JP4193091B2 - Control method of combined fuel cell power generation system - Google Patents

Control method of combined fuel cell power generation system Download PDF

Info

Publication number
JP4193091B2
JP4193091B2 JP2000271332A JP2000271332A JP4193091B2 JP 4193091 B2 JP4193091 B2 JP 4193091B2 JP 2000271332 A JP2000271332 A JP 2000271332A JP 2000271332 A JP2000271332 A JP 2000271332A JP 4193091 B2 JP4193091 B2 JP 4193091B2
Authority
JP
Japan
Prior art keywords
fuel cell
output
load
power
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000271332A
Other languages
Japanese (ja)
Other versions
JP2002083619A (en
Inventor
敦智 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2000271332A priority Critical patent/JP4193091B2/en
Publication of JP2002083619A publication Critical patent/JP2002083619A/en
Application granted granted Critical
Publication of JP4193091B2 publication Critical patent/JP4193091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
この発明は、燃料電池発電装置と回転発電機とを、電力会社系統と連系運転する燃料電池複合発電システムの制御方法、特に系統異常時の制御方法に関する。
【0002】
【従来の技術】
周知のとおり燃料電池は、一般に、天然ガスや石油系燃料などの炭化水素系原燃料を燃料改質器により水素リッチなガスに改質し、この水素リッチな燃料改質ガスと酸化剤ガス(空気)とを連続的に供給して、燃料のもつエネルギーを電気化学的に電気エネルギーに変換するものである。かかる燃料電池を、電力会社系統とインバータを介して系統連系運転を行うことも周知である。
【0003】
図4は、従来の燃料電池発電装置を需要家構内で電力会社系統に連系運転して用いる場合の概略構成を示す。図4は、紙面の関係で、同(a)図、(b)図に別けて記載しているが、(a)図右端と(b)図左端に示すu点が接続されて、一つの系統を構成している(詳細は、特願平11−166311号参照)。
【0004】
図4において、100は燃料電池、200は燃料電池の直流電力を電力会社系統の周波数に同期させた交流電力に変換するインバータである。ここでは、インバータ自身の構成や制御回路は省略している。41はインバータ出力電圧を検出する電圧検出器で、51はインバータ出力電流を検出する電流検出器である。
【0005】
300は、インバータ2の出力有効電力設定値であるP設定値と,出力無効電力設定値であるQ設定値と,前記電圧検出器41の出力信号v1と,前記電流検出器の出力信号i1とが入力され、インバータ200の出力有効電力値と出力無効電力値のフィードバック制御を行うために,P設定値とインバータの有効電力出力間の偏差指令信号pおよびQ設定値とインバータの無効電力出力間の偏差指令信号qを出力するPQ指令制御装置である。
【0006】
80は電力会社系統に異常が発生した時に、燃料電池発電装置を解列するための解列用の遮断器で、90は燃料電池発電装置内に短絡事故などが発生した時に、短絡電流を遮断する遮断器で、110は燃料電池発電装置プラントを維持するための図示しないポンプやブロワなどの,電力消費のある補機類を示す。
【0007】
また、130は電力会社系統を示し、需要家受電設備における遮断器121と受電トランス120を介して様々な図示しない構内負荷に対し、負荷フィーダー線123によって電力を供給している。燃料電池発電装置も電力会社系統130に対して遮断器121と受電トランス120と遮断器122を介して系統周波数に同期して連系運転をしている。
【0008】
需要家受電設備から燃料電池発電装置までは屋内か屋外配線である燃料電池フィーダー線111が布線されており、燃料電池発電装置の発電電力はこのフィーダー線111で需要家構内に供給されている。
【0009】
ところで、電力会社系統と連系運転する燃料電池複合発電システムにおいて、さらに回転発電機と複合するシステムも提案されている(特開平8−223799号公報参照)。
【0010】
上記特開平8−223799号公報に記載されたシステムは、回転発電機を駆動する原動機の排熱回収を行なうコジェネレーションシステムに関するもので、負荷電力と、一定負荷で運転される回転発電機からの供給電力との差を燃料電池から電力供給し、また、ジーゼル機関のような内燃機関、またはガスタービンのような排熱を生ずる原動機の排熱を、蒸気または温水として回収し、総合熱効率の向上を図るものである。
【0011】
【発明が解決しようとする課題】
ところで、上記のような燃料電池発電装置および回転発電機の系統連系運転において、系統異常が発生した場合に、一部の重要負荷に対しては、燃料電池発電装置および/または回転発電機から引き続き電力が供給されることが望まれる。
【0012】
しかしながら、燃料電池発電装置は、燃料改質器の制御応答が遅いために、重要負荷が変動して増大した場合に、応答性が悪い問題があり、この負荷応答性を改善し、かつシステム全体の発電効率の向上を図ることが望まれる。上記特開平8−223799号公報を含む従来のシステムにおいては、前記応答性の改善と発電効率の向上に関わる対策は、特に配慮されていないのが現状である。
【0013】
なお、前記燃料電池の応答性を向上するために、燃料ガスとして高圧の水素ガスボンベを用い、バッテリー等と組み合わせた複合システムが、独立電源としては用いられる場合があるが、水素ガスボンベの供給メンテ頻度が高くなり、全体的に経済性が悪く、また設備としての安全管理の観点からも好まれない。
【0014】
この発明は、上記のような問題点を解決するためになされたもので、本発明の課題は、系統異常が発生した場合に、所定の重要負荷に対して、燃料電池発電装置および回転発電機から引き続き電力供給可能とし、負荷変動時の応答性の向上とシステム全体の発電効率の向上を図った複合発電システムの制御方法を提供することにある。
【0015】
【課題を解決するための手段】
前述の課題を解決するためこの発明においては、炭化水素系原燃料を燃料改質器により水素リッチなガスに改質した燃料ガスと酸化剤ガスとの反応により直流電力を発生する燃料電池と、この燃料電池の直流出力を交流出力に変換するインバータとを備えた燃料電池発電装置と、回転発電機とを電力会社系統と連系運転する燃料電池複合発電システムの制御方法において、
系統異常時に、一般負荷を遮断し、予め定めた重要負荷に対してのみ、前記燃料電池発電装置と回転発電機との複合運転により電力供給を行なうモードとなし、
前記重要負荷の負荷上昇時には、まず回転発電機により前記負荷上昇分を電力供給して瞬時に負荷応答させ、同時に前記燃料電池発電装置に前記負荷上昇分に相当する出力増指令を出して燃料電池出力を漸増させ、この漸増に伴って、回転発電機出力を前記漸増相当分漸減させて燃料電池出力のランプ応答によりその後の電力供給を行ない、燃料電池出力が所定の出力増指令値に到達した時点で、燃料電池出力値および回転発電機出力値を各到達値に維持することとする(請求項1の発明)。
【0016】
回転発電機は、定格出力に対する一定の割合の負荷応答幅であれば、瞬時に負荷応答可能であるので、上記請求項1の発明により、重要負荷のステップ的な負荷上昇に対して、ステップ応答が可能となる。また、回転発電機に比べて、燃料電池発電装置の方が発電効率が高いので、引き続きランプ応答により燃料電池出力に切り替えて電力供給することにより、システム全体の発電効率の向上を図ることができる。
【0017】
また、前記請求項1の発明の実施態様としては、下記請求項1および2の発明が好適である。即ち、請求項1記載の制御方法において、前記回転発電機の瞬時負荷応答幅は、回転発電機の定格出力の30〜70%とする(請求項2の発明)。定格出力の30〜70%であれば、回転発電機は、略安定して瞬時に負荷応答可能であり、重要負荷の瞬時負荷変化幅が分かれば、この変化幅に対応して、回転発電機の定格出力を定め、この発電容量を備えた回転発電機を準備することにより、重要負荷の電力を安定して供給することができる。
【0018】
さらに、前記請求項1または2記載の制御方法において、前記ランプ応答中の出力変動時および回転発電機を所定の最低出力値に維持する場合を除いて、前記燃料電池出力値は回転発電機出力値より大とする(請求項3の発明)。
【0019】
前記請求項3の発明により、詳細は後述するが、全電力供給における燃料電池出力値のウェイトを高めることができるので、システム全体の発電効率をさらに向上できる。
【0020】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下にのべる。
【0021】
図1は、この発明の実施例に関わる燃料電池複合発電システムの概略システム系統図を示す。図1において、重要負荷4および一般負荷5の電力供給源として、燃料電池発電装置2と回転発電機3が設けられ、燃料電池発電装置2と回転発電機3で不足する電力は、系統遮断器7を介して、電力会社からの電力系統1より受電して、複合運転がなされる。図1における部番6は、燃料電池発電装置2と回転発電機3の複合運転の制御装置である。システム全体の一部の制御は、図示しない別の制御装置により行なわれる。部番8〜11は、各負荷および発電装置にそれぞれ接続された遮断器を示す。
【0022】
燃料電池発電装置2は、図示を省略するが、炭化水素系原燃料を燃料改質器により水素リッチなガスに改質した燃料ガスと酸化剤ガスとの反応により直流電力を発生する燃料電池と、この燃料電池の直流出力を交流出力に変換するインバータを備える。また、回転発電機3は、同様に図示を省略するが、ジーゼルエンジン、ガスエンジン、ガソリンエンジンのような内燃機関やガスタービン等を原動機を備え、小型のガスタービン発電機等においては、通常インバータを備える。系統連系運転においては、通常、燃料電池発電装置2および回転発電機3は、電圧一定で発電電流を制御して発電を行なう。
【0023】
上記構成において、系統に異常が発生した場合の制御方法について、以下に述べる。系統に異常が発生した場合、まず系統遮断器7を開いて、電力系統1を切り離す。燃料電池発電装置2および回転発電機3により、すべての負荷の電力を供給できない場合、一般負荷5への電路の遮断器11を開き、予め定めた重要負荷4に対してのみ、燃料電池発電装置および回転発電機の複合運転により電力供給を続けるモードとする。
【0024】
この場合、回転発電機3は、発電電流制御から発電電圧制御に切り替える。その理由は、回転発電機3は、系統連系時には系統の電圧および周波数に対して同期運転を行なうが、系統異常により回転発電機3を系統から切り離した場合、同期すべき基準となる電圧が系統から得られないために、電圧が一定となる制御が必要となるからである。電気出力は、負荷の状態によって変化する。
【0025】
燃料電池発電装置2は、回転発電機3を系統に見立てて連系運転を行なう。即ち、回転発電機3の出力電圧および周波数に対して同期運転を行なう。この場合、燃料電池出力電力は、重要負荷の負荷変動に応じて制御装置6において演算された出力指令に基づき出力される。
【0026】
燃料電池出力の増加は、増加指令があっても、前述のように燃料改質器の応答遅れに基づき、ランプ変化となるので、重要負荷に負荷が増大する負荷変動があった場合、その応答性が問題となる。負荷が減少する場合には、燃料電池出力は瞬時に減少できる。これに対して、回転発電機は、定格出力の30〜70%であれば、負荷の増減に拘わらず、略安定して瞬時に負荷応答可能である。
【0027】
上記を考慮し、重要負荷に負荷が増大する負荷変動があった場合、請求項1に記載の方法により、電力供給制御を行なう。即ち、まず回転発電機3により前記重要負荷の負荷上昇分を電力供給して瞬時に負荷応答させ、同時に燃料電池発電装置2に前記負荷上昇分に相当する出力増指令を出して燃料電池出力を漸増させ、この漸増に伴って、回転発電機出力を前記漸増相当分漸減させて燃料電池出力のランプ応答によりその後の電力供給を行ない、燃料電池出力が所定の出力増指令値に到達した時点で、燃料電池出力値および回転発電機出力値を各到達値に維持する。
【0028】
前記電力供給制御に関し、より具体的に説明するために説明の便宜上、重要負荷、回転発電機、燃料電池等の緒言および重要負荷の変動モードを仮定し、この仮定の下で、回転発電機出力、燃料電池出力指令値および燃料電池出力が、時間経過とともに変化する過程を、表1および表2ならびに図2を用いて、以下に述べる。重要負荷の変動モードは、かならずしも単純ではないが、説明の便宜上、後述のようにステップ変化するものとする。
【0029】
重要負荷、回転発電機、燃料電池等の緒言は、以下のとおり仮定する。
【0030】
・重要負荷の最大負荷:200kW
・重要負荷の瞬時負荷変化幅:50kW
・回転発電機の定格出力:100kW
・回転発電機の最大瞬時負荷応答幅:回転発電機定格出力の50%(50kW)
・燃料電池発電装置の定格出力:100kW
・燃料電池発電装置の負荷上昇変化速度:10kW/分
・燃料電池発電装置の負荷減少変化速度:瞬時
表1は、経過時間0から55分にわたって、5分毎の時間経過とともに、重要負荷、燃料電池出力指令値、燃料電池出力、回転発電機出力が変化する過程を示し、表2は、上記各変化の状況(数値変動とステップまたはランプ変化の別)を示す。
【0031】
【表1】

Figure 0004193091
【0032】
【表2】
Figure 0004193091
【0033】
図2は、上記表1および表2を、タイムチャートとしたもので、図2(a)は、重要負荷(実線)と燃料電池出力指令値(破線)を示し、図2(b)は、回転発電機出力(実線)と燃料電池出力(破線)を示す。
【0034】
初期状態(時間0)において、重要負荷が90kWであった場合、回転発電機出力50kWで、燃料電池出力は40kWである。5分後に、重要負荷が50kW増えて140kWとなった場合、回転発電機が出力を増やすことにより応答する。制御装置で演算される燃料電池の出力指令値は、負荷変動分増加して40kWから90kWとなる。
【0035】
燃料電池の出力はランプ変化となるので、燃料電池出力は、負荷変化速度に応じて増加する。燃料電池出力の増加に応じて、回転発電機出力は減少する。燃料電池出力が90kWとなった時点で、回転発電機出力は50kWとなり、両出力が維持される。
【0036】
15分後に重要負荷がさらに50kW増えて190kWになった場合、負荷変動分は回転発電機が出力を増やすことにより応答する。制御装置で演算される燃料電池の出力指令値は、負荷変動分増加して90kWから140kWとなる。燃料電池の出力はランプ変化となるので、燃料電池出力は、負荷変化速度に応じて増加する。燃料電池出力の増加に応じて、回転発電機出力は減少する。燃料電池出力が100kWになると、燃料電池出力はそれ以上あがらなくなる。この場合、回転発電機の出力は、90kWとなる。
【0037】
25分後に重要負荷が50kW減って140kWとなった場合、回転発電機が出力を減らすことにより応答する。制御装置で演算される燃料電池の出力指令値は、負荷変動分減少して140kWから90kWとなる。燃料電池の出力減少はステップ変化となるので、燃料電池の出力は瞬時に90kWまで減少する。
【0038】
35分後に重要負荷が50kW減って90kWとなった場合、負荷変動分は、燃料電池出力を減らして応答し、回転発電機は50kWを維持する。燃料電池の出力は40kWである。
【0039】
45分後に重要負荷がさらに50kW減って40kWとなった場合、負荷変動分は、燃料電池出力を減らして応答する。燃料電池の出力指令値は、負荷変動分減少して40kWから−10kWとなる。燃料電池の出力が0kWとなると燃料電池出力はそれ以上下がらなくなるので、回転発電機出力は40kWとなる。
【0040】
電力供給の制御方法は、図2に示す上記制御例に限定されない。図3は、図2とは異なる制御パターンを示し、35分後の回転発電機出力と燃料電池出力の分担割合を変えた例を示す。請求項3の発明のように、出力変動時および回転発電機を所定の最低出力値に維持する場合を除いて、燃料電池出力値は回転発電機出力値より大とすることにより、燃料電池出力値のウェイトを高めて、システム全体の発電効率をさらに向上することができる。なお、回転発電機は低出力域においては、安定した出力が得られないので、最低出力値は維持することが望ましく、例えば、図3においては、30kWを最低出力値としている。
【0041】
上記のような制御により、重要負荷のステップ的な負荷上昇に対して、ステップ応答が可能となる。また、回転発電機に比べて、燃料電池発電装置の方が発電効率が高いので、引き続きランプ応答により燃料電池出力に切り替えて電力供給することにより、システム全体の発電効率の向上を図ることができる。
【0042】
【発明の効果】
上記のように、この発明は、炭化水素系原燃料を燃料改質器により水素リッチなガスに改質した燃料ガスと酸化剤ガスとの反応により直流電力を発生する燃料電池と、この燃料電池の直流出力を交流出力に変換するインバータとを備えた燃料電池発電装置と、回転発電機とを電力会社系統と連系運転する燃料電池複合発電システムの制御方法において、
系統異常時に、一般負荷を遮断し、予め定めた重要負荷に対してのみ、前記燃料電池発電装置と回転発電機との複合運転により電力供給を行なうモードとなし、
前記重要負荷の負荷上昇時には、まず回転発電機により前記負荷上昇分を電力供給して瞬時に負荷応答させ、同時に前記燃料電池発電装置に前記負荷上昇分に相当する出力増指令を出して燃料電池出力を漸増させ、この漸増に伴って、回転発電機出力を前記漸増相当分漸減させて燃料電池出力のランプ応答によりその後の電力供給を行ない、燃料電池出力が所定の出力増指令値に到達した時点で、燃料電池出力値および回転発電機出力値を各到達値に維持することにより、
系統異常が発生した場合に、所定の重要負荷に対して、燃料電池発電装置および回転発電機から引き続き電力供給可能とし、負荷変動時の応答性の向上とシステム全体の発電効率の向上を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる概略システム系統図
【図2】この発明に関わり、重要負荷、燃料電池出力指令値、燃料電池出力、回転発電機出力が変化する過程を示す図
【図3】図2とは異なる出力変化過程を示す図
【図4】従来の燃料電池発電装置の系統連系運転の概略構成を示す図
【符号の説明】
1:電力系統、2:燃料電池発電装置、3:回転発電機、4:重要負荷、5:一般負荷、6:制御装置、7:系統遮断器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for a fuel cell combined power generation system in which a fuel cell power generator and a rotary generator are interconnected with an electric power company system, and more particularly to a control method when a system abnormality occurs.
[0002]
[Prior art]
As is well known, a fuel cell generally reforms a hydrocarbon-based raw fuel such as natural gas or petroleum-based fuel into a hydrogen-rich gas by a fuel reformer, and the hydrogen-rich fuel reformed gas and an oxidant gas ( Air) is continuously supplied, and the energy of the fuel is electrochemically converted into electrical energy. It is also well known that such a fuel cell is grid-connected through an electric power company system and an inverter.
[0003]
FIG. 4 shows a schematic configuration in the case where a conventional fuel cell power generator is used by being connected to a power company system in a customer premises. FIG. 4 is shown separately in FIG. 4 (a) and (b) because of the relationship of the page, but (a) right end and (b) left end of FIG. A system is constructed (refer to Japanese Patent Application No. 11-166411 for details).
[0004]
In FIG. 4, 100 is a fuel cell, and 200 is an inverter that converts the DC power of the fuel cell into AC power synchronized with the frequency of the power company system. Here, the configuration of the inverter itself and the control circuit are omitted. 41 is a voltage detector for detecting the inverter output voltage, and 51 is a current detector for detecting the inverter output current.
[0005]
300 denotes a P setting value that is an output active power setting value of the inverter 2, a Q setting value that is an output reactive power setting value, an output signal v1 of the voltage detector 41, and an output signal i1 of the current detector. In order to perform feedback control of the output active power value and the output reactive power value of the inverter 200, the deviation command signals p and Q between the P setting value and the active power output of the inverter and the reactive power output of the inverter This is a PQ command control device that outputs a deviation command signal q.
[0006]
80 is a circuit breaker for disconnecting the fuel cell power generator when an abnormality occurs in the power company system, and 90 is a circuit that interrupts the short circuit current when a short circuit accident occurs in the fuel cell power generator. 110 denotes a power-consuming auxiliary device such as a pump or a blower (not shown) for maintaining the fuel cell power plant.
[0007]
Reference numeral 130 denotes an electric power company system. Electric power is supplied to various premises loads (not shown) via a circuit breaker 121 and a power receiving transformer 120 in a customer power receiving facility through a load feeder line 123. The fuel cell power generator is also connected to the power company system 130 through the circuit breaker 121, the power receiving transformer 120, and the circuit breaker 122 in synchronization with the system frequency.
[0008]
A fuel cell feeder line 111 that is an indoor or outdoor wiring is wired from the consumer power receiving facility to the fuel cell power generator, and the generated power of the fuel cell power generator is supplied to the customer premises by this feeder line 111. .
[0009]
By the way, in a fuel cell combined power generation system that is linked to a power company system, a system that is combined with a rotary generator has also been proposed (see Japanese Patent Application Laid-Open No. 8-223799).
[0010]
The system described in the above-mentioned JP-A-8-223799 relates to a cogeneration system that recovers exhaust heat of a prime mover that drives a rotary generator, from load power and a rotary generator operated at a constant load. The difference from the supplied power is supplied from the fuel cell, and the exhaust heat of the prime mover that generates exhaust heat such as an internal combustion engine such as a diesel engine or gas turbine is recovered as steam or hot water to improve the overall thermal efficiency. Is intended.
[0011]
[Problems to be solved by the invention]
By the way, in the grid-connected operation of the fuel cell power generator and the rotary generator as described above, when a system abnormality occurs, the fuel cell power generator and / or the rotary generator is used for some important loads. It is desired that power is continuously supplied.
[0012]
However, the fuel cell power generator has a problem of poor response when the important load fluctuates and increases because the control response of the fuel reformer is slow, and this load response is improved and the entire system is improved. It is desirable to improve the power generation efficiency. In the conventional system including the above-mentioned Japanese Patent Application Laid-Open No. 8-223799, the measures related to the improvement of the responsiveness and the improvement of the power generation efficiency are not particularly considered.
[0013]
In order to improve the responsiveness of the fuel cell, a complex system using a high-pressure hydrogen gas cylinder as a fuel gas and combined with a battery or the like may be used as an independent power source. However, it is not preferred from the viewpoint of safety management as equipment.
[0014]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel cell power generator and a rotary generator for a predetermined important load when a system abnormality occurs. Therefore, it is intended to provide a control method for a combined power generation system that can continuously supply electric power, and improve the responsiveness at the time of load fluctuation and the power generation efficiency of the entire system.
[0015]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a fuel cell that generates direct-current power by a reaction between a fuel gas obtained by reforming a hydrocarbon-based raw fuel into a hydrogen-rich gas by a fuel reformer and an oxidant gas; In a control method of a fuel cell combined power generation system in which a fuel cell power generation device including an inverter that converts a direct current output of the fuel cell to an alternating current output and a rotary generator are connected to a power company system,
When the system is abnormal, the general load is cut off, and only for a predetermined important load, there is no mode in which power is supplied by a combined operation of the fuel cell power generator and the rotary generator,
When the load of the important load rises, first, the rotary power generator supplies power to the load increase to instantly respond to the load, and simultaneously outputs an output increase command corresponding to the load increase to the fuel cell power generation device. The output is gradually increased, and along with this increase, the rotary generator output is gradually decreased by an amount corresponding to the increase, and the subsequent power supply is performed by the ramp response of the fuel cell output, and the fuel cell output reaches a predetermined output increase command value. At the time, the fuel cell output value and the rotary generator output value are maintained at the ultimate values (invention of claim 1).
[0016]
Since the rotary generator is capable of instantaneous load response if the load response width is a constant ratio with respect to the rated output, the step response to the stepwise load increase of the important load can be achieved by the invention of claim 1. Is possible. In addition, since the fuel cell power generation device has higher power generation efficiency than the rotary generator, the power generation efficiency of the entire system can be improved by continuously switching to the fuel cell output by the lamp response and supplying power. .
[0017]
As an embodiment of the invention of claim 1, the inventions of claims 1 and 2 below are suitable. That is, in the control method according to claim 1, the instantaneous load response width of the rotary generator is set to 30 to 70% of the rated output of the rotary generator (invention of claim 2). If it is 30 to 70% of the rated output, the rotary generator can respond to the load almost stably and instantaneously. If the instantaneous load change width of the important load is known, the rotary generator corresponds to this change width. Can be stably supplied by preparing a rotary generator having this power generation capacity.
[0018]
Furthermore, in the control method according to claim 1 or 2, the output value of the fuel cell is the output of the rotary generator except when the output fluctuates during the lamp response and when the rotary generator is maintained at a predetermined minimum output value. Greater than the value (the invention of claim 3).
[0019]
Although the details will be described later according to the invention of claim 3, since the weight of the fuel cell output value in the total power supply can be increased, the power generation efficiency of the entire system can be further improved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
[0021]
FIG. 1 shows a schematic system diagram of a combined fuel cell power generation system according to an embodiment of the present invention. In FIG. 1, a fuel cell power generator 2 and a rotary generator 3 are provided as power supply sources for the important load 4 and the general load 5, and the power shortage in the fuel cell power generator 2 and the rotary generator 3 is a system breaker. 7, power is received from the power system 1 from the power company, and combined operation is performed. A part number 6 in FIG. 1 is a control device for combined operation of the fuel cell power generator 2 and the rotary generator 3. Control of a part of the entire system is performed by another control device (not shown). Part numbers 8 to 11 indicate circuit breakers connected to the loads and the power generation device, respectively.
[0022]
Although not shown, the fuel cell power generation device 2 includes a fuel cell that generates direct-current power by a reaction between a fuel gas obtained by reforming a hydrocarbon-based raw fuel into a hydrogen-rich gas by a fuel reformer and an oxidant gas. And an inverter for converting the direct current output of the fuel cell into an alternating current output. Similarly, although not shown in the figure, the rotary generator 3 includes an internal combustion engine such as a diesel engine, a gas engine, and a gasoline engine, a gas turbine, and the like, and a small gas turbine generator or the like usually includes an inverter. Is provided. In the grid connection operation, the fuel cell power generator 2 and the rotary generator 3 normally generate power by controlling the generated current at a constant voltage.
[0023]
In the above configuration, a control method when an abnormality occurs in the system will be described below. When an abnormality occurs in the system, the system breaker 7 is first opened and the power system 1 is disconnected. When the power of all loads cannot be supplied by the fuel cell power generator 2 and the rotary generator 3, the circuit breaker 11 of the electric path to the general load 5 is opened, and the fuel cell power generator only for the predetermined important load 4 And a mode in which power supply is continued by combined operation of the rotary generator.
[0024]
In this case, the rotary generator 3 switches from the generated current control to the generated voltage control. The reason is that the rotary generator 3 performs synchronous operation with respect to the voltage and frequency of the system at the time of grid connection, but when the rotary generator 3 is disconnected from the system due to a system abnormality, the reference voltage to be synchronized is This is because control that makes the voltage constant is necessary because it cannot be obtained from the system. The electrical output varies depending on the state of the load.
[0025]
The fuel cell power generation device 2 performs the interconnection operation with the rotary generator 3 as a system. That is, synchronous operation is performed with respect to the output voltage and frequency of the rotary generator 3. In this case, the fuel cell output power is output based on the output command calculated in the control device 6 according to the load fluctuation of the important load.
[0026]
Even if there is an increase command, the increase in the fuel cell output is a ramp change based on the response delay of the fuel reformer as described above, so if there is a load fluctuation that increases the load on the important load, the response Sex matters. When the load decreases, the fuel cell output can be decreased instantaneously. On the other hand, when the rotary generator is 30 to 70% of the rated output, the load generator can respond to the load almost stably and instantaneously regardless of the increase or decrease of the load.
[0027]
In consideration of the above, when there is a load fluctuation that increases the load on the important load, the power supply control is performed by the method according to claim 1. That is, first, the rotary generator 3 supplies power to the load increase of the important load to instantly respond to the load, and simultaneously outputs an output increase command corresponding to the load increase to the fuel cell power generator 2 to output the fuel cell output. With the gradual increase, the rotary generator output is gradually decreased by an amount corresponding to the gradual increase, and the subsequent power supply is performed by the ramp response of the fuel cell output, and when the fuel cell output reaches a predetermined output increase command value. The fuel cell output value and the rotary generator output value are maintained at the reached values.
[0028]
In order to explain the power supply control more specifically, for the sake of convenience of explanation, it is assumed that the important load, the rotary generator, the fuel cell, etc., and the fluctuation mode of the important load, and under this assumption, the output of the rotary generator The process in which the fuel cell output command value and the fuel cell output change with time will be described below with reference to Tables 1 and 2 and FIG. The important load change mode is not necessarily simple, but for convenience of explanation, it is assumed that the step changes as described later.
[0029]
The introduction of important loads, rotating generators, fuel cells, etc. is assumed as follows.
[0030]
・ Maximum load of important load: 200kW
-Instantaneous load change width of important load: 50kW
・ Rated generator rated output: 100kW
・ Maximum instantaneous load response width of rotating generator: 50% (50 kW) of rated output of rotating generator
・ Rated output of fuel cell power generator: 100kW
・ Fuel increase rate of the fuel cell power generator: 10 kW / min ・ Load decrease change rate of the fuel cell power generator: Instantaneous Table 1 shows the important load and fuel as time passes every 5 minutes from 0 to 55 minutes The process of changing the battery output command value, the fuel cell output, and the rotary generator output is shown, and Table 2 shows the status of each change described above (separate numerical fluctuation and step or lamp change).
[0031]
[Table 1]
Figure 0004193091
[0032]
[Table 2]
Figure 0004193091
[0033]
FIG. 2 is a time chart of the above Table 1 and Table 2. FIG. 2 (a) shows an important load (solid line) and a fuel cell output command value (broken line), and FIG. The rotary generator output (solid line) and the fuel cell output (broken line) are shown.
[0034]
In the initial state (time 0), when the important load is 90 kW, the rotary generator output is 50 kW and the fuel cell output is 40 kW. After 5 minutes, if the critical load increases by 50 kW to 140 kW, the rotary generator responds by increasing the output. The output command value of the fuel cell calculated by the control device increases from the load fluctuation to 40 kW to 90 kW.
[0035]
Since the output of the fuel cell is a ramp change, the fuel cell output increases according to the load change rate. As the fuel cell output increases, the rotary generator output decreases. When the fuel cell output reaches 90 kW, the rotary generator output becomes 50 kW, and both outputs are maintained.
[0036]
If the important load further increases by 50 kW to 190 kW after 15 minutes, the load fluctuation responds when the rotary generator increases the output. The output command value of the fuel cell calculated by the control device increases from the load fluctuation to 90 kW to 140 kW. Since the output of the fuel cell is a ramp change, the fuel cell output increases according to the load change rate. As the fuel cell output increases, the rotary generator output decreases. When the fuel cell output reaches 100 kW, the fuel cell output no longer increases. In this case, the output of the rotary generator is 90 kW.
[0037]
If the critical load decreases by 50 kW to 140 kW after 25 minutes, the rotary generator responds by reducing the output. The output command value of the fuel cell calculated by the control device decreases from the load fluctuation to 140 kW to 90 kW. Since the decrease in the output of the fuel cell is a step change, the output of the fuel cell instantaneously decreases to 90 kW.
[0038]
If the critical load decreases by 50 kW to 90 kW after 35 minutes, the load fluctuation responds by reducing the fuel cell output, and the rotary generator maintains 50 kW. The output of the fuel cell is 40 kW.
[0039]
When the important load further decreases by 50 kW to 40 kW after 45 minutes, the load fluctuation responds by reducing the fuel cell output. The fuel cell output command value decreases from the load fluctuation to 40 kW to -10 kW. When the output of the fuel cell becomes 0 kW, the fuel cell output does not decrease any further, so that the rotary generator output becomes 40 kW.
[0040]
The power supply control method is not limited to the above control example shown in FIG. FIG. 3 shows a control pattern different from that in FIG. 2, and shows an example in which the sharing ratio between the rotary generator output and the fuel cell output after 35 minutes is changed. As in the invention of claim 3, the fuel cell output value is set larger than the rotary generator output value except when the output fluctuates and when the rotary generator is maintained at a predetermined minimum output value. By increasing the value weight, the power generation efficiency of the entire system can be further improved. In addition, since a rotary generator cannot obtain a stable output in a low output range, it is desirable to maintain the minimum output value. For example, in FIG. 3, 30 kW is set as the minimum output value.
[0041]
By the control as described above, a step response is possible with respect to a stepwise load increase of the important load. In addition, since the fuel cell power generation device has higher power generation efficiency than the rotary generator, the power generation efficiency of the entire system can be improved by continuously switching to the fuel cell output by the lamp response and supplying power. .
[0042]
【The invention's effect】
As described above, the present invention provides a fuel cell that generates direct-current power by a reaction between a fuel gas obtained by reforming a hydrocarbon-based raw fuel into a hydrogen-rich gas by a fuel reformer and an oxidant gas, and the fuel cell. In a control method of a fuel cell combined power generation system in which a fuel cell power generation device including an inverter that converts a direct current output of the current to an alternating current output and a rotary generator are connected to a power company system,
When the system is abnormal, the general load is cut off, and only for a predetermined important load, there is no mode in which power is supplied by a combined operation of the fuel cell power generator and the rotary generator,
When the load of the important load rises, first, the rotary power generator supplies power to the load increase to instantly respond to the load, and simultaneously outputs an output increase command corresponding to the load increase to the fuel cell power generation device. The output is gradually increased, and along with this increase, the rotary generator output is gradually decreased by an amount corresponding to the increase, and the subsequent power supply is performed by the ramp response of the fuel cell output, and the fuel cell output reaches a predetermined output increase command value. At that time, by maintaining the fuel cell output value and the rotary generator output value at each reached value,
In the event of a system failure, it is possible to continue to supply power from a fuel cell power generator and a rotary generator to a specified critical load, improving responsiveness during load fluctuations and improving the power generation efficiency of the entire system. Can do.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram related to an embodiment of the present invention. FIG. 2 is a diagram showing a process in which an important load, a fuel cell output command value, a fuel cell output, and a rotary generator output are changed. 3 is a diagram showing an output changing process different from that in FIG. 2. FIG. 4 is a diagram showing a schematic configuration of a grid-connected operation of a conventional fuel cell power generator.
1: power system, 2: fuel cell power generator, 3: rotary generator, 4: important load, 5: general load, 6: control device, 7: system breaker.

Claims (3)

炭化水素系原燃料を燃料改質器により水素リッチなガスに改質した燃料ガスと酸化剤ガスとの反応により直流電力を発生する燃料電池と、この燃料電池の直流出力を交流出力に変換するインバータとを備えた燃料電池発電装置と、回転発電機とを電力会社系統と連系運転する燃料電池複合発電システムの制御方法において、
系統異常時に、一般負荷を遮断し、予め定めた重要負荷に対してのみ、前記燃料電池発電装置と回転発電機との複合運転により電力供給を行なうモードとなし、
前記重要負荷の負荷上昇時には、まず回転発電機により前記負荷上昇分を電力供給して瞬時に負荷応答させ、同時に前記燃料電池発電装置に前記負荷上昇分に相当する出力増指令を出して燃料電池出力を漸増させ、この漸増に伴って、回転発電機出力を前記漸増相当分漸減させて燃料電池出力のランプ応答によりその後の電力供給を行ない、燃料電池出力が所定の出力増指令値に到達した時点で、燃料電池出力値および回転発電機出力値を各到達値に維持することを特徴とする燃料電池複合発電システムの制御方法。
A fuel cell that generates direct-current power by the reaction of a fuel gas obtained by reforming a hydrocarbon-based raw fuel into a hydrogen-rich gas with a fuel reformer and an oxidant gas, and converts the direct-current output of the fuel cell into an alternating-current output In a control method of a fuel cell combined power generation system in which a fuel cell power generation device including an inverter and a rotary generator are interconnected with a power company system,
When the system is abnormal, the general load is cut off, and only for a predetermined important load, there is no mode in which power is supplied by a combined operation of the fuel cell power generator and the rotary generator,
When the load of the important load rises, first, the rotary power generator supplies power to the load increase to instantly respond to the load, and simultaneously outputs an output increase command corresponding to the load increase to the fuel cell power generation device. The output is gradually increased, and along with this increase, the rotary generator output is gradually decreased by an amount corresponding to the increase, and the subsequent power supply is performed by the ramp response of the fuel cell output, and the fuel cell output reaches a predetermined output increase command value. A control method for a fuel cell combined power generation system, wherein the fuel cell output value and the rotary generator output value are maintained at respective reached values at the time.
請求項1記載の制御方法において、前記回転発電機の瞬時負荷応答幅は、回転発電機の定格出力の30〜70%とすることを特徴とする燃料電池複合発電システムの制御方法。2. The control method for a fuel cell combined power generation system according to claim 1, wherein an instantaneous load response width of the rotary generator is 30 to 70% of a rated output of the rotary generator. 請求項1または2記載の制御方法において、前記ランプ応答中の出力変動時および回転発電機を所定の最低出力値に維持する場合を除いて、前記燃料電池出力値は回転発電機出力値より大とすることを特徴とする燃料電池複合発電システムの制御方法。3. The control method according to claim 1, wherein the output value of the fuel cell is larger than the output value of the rotary generator except when the output is changing during the lamp response and when the rotary generator is maintained at a predetermined minimum output value. A control method for a combined fuel cell power generation system.
JP2000271332A 2000-09-07 2000-09-07 Control method of combined fuel cell power generation system Expired - Lifetime JP4193091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271332A JP4193091B2 (en) 2000-09-07 2000-09-07 Control method of combined fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271332A JP4193091B2 (en) 2000-09-07 2000-09-07 Control method of combined fuel cell power generation system

Publications (2)

Publication Number Publication Date
JP2002083619A JP2002083619A (en) 2002-03-22
JP4193091B2 true JP4193091B2 (en) 2008-12-10

Family

ID=18757638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271332A Expired - Lifetime JP4193091B2 (en) 2000-09-07 2000-09-07 Control method of combined fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP4193091B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646536B2 (en) * 2004-03-22 2011-03-09 大阪瓦斯株式会社 Power supply system
JP2005302460A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Control unit of fuel cell system
US8080344B2 (en) * 2006-05-16 2011-12-20 Fuelcell Energy, Inc. Fuel cell hybrid power generation system
JP2008131694A (en) * 2006-11-17 2008-06-05 Ebara Corp Gas turbine power generator
JP5658708B2 (en) * 2012-04-11 2015-01-28 東京瓦斯株式会社 Power generation system and power generation system control method
US10529999B2 (en) 2014-10-23 2020-01-07 Kyocera Corporation Power supply apparatus, power supply system, and power supply method
US9819190B2 (en) * 2015-07-02 2017-11-14 Dynapower Company Llc Islanding a plurality of grid tied power converters

Also Published As

Publication number Publication date
JP2002083619A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
CN108964115B (en) DC coupling power electronic system of fuel cell power system
KR20180128867A (en) AC Coupled Power Electronics System for a Fuel Cell Power System
WO2021102405A1 (en) Modular systems for hydrogen generation and methods of operating thereof
KR101983427B1 (en) Solid oxide fuel cell-based power generation and delivery system and method of operating the same
US20020036430A1 (en) Local area grid for distributed power
CN113852141A (en) Thermal power plant black start system and method with FCB function and combined wind-solar energy storage function
JP4193091B2 (en) Control method of combined fuel cell power generation system
Martirano et al. Implementation of SCADA systems for a real microgrid lab testbed
US8865356B2 (en) Electrical generation system and method for a hybrid fuel cell power plant
WO2023223434A1 (en) Power feed system, full load distribution board, power feed device, power feed control method for power feed device, power feed path, power conversion device, and connection method
Shehadeh et al. Operation Scheme of a Microgrid to Maximize Photovoltaic System Utilization in Blackouts: A Case Study
KR102276555B1 (en) System and method for controlling automatic generator initial load increase in synchronization
CN110896222A (en) Reactive compensation method of asynchronous generator
JP7440752B2 (en) power system
CN220234269U (en) One-path standby generator set and multi-path commercial power grid-connected switching control system
Mudaliyar et al. Load following capability of fuel cell-microturbine based hybrid energy system for microgrid operation
JPH08182192A (en) System interconnection system for non-utility dc generator facility
Samal et al. PEM-Fuel cell Based Microgrid with NSC Control Strategy
WO2023144615A1 (en) Electrical power apparatus
Moran Distributed generation operation: Grid-connected vs. Islanded
KR20230069020A (en) Power management in fuel cell system based microgrids
JP2015136258A (en) Power controller, control method for power controller, and power control system
JP2023169783A (en) Power supply system, full load distribution board, power supply device, power supply control method for power supply device, power supply path, power conversion device, and connection method
CN113872246A (en) Building type distributed micro-grid regulation and control system and method
Gaiceanu et al. Load-following Model of the Solid Oxide Fuel Cell Power Conditioning System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Ref document number: 4193091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term