JP2001332252A - Manufacturing method for negative electrode plate of lead battery, and the lead battery - Google Patents

Manufacturing method for negative electrode plate of lead battery, and the lead battery

Info

Publication number
JP2001332252A
JP2001332252A JP2000154008A JP2000154008A JP2001332252A JP 2001332252 A JP2001332252 A JP 2001332252A JP 2000154008 A JP2000154008 A JP 2000154008A JP 2000154008 A JP2000154008 A JP 2000154008A JP 2001332252 A JP2001332252 A JP 2001332252A
Authority
JP
Japan
Prior art keywords
negative electrode
barium sulfate
reaction solution
electrode plate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000154008A
Other languages
Japanese (ja)
Other versions
JP3701544B2 (en
Inventor
Hidetoshi Abe
英俊 阿部
Toshimichi Takada
利通 高田
Kozo Sogabe
幸蔵 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2000154008A priority Critical patent/JP3701544B2/en
Publication of JP2001332252A publication Critical patent/JP2001332252A/en
Application granted granted Critical
Publication of JP3701544B2 publication Critical patent/JP3701544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a negative electrode plate for a lead battery, in which a shrink resistant effect of the negative electrode plate for the lead battery that has a mixture of barium sulfate is improved. SOLUTION: After preparing a reaction mixture that comprises a deposited barium sulfate in the reaction of a material containing a barium compound with diluted sulfuric acid, the reaction mixture is added in preparing an active substance paste for the negative electrode, mixed to form the active substance paste for the negative electrode and filled on a porous substrate in the conventional way, so as to manufacture the negative electrode plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の負極板
の製造法並びに鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a negative electrode plate of a lead storage battery and a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池の負極板は溶解析出を伴う充放
電反応を行うことから、充放電サイクルを行うと、発生
するPb2+イオンが元にあった場所から拡散して別な場
所で析出するために、活物質が収縮する現象がある。活
物質が収縮してしまうと、反応表面積の減少や極板亀裂
を起こし、正常な充放電反応や集電ができず、電池が作
動しなくなる。かゝる不都合を防止するため、放電時に
生成する硫酸鉛の核となる市販の硫酸バリウム粉末を負
極板の活物質中に添加し、均一に存在させて、負極板の
収縮を防止することとは古くから知られているが、市販
の硫酸バリウム粉末は、製造時、保管時或いは輸送時な
どにおいて二次凝集を起こし、負極活物質ペーストの調
製時に添加するときには、核として有効な1ミクロン以
下の微細な粒子のものが殆どなくなるため、その混練に
おいて、活物質ペースト中に均一に混じることなく、従
って、この活物質ペーストを鉛格子基板に充填して製造
した負極板の収縮を抑える効果が低下する不都合を回避
できなかった。この不都合を解消するため、特開昭58
−111263号公報の発明では、鉛蓄電池の負極板の
製造において、負極活物質ペーストの混練時に、該ペー
ストに直接水酸化バリウム水溶液と硫酸とを添加し練合
して反応させて負極活物質ペースト中に、二次凝集なく
微細な硫酸バリウム粒子を均一に生成せしめることによ
り負極板の寿命を向上した負極板を製造することを開示
している。
2. Description of the Related Art Since a negative electrode plate of a lead-acid battery undergoes a charge / discharge reaction accompanied by dissolution and precipitation, when a charge / discharge cycle is performed, the generated Pb 2+ ions diffuse from the place where they originally exist and go to another place. There is a phenomenon that the active material shrinks due to precipitation. When the active material shrinks, the reaction surface area decreases and the electrode plate cracks, so that normal charge / discharge reaction and current collection cannot be performed, and the battery does not operate. To prevent such inconvenience, commercially available barium sulfate powder, which is a nucleus of lead sulfate generated at the time of discharge, is added to the active material of the negative electrode plate, and is uniformly present to prevent shrinkage of the negative electrode plate. Although it has been known for a long time, commercially available barium sulfate powder causes secondary agglomeration at the time of production, storage or transportation, and when added at the time of preparing a negative electrode active material paste, it is 1 micron or less effective as a nucleus. In the kneading, the particles are hardly uniformly mixed in the active material paste, and therefore, the effect of suppressing the shrinkage of the negative electrode plate manufactured by filling the active material paste into the lead lattice substrate is reduced. The inconvenience of reduction could not be avoided. To solve this inconvenience, Japanese Unexamined Patent Publication No.
According to the invention of JP-A-111263, in the production of a negative electrode plate for a lead-acid battery, when kneading a negative electrode active material paste, a barium hydroxide aqueous solution and sulfuric acid are directly added to the paste, and the paste is kneaded and reacted. It discloses that a negative electrode plate in which the life of the negative electrode plate is improved by uniformly generating fine barium sulfate particles without secondary aggregation is disclosed therein.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、特開昭5
8−111263号公報の発明では、水酸化バリウムと
希硫酸とを負極活物質ペースト中に直接添加するので、
添加した硫酸の一部は、水酸化バリウムと反応しないで
負極活物質であるPbやPbOと反応して消費され、原
料として投入の水酸化バリウムと硫酸と反応して予定さ
れる硫酸バリウムの析出生成量が得られない一方、硫酸
濃度が低い反応となるので、生成された硫酸バリウム粒
子は比較的大きなものになってしまう不都合な結果をも
たらす。従って、上記従来の技術の不都合を解消し、原
料として使用するバリウムと硫酸を無駄なく反応させて
確実に所定量の一次粒子の硫酸バリウムを生成析出せし
め、而も一次粒子の状態で負極活物質ペースト中に均一
に混在したものを容易迅速に負極活物質ペーストを調製
し、これを用いて防縮効果の向上した負極板の製造法の
開発が望まれる。
However, Japanese Patent Application Laid-Open No.
In the invention of JP-A-8-111263, since barium hydroxide and dilute sulfuric acid are directly added to the negative electrode active material paste,
Part of the added sulfuric acid is consumed by reacting with Pb or PbO, which is a negative electrode active material, without reacting with barium hydroxide, and is expected to react with barium hydroxide and sulfuric acid as raw materials to deposit barium sulfate. The reaction yields low yields while the sulfuric acid concentration is low, which has the disadvantage that the barium sulfate particles produced are relatively large. Therefore, the disadvantages of the above-described conventional technology are solved, and barium and sulfuric acid used as raw materials are reacted without waste to reliably generate and precipitate a predetermined amount of primary particles of barium sulfate. It is desired to develop a method for manufacturing a negative electrode plate in which a paste uniformly mixed in a paste is easily and quickly prepared, and a negative electrode plate having an improved shrink-proof effect is prepared using the paste.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の課
題を解決し、原料として使用するバリウム量と硫酸量を
無駄にすることなく反応させ、予定量の硫酸バリウムを
生成せしめて、これを負極活物質ペースト中に不定量の
硫酸バリウムを確実に添加し、且つ均一に分散混在せし
められた負極活物質ペーストを調製し得られ、これを用
いて収縮防止効果の優れ且つサイクル寿命の向上した鉛
蓄電池をもたらす負極板の製造法を提供するもので、バ
リウムイオンと硫酸イオンとの反応により硫酸バリウム
を析出せしめた反応液、またはこれを濃縮した反応液、
或いはその濾過により分取したスラリー状の硫酸バリウ
ム反応液を調製すること、次で、これを負極活物質ペー
ストの調製時に添加し、混練して負極活物質ペーストを
調製することから成る工程を特徴とする。更に、本発明
は、上記の鉛蓄電池用負極板の製造法において、該反応
液に、硫酸バリウムの分散剤を添加、撹拌することを特
徴とする。更に本発明は、硫酸バリウムの凝集が確実に
防止されるようにした鉛蓄電池用負極板の製造法を提供
するもので、該反応液中の硫酸濃度は、1M以上である
ことを特徴とする。更に本発明は、高容量を維持し、長
寿命の鉛蓄電池を提供するもので、負極板として、上記
の本発明の負極板を用いたことを特徴とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and reacts the amounts of barium and sulfuric acid used as raw materials without wasting them to produce a predetermined amount of barium sulfate. The negative electrode active material paste can be obtained by adding a certain amount of barium sulfate to the negative electrode active material paste and uniformly dispersing and mixing the negative electrode active material paste. Provide a method for manufacturing a negative electrode plate that results in a lead-acid battery, a reaction solution in which barium sulfate is precipitated by a reaction between barium ions and sulfate ions, or a reaction solution obtained by concentrating the same.
Alternatively, a step of preparing a barium sulfate reaction liquid in the form of a slurry separated by filtration, and then adding the kneaded mixture at the time of preparing the negative electrode active material paste and kneading to prepare a negative electrode active material paste is characterized in that: And Furthermore, the present invention is characterized in that, in the above-described method for producing a negative electrode plate for a lead storage battery, a barium sulfate dispersant is added to the reaction solution and stirred. Further, the present invention provides a method for producing a negative electrode plate for a lead storage battery in which aggregation of barium sulfate is surely prevented, wherein the concentration of sulfuric acid in the reaction solution is 1 M or more. . Further, the present invention provides a lead-acid battery that maintains a high capacity and has a long life, and is characterized in that the above-described negative electrode plate of the present invention is used as a negative electrode plate.

【0005】[0005]

【発明の実施の形態】本発明は、先ず第一工程として、
バリウム系原料のバリウムイオンと希硫酸の硫酸イオン
とを反応させ硫酸バリウムを析出させた反応液を調製す
る。硫酸水溶液中でバリウムイオンを生成するバリウム
系原料としては、金属バリウム、水素化バリウム、ハロ
ゲン化バリウム、硫化バリウム、酸化バリウム、水酸化
バリウム、炭化バリウム、その他のバリウム化合物から
選択した少なくとも1種を使用し、硫酸イオンを生成す
る希硫酸としては、反応後反応液中に1M以上の硫酸が
残る硫酸濃度の希硫酸を使用する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention comprises the following first steps:
A reaction liquid is prepared by reacting barium ions of barium-based raw material with sulfate ions of dilute sulfuric acid to precipitate barium sulfate. As a barium-based raw material that generates barium ions in a sulfuric acid aqueous solution, at least one selected from metal barium, barium hydride, barium halide, barium sulfide, barium oxide, barium hydroxide, barium carbide, and other barium compounds is used. As the dilute sulfuric acid used to generate sulfate ions, dilute sulfuric acid having a sulfuric acid concentration of 1 M or more sulfuric acid remains in the reaction solution after the reaction.

【0006】容器内に入れた上記の硫酸に、常温で、バ
リウム系原料の1種の好ましくは粉粒を徐々に添加し、
撹拌し乍ら、硫酸と反応させ、硫酸バリウムを析出さ
せ、硫酸水溶液中に所定量の硫酸バリウムを確実に含む
反応液を得る。この場合、特に、核として有効な1ミク
ロン以下の硫酸バリウムを析出させるには、原料として
用いる希硫酸中の硫酸濃度は、これをバリウム系原料の
1種と常温で反応させた後、その反応液中に少なくとも
1Mの硫酸が残るようにする。この場合、硫酸とバリウ
ム系原料とは常温で烈しく撹拌することにより予定量の
硫酸バリウムが確実に得られる。反応液中の硫酸濃度が
1M未満であると直ちに活物質ペースト中に添加混練す
る場合は問題ないが、反応液の状態で放置すると、硫酸
バリウムの一次粒子の結晶が生長し、1μm以上となる
ので、好ましくない。このように、本発明は、上記のよ
うに所定量のバリウム系原料と所定濃度の硫酸とを直接
反応させるので、粒径1ミクロン以下の所定量の硫酸バ
リウムを含む反応液が確実に得られる。
At room temperature, one type of barium-based raw material, preferably powder, is gradually added to the sulfuric acid contained in the container,
The mixture is reacted with sulfuric acid while stirring to precipitate barium sulfate, thereby obtaining a reaction solution containing a predetermined amount of barium sulfate in the aqueous sulfuric acid solution. In this case, in particular, in order to deposit barium sulfate of 1 micron or less effective as a nucleus, the concentration of sulfuric acid in the diluted sulfuric acid used as a raw material is determined by reacting the sulfuric acid with one of barium-based raw materials at room temperature, Ensure that at least 1 M sulfuric acid remains in the solution. In this case, a predetermined amount of barium sulfate can be reliably obtained by vigorously stirring the sulfuric acid and the barium-based raw material at room temperature. If the concentration of sulfuric acid in the reaction solution is less than 1 M, there is no problem in the case where the sulfuric acid concentration is immediately added to the active material paste and kneaded, but when left in the state of the reaction solution, the crystal of primary particles of barium sulfate grows and becomes 1 μm or more. It is not preferable. As described above, according to the present invention, a predetermined amount of barium-based raw material and a predetermined concentration of sulfuric acid are directly reacted as described above, so that a reaction solution containing a predetermined amount of barium sulfate having a particle size of 1 micron or less can be reliably obtained. .

【0007】このようにして上記の反応液を調製した
後、この反応液を、PbOを主体とする鉛粉に導電剤な
どの添加剤と結着剤と水とを添加、混練して負極活物質
ペーストを調製するときに添加し、その全体を混練す
る。然るときは、粒径1ミクロン以下の微細粒子から成
る所定量の硫酸バリウムが確実に添加し得られ、而も硫
酸バリウムが二次凝集することなく、均一に分散し混在
した状態の良質の負極板の防縮効果の向上し得る負極活
物質ペーストが確実に得られる。この負極活物質ペース
トの調製において、硫酸バリウムを負極活物質に対し添
加量が0.1〜2.0質量%添加するときは、特に鉛蓄
電池が容量を長期に亘り高容量に維持する負極板が得ら
れる。
After the above reaction solution is prepared in this manner, the reaction solution is added to a lead powder mainly composed of PbO, and an additive such as a conductive agent, a binder and water are added and kneaded, and the mixture is kneaded. It is added when preparing the substance paste, and the whole is kneaded. In such a case, a predetermined amount of barium sulfate composed of fine particles having a particle size of 1 micron or less can be surely added, and barium sulfate is uniformly dispersed and mixed without secondary aggregation and is of good quality. A negative electrode active material paste capable of improving the shrinkage-preventing effect of the negative electrode plate is reliably obtained. In the preparation of this negative electrode active material paste, when barium sulfate is added in an amount of 0.1 to 2.0% by mass with respect to the negative electrode active material, the negative electrode plate particularly maintains the capacity of the lead storage battery for a long time at a high capacity. Is obtained.

【0008】尚、硫酸バリウムを含有する反応液は、負
極活物質ペーストに添加するには、そのまゝ、或いはこ
れをメンブランフィルターなどを用いて濃縮して得られ
る小容量とした反応液としたもの、或いは、該反応液を
濾過して大部分の液を分離し、残渣である小容量の硫酸
で濡れた状態の硫酸バリウムから成る泥状の反応液とし
たものを所望に応じ選択し、これを負極活物質ペースト
の調製時に添加することが好ましい。
The reaction solution containing barium sulfate can be added to the negative electrode active material paste as it is, or as a small volume reaction solution obtained by concentrating the reaction solution using a membrane filter or the like. Or the reaction liquid is filtered to separate most of the liquid, and a mud-like reaction liquid composed of barium sulfate wetted with a small volume of sulfuric acid as a residue is selected as desired, This is preferably added at the time of preparing the negative electrode active material paste.

【0009】容器内の硫酸バリウムを含有する反応液
は、これを長時間放置すると、当初懸濁状態にある1μ
m以下の微細な硫酸バリウムは、沈下堆積し比較的再分
散が可能な大きな固塊となることが観察されたが、これ
にカルボキシメチルセルロースなどの分散剤を添加し、
一旦撹拌混合しておくことにより、長時間放置しても、
硫酸バリウムの沈下、凝集が防止でき反応液中に分散し
懸濁状態を維持することが認められた。従って、上記の
反応作業終了後の反応液を直ちに負極活物質ペースト中
に添加することが一般であるが、必要に応じ、この反応
液に、或いはその濃縮した反応液、或いは泥状の反応
液、換言すれば、硫酸バリウムスラリーに、分散剤を添
加、撹拌することにより、前記の反応作業終了後これら
を直ちに負極活物質ペーストに添加する必要がなくな
り、保管などし、必要に応じ使用するようにすることが
でき、作業場都合が良い。
When the reaction solution containing barium sulfate in the container is left for a long time, the reaction solution containing 1 .mu.
m or less, barium sulfate was settled and deposited, and it was observed that it became a relatively redispersible large solid mass, but a dispersant such as carboxymethylcellulose was added to this,
By stirring and mixing once, even if left for a long time,
It was confirmed that sedimentation and aggregation of barium sulfate could be prevented and the barium sulfate was dispersed in the reaction solution and maintained in a suspended state. Therefore, it is common to immediately add the reaction solution after the completion of the above-mentioned reaction work to the negative electrode active material paste. However, if necessary, the reaction solution or the concentrated reaction solution or the mud-like reaction solution may be added to the reaction solution. In other words, by adding and stirring a dispersing agent to the barium sulfate slurry, it is not necessary to immediately add these to the negative electrode active material paste after the completion of the above-mentioned reaction work, so that they can be stored and used as needed. The workplace is convenient.

【0010】尚、分散剤としては、前記のCMCの他、
例えば、メチルセルロース、ポリエチレンオキサイド、
ポリビニルアルコール、リグニンスルホン酸ナトリウ
ム、ナフタレンスルホン酸ナトリウム等が使用でき、そ
の量は0.01〜1質量%が好ましい。
As the dispersant, in addition to the above-mentioned CMC,
For example, methyl cellulose, polyethylene oxide,
Polyvinyl alcohol, sodium ligninsulfonate, sodium naphthalenesulfonate and the like can be used, and the amount is preferably 0.01 to 1% by mass.

【0011】このようにして調製した硫酸バリウム含有
の反応液、濃縮した反応液或いはスラリー状の反応液を
混練して成る鉛負極ペーストを常法により鉛格子基板に
充填し、熟成、乾燥、加圧して本発明の負極板が得られ
る。
The lead negative electrode paste obtained by kneading the barium sulfate-containing reaction solution, the concentrated reaction solution, or the slurry-like reaction solution prepared as described above is filled in a lead grid substrate by a conventional method, and the mixture is aged, dried, and heated. The negative electrode plate of the present invention is obtained by pressing.

【0012】この負極板を、正極板とセパレータを介し
て積層して極板群とし、鉛電池電槽に収容し、施蓋して
本発明の鉛蓄電池とする。この本発明の負極板を用いた
鉛蓄電池につき、充放電サイクル試験を行った所、従来
の負極板を組み込んだ鉛蓄電池に比し高容量を維持し、
サイクル寿命の向上した鉛蓄電池を製造することができ
ることを確認した。
The negative electrode plate is laminated on the positive electrode plate and the separator via a separator to form an electrode plate group, accommodated in a lead battery case, and covered to obtain a lead storage battery of the present invention. When a charge-discharge cycle test was performed on the lead-acid battery using the negative electrode plate of the present invention, a higher capacity was maintained compared to a lead-acid battery incorporating a conventional negative electrode plate,
It was confirmed that lead storage batteries with improved cycle life could be manufactured.

【0013】次に、本発明の具体的な実施例につき詳述
する。 反応液の調製:試薬特級の炭酸バリウム粉末845.5
gを、容器内に投入し烈しく撹拌中の硫酸濃度6.5M
の希硫酸10リットルに投入し、両者を反応させ硫酸バ
リウムを析出させた。投入時は激しく炭酸ガスを発生し
たが、経時的にその発生は穏やかになり、遂にはその発
生は止んだ。かくして24時間撹拌を継続して反応を完
了させた。反応液は硫酸バリウムの微細な粒子の析出に
より白濁した乳濁状の反応液約10リットルを得た。該
反応液には1000g、即ち、1Kgの硫酸バリウムを
含有し且つ硫酸濃度は約6Mであった。これを反応液A
とした。前記の試薬特級の炭酸バリウム粉末725.8
gの代わりに、試薬特級の硫化バリウム725.8gを
用い、これを前記と同じ6.5Mの希硫酸10リットル
に投入し、前記と同様にして反応させ、1000g、即
ち、1Kgの硫酸バリウムを含有し且つ硫酸濃度約6M
の反応液約10リットルを得た。これを反応液Bとし
た。前記の反応液A10リットルをメンブランフィルタ
ーを用い、1Kgの硫酸バリウムを含有する濃縮した反
応液1リットル得た。これを反応液Cとした。また、前
記の反応液C1リットルに、分散剤としてポリビニルア
ルコールを5g、即ち、0.5%添加し、撹拌した後5
0℃で10日間放置した1Kgの懸濁状態の硫酸バリウ
ムと分散剤が溶解した粘性の反応液を得た。これを反応
液Dとした。
Next, a specific embodiment of the present invention will be described in detail. Preparation of reaction solution: reagent grade barium carbonate powder 845.5
g of sulfuric acid in a container, and vigorously stirred, with a sulfuric acid concentration of 6.5M.
Was added to 10 liters of diluted sulfuric acid, and both were reacted to precipitate barium sulfate. At the time of injection, carbon dioxide gas was generated violently, but the generation became moderate over time, and the generation finally stopped. Thus, stirring was continued for 24 hours to complete the reaction. As a reaction solution, about 10 liters of an emulsion-like reaction solution which became cloudy due to precipitation of fine particles of barium sulfate was obtained. The reaction solution contained 1000 g, ie, 1 kg, of barium sulfate and the sulfuric acid concentration was about 6M. Reaction solution A
And Barium carbonate powder 725.8 of the above-mentioned reagent grade
In place of g, 725.8 g of reagent grade barium sulfide was used, and this was charged into 10 liters of the same 6.5 M dilute sulfuric acid, and allowed to react in the same manner as described above to obtain 1000 g, that is, 1 kg of barium sulfate. Contains and sulfuric acid concentration about 6M
About 10 liters of the reaction solution was obtained. This was designated as reaction solution B. Using a membrane filter, 10 liters of the above reaction solution A was used to obtain 1 liter of a concentrated reaction solution containing 1 kg of barium sulfate. This was designated as reaction solution C. Further, 5 g of polyvinyl alcohol as a dispersant, that is, 0.5% was added to 1 liter of the reaction solution C, and the mixture was stirred.
A viscous reaction solution in which 1 kg of barium sulfate in suspension and a dispersant were dissolved, which was allowed to stand at 0 ° C. for 10 days, was obtained. This was designated as reaction solution D.

【0014】これら反応液A,B,C中の析出物につ
き、その組成を確認するためX線回折パターンを測定し
たところ、硫酸バリウムであることを確認した。また、
これら反応液A,B,C中の硫酸バリウムの粒度分布を
0.1μm以上の粒径を計測できるレーザー回折式粒度
分布計を用いて測定したところ、非常に細かく、測定下
限以下であり測定不可能であった。また、上記の反応液
Dについて、SEM観察したところ、硫酸バリウムは凝
集することなく一次粒子を保持していることを確認し
た。多くの比較試験の結果、一般に、反応液中の硫酸バ
リウムの結晶の生長を抑制し、1μm以下を保持するに
は、反応液中の硫酸濃度を1M以上に保持することで可
能であることが判った。このことから、反応液の濾過後
の残渣である少量の1M以上の硫酸で濡れた硫酸バリウ
ムのスラリー状の反応液は、水洗することなくそのまゝ
使用することが好ましいことが判った。 負極活物質ペーストの調製:上記の硫酸バリウム1Kg
を含有し、硫酸濃度6.5Mの反応液A1リットル及び
B10リットルの夫々を、ボールミル法によって製造し
た負極活物質、即ち、酸化鉛を主体とする鉛粉100K
gに添加し、換言すれば、硫酸バリウムを負極活物質に
対し1重量%添加し、更に導電剤としてカーボン粉末
0.1Kg及び粘稠剤としてリグニンスルホン酸ナトリ
ウム0.2Kgを添加し、その全体を混練して負極活物
質ペーストA′及びB′を夫々調製した。上記の硫酸バ
リウム1Kgを含有し、硫酸濃度6.5Mの濃縮した反
応液C1リットルを、前記の鉛粉100Kgに添加し、
換言すれば、硫酸バリウムを負極活物質に対し1重量%
添加し、更にカーボン粉末0.1Kg及びリグニンスル
ホン酸ナトリウム0.2Kgを添加し、更に、6.5M
の希硫酸9リットル添加し、その全体を混練して負極活
物質ペーストC′を調製した。上記の反応液D1リット
ルを、前記の鉛粉100Kgに添加し、換言すれば、硫
酸バリウムを負極活物質に対し1重量%添加し、更にカ
ーボン粉末0.1Kg及びリグニンスルホン酸ナトリウ
ム0.2Kgを添加し、更に、6.5Mの希硫酸9リッ
トル添加し、その全体を混練して負極活物質ペースト
D′を調製した。
An X-ray diffraction pattern of the precipitates in the reaction solutions A, B, and C was measured to confirm the composition, and it was confirmed that the precipitates were barium sulfate. Also,
When the particle size distribution of barium sulfate in these reaction solutions A, B, and C was measured using a laser diffraction type particle size distribution meter capable of measuring a particle size of 0.1 μm or more, the measurement was very fine and was below the lower limit of measurement. It was possible. In addition, SEM observation of the above reaction solution D confirmed that barium sulfate retained primary particles without aggregating. As a result of many comparative tests, in general, it is possible to suppress the growth of barium sulfate crystals in the reaction solution and keep it at 1 μm or less by maintaining the sulfuric acid concentration in the reaction solution at 1 M or more. understood. From this, it was found that it is preferable to use the slurry-like reaction solution of barium sulfate wetted with a small amount of 1 M or more sulfuric acid, which is a residue after filtration of the reaction solution, without washing with water. Preparation of negative electrode active material paste: 1 kg of barium sulfate described above
Each of 1 liter of reaction solution A and 6.5 liters of B having a sulfuric acid concentration of 6.5 M was prepared by a ball mill method using a negative electrode active material, that is, 100 K of lead powder mainly containing lead oxide.
g, in other words, 1% by weight of barium sulfate is added to the negative electrode active material, and 0.1 kg of carbon powder as a conductive agent and 0.2 kg of sodium ligninsulfonate as a thickener are added. Was kneaded to prepare negative electrode active material pastes A ′ and B ′, respectively. 1 liter of the above-mentioned barium sulfate containing 1 kg of concentrated reaction solution C having a sulfuric acid concentration of 6.5 M was added to 100 kg of the above-mentioned lead powder,
In other words, barium sulfate is 1% by weight based on the weight of the negative electrode active material.
0.1 kg of carbon powder and 0.2 kg of sodium ligninsulfonate were further added.
Was added, and the whole was kneaded to prepare a negative electrode active material paste C ′. One liter of the above reaction liquid D was added to 100 kg of the above-mentioned lead powder, in other words, 1 wt% of barium sulfate was added to the negative electrode active material, and 0.1 kg of carbon powder and 0.2 kg of sodium ligninsulfonate were further added. Then, 9 L of 6.5 M diluted sulfuric acid was further added, and the whole was kneaded to prepare a negative electrode active material paste D ′.

【0015】比較のため、下記の調製法により負極活物
質ペーストを調製した。 比較例1 特級試薬硫酸バリウム粉末1Kgを前記の負極活物質1
00Kgに添加し、換言すれば、硫酸バリウムを負極活
物質に対し1重量%添加し、更にカーボン粉末0.1K
g及びリグニンスルホン酸ナトリウム0.2Kgを添加
し、更に、6.5Mの希硫酸10リットル添加し、その
全体を混練して負極活物質ペーストEを調製した。尚、
一次粒子が原料とした硫酸バリウム粉末は、SEM観察
により、その大部分が数十μmに凝集していることが認
められた。 比較例2 前記の反応液Aを濾過して硫酸バリウムを残渣として分
取し、更にこれを水洗した後乾燥し、得られた硫酸バリ
ウム粉末をミルにより粉砕して硫酸バリウム粉末を得
た。この場合、硫酸バリウムの一次粒子は非常に細かい
ので、濾過工程に相当の時間がかゝり、またその一部が
濾紙を通過してしまうので、収率は70%に満たなかっ
た。従って、前記と同じ反応液Aを新たに作製し、同様
にして硫酸バリウム粉末を得て、この一部を先に取得し
た硫酸バリウム粉末に加えて、全体で硫酸バリウム粉末
が1Kgとなるようにした。この硫酸バリウム1Kgを
負極活物質1重量%添加し、以下比較例1と同様にして
負極活物質ペーストFを調製した。尚、原料とした硫酸
バリウム粉末は、SEM観察によりその大部分が数十μ
mに凝集していることが認められた。 比較例3 炭酸バリウム粉末845.5gと硫酸濃度6.5Mの希
硫酸10リットルとを、前記の負極活物質100Kg、
カーボン粉末0.1Kg及びリグニンスルホン酸ナトリ
ウム0.2Kgの混合物中に添加し、その全体を充分に
混練して負極活物質ペーストGを調製した。
For comparison, a negative electrode active material paste was prepared by the following preparation method. Comparative Example 1 1 kg of the special-grade reagent barium sulfate powder was added to the negative electrode active material 1 described above.
00Kg, in other words, barium sulfate was added at 1% by weight to the negative electrode active material, and carbon powder 0.1K was added.
g and 0.2 kg of sodium ligninsulfonate were added, and further, 10 L of 6.5 M diluted sulfuric acid was added, and the whole was kneaded to prepare a negative electrode active material paste E. still,
SEM observation showed that most of the barium sulfate powder from the primary particles was agglomerated to several tens of μm. Comparative Example 2 The reaction liquid A was filtered to collect barium sulfate as a residue, washed with water and dried, and the obtained barium sulfate powder was pulverized with a mill to obtain barium sulfate powder. In this case, the primary particles of barium sulphate were so fine that the filtration process took a considerable amount of time, and a part of the particles passed through the filter paper, so that the yield was less than 70%. Therefore, the same reaction solution A as described above was newly prepared, barium sulfate powder was obtained in the same manner, and a part of the barium sulfate powder was added to the previously obtained barium sulfate powder so that the total barium sulfate powder became 1 kg. did. 1 kg of this barium sulfate was added to 1% by weight of the negative electrode active material, and a negative electrode active material paste F was prepared in the same manner as in Comparative Example 1 below. Most of the barium sulfate powder used as a raw material was tens of μm by SEM observation.
m. Comparative Example 3 845.5 g of barium carbonate powder and 10 liters of dilute sulfuric acid having a sulfuric acid concentration of 6.5 M were mixed with 100 kg of the negative electrode active material,
It was added to a mixture of 0.1 kg of carbon powder and 0.2 kg of sodium ligninsulfonate, and the whole was sufficiently kneaded to prepare a negative electrode active material paste G.

【0016】負極板の製造:上記の負極活物質ペースト
A′,B′,C′,D′,E,F,Gの夫々について、
その各負極活物質ペーストを、常法に従って多孔基板と
して、例えば、鉛合金格子基板、例えば、Pb−Sn−
Ca系合金の格子基板に充填した後、温度35℃、湿度
95%の雰囲気中で24時間熟成して夫々の負極板
A″,B″,C″,D″,E′,F′,G′を製造し
た。
Production of negative electrode plate: Each of the above-mentioned negative electrode active material pastes A ', B', C ', D', E, F, G
Each of the negative electrode active material pastes is used as a porous substrate according to a conventional method, for example, a lead alloy lattice substrate, for example, Pb-Sn-
After filling into a lattice substrate of a Ca-based alloy, each of the negative plates A ", B", C ", D", E ', F', and G was aged for 24 hours in an atmosphere at a temperature of 35 ° C and a humidity of 95%. '.

【0017】鉛蓄電池の製造:前記の夫々の負極板
A″,B″,C″,D″,E′,F′,G′について、
その各負極板を、常法により製造した正極板とセパレー
タを介して積層し、電槽に収容し、該負極が容量支配と
なるような5時間率で2Ahの鉛蓄電池A,B,C,
D,E,F,Gを夫々作製した。夫々の電池は全て、水
銀/硫酸第一水銀電極を取り付け、負極電位変化を測定
できるようにした。
Manufacture of lead-acid batteries: For each of the negative plates A ", B", C ", D", E ', F', G ',
Each negative electrode plate is laminated with a positive electrode plate manufactured by a conventional method via a separator, accommodated in a battery case, and a 2 Ah lead-acid battery A, B, C, 5A at a 5-hour rate such that the negative electrode becomes dominant in capacity.
D, E, F, and G were produced respectively. Each of the batteries was provided with a mercury / mercuric sulfate electrode so that a change in negative electrode potential could be measured.

【0018】充放電サイクル試験:前記の夫々の負極板
A″,B″,C″,D″,E′,F′,G′を用いた電
池A,B,C,D,E,F,Gについて、その夫々を4
5℃の恒温水槽内に設置し、0.4Aで7.5時間の充
電と、0.4Aで負極電位が−0.8Vに達するまでの
放電とを繰り返す充放電サイクル試験を行い、経時的な
放電容量の変化を測定した。その結果を図1に示す。
Charge / discharge cycle test: Batteries A, B, C, D, E, F, and B using the respective negative plates A ", B", C ", D", E ', F', and G '. For G, each of them is 4
Placed in a 5 ° C. constant temperature water bath, a charge / discharge cycle test was repeated in which charging at 0.4 A for 7.5 hours and discharging at 0.4 A until the negative electrode potential reached −0.8 V were performed. The change in the discharge capacity was measured. The result is shown in FIG.

【0019】図1から明らかなように、比較用負極板
E′,F′,G′を用いた比較用電池E,F,Gは、充
放電サイクルの増大に伴い放電容量が低下し、僅か10
0サイクルで放電容量は初期の半分になるに対し、本発
明の負極板A″,B″,C″,D″を用いた本発明の電
池A,B,C,Dは、高い容量を維持し、充放電サイク
ル寿命の延長をもたらすことが判る。これは、本発明の
負極板A″,B″,C″,D″内には、放電時に生ずる
硫酸鉛の結晶核として働く非常に細かい一次粒子から成
る硫酸バリウムが均一に分散しているため、負極板の収
縮防止効果が顕著に現れるためであるに対し、比較用負
極板E′,F′内の硫酸バリウムは、本発明の場合と添
加量が同じであっても粒径が数μm〜十数μmの一次粒
子の凝集粒子の状態で混在しているため、負極板の収縮
防止効果が劣るため、サイクル寿命の短縮をもたらすと
考えられる。尚、比較用負極板G′を用いた電池は、本
発明の電池より、サイクル寿命が短い。これは、得られ
た硫酸バリウムの粒子が比較的大きいためと思われる。
As is apparent from FIG. 1, the discharge capacity of the comparative batteries E, F, and G using the comparative negative electrodes E ', F', and G 'decreases with an increase in the charge / discharge cycle. 10
While the discharge capacity is reduced to half of the initial capacity in 0 cycles, the batteries A, B, C and D of the present invention using the negative plates A ", B", C "and D" of the present invention maintain a high capacity. However, it can be seen that the charge / discharge cycle life is extended. This is because barium sulfate composed of very fine primary particles acting as crystal nuclei of lead sulfate generated during discharge is uniformly dispersed in the negative electrode plates A ", B", C ", and D" of the present invention. On the other hand, barium sulfate in the comparative negative electrode plates E ′ and F ′ has a particle size of several μm even if the addition amount is the same as in the case of the present invention. It is considered that the primary particles are mixed in a state of aggregated particles having a particle size of from about 10 to several tens [mu] m, and the effect of preventing shrinkage of the negative electrode plate is inferior. The battery using the negative electrode plate G 'for comparison has a shorter cycle life than the battery of the present invention. This is probably because the obtained barium sulfate particles are relatively large.

【0020】次に、前記の炭酸バリウム845.5gと
硫酸濃度6.5Mの希硫酸10リットルとを反応させて
析出させた硫酸バリウム1Kgを含有し、6.5Mの希
硫酸から成る反応液10リットルを用いて硫酸バリウム
を負極活物質に対し1重量%添加して調製された負極活
物質ペーストA′を充填し、製造した負極板A″を用い
た鉛蓄電池Aの他に、炭酸バリウムの量と希硫酸10リ
ットル中の硫酸濃度を変えて上記と同様にして下記表1
のように負極活物質に対する硫酸バリウムの添加量を異
にした負極板を製造し、その夫々の負極板を用いた夫々
の鉛蓄電池H,I,J,K,Lを製造し、その夫々につ
き、前記と同様の充放電サイクル試験を行い、1サイク
ル目の容量に対する100サイクル目の容量維持率を求
めた。その結果は、表1に示す通りであった。
Next, a reaction solution 10 containing 1 kg of barium sulfate precipitated by reacting 845.5 g of the above barium carbonate with 10 liters of dilute sulfuric acid having a sulfuric acid concentration of 6.5 M and comprising 6.5 M of dilute sulfuric acid. The negative electrode active material paste A ′ prepared by adding 1% by weight of barium sulfate to the negative electrode active material using 1 liter was filled, and in addition to the lead-acid battery A using the manufactured negative electrode plate A ″, barium carbonate was added. The amount and the sulfuric acid concentration in 10 liters of dilute sulfuric acid were changed, and
A negative electrode plate was prepared in which the amount of barium sulfate added to the negative electrode active material was different, and lead storage batteries H, I, J, K, and L using the respective negative electrode plates were manufactured. The same charge / discharge cycle test as described above was performed, and the capacity retention ratio at the 100th cycle relative to the capacity at the first cycle was determined. The results were as shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】上記表1から明らかなように、負極活物質
に対する硫酸バリウムの添加量は0.05質量%では少
な過ぎて添加効果が不充分であり、3.0質量%では負
極活物質に対する不導体である硫酸バリウムの量が多過
ぎてサイクル寿命の向上した電池が得られなかった。そ
の添加量0.1%乃至2.0%の範囲で、容量維持率8
0%以上の良好な電池が得られた。
As is apparent from Table 1, the addition amount of barium sulfate to the negative electrode active material is too small at 0.05% by mass and the effect of addition is insufficient, and at 3.0% by mass, the addition amount of barium sulfate is insufficient for the negative electrode active material. A battery with an improved cycle life could not be obtained because the amount of barium sulfate as a conductor was too large. When the amount of addition is in the range of 0.1% to 2.0%, the capacity retention ratio is 8
A good battery of 0% or more was obtained.

【0023】[0023]

【発明の効果】このように本発明によるときは、先ず第
一に、バリウム系原料と硫酸とを反応させて一次粒子の
硫酸バリウムを生成せしめた反応液を作製し、次でこの
ようにして得た該反応液、その濃縮液又は濾過により分
取した硫酸バリウムを負極活物質ペーストの調製時に添
加するようにしたので、原料を無駄なく反応させて予定
通りの量の硫酸バリウムを析出せしめることができるば
かりでなく、所定量の粒径1μm以下の硫酸バリウムを
凝集することなく鉛活物質ペースト中に均一に分散混在
せしめることができるので、この鉛活物質ペーストを用
いて防縮効果に優れた負極板を製造することができ、充
放電サイクル寿命の向上した優れた電池をもたらす。上
記の本発明の負極板の製造において、該反応液に分散剤
を添加するときは、反応液を長時間放置しても、硫酸バ
リウムが沈殿し固まることがなく、反応液製造後直ちに
負極活物質ペーストの調製に添加する必要がなく、何時
でも所望時に添加できる効果をもたらす。また、反応液
中の硫酸濃度を1M以上であるときは、硫酸バリウムの
結晶の生長を抑制することができる。
As described above, according to the present invention, first, a reaction liquid is prepared by reacting a barium-based raw material with sulfuric acid to produce barium sulfate as primary particles. Since the obtained reaction solution, its concentrated solution or barium sulfate separated by filtration is added at the time of preparing the negative electrode active material paste, the raw materials are allowed to react without wasting and the expected amount of barium sulfate is deposited. In addition, a predetermined amount of barium sulfate having a particle size of 1 μm or less can be uniformly dispersed and mixed in the lead active material paste without agglomeration. A negative electrode plate can be manufactured, and an excellent battery with an improved charge / discharge cycle life is provided. In the production of the negative electrode plate of the present invention described above, when a dispersant is added to the reaction solution, barium sulfate does not precipitate and solidify even when the reaction solution is left for a long time, and the negative electrode is activated immediately after the production of the reaction solution. There is no need to add it to the preparation of the substance paste, and the effect can be added at any time as desired. When the concentration of sulfuric acid in the reaction solution is 1 M or more, growth of barium sulfate crystals can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 種々の調製法で調製した負極活物質ペースト
を充填された各種の負極板を用いた各種の鉛蓄電池につ
いての夫々の充放電サイクル数と放電容量との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity of various lead-acid batteries using various negative electrode plates filled with a negative electrode active material paste prepared by various preparation methods.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我部 幸蔵 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社いわき事業所内 Fターム(参考) 5H050 AA07 AA08 BA09 CA06 CB15 DA03 DA09 EA11 EA23 GA02 GA10 GA11 GA12 HA10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kozo Sogabe 23-6 Tsukubashi-cho, Iwaki-shi, Fukushima Pref. GA02 GA10 GA11 GA12 HA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バリウムイオンと硫酸イオンとの反応に
より硫酸バリウムを析出せしめた反応液、またはこれを
濃縮した反応液、或いはその濾過により分取したスラリ
ー状の硫酸バリウム反応液を調製すること、次で、これ
を負極活物質ペーストの調製時に添加し、混練して負極
活物質ペーストを調製することから成る工程を特徴とす
る鉛蓄電池の負極板の製造法。
1. A reaction solution in which barium sulfate is precipitated by a reaction between barium ions and sulfate ions, or a reaction solution in which barium sulfate is concentrated, or a slurry barium sulfate reaction solution obtained by filtration of the reaction solution is prepared. A method for producing a negative electrode plate for a lead-acid battery, comprising the steps of: adding the mixture during the preparation of the negative electrode active material paste; and kneading the mixture to prepare the negative electrode active material paste.
【請求項2】 該反応液に、硫酸バリウムの分散剤を添
加、撹拌することを特徴とする請求項1に記載の鉛蓄電
池の負極板の製造法。
2. The method for producing a negative electrode plate of a lead storage battery according to claim 1, wherein a barium sulfate dispersant is added to the reaction solution and stirred.
【請求項3】 該反応液中の硫酸濃度は、1M以上であ
ることを特徴とする請求項1又は2に記載の鉛蓄電池の
負極板の製造法。
3. The method according to claim 1, wherein the concentration of sulfuric acid in the reaction solution is 1 M or more.
【請求項4】 請求項1乃至3のいずれか1つに記載の
鉛蓄電池の負極板の製造法で得られた負極板を用いたこ
とを特徴とする鉛蓄電池。
4. A lead-acid battery comprising a negative electrode plate obtained by the method for producing a negative electrode plate of a lead-acid battery according to claim 1.
JP2000154008A 2000-05-25 2000-05-25 Method for manufacturing negative electrode plate of lead-acid battery and lead-acid battery Expired - Fee Related JP3701544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154008A JP3701544B2 (en) 2000-05-25 2000-05-25 Method for manufacturing negative electrode plate of lead-acid battery and lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154008A JP3701544B2 (en) 2000-05-25 2000-05-25 Method for manufacturing negative electrode plate of lead-acid battery and lead-acid battery

Publications (2)

Publication Number Publication Date
JP2001332252A true JP2001332252A (en) 2001-11-30
JP3701544B2 JP3701544B2 (en) 2005-09-28

Family

ID=18659170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154008A Expired - Fee Related JP3701544B2 (en) 2000-05-25 2000-05-25 Method for manufacturing negative electrode plate of lead-acid battery and lead-acid battery

Country Status (1)

Country Link
JP (1) JP3701544B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111198A (en) * 2002-09-18 2004-04-08 Japan Storage Battery Co Ltd Lead acid storage battery
JP2014063689A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Control valve type lead-acid battery
WO2022102422A1 (en) * 2020-11-13 2022-05-19 株式会社Gsユアサ Lead storage battery and method for producing negative electrode plate for lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111198A (en) * 2002-09-18 2004-04-08 Japan Storage Battery Co Ltd Lead acid storage battery
JP4670216B2 (en) * 2002-09-18 2011-04-13 株式会社Gsユアサ Method for producing lead-acid battery
JP2014063689A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Control valve type lead-acid battery
WO2022102422A1 (en) * 2020-11-13 2022-05-19 株式会社Gsユアサ Lead storage battery and method for producing negative electrode plate for lead storage battery

Also Published As

Publication number Publication date
JP3701544B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP5219360B2 (en) Lead acid battery
CN105680032A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
CN106784845A (en) A kind of aqueous inorganic glue and preparation method and application
JP2001332252A (en) Manufacturing method for negative electrode plate of lead battery, and the lead battery
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
CN112599736B (en) Boron-doped lithium phosphate coated lithium ion battery positive electrode material and preparation method thereof
JP3324781B2 (en) Alkaline secondary battery
JPH11312519A (en) Compound nickel hydroxide active material containing mn, and preparation thereof
JP4969051B2 (en) Method for producing lithium cobaltate positive electrode active material
JP2003523481A (en) Electrochemical synthesis of cobalt oxyhydroxide.
JP3511949B2 (en) Sealed lead-acid battery
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JP2002100347A (en) Lead-acid battery
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JP2019145252A (en) Method of producing positive electrode active material for alkaline secondary battery and method of manufacturing alkaline secondary battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
TW201406665A (en) Manganomanganic oxide and process for producing same
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JPH1012236A (en) Alpha-cobalt hydroxide layer-coated nickel hydroxide for alkaline storage battery and manufacture thereof
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JP2792882B2 (en) Non-sintered cadmium negative electrode for alkaline storage battery and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees