電源2の容量,台数によって系統連系保護装置8の盤サイズが変わるため、全体の盤サイズを統一して生産性の向上,コストダウン等を図ることができない問題点もある。 Furthermore, the capacity of the dispersed type power supply 2, since the change is board size of the grid interconnection protection device 8 depending on the number, the improvement of productivity by unifying the entire board size, problems that can not be reduced in cost, etc. there is also.

【0021】その上、各分散型電源2の交流出力側の電力ケーブルを必ず系統連系保護装置8に引込まなければならないため、盤配置等の自由度が制限される等の問題点もある。 [0021] Moreover, since it is necessary drawn into the dispersed type power supply 2 of the AC output side always system interconnection protection device power cables 8, there is a problem such that the degree of freedom of board arrangement and the like is limited .

【0022】本発明は、太陽電池構成の複数の分散型電源の運転を共通の制御装置で集中制御する際に、分散型電源の容量,台数によらず、系統連系保護装置の大型化等なく、しかも、盤配置の自由度を制限することなく、 [0022] The present invention is to provide centralized control of the plurality of operating the distributed power of the solar cell of a common control device, the capacitance of the distributed power supply, regardless of the number, size of the grid interconnection protection device, such as without, moreover, without limiting the freedom of the board arrangement,
各分散型電源を2点で解列し得るようにすることを課題とする。 To make it capable of disconnecting each distributed power at two points to an object.

【0023】 [0023]

【課題を解決するための手段】前記の課題を解決するために、本発明の太陽光発電装置においては、各分散型電源それぞれの逆変換装置の系統側に、逆変換装置の内部コンタクト等からなり第1の解列点を形成する第1の解列用開閉器と、第2の解列点を形成する第2の解列用開閉器とを直列に設け、共通の制御装置に、系統異常時の各分散型電源の単独運転の検出により各分散型電源に両解列用開閉器それぞれの開放指令を伝送する解列制御手段を備える。 In order to solve the above problems BRIEF SUMMARY OF THE INVENTION In the solar power generating device of the present invention, the system side of the distributed power sources each inverters, the internal contacts such as the inverters becomes a first disconnection switching device forming a first disconnection point, and a second disconnection switching device forming a second disconnection point is provided in series, to a common control device, system comprising a disconnection control means for transmitting each the distributed power open command for each two disconnection switching device by detecting independent operation of each distributed power source abnormality.

【0024】したがって、各分散型電源にそれぞれ第1,第2の解列点の解列用開閉器が設けられ、系統異常時は、これらの開閉器が共通の制御装置から伝送されたそれぞれの開放指令によって開放され、各分散型電源が電力系統から解列される。 [0024] Thus, first the respective distributed power, disconnecting switching device of the second disconnection point is provided, at system abnormality is each of these switches is transmitted from the common control device is opened by opening command, the dispersed power source is Kairetsu from the power system.

【0025】この場合、各分散型電源は2解列点がそれぞれの両解列用開閉器により個別に形成される。 [0025] In this case, each of the distributed power supply 2 disconnection point is formed separately by each of the two disconnection switching device.

【0026】そして、これらの解列用開閉器は、分散型電源の台数によらず、個々の分散型電源の容量に応じた小容量,小型の開閉器で形成される。 [0026] Then, these disconnection switching device, regardless of the number of distributed power, small capacity corresponding to the capacity of the individual distributed power, is formed in a small switch.

【0027】しかも、従来の系統連系保護装置の大型の共通の解列用開閉器は省いて形成される。 [0027] Moreover, a common disconnection switching device of large conventional system interconnection protection device is formed omitted.

【0028】そのため、分散型電源の容量,台数によらず、系統連系保護装置等に大容量の大型の解列用開閉器を設けたりすることなく、各分散型電源にそれぞれの容量の小容量,小型の2個の解列用開閉器を設けて形成することができ、各盤サイズが大きくならず、分散型電源の増設による系統連系保護装置等の容量アップ,盤の取換え,増設が不要であり、しかも、各分散型電源の電力ケーブルを系統連系保護装置に引込む必要がなく、盤配置の自由度が制限されることもない。 [0028] Therefore, the capacity of the distributed power supply, regardless of the number, without or providing a large disconnection switching device of large capacity system interconnection protection device, small in each volume on each dispersed power source capacity, can be formed by providing two disconnection switching device compact, not the board size is large, the capacity-up such as system interconnection protection device according to expansion of the distributed power, the board replacement, expansion is not necessary, moreover, there is no need to draw power cable to system interconnection protection device for each distributed power source, the degree of freedom of board arrangement are the nor restricted.

【0029】 [0029]

【発明の実施の形態】本発明の実施の1形態につき、図1を参照して説明する。 DETAILED DESCRIPTION OF THE INVENTION per embodiments of the present invention will be described with reference to FIG. 図1に示すように#1〜#nのn台の分散型電源14は、それぞれ図2の太陽電池3と同様の数KWの小規模,小型の太陽電池15と電力変換部16とを備え、この電力変換部16は静止型の逆変換装置としてのインバータ17により形成される。 n number of distributed power sources 14 #. 1 to # n as shown in FIG. 1, the same number KW small solar cell 3, respectively, in FIG 2, a small solar cell 15 and the power converter 16 the power conversion unit 16 is formed by an inverter 17 serving as the inverse conversion device stationary.

【0030】このインバータ17は図2の従来のインバータ4に相当し、例えば10KWの比較的小容量のインバータであり、その交流出力側(系統側)には、図2の解列用開閉器6に相当する内部コンタクタ等の第1の解列用開閉器18が設けられ、この開閉器18により第1 [0030] The inverter 17 corresponds to the conventional inverter 4 in FIG. 2, for example, a relatively small capacity of the inverter of 10 KW, in its AC output side (system side), disconnection switching device 6 in FIG. 2 first disconnection switching device 18 such as an internal contactor is provided corresponding to, this switch 18 first
の解列点が形成される。 Disconnection point is formed.

【0031】さらに、第1の解列用開閉器18に直列に第2の解列点を形成する第2の解列用開閉器19が設けられ、各分散型電源14のインバータ17はそれぞれの解列用開閉器18,19を介して電力系統1に接続される。 Furthermore, the second disconnection switching device 19 to form a second disconnection point in series is provided on the first disconnection switching device 18, the inverter 17 of the distributed power supply 14, respectively It is connected to the power system 1 via a parallel off switching device 18, 19.

【0032】このとき、両解列用開閉器18,19は、 [0032] At this time, both disconnection switching device 18 and 19,
それぞれの分散型電源14のインバータ17に応じた容量,大きさの開閉器からなり、とくに解列用開閉器19 Capacity corresponding to the inverter 17 of each of the distributed power supply 14, made from the magnitude of the switch, in particular disconnection switching device 19
は図2の解列用開閉器12の1/nの小容量,小型であり、しかも、分散型電源14の台数が多くなっても大型化等することもない。 Small capacity of 1 / n of the disconnection switching device 12 of FIG. 2, is a small, yet, nor increasing the size of such even number becomes many distributed power 14.

【0033】一方、系統連系保護装置20は例えば図2 On the other hand, the grid interconnection protection device 20 is, for example, FIG. 2
の同装置8から共通の解列用開閉器12を省いた構成であり、系統連系保護リレー21の系統電圧の検出結果等に基づき、共通の制御装置22が通信線23を介した有線通信,又は無線通信により、各分散型電源14のインバータ17の運転及び両解列用開閉器18,19の開閉を制御する。 A of omitting the common disconnection switching device 12 from the apparatus 8 configured, based on the detection results of the system voltage of the grid interconnection protection relay 21, wire communication common control device 22 via a communication line 23 , or by wireless communication, controls the opening and closing operation and the two disconnection switching device 18, 19 of the inverter 17 of the dispersed power source 14.

【0034】このとき、系統連系保護装置20は図2の大型の解列用開閉器12が設けられないため、分散型電源14の容量,台数によらず、盤サイズが小さく、小型である。 [0034] In this case, the system interconnection protection device 20 for large disconnection switching device 12 of FIG. 2 is not provided, the capacity of the distributed power supply 14, regardless of the number, small board size is small .

【0035】そして、系統電源7の正常時(系統正常時)は、制御装置22から各分散型電源14に連系運転の制御指令が伝送され、各分散型電源14のインバータ17が系統電源7に同期して連系運転される。 [0035] Then, the normal of the system power source 7 (the time line normal), the control command interconnected operation from the controller 22 to each distributed power source 14 is transmitted, the inverter 17 is the system power supply 7 of the distributed power sources 14 It is operated interconnection in synchronism with.

【0036】また、系統異常時は図2の制御装置10と同様の能動的方式,受動的方式の単独運転の検出に基づき、制御装置22の解列制御手段から各分散型電源14 Further, system abnormality when the same active schemes and the controller 10 of FIG. 2, passive based on the detection of the islanding operation of the system, the control device disconnection controlling the distributed power from the unit 14 of 22
に、例えば制御コードを変えて両解列用開閉器18,1 To, for example, by changing the control code both disconnection switching device 18, 1
9それぞれの開放指令が伝送される。 9 open instruction, respectively, are transmitted.

【0037】そして、これらの開放指令の着信(受信) [0037] Then, the incoming of these opening command (reception)
に基づき、各分散型電源14の解列用開閉器18,19 Based on, disconnection switching device 18, 19 of the dispersed power source 14
のいずれか一方又は両方が解放され、各分散型電源14 Either or both is released for each distributed power source 14
が電力系統1から解列される。 There is Kairetsu from the power system 1.

【0038】このとき、各分散型電源14のインバータ17は交流出力側が例えば図示省略された非常給電用開閉器を介して共通の非常負荷に接続されるとともに、制御装置22によって自立運転に制御され、各分散型電源14の自立運転出力が非常負荷に給電される。 [0038] At this time, the inverter 17 of the dispersed power source 14 is connected to a common emergency load through a very feeding switchgear AC output side for example, are not shown, it is controlled to self-sustained operation by the controller 22 , autonomous operation the output of each dispersed power source 14 is powered very load.

【0039】そして、系統正常に戻ると、各分散型電源14は非常負荷から切離されて解列用開閉器18,19 [0039] Then, back to the system successfully, the dispersed power source 14 is paralleled switching device is disconnected from the very load 18,19
が閉成し、連系運転に戻される。 There were closed and returned to the interconnected operation.

【0040】この場合、各分散型電源14はそれぞれの容量に応じた小容量,小型の解列用開閉器18,19を設けて同一盤サイズに形成され、しかも、系統連系保護装置20は従来の大容量,大型の共通の解列用開閉器1 [0040] In this case, each of the distributed power supply 14 small capacity corresponding to each capacity, are formed on the same panel size is provided a small disconnection switching device 18, 19, moreover, the system interconnection protection device 20 conventional mass, switch 1 for common disconnection of a large
2が設けられず、分散型電源14の容量,台数によらず小型である。 2 is not provided, the capacity of the distributed power supply 14 is a small regardless of the number.

【0041】そのため、分散型電源14の台数が多くなっても系統連系保護装置20等の盤サイズが大きくならず、その大型化等が生じない。 [0041] Accordingly, distributed not large board size, such as system interconnection protection device 20 is also the number of the power supply 14 becomes large, the size or the like does not occur.

【0042】また、分散型電源14を増設する際に、系統連系保護装置20等の容量アップか不要でそれらの取換えや増設は不要である。 Further, when adding a distributed power source 14, unnecessary or increased capacity, such as system interconnection protection device 20 and their replacement or expansion is unnecessary.

【0043】そして、分散型電源14,系統連系保護装置20等の盤サイズが分散型電源14の台数によって変わらないため、それらの盤サイズを統一して規格化し、 [0043] Then, the distributed power supply 14, because the board size, such as system interconnection protection device 20 does not change depending on the number of distributed power sources 14, normalized by unifying their board size,
生産性の向上やコストダウン等を図ることができる。 Improved productivity and cost reduction, etc. can be achieved.

【0044】さらに、各分散型電源14の電力ケーブルは電力系統1に直接接続され、それらの電力ケーブルを系統連系保護装置20に引込む必要がないため、盤配置等の自由度が制限されることもない。 [0044] Furthermore, the power cables for each distributed power source 14 is connected directly to the power system 1, because their is no need to retract the system interconnection protection device 20 to power cable, the degree of freedom of board arrangement and the like is limited nor.

【0045】そして、各分散型電源14の太陽電池15 [0045] Then, the solar cell 15 of each distributed power source 14
やインバータ17の容量,制御装置22の構成や運転制御手段及び単独運転検出方法等はどのようであってもよく、実施の形態のものに限られるものではない。 Capacity and the inverter 17, the configuration and the operation control means and the isolated operation detecting method and the like of the control device 22 may be any in is not limited to those of the embodiment.

【0046】また、制御装置22から各分散型電源14 [0046] Further, the dispersion from the controller 22 power source 14
への制御指令等の伝送方式は、電力線を用いた配電線搬送方式,通信線23を用いたスペクトラム拡散方式等の有線方式又は電波による無線方式等の種々の方式のいずれであってもよい。 Transmission scheme of the control command, etc. to the power distribution line carrier system using the power line, may be any of various systems such as a wireless system by a wired system or a radio wave such as a spread spectrum system using a communication line 23.

【0047】そして、制御装置22が系統連系保護装置20に設けられず、他の装置内に設けられたり、単独で設けられたりする場合にも、同様に適用できるのは勿論である。 [0047] Then, the control device 22 is not provided in the system interconnection protection device 20, or provided in other devices, even in the case of or provided alone, it is of course similarly applicable.

【0048】 [0048]

【発明の効果】本発明は、以下に記載する効果を奏する。 According to the present invention, the effects described below. 各分散型電源14にそれぞれ第1,第2の解列点の解列用開閉器18,19が設けられ、系統異常時は、これらの開閉器18,19を、共通の制御装置22から伝送されたそれぞれの開放指令によって開放し、各分散型電源14を電力系統1から解列することができる。 First to each distributed power source 14, disconnection switching device 18, 19 of the second disconnection point is provided, at system abnormality, the transmission of these switches 18 and 19, the common control unit 22 has been opened by the respective opening command, each distributed power source 14 can be paralleled from the power system 1.

【0049】この場合、各分散型電源14の2解列点がそれぞれの両解列用開閉器18,19により個別に形成され、これらの解列用開閉器18,19は、分散型電源14の台数によらず、個々の分散型電源14の容量に応じた小容量,小型の開閉器で形成される。 [0049] In this case, 2 disconnection point of the dispersed power source 14 is formed separately by each of the two disconnection switching device 18 and 19, switches 18 and 19 for these disconnection, distributed power 14 regardless of the number, small capacity corresponding to the capacity of the individual distributed power supply 14, is formed in a small switch.

【0050】そして、従来の系統連系保護装置の大型の共通の解列用開閉器は省いて形成される。 [0050] Then, a common disconnection switching device of large conventional system interconnection protection device is formed omitted.

【0051】したがって、分散型電源14の容量,台数によらず、系統連系保護装置等に大容量,大型の解列用開閉器を設けたりすることなく、各分散型電源14にそれぞれの容量の小型,小容量の2個の解列用開閉器1 [0051] Thus, the capacity of the distributed power supply 14, regardless of the number, the large capacity system interconnection protection device, without or providing a large disconnection switching device, each of capacity to each distributed power source 14 small, the two small-capacity disconnection switching device 1
8,19を設けて形成することができ、装置各部の盤サイズが大きくならず、それらの大型等が防止され、しかも、分散型電源14の増設による系統連系保護装置等の他の盤の容量アップや取換え,増設等が不要で、全体の盤サイズを統一することができ、その上、各分散型電源14の電力ケーブルを系統連系保護装置等に引込む必要がなく、盤配置の自由度が制限されることもない。 Can be formed by providing a 8, 19, not only board size of each part of the device is large, is prevented their large etc., moreover, the other board, such as system interconnection protection device according to expansion of the distributed power sources 14 unnecessary capacity up or replacement, expansion or the like, it is possible to unify the entire board size and, moreover, there is no need to draw power cables for each distributed power source 14 to the system interconnection protection device, the board arrangement that there is no degree of freedom is limited.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施の1形態のブロック結線図である。 1 is a block wiring diagram of one embodiment of the present invention.

【図2】従来例のブロック結線図である。 2 is a block connection diagram of a conventional example.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 電力系統 2,14 分散型電源 3,15 太陽電池 4,17 インバータ 10,22 共通の制御装置 18 第1の解列用開閉器 19 第2の解列用開閉器 1 power system 2,14 distributed power 3,15 solar 4,17 inverter 10, 22 a common control device 18 first disconnection switching device 19 and the second disconnection switching device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栄 紀雄 京都市右京区梅津高畝町47番地 日新電機 株式会社内 Fターム(参考) 5F051 KA03 KA07 KA10 5G066 HA06 HB05 5H007 AA17 BB07 CC05 DB01 FA14 FA19 GA09 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Sakae Norio Kyoto Ukyo-ku, Umezutakase-cho, 47 address Nissin Electric Co., Ltd. in the F-term (reference) 5F051 KA03 KA07 KA10 5G066 HA06 HB05 5H007 AA17 BB07 CC05 DB01 FA14 FA19 GA09

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 系統に接続された複数の分散型電源それぞれに太陽電池及び静止型の逆変換装置を備え、 前記各分散型電源の系統からの解列及び前記逆変換装置の運転を、共通の制御装置により集中して制御し、 系統正常時は前記各分散型電源を系統に連系運転し、系統異常時は前記各分散型電源を系統から解列して自立運転する太陽光発電装置において、 前記各分散型電源それぞれの前記逆変換装置の系統側に、前記逆変換装置の内部コンタクト等からなり第1の解列点を形成する第1の解列用開閉器と、第2の解列点を形成する第2の解列用開閉器とを直列に設け、 前記共通の制御装置に、系統異常時の前記各分散型電源の単独運転の検出により前記各分散型電源に前記両解列用開閉器それぞれの開放指令を伝送する解列制御手段を備 [Claim 1 further comprising an inverse conversion device of the solar cell and stationary in the connected plurality of distributed power sources to the system, the operation of the disconnection and the inverters from the grid of the dispersed power source, the common focused and controlled by the control device, when the system normally operated interconnection of each distributed power system, system abnormality when the photovoltaic device for autonomous operation by disconnecting the respective decentralized power supply from the system in the on system side of the distributed power sources each of the inverters, a first disconnection switching device forming a first disconnection point consists inner contact or the like of the inverters, the second a second disconnection switching device to form a disconnection point is provided in series, the common control device, wherein each distributed power supply by detecting the islanding of each dispersed power source at the time of system abnormality both Bei the disconnection control means for transmitting the opening command of the respective disconnection switching device たことを特徴とする太陽光発電装置。 Solar power generation apparatus, characterized in that the.
JP11166499A 1999-06-14 1999-06-14 Photovoltaic power generating apparatus Granted JP2000358330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11166499A JP2000358330A (en) 1999-06-14 1999-06-14 Photovoltaic power generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11166499A JP2000358330A (en) 1999-06-14 1999-06-14 Photovoltaic power generating apparatus

Publications (1)

Publication Number Publication Date
JP2000358330A true JP2000358330A (en) 2000-12-26

Family

ID=15832507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11166499A Granted JP2000358330A (en) 1999-06-14 1999-06-14 Photovoltaic power generating apparatus

Country Status (1)

Country Link
JP (1) JP2000358330A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142078A (en) * 2007-12-06 2009-06-25 Fuji Electric Systems Co Ltd Uninterruptible power supply
WO2009059028A3 (en) * 2007-11-02 2009-08-06 Tigo Energy Inc Apparatuses and methods to reduce safety risks associated with photovoltaic systems
EP2495800A1 (en) 2011-03-01 2012-09-05 Hitachi Ltd. Battery control system and battery control method
WO2013080304A1 (en) 2011-11-29 2013-06-06 株式会社日立製作所 Battery control system and battery control method
JP2014134445A (en) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp Arc detection apparatus
JP2014138490A (en) * 2013-01-17 2014-07-28 Tabuchi Electric Co Ltd Photovoltaic power generation device, and power processing device and control device for the same
US8823218B2 (en) 2007-11-02 2014-09-02 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
JP2016201548A (en) * 2011-10-31 2016-12-01 テンケーソーラー インコーポレイテッドTenksolar,Inc. Photovoltaic system
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9813021B2 (en) 2007-11-02 2017-11-07 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US9397612B2 (en) 2007-11-02 2016-07-19 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US10256770B2 (en) 2007-11-02 2019-04-09 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US8823218B2 (en) 2007-11-02 2014-09-02 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US7884278B2 (en) 2007-11-02 2011-02-08 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US7807919B2 (en) 2007-11-02 2010-10-05 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
WO2009059028A3 (en) * 2007-11-02 2009-08-06 Tigo Energy Inc Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
JP2009142078A (en) * 2007-12-06 2009-06-25 Fuji Electric Systems Co Ltd Uninterruptible power supply
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US10063056B2 (en) 2009-12-29 2018-08-28 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US9377765B2 (en) 2009-12-29 2016-06-28 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
EP2741363A1 (en) 2011-03-01 2014-06-11 Hitachi, Ltd. Battery control system and battery control method
US8816640B2 (en) 2011-03-01 2014-08-26 Hitachi, Ltd. Battery control system and battery control method
EP2495800A1 (en) 2011-03-01 2012-09-05 Hitachi Ltd. Battery control system and battery control method
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
JP2016201548A (en) * 2011-10-31 2016-12-01 テンケーソーラー インコーポレイテッドTenksolar,Inc. Photovoltaic system
WO2013080304A1 (en) 2011-11-29 2013-06-06 株式会社日立製作所 Battery control system and battery control method
US9784813B2 (en) 2011-11-29 2017-10-10 Hitachi, Ltd. Battery control system and battery control method
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
JP2014134445A (en) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp Arc detection apparatus
JP2014138490A (en) * 2013-01-17 2014-07-28 Tabuchi Electric Co Ltd Photovoltaic power generation device, and power processing device and control device for the same
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Similar Documents

Publication Publication Date Title
USRE44901E1 (en) Method for converting direct voltage into three phase alternating voltage
CN101156295B (en) Power supply system
JP3029185B2 (en) Islanding prevention device, distributed power generation device and a power generation system using the same
EP1706937B1 (en) Dc/dc converter and decentralized power generation system comprising a dc/dc converter
US5477091A (en) High quality electrical power distribution system
DE69738593T2 (en) Power supply system with system connection
US6503649B1 (en) Variable fuel cell power system for generating electrical power
JP3697121B2 (en) Photovoltaic device and control method thereof
US20080103630A1 (en) Method and apparatus for improving ac transmission system dispatchability, system stability, and power flow controllability using dc transmission systems
US7612466B2 (en) System and method for coordinated control and utilization of local storage and generation, with a power grid
US20010001051A1 (en) Power system
US20120200155A1 (en) Electric power distribution methods and apparatus
US6795322B2 (en) Power supply with uninterruptible function
US6747368B2 (en) Wireless control of power transfer switches for electrical load management
US20050043859A1 (en) Modular uninterruptible power supply system and control method thereof
US8970176B2 (en) DC micro-grid
US9130387B2 (en) Hybrid integrated wind-solar-diesel-city power supply system
JP3687464B2 (en) Solar power generation apparatus
KR101535589B1 (en) distributed inverter and intelligent gateway
EP2219276B1 (en) Photovoltaic assembly for three-phase feeding into an electric energy supply network
AU617381B2 (en) Communication and energy control system for houses
US9013063B2 (en) Uninterruptible power supply system
US8415827B2 (en) Electric power system
US8704403B2 (en) Power generation system comprising a plurality of inverters
WO2002071572A1 (en) System for providing assured power to a critical load

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081031

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091031

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091031

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101031

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121031

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20131031

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250