WO2022102422A1 - Lead storage battery and method for producing negative electrode plate for lead storage battery - Google Patents

Lead storage battery and method for producing negative electrode plate for lead storage battery Download PDF

Info

Publication number
WO2022102422A1
WO2022102422A1 PCT/JP2021/039780 JP2021039780W WO2022102422A1 WO 2022102422 A1 WO2022102422 A1 WO 2022102422A1 JP 2021039780 W JP2021039780 W JP 2021039780W WO 2022102422 A1 WO2022102422 A1 WO 2022102422A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lead
electrode plate
barium sulfate
less
Prior art date
Application number
PCT/JP2021/039780
Other languages
French (fr)
Japanese (ja)
Inventor
圭祐 熊澤
悦子 伊藤
和成 安藤
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020189212A external-priority patent/JP2022078500A/en
Priority claimed from JP2020189211A external-priority patent/JP2022078499A/en
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2022102422A1 publication Critical patent/WO2022102422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery and a method for manufacturing a negative electrode plate for a lead storage battery.
  • Lead-acid batteries are used for various purposes such as in-vehicle use, industrial use, and so on.
  • the lead-acid battery includes a positive electrode plate and a negative electrode plate, a separator interposed therein, and an electrolytic solution.
  • the negative electrode plate for a lead storage battery includes a negative electrode material and a negative electrode collector that holds the negative electrode material.
  • a negative electrode paste containing a powder containing a lead oxide as a main component is filled in a negative electrode current collector and dried to produce an unchemical negative electrode plate, and the unchemical negative electrode plate is formed. It is formed by.
  • the negative electrode paste is prepared, for example, by mixing a powder containing lead oxide as a main component, an additive if necessary, and an aqueous sulfuric acid solution. Organic shrink-proofing agents, barium sulfate and the like are used as additives.
  • Barium sulphate has low solubility in water or aqueous sulfuric acid and is commonly used in the preparation of negative electrode pastes in powder form. Barium sulfate powder has high cohesiveness, and it is difficult to disperse it uniformly in the negative electrode paste.
  • Patent Document 1 is characterized in that a coagulated powder of barium sulfate is crushed in a solution containing a surfactant, and the obtained barium sulfate suspension is used as an additive for a negative electrode active material to produce a negative electrode paste for a lead storage battery.
  • Patent Document 2 prepares a reaction solution in which barium sulfate is precipitated by the reaction of barium ion and sulfate ion, a reaction solution in which the reaction solution is concentrated, or a slurry-like barium sulfate reaction solution separated by filtration thereof.
  • a method for manufacturing a negative electrode plate of a lead storage battery which comprises a process of adding this at the time of preparing a negative electrode active material paste and kneading it to prepare a negative electrode active material paste.
  • Barium sulfate particles become crystal nuclei of lead sulfate generated when the lead storage battery is discharged, and have the effect of suppressing the coarsening of lead sulfate. Therefore, when barium sulfate is used for the negative electrode plate, the reduction reaction from lead sulfate to lead is likely to occur during charging, so that the charge acceptability is improved and the regenerative acceptability tends to be enhanced. On the other hand, when barium sulfate is used, the lead content is relatively reduced, so that the discharge capacity tends to decrease. From the viewpoint of ensuring high regenerative acceptability while ensuring high discharge capacity, it is advantageous to uniformly disperse barium sulfate particles having a small particle size in the negative electrode electrode material.
  • the first aspect of the present invention is a lead storage battery.
  • the lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
  • the negative electrode plate comprises a negative electrode material containing barium sulfate particles. The half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum of the negative electrode material when the lead-acid battery is fully charged and then discharged to a 50% charged state with a 5-hour rate current is It relates to a lead-acid battery having a temperature of 0.137 ° or higher.
  • the second aspect of the present invention is a lead storage battery.
  • the lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
  • the negative electrode plate comprises a negative electrode material containing barium sulfate particles. The number of pixels of the image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer on the cross section parallel to the thickness direction of the negative electrode plate is assigned to the characteristic X-ray of Ba in the region of 200 ⁇ 400 in the X direction.
  • the present invention relates to a lead storage battery in which the number of islands having the above area ratio is one or less.
  • the third aspect of the present invention is a method for manufacturing a negative electrode plate for a lead storage battery.
  • the manufacturing method is The first step of mixing barium sulfate powder and liquid to prepare a dispersion, A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
  • the average particle size of the barium sulfate powder is 1 ⁇ m or less, and the average particle size is 1 ⁇ m or less.
  • the liquid relates to a method for manufacturing a negative electrode plate for a lead storage battery, which is an aqueous solution of sulfuric acid.
  • the fourth aspect of the present invention is a method for manufacturing a negative electrode plate for a lead storage battery.
  • the manufacturing method is The first step of mixing barium sulfate powder and liquid to prepare a dispersion, A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
  • the average particle size of the barium sulfate powder is 0.4 ⁇ m or less, and the average particle size is 0.4 ⁇ m or less.
  • the liquid relates to a method for manufacturing a negative electrode plate for a lead storage battery, which is pure water.
  • the regenerative acceptance of lead-acid batteries can be improved.
  • barium sulfate particles having a small particle size are uniformly dispersed in the negative electrode material.
  • the particle size of the barium sulfate powder used for preparing the negative electrode slurry becomes small, it is easily affected by the interaction between the particles and easily aggregates. Even if a barium sulfate powder having a small average particle size is mixed with other components to prepare a negative electrode slurry, it is dispersed in an aggregated state. Therefore, the effect of reducing the particle size of lead sulfate generated during discharge can hardly be obtained, and it is difficult to sufficiently bring out the effect of improving the regenerative acceptability.
  • the surface of the barium sulfate particles is covered with a component having a surface-active action, the reactivity with lead ions and sulfate ions is lowered, and the lead sulfate having the barium sulfate particles as the nucleus is reduced. Inhibition of production is also considered to be a factor.
  • the particle size of the barium sulfate particles is small, the surface area of the barium sulfate particles covered with the surface-active component becomes relatively large, which has an effect of inhibiting the production of lead sulfate during discharge. It becomes apparent.
  • the barium sulfate particles in the reaction solution obtained by the method of Patent Document 2 have a large variation in particle size, it is difficult to improve the regenerative acceptability even if a negative electrode plate is formed by using the reaction solution.
  • the lead-acid battery according to each of the first aspect and the second aspect of the present invention includes at least one cell including a plate group and an electrolytic solution.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
  • the negative electrode plate comprises a negative electrode material containing barium sulfate particles.
  • XRD X-ray diffraction
  • the half-value full width of the peak corresponding to the surface is 0.137 ° or more (hereinafter, may be referred to as condition (a)).
  • a negative electrode plate when a lead-acid battery is fully charged and then discharged to a 50% charge state (SOC: State of charge) at a 5-hour rate current may be simply referred to as a negative electrode plate at 50% SOC.
  • the number of pixels of an image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer (EPMA) in a cross section parallel to the thickness direction of the negative electrode plate is 200 ⁇ in the X direction.
  • region A the intensity of R of RGB attributed to the characteristic X-ray of Ba is adjusted to the maximum value, and the intensity of 1/2 of the maximum value is used as a threshold value.
  • the number of islands having an area ratio of 0.05% or more of the region A is one or less among the portions showing the intensity equal to or higher than the threshold value when the binarization treatment is performed (hereinafter, referred to as condition (b)). be).
  • An island having such an area ratio corresponds to agglomerated particles of barium sulfate particles. According to the condition (b), since the number ratio of the aggregated particles is small, the effect of suppressing the coarsening of lead sulfate during discharge is further enhanced.
  • the area ratio of one island is, for example, 0.5% or less, and may be 0.3% or less or 0.1% or less. Islands with larger area ratios are preferably not observed (or not included) in region A.
  • the point where the signal intensity is the highest is red (R), and as the signal intensity decreases from that point, the color shifts to a cool color system.
  • the negative electrode plate may satisfy both the condition (a) and the condition (b).
  • the negative electrode plate included in each of the lead storage batteries on the first side surface and the second side surface is mainly composed of the first step of mixing barium sulfate powder and a liquid to prepare a dispersion liquid and the dispersion liquid and lead oxide. It can be produced by a production method comprising a second step of mixing with powder to prepare a negative electrode paste.
  • An aqueous sulfuric acid solution is used as the liquid, and the average particle size of the barium sulfate powder at this time is 1 ⁇ m or less. Pure water is used as the liquid, and the average particle size of the barium sulfate powder at this time is 0.4 ⁇ m or less.
  • the method for manufacturing a negative electrode plate for a lead storage battery according to the third aspect of the present invention includes a first step of mixing barium sulfate powder and a liquid to prepare a dispersion, and a powder containing the dispersion and a lead oxide as main components. A second step of mixing and preparing a negative electrode paste is provided.
  • the average particle size of barium sulfate powder is 1 ⁇ m or less.
  • the liquid is an aqueous sulfuric acid solution.
  • a first step of mixing barium sulfate powder and a liquid to prepare a dispersion liquid and a powder containing lead oxide as a main component are mixed.
  • the second step of preparing the negative electrode paste is provided.
  • the average particle size of barium sulfate powder is 0.4 ⁇ m or less.
  • the liquid is pure water.
  • the crystallinity of lead sulfate generated during discharge in the negative electrode material is low. This indicates that barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility.
  • barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility, and the ratio of aggregated particles is small.
  • a dispersion liquid is prepared by using a sulfuric acid aqueous solution or pure water for barium sulfate powder, and this dispersion liquid is used as a negative electrode paste. Used for preparation. Barium sulfate has a high affinity for aqueous sulfuric acid. Therefore, even if barium sulfate powder having a small average particle size is added to an aqueous sulfuric acid solution and stirred, the barium sulfate particles are charged, and the van der Waals force reduces aggregation, resulting in a more uniform state in the aqueous sulfuric acid solution.
  • the average particle size of the barium sulfate powder is 0.4 ⁇ m or less, the same effect as that of the aqueous sulfuric acid solution can be obtained. It is considered that even when the barium sulfate powder is dispersed in pure water, the agglomeration of the barium sulfate particles is reduced by the van der Waals force, and the particles are finely dispersed in the sulfuric acid aqueous solution in a more uniform state.
  • the surface of barium sulfate particles in the dispersion is covered with a component that inhibits the crystal growth of lead sulfate. You won't be struck. Therefore, in a lead-acid battery using a negative electrode plate obtained by the above manufacturing method (lead-acid battery on the first side surface and the second side surface, etc.), the crystal growth of lead sulfate having barium sulfate particles as nuclei is inhibited at the time of discharge. This is suppressed, and high charge acceptability can be ensured. From this point as well, high regenerative acceptance can be ensured.
  • the crystallinity of lead sulfate produced during discharge in the negative electrode electrode material is low, as described for the lead storage battery on the first side surface. Further, in the negative electrode plate obtained by the above manufacturing method, as described for the lead storage battery on the second side surface, barium sulfate particles having a small particle size are dispersed in the negative electrode electrode material with high dispersibility, and aggregated particles. The ratio of is small.
  • the crystallinity of lead sulfate generated during discharge in the negative electrode material can be evaluated, for example, by the half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum.
  • the fact that the aggregation of barium sulfate particles is reduced in the negative electrode electrode material and the particles are dispersed with high dispersibility means that, for example, the characteristic X of Ba in the Ba distribution of the image obtained by analyzing the cross section of the negative electrode plate with an electron probe microanalyzer. It can be evaluated based on the strength of the line.
  • the peak corresponding to the [211] plane when the preparation conditions of the dispersion liquid are changed, among the main peaks caused by lead sulfate in the XRD spectrum of the negative electrode material, the peak corresponding to the [211] plane. There is a change in the full width at half maximum of the peak, and there is no significant change in the full width at half maximum of the peak corresponding to the other planes. It was clarified that the regenerative acceptability of the lead storage battery changes according to the change in the full width at half maximum of the peak corresponding to the [211] plane, and is related to the crystallinity of lead sulfate produced during discharge. The peak corresponding to the [211] plane is observed in the range where 2 ⁇ is 28.5 ° or more and 30.5 ° or less (usually around 29.6 °).
  • the full width at half maximum is preferably 0.139 ° or more.
  • the crystallinity of lead sulfate is low, the charge acceptability is further improved, and higher regenerative acceptability can be ensured.
  • the full width at half maximum is preferably 0.2 ° or less. In this case, the reaction from lead to lead sulfate at the time of discharge tends to proceed smoothly, and high discharge performance can be easily obtained.
  • the ratio of the portion exhibiting the strength equal to or higher than the threshold value to the region A is preferably 2.8% or less.
  • the barium sulfate particles are dispersed in the negative electrode material with higher dispersibility, and the charge acceptability is enhanced, so that high regenerative acceptability can be obtained.
  • the content of barium sulfate particles in the negative electrode electrode material is preferably 0.5% by mass or more. In this case, the decrease in dispersibility due to the aggregation of barium sulfate particles tends to become apparent. Even in such a case, high dispersibility of barium sulfate in the negative electrode material can be ensured. Therefore, higher regenerative acceptability can be ensured.
  • the content of barium sulfate particles in the negative electrode electrode material is preferably 7.5% by mass or less. In this case, it is possible to secure a higher initial capacity while ensuring high regenerative acceptability.
  • the average particle size of barium sulfate particles is preferably 1 ⁇ m or less.
  • the regenerative acceptability is usually likely to decrease due to the aggregation of barium sulfate particles. Even in such a case, high dispersibility of barium sulfate particles can be obtained in the negative electrode material, and high regenerative acceptability can be ensured.
  • the average particle size of barium sulfate particles is, for example, 0.01 ⁇ m or more. Even when the average particle size is small as described above, barium sulfate particles can be dispersed in the negative electrode material with high dispersibility, and high regenerative acceptability can be ensured.
  • the dispersion usually does not contain at least one selected from the group consisting of organic shrink proofing agents and surfactants.
  • the organic shrink proofing agent has a hydrophilic portion and a hydrophobic portion, and has a surface-active action. Since the dispersion liquid does not contain a component having a surfactant action such as an organic shrinkage proofing agent or a surfactant, high charge acceptability can be obtained and high regenerative acceptability can be ensured.
  • the organic shrink-proofing agent adhering to the surface of the barium sulfate particles at the stage of the dispersion liquid no longer has a surface-active effect when preparing the negative electrode paste, and the lead fine particles in the negative electrode electrode material are present. It is difficult to ensure high discharge performance because the effect of keeping the holes small cannot be exhibited.
  • the density of the aqueous sulfuric acid solution at 20 ° C. is preferably 1.03 g / cm 3 or more. As the density increases, the barium sulfate particles are further charged, and the dispersibility of the barium sulfate particles in the dispersion is further improved. Therefore, higher regenerative acceptability can be ensured.
  • the average particle size of barium sulfate powder is, for example, 0.01 ⁇ m or more. Even when the average particle size is small as described above, barium sulfate particles can be dispersed in the dispersion liquid with high dispersibility, and high regenerative acceptability can be ensured.
  • the amount of barium sulfate powder is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • the decrease in dispersibility due to the aggregation of barium sulfate particles tends to become apparent. Even in such a case, high dispersibility of barium sulfate particles can be ensured by preparing a dispersion liquid in advance using an aqueous sulfuric acid solution or pure water. Therefore, higher regenerative acceptability can be ensured.
  • the amount of barium sulfate powder is preferably 7 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component. In this case, it is possible to secure a higher initial capacity while ensuring high regenerative acceptability.
  • the content of barium sulfate in the dispersion is preferably 55% by mass or less.
  • the dispersibility of the barium sulfate particles in the dispersion liquid is further enhanced, so that the dispersibility of the barium sulfate particles in the negative electrode paste can be further enhanced.
  • the lead-acid battery may be either a control valve type (sealed type) lead-acid battery or a liquid type (vent type) lead-acid battery.
  • the control valve type lead-acid battery is also referred to as a VRLA type lead-acid battery (Valve-regulated lead-acid battery).
  • the EPMA analysis is performed on the negative electrode plate taken out from the fully charged lead-acid battery.
  • the content and average particle size of the barium sulfate particles in the negative electrode electrode material are obtained for the negative electrode plate taken out from the lead storage battery in a fully charged state.
  • the XRD spectrum is measured for the negative electrode material of the negative electrode plate taken out from the lead storage battery in the state of being discharged from the fully charged state to the charged state of 50% with a 5-hour rate current (SOC 50%).
  • Electrode material Each electrode material of the negative electrode material and the positive electrode material is usually held in the current collector.
  • the electrode material is a portion of the electrode plate excluding the current collector.
  • Members such as mats and pacing papers may be attached to the electrode plate. Since such a member (also referred to as a sticking member) is used integrally with the plate, it is included in the plate.
  • the electrode plate includes a sticking member (mat, pacing paper, etc.)
  • the electrode material is a portion of the electrode plate excluding the current collector and the sticking member.
  • the clad type positive electrode plate has a plurality of porous tubes, a core metal inserted in each tube, a current collecting portion for connecting the plurality of core metals, and a core metal inserted. It is provided with a positive electrode material filled in a tube and a collective punishment for connecting a plurality of tubes.
  • the positive electrode electrode material is a portion of the electrode plate excluding the tube, the core metal, the current collector, and the collective punishment.
  • the core metal and the current collector may be collectively referred to as a positive electrode current collector.
  • the average particle size of the barium sulfate particles and the average particle size of the barium sulfate powder are both the average particle size of the primary particles of the barium sulfate particles.
  • the average particle size of barium sulfate particles and barium sulfate powder is the particle size corresponding to 50% of the integrated value (median size (D50)) in the volume-based particle size distribution measured by a laser diffraction or scattering type particle size distribution measuring device. ).
  • Pure water is water having an electrical resistivity of 0.1 M ⁇ ⁇ cm or more and 1.5 M ⁇ ⁇ cm or less. Pure water includes, for example, water obtained by at least one treatment selected from the group consisting of ion exchange, distillation, and reverse osmosis membrane filtration.
  • the fully charged state of a liquid lead-acid battery is defined by the definition of JIS D 5301: 2019. More specifically, in a water tank at 25 ° C ⁇ 2 ° C, charging is performed every 15 minutes with a current (A) 0.2 times the value described as the rated capacity (value whose unit is Ah). The state in which the lead-acid battery is charged is regarded as a fully charged state until the terminal voltage (V) of No. 1 or the electrolyte density converted into temperature at 20 ° C. shows a constant value with three valid digits three times in a row.
  • V terminal voltage
  • the fully charged state is 0.2 times the current (value with Ah as the unit) described in the rated capacity in the air tank at 25 ° C ⁇ 2 ° C (the unit is Ah).
  • A) constant current constant voltage charging of 2.23 V / cell is performed, and the charging current at the time of constant voltage charging is 0.005 times the value (value with the unit being Ah) described in the rated capacity (A). When it becomes, charging is completed.
  • a fully charged lead-acid battery is a fully charged lead-acid battery.
  • the lead-acid battery may be fully charged after the chemical conversion, immediately after the chemical conversion, or after a lapse of time from the chemical conversion (for example, after the chemical conversion, the lead-acid battery in use (preferably at the initial stage of use) is fully charged. May be).
  • Batteries in the early stages of use are batteries that have not been used for a long time and have hardly deteriorated.
  • Lead-acid batteries include at least one cell with a group of plates and an electrolyte.
  • the electrode plate group includes a negative electrode plate, a positive electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
  • the negative electrode plate comprises a negative electrode material containing barium sulfate particles.
  • the negative electrode plate usually includes a negative electrode current collector in addition to the negative electrode material.
  • the full width at half maximum of the peak corresponding to the [211] plane of lead sulfate in the XRD spectrum of the negative electrode material may be 0.137 ° or more.
  • Barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility, so that the crystallinity of lead sulfate generated during discharge is lowered.
  • the full width at half maximum of the peak is preferably 0.139 ° or more.
  • the full width at half maximum of the above peak is preferably 0.2 ° or less, and 0.19 ° or less. More preferred.
  • the full width at half maximum of the peak may be 0.137 ° or more (or 0.139 ° or more) 0.2 ° or less, or 0.137 ° or more (or 0.139 ° or more) 0.19 ° or less. ..
  • the number of islands having an area ratio of 0.05% or more of the region A among the portions showing the intensity equal to or higher than the threshold value is 1 or less, and 1 It is preferably less than the number. Since the number ratio of the agglomerated particles is small, the effect of suppressing the coarsening of lead sulfate during discharge is further enhanced. Since the reduction reaction from lead sulfate to lead easily proceeds during charging, charge acceptability is improved, so that high regenerative acceptability can be obtained.
  • the ratio of the portion exhibiting the intensity equal to or higher than the threshold value to the region A is preferably 2.8% or less, and more preferably 2.5% or less. , 1.0% or less is more preferable.
  • the barium sulfate particles are dispersed in the negative electrode material with higher dispersibility, and the charge acceptability is enhanced, so that high regenerative acceptability can be obtained.
  • the negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the negative electrode current collector because it is easy to support the negative electrode material.
  • the lead alloy used for the negative electrode current collector may be any of Pb—Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca—Sn-based alloys.
  • the lead or lead alloy may further contain, as an additive element, at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like.
  • the negative electrode current collector may include a surface layer.
  • the composition of the surface layer and the inner layer of the negative electrode current collector may be different.
  • the surface layer may be formed on a part of the negative electrode current collector.
  • the surface layer may be formed on the selvage portion of the negative electrode current collector.
  • the surface layer of the selvage may contain Sn or Sn alloy.
  • the negative electrode electrode material In addition to barium sulfate particles, the negative electrode electrode material further contains a negative electrode active material (specifically, lead or lead sulfate) that develops a capacity by a redox reaction.
  • the negative electrode active material in the charged state is spongy lead.
  • the negative electrode material may contain other additives. Other additives include carbonaceous materials, organic shrink proofing agents, reinforcing materials, and other known additives.
  • the average particle diameter (D50) of the barium sulfate particles is 1 ⁇ m or less, may be 0.7 ⁇ m or less or 0.6 ⁇ m or less, and may be 0.4 ⁇ m or less or 0.3 ⁇ m or less. good.
  • the average particle size is such a small size, the barium sulfate particles are usually likely to aggregate and the regenerative acceptability is likely to decrease. However, even in such a case, the barium sulfate particles can be dispersed in the negative electrode material with high dispersibility, so that high regenerative acceptability can be obtained.
  • the lower limit of the average particle size of barium sulfate particles is not particularly limited.
  • the average particle size of barium sulfate particles is, for example, 0.01 ⁇ m or more.
  • the maximum particle size of barium sulfate particles is, for example, 2.5 ⁇ m or less, preferably 2 ⁇ m or less.
  • the maximum particle size of the barium sulfate particles is the maximum value of the primary particle size of the barium sulfate particles contained in the negative electrode electrode material.
  • the content of barium sulfate particles in the negative electrode electrode material is, for example, 0.1% by mass or more, preferably 0.5% by mass or more or 1% by mass or more.
  • the content of the barium sulfate particles is 0.5% by mass or more, the decrease in dispersibility due to the aggregation of the barium sulfate particles is usually likely to become apparent, but even in this case, the negative electrode plate is formed by using the dispersion liquid.
  • the content of barium sulfate particles in the negative electrode electrode material is, for example, 7.5% by mass or less, preferably 5.3% by mass or less. In this case, a high initial capacity can be secured.
  • the content of barium sulfate particles in the negative electrode electrode material is 0.1% by mass or more and 7.5% by mass or less (or 5.3% by mass or less), 0.5% by mass or more and 7.5% by mass or less (or 5). It may be 1.3% by mass or less), or 1% by mass or more and 7.5% by mass or less (or 5.3% by mass or less).
  • carbonaceous materials include carbon black, graphite (artificial graphite, natural graphite, etc.), hard carbon, soft carbon, and the like.
  • the negative electrode material may contain one kind of carbonaceous material, or may contain two or more kinds of carbonaceous material.
  • the content of the carbonaceous material in the negative electrode material is, for example, 0.1% by mass or more.
  • the content of the carbonaceous material in the negative electrode material is, for example, 3.5% by mass or less.
  • the organic shrinkage proofing agent examples include lignin, lignin sulfonic acid or a salt thereof, and a synthetic organic shrinkage proofing agent (formaldehyde condensate of phenol compound, etc.).
  • the negative electrode electrode material may contain one kind of organic shrinkage proofing agent, or may contain two or more kinds of organic shrinkage proofing agents.
  • the content of the organic shrinkage proofing agent in the negative electrode electrode material is, for example, 0.01% by mass or more.
  • the content of the organic shrinkage barrier in the negative electrode electrode material is, for example, 1.2% by mass or less.
  • the reinforcing material examples include fibers (inorganic fibers, organic fibers, etc.).
  • the resin constituting the organic fiber include at least one selected from the group consisting of an acrylic resin, a polyolefin resin, a polyester resin, and a cellulose compound (cellulose, rayon, etc.).
  • the content of the reinforcing material in the negative electrode electrode material is, for example, 0.03% by mass or more.
  • the content of the reinforcing material in the negative electrode electrode material is, for example, 0.6% by mass or less.
  • the XRD spectrum is performed using a negative electrode material taken from a negative electrode plate taken out from a lead storage battery in a state of being discharged to SOC 50% at a rate current of 5 hours from a fully charged state.
  • Analysis or measurement other than the XRD spectrum is performed using a negative electrode plate taken out from a fully charged lead-acid battery or a negative electrode electrode material taken from this negative electrode plate.
  • Example preparation ⁇ (Sample A) A fully charged lead-acid battery is discharged to SOC 50% at a 5-hour rate current as defined in JIS D5301: 2019. Dismantle the lead-acid battery immediately after discharge to obtain the negative electrode plate to be analyzed. The obtained negative electrode plate is washed with water, and the electrolytic solution is removed from the negative electrode plate. Wash with water by pressing the pH test paper against the surface of the negative electrode plate washed with water until it is confirmed that the color of the test paper does not change. However, the time for washing with water shall be within 2 hours. The negative electrode plate washed with water is dried at 60 ⁇ 5 ° C. for about 6 hours in a reduced pressure environment.
  • sample A a sample for XRD spectrum measurement
  • sample B Disassemble the fully charged lead-acid battery to obtain the negative electrode plate to be analyzed.
  • the negative electrode plate is washed with water and dried in the same manner as in the procedure of sample A except that the obtained negative electrode plate is used. If the negative electrode plate contains a sticking member after drying, the sticking member is removed from the negative electrode plate by peeling.
  • the entire obtained negative electrode plate is impregnated with epoxy resin and cured. In the cured state, a predetermined portion is cut in the thickness direction of the negative electrode plate, and the cut cross section (cross section parallel to the thickness direction) is polished. In this way, sample B for EPMA analysis is prepared.
  • Sample C Disassemble the fully charged lead-acid battery to obtain the negative electrode plate to be analyzed.
  • Sample C is obtained by the same procedure as in the case of sample A except that the obtained negative electrode plate is used.
  • Sample C is pulverized as needed and subjected to analysis.
  • ⁇ XRD spectrum measurement >> Using the pulverized sample A, the XRD spectrum of the negative electrode material is measured under the following conditions, and the full width at half maximum (°) of the peak corresponding to the [211] plane of lead sulfate is obtained.
  • Equipment used Fully automatic multipurpose X-ray diffractometer manufactured by RIGAKU Smart Lab (horizontal goniometer ⁇ - ⁇ type, Cu-K ⁇ ray) Analysis software: Integrated powder X-ray analysis software PDXL2 manufactured by RIGAKU Applied voltage: 40kV Applied current: 30mA
  • Sample holder Circular holder with a diameter of 18 mm Standard material: Silicon
  • the ratio (%) of the portion showing the intensity equal to or higher than the threshold value in the region A is obtained. This ratio is the ratio (%) of the area of the portion showing the intensity equal to or higher than the threshold value to the area of the region A. Further, the number of islands having an area ratio of 0.05% or more of the region A is measured in the binarized image. JTrim (ver. 1.53c) is used as the image processing software.
  • a predetermined amount of the filtrate D is measured, desalted, concentrated, and dried to obtain an organic shrink-proofing agent powder (hereinafter, also referred to as sample E).
  • Desalting is performed using a desalting column, by passing the filtrate D through an ion exchange membrane, or by placing the filtrate D in a dialysis tube and immersing it in distilled water.
  • the organic shrink-proofing agent is specified by combining the information obtained from the thermal decomposition GC-MS or the like which can obtain the information of the individual compounds.
  • the content of the organic shrinkage barrier in the negative electrode material is quantified from the spectral intensity, the calibration curve prepared in advance, the measured amount of the filtrate D, and the mass of the sample C. If the structural formula of the organic shrinkage proofing agent to be analyzed cannot be specified exactly and the calibration curve of the same organic shrinkage proofing agent cannot be used, an ultraviolet-visible absorption spectrum or an infrared spectroscopic spectrum similar to that of the organic shrinkage proofing agent to be analyzed, A calibration curve is prepared using an available organic shrink-proofing agent showing an NMR spectrum or the like.
  • the reinforcing material is recovered from the dispersion liquid using a sieve.
  • the reinforcing material is washed with water and dried, and the mass is measured.
  • the ratio (percentage) of the mass of the dried product to the mass of the sample C is obtained. This ratio corresponds to the amount of reinforcing material in the negative electrode material.
  • the dispersion liquid is suction-filtered using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C. ⁇ 5 ° C.
  • the obtained sample is a mixed sample of a carbonaceous material and barium sulfate (hereinafter, also referred to as sample F).
  • the mass of the sample F (M m ) is measured by subtracting the mass of the membrane filter from the total mass of the sample F and the membrane filter after drying. Then, the dried sample F is placed in a crucible together with a membrane filter and incinerated at 1300 ° C. or higher. The remaining residue is barium oxide.
  • the mass of barium oxide is converted into the mass of barium sulfate to obtain the mass of barium sulfate ( MB ).
  • the mass of the carbonaceous material is calculated by subtracting the mass MB from the mass M m .
  • ⁇ Particle size of barium sulfate particles A predetermined amount of sample F is placed in a crucible and heated at 500 ° C. in an oxygen atmosphere to convert the carbonaceous material into carbon dioxide and remove it. As a result, barium sulfate is recovered as a residue.
  • the recovered barium sulfate (sample G) is used to measure the average particle size and the maximum particle size of the barium sulfate particles.
  • the average particle size and the maximum particle size of the barium sulfate particles are measured by a laser diffraction type particle size distribution measuring device.
  • a master sizer 3000 manufactured by Malvern Panasonic is used.
  • the average particle size of barium sulfate particles was obtained by adding sample G to an aqueous solution of sodium hexametaphosphate (NaHMP) (NaHMP concentration: 0.05% by mass) and performing ultrasonic dispersion for 1 minute. Is measured using.
  • NaHMP sodium hexametaphosphate
  • the negative electrode plate (for example, a negative electrode plate satisfying at least one of the conditions (a) and (b)) can be manufactured by using a dispersion liquid in which barium sulfate powder is dispersed in a specific liquid in advance.
  • the method for manufacturing a negative electrode plate for a lead storage battery includes a first step of preparing a dispersion liquid and a second step of preparing a negative electrode paste.
  • the manufacturing method usually further includes a third step of manufacturing a negative electrode plate using a negative electrode paste.
  • each step will be described in more detail.
  • (First step) In the first step, barium sulfate powder and a liquid are mixed to prepare a dispersion.
  • a liquid As the liquid, an aqueous sulfuric acid solution or pure water is used.
  • the average particle size (D50) of the barium sulfate powder is 1 ⁇ m or less, may be 0.7 ⁇ m or less or 0.6 ⁇ m or less, and may be 0.4 ⁇ m or less or 0.3 ⁇ m or less.
  • an aqueous sulfuric acid solution is used as the liquid, if the average particle size of the barium sulfate powder is 1 ⁇ m or less, the effect of improving the regenerative acceptability can be obtained.
  • pure water is used as the liquid, if the average particle size of the barium sulfate powder is 0.4 ⁇ m or less, the effect of improving the regenerative acceptability can be obtained.
  • the lower limit of the average particle size of barium sulfate powder is not particularly limited.
  • the average particle size of barium sulfate powder is, for example, 0.01 ⁇ m or more.
  • the average particle size of barium sulfate powder is the average particle size of barium sulfate powder as a raw material used for preparing a dispersion.
  • the maximum particle size of barium sulfate powder is, for example, 2.5 ⁇ m or less, preferably 2 ⁇ m or less.
  • the maximum particle size of barium sulfate powder is the maximum value of the primary particle size of barium sulfate powder as a raw material used for preparing a dispersion.
  • the average particle size and maximum particle size of barium sulfate powder can be measured according to the case of the average particle size and maximum particle size of barium sulfate particles using barium sulfate powder as a raw material used for preparing a dispersion as a sample.
  • the density of the aqueous sulfuric acid solution may be larger than 1 g / cm 3 .
  • the density of the aqueous sulfuric acid solution is preferably 1.03 g / cm 3 or more.
  • the density of the aqueous sulfuric acid solution is preferably 1.03 g / cm 3 or more.
  • the upper limit of the density of the aqueous sulfuric acid solution is not particularly limited, and may be, for example, 1.4 g / cm 3 or less.
  • the density of the aqueous sulfuric acid solution is the density at 20 ° C.
  • the dispersion liquid is obtained by mixing barium sulfate powder and a liquid.
  • the mixing method is not particularly limited.
  • a known stirrer or mixer may be used. Mixing may be performed using a crusher such as a ball mill.
  • the barium sulfate powder has a relatively high affinity for the aqueous sulfuric acid solution or pure water, the barium sulfate powder is relatively easy to disperse in the aqueous sulfuric acid solution or pure water. Therefore, barium sulfate particles can be dispersed in a sulfuric acid aqueous solution or pure water with high dispersibility by using a stirrer or a mixer without using a crusher or the like.
  • the dispersion liquid obtained in the first step comprises a component having a surfactant action (organic shrink proofing agent and a surfactant). It is desirable not to include at least one selected from the group). In particular, it is desirable to mix the barium sulfate powder and the liquid in the absence of a component having a surface-active action.
  • a component having a surface-active action is added to the dispersion liquid prior to mixing with the powder containing lead oxide as a main component, and the obtained dispersion liquid is mixed with the powder containing lead oxide as a main component. Is not intended to be excluded.
  • the barium sulfate powder and the liquid can be mixed at a temperature at which the liquid does not solidify, and may be performed at, for example, 10 ° C. or higher, or 20 ° C. or higher.
  • the mixing can be carried out, for example, at a temperature of 60 ° C. or lower, and may be carried out at 40 ° C. or lower.
  • the barium sulfate powder and the liquid may be mixed at 10 ° C. or higher (or 20 ° C. or higher) at 60 ° C. or lower, or at 10 ° C. or higher (or 20 ° C. or higher) at 40 ° C. or lower.
  • the barium sulfate powder and the liquid may be mixed in an atmosphere of an inert gas (nitrogen gas, etc.) or in an atmospheric atmosphere.
  • an inert gas nitrogen gas, etc.
  • the barium sulfate powder and the liquid may be mixed under reduced pressure or at atmospheric pressure.
  • the mixing time of barium sulfate powder and liquid is not particularly limited, and is adjusted according to the mixing scale, mixing method, and the like.
  • the content of barium sulfate (that is, barium sulfate particles) in the dispersion is preferably 55% by mass or less, more preferably 40% by mass or less, and may be 30% by mass or less or 25% by mass or less.
  • the content of barium sulfate is in such a range, the dispersibility of the barium sulfate particles in the dispersion liquid is further enhanced, so that the dispersibility of the barium sulfate particles in the negative electrode paste can be further enhanced.
  • the content of barium sulfate in the dispersion is, for example, 0.1% by mass or more, and may be 1% by mass or more or 5% by mass or more.
  • the content of barium sulfate in the dispersion is 0.1% by mass or more and 55% by mass or less (or 40% by mass or less), 0.1% by mass or more and 30% by mass or less (or 25% by mass or less), 1% by mass. 55% by mass or less (or 40% by mass or less), 1% by mass or more and 30% by mass or less (or 25% by mass or less), 5% by mass or more and 55% by mass or less (or 40% by mass or less), or 5% by mass or more. It may be 30% by mass or less (or 25% by mass or less).
  • additives may be used if necessary. However, it is preferable not to use the additive so that the additive does not adhere to the surface of the barium sulfate particles and inhibit the crystal formation of lead sulfate during discharge.
  • a negative electrode paste is prepared by mixing the dispersion liquid and the powder containing lead oxide as a main component.
  • an additive may be mixed with the dispersion liquid and the powder containing lead oxide as a main component.
  • the additive include other additives described for the negative electrode material.
  • the order of mixing is not particularly limited. For example, all components may be mixed at once, some components may be mixed in advance, and the remaining components may be further mixed.
  • components other than the dispersion liquid for example, a powder containing a lead oxide as a main component, a carbonaceous material, an organic shrink-proofing agent and a reinforcing material
  • a liquid component such as at least one of pure water and an aqueous sulfuric acid solution
  • a liquid component such as at least one of pure water and an aqueous sulfuric acid solution
  • components other than the dispersion liquid may be mixed in advance, pure water may be added and further mixed, and a dispersion liquid using a sulfuric acid aqueous solution may be added and further mixed. Further, components other than the dispersion liquid may be mixed in advance, a dispersion liquid using pure water may be added and further mixed, and a sulfuric acid aqueous solution may be added and further mixed.
  • Mixing is not particularly limited and can be performed using, for example, a kneader.
  • Mixing can be performed at, for example, 10 ° C or higher, and may be performed at 20 ° C or higher. Mixing may be performed, for example, at 40 ° C. or lower.
  • Mixing can be done in an atmospheric atmosphere. Mixing is usually done under atmospheric pressure.
  • the powder containing lead oxide as the main component contains lead monoxide as lead oxide.
  • the proportion of lead oxide in the powder containing lead oxide as a main component is more than 50% by mass, and usually 70% by mass or more.
  • the powder containing lead oxide as a main component may contain only lead monoxide powder. Further, the powder containing lead oxide as a main component may contain other components such as lead powder in addition to the lead oxide powder. The ratio of other components to the powder containing lead oxide as a main component is usually 30% by mass or less.
  • Powder containing lead oxide as a main component is also generally called "lead powder".
  • As the powder containing lead oxide as a main component general lead powder used for producing an electrode material for a lead storage battery may be used.
  • the negative electrode active material in the charged state is spongy lead.
  • the mixing ratio of the dispersion liquid and the powder containing lead oxide as a main component is such that the amount of barium sulfate (or barium sulfate powder) is 0.1 part by mass with respect to 100 parts by mass of the powder containing lead oxide as a main component. As mentioned above, it is preferably adjusted to be 0.5 parts by mass or more or 1 part by mass or more. When the amount of barium sulfate is 0.5 parts by mass or more, the decrease in dispersibility due to the aggregation of barium sulfate particles is usually likely to become apparent, but even in this case, the negative electrode material can be obtained by using the dispersion liquid. High dispersibility of barium sulfate particles in the inside can be ensured.
  • the mixing ratio of the dispersion liquid and the powder containing lead oxide as a main component is such that the amount of barium sulfate (or barium sulfate powder) is 7 parts by mass with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • it is preferably adjusted to be 5 parts by mass or less. In this case, a high initial capacity can be secured.
  • the mixing ratio of the dispersion liquid and the powder containing lead oxide as a main component is adjusted so that the content of barium sulfate particles in the negative electrode electrode material is within the above range.
  • the amount of barium sulfate with respect to 100 parts by mass of the powder containing lead oxide as a main component is 0.1 part by mass or more and 7 parts by mass or less (or 5 parts by mass or less), and 0.5 parts by mass or more and 7 parts by mass or less (or 5). It may be 1 part by mass or less) or 1 part by mass or more and 7 parts by mass or less (or 5 parts by mass or less).
  • Examples of the carbonaceous material include carbonaceous materials exemplified for the negative electrode electrode material.
  • the negative electrode paste may contain one kind of carbonaceous material, or may contain two or more kinds of carbonaceous materials.
  • the amount of the carbonaceous material is, for example, 0.1 part by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • the amount of the carbonaceous material is, for example, 3.5 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • organic shrinkage proofing agent examples include the organic shrinkage proofing agent exemplified for the negative electrode electrode material.
  • the negative electrode paste may contain one kind of organic shrinkage proofing agent, or may contain two or more kinds.
  • the amount of the organic shrinkage proofing agent is, for example, 0.01 part by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • the amount of the organic shrink proofing agent is, for example, 1.2 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • Examples of the reinforcing material include the reinforcing material exemplified for the negative electrode electrode material.
  • the amount of the reinforcing material is, for example, 0.03 part by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • the amount of the reinforcing material is, for example, 0.6 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component.
  • a negative electrode plate is produced using the negative electrode paste prepared in the second step. More specifically, a negative electrode current collector is filled with a negative electrode paste, and aged and dried to produce an unchemicald negative electrode plate. Next, the negative electrode plate is formed by forming the unchemical negative electrode plate.
  • the negative electrode plate to be formed includes a negative electrode material and a negative electrode current collector that holds the negative electrode material.
  • the description of the negative electrode plate of the lead storage battery can be referred to.
  • the unchemical negative electrode plate In the aging step, it is preferable to ripen the unchemical negative electrode plate at a temperature higher than room temperature (for example, 20 ° C. or higher and 35 ° C. or lower) and high humidity.
  • Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group. The formation produces spongy lead.
  • the paste type positive electrode plate includes a positive electrode current collector and a positive electrode material.
  • the configuration of the clad type positive electrode plate is as described above.
  • the positive electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the positive electrode current collector because it is easy to support the positive electrode material.
  • the lead alloy used for the positive electrode current collector examples include Pb-Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca-Sn-based alloys.
  • the positive electrode current collector may include a surface layer. The composition of the surface layer and the inner layer of the positive electrode current collector may be different. The surface layer may be formed on a part of the positive electrode current collector. The surface layer may be formed only on the lattice portion, the ear portion, or the frame bone portion of the positive electrode current collector.
  • the positive electrode material contained in the positive electrode plate contains a positive electrode active material (lead dioxide or lead sulfate) that develops a capacity by a redox reaction.
  • the positive electrode material may contain other additives (reinforcing material, etc.), if necessary.
  • the reinforcing material for the additive examples include fibers (inorganic fibers, organic fibers (organic fibers formed of the resin exemplified for the reinforcing material of the negative electrode electrode material, etc.)).
  • the unchemical paste type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying.
  • the positive electrode paste is prepared by kneading a powder containing lead oxide as a main component, an additive, water, and sulfuric acid.
  • a porous tube into which a core metal connected by a current collector is inserted is filled with a slurry containing components of a positive electrode material or a powder containing lead oxide as a main component. , Formed by joining multiple tubes in a collective punishment. Then, a positive electrode plate is obtained by forming these unchemical positive electrode plates.
  • the powder containing lead oxide as a main component for example, the powder containing lead oxide as a main component described for the negative electrode paste is used.
  • Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical positive electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group.
  • the electrode plate group includes at least one positive electrode plate, at least one negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate.
  • the electrode plate group includes two or more negative electrode plates, the negative electrode plate (or the negative electrode obtained by the above manufacturing method) in which at least one negative electrode plate satisfies at least one of the above conditions (a) and (b) is satisfied. It may be a board). From the viewpoint of easily ensuring higher regenerative acceptability, 50% or more (preferably 80% or more) of the number of negative electrode plates included in the electrode plate group satisfies at least one of the above conditions (a) and (b).
  • the negative electrode plate is satisfied (or the negative electrode plate obtained by the above-mentioned manufacturing method).
  • the ratio of the number of negative electrode plates (or negative electrode plates obtained by the above manufacturing method) satisfying at least one of the above conditions (a) and (b) is 100%. It is as follows. All of the negative electrode plates included in the electrode plate group may be negative electrode plates (or negative electrode plates obtained by the above manufacturing method) that satisfy at least one of the above conditions (a) and (b).
  • the lead-acid battery may be provided with one electrode plate group or two or more lead-acid batteries.
  • the lead storage battery includes two or more electrode plate groups
  • at least one electrode plate group is obtained by a negative electrode plate (or the above-mentioned manufacturing method) satisfying at least one of the above conditions (a) and (b). It suffices to have a negative electrode plate).
  • the electrode plate group has the above-mentioned conditions (a) and (b) in 50% or more (preferably 80% or more) of the number of electrode plate groups contained in the lead storage battery. ) Satisfying at least one of the negative electrode plates (or the negative electrode plate obtained by the above-mentioned manufacturing method) is preferably provided.
  • the electrolytic solution is an aqueous solution containing sulfuric acid.
  • the electrolytic solution may further contain at least one selected from the group consisting of Na ion, Li ion, Mg ion, and Al ion.
  • the electrolytic solution may be gelled if necessary.
  • the specific gravity of the electrolytic solution at 20 ° C. is, for example, 1.10 or more.
  • the specific gravity of the electrolytic solution at 20 ° C. may be 1.35 or less. It should be noted that these specific gravities are values for the electrolytic solution of the lead-acid battery which has already been used and is in a fully charged state.
  • the lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
  • the negative electrode plate comprises a negative electrode material containing barium sulfate particles.
  • the half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum of the negative electrode material when the lead-acid battery is fully charged and then discharged to a 50% charged state with a 5-hour rate current is A lead-acid battery having a temperature of 0.137 ° or higher (sometimes referred to as condition (a)).
  • the full width at half maximum may be 0.139 ° or more.
  • the full width at half maximum may be 0.2 ° or less or 0.19 ° or less.
  • the number of pixels of an image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron beam microanalyzer on a cross section parallel to the thickness direction of the negative electrode plate is X.
  • the intensity of R of RGB attributed to the characteristic X-rays of Ba is adjusted to the maximum value in the region of direction 200 ⁇ direction 400 and binarized with the intensity of 1/2 of the maximum value as a threshold value.
  • the ratio of the portion exhibiting the intensity equal to or higher than the threshold value to the region may be 2.8% or less, 2.5% or less, or 1.0% or less.
  • the number of islands having an area ratio of 0.05% or more of the region may be one or less (sometimes referred to as condition (b)) in the portion. ..
  • the lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
  • the electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
  • the negative electrode plate comprises a negative electrode material containing barium sulfate particles. The number of pixels of the image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer on the cross section parallel to the thickness direction of the negative electrode plate is assigned to the characteristic X-ray of Ba in the region of 200 ⁇ 400 in the X direction.
  • a lead storage battery in which the number of islands having the above area ratio is one or less (condition (b)).
  • the ratio of the portion to the region may be 2.8% or less, 2.5% or less, or 1.0% or less.
  • the area ratio of one island may be 0.5% or less, 0.3% or less, or 0.1% or less.
  • the number of the islands may be less than one.
  • the content of the barium sulfate particles in the negative electrode electrode material is 0.1% by mass or more, 0.5% by mass or more, or 1% by mass. It may be% or more.
  • the average particle diameter of the barium sulfate particles in the negative electrode material is 1 ⁇ m or less, 0.7 ⁇ m or less, 0.6 ⁇ m or less, 0.4 ⁇ m or less. , Or may be 0.3 ⁇ m or less.
  • the average particle size of the barium sulfate particles in the negative electrode material may be 0.01 ⁇ m or more.
  • the maximum particle size of the barium sulfate particles may be 2.5 ⁇ m or less, or 2 ⁇ m or less.
  • the negative electrode material may contain a carbonaceous material.
  • the content of the carbonaceous material in the negative electrode material may be 0.1% by mass or more.
  • the content of the carbonaceous material in the negative electrode material may be 3.5% by mass or less.
  • the negative electrode electrode material may contain an organic shrinkage proofing agent.
  • the content of the organic shrinkage barrier in the negative electrode electrode material may be 0.01% by mass or more.
  • the content of the organic shrinkage barrier in the negative electrode electrode material may be 1.2% by mass or less.
  • the negative electrode material may include a reinforcing material.
  • the content of the reinforcing material in the negative electrode electrode material may be 0.03% by mass or more.
  • the content of the reinforcing material in the negative electrode electrode material may be 0.6% by mass or less.
  • the specific gravity of the electrolytic solution at 20 ° C. may be 1.10 or more.
  • the specific gravity of the electrolytic solution at 20 ° C. may be 1.35 or less.
  • the electrode plate group of the lead storage battery includes at least one positive electrode plate, at least one negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate. May be provided.
  • At least one negative electrode plate is a negative electrode plate that satisfies at least one of the above conditions (a) and (b).
  • the ratio of the number of negative electrode plates that satisfy at least one of the above conditions (a) and (b) among the negative electrode plates included in the electrode plate group is usually 100%. It is as follows.
  • a method for manufacturing a negative electrode plate for a lead storage battery is The first step of mixing barium sulfate powder and liquid to prepare a dispersion, A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
  • the average particle size (D50) of the barium sulfate powder is 1 ⁇ m or less.
  • the density of the aqueous sulfuric acid solution at 20 ° C. may be, for example, larger than 1 g / cm 3 and 1.03 g / cm 3 or more.
  • the density of the aqueous sulfuric acid solution at 20 ° C. may be 1.4 g / cm 3 or less.
  • the average particle size (D50) of the barium sulfate powder is 0.7 ⁇ m or less, 0.6 ⁇ m or less, 0.4 ⁇ m or less, or 0.3 ⁇ m. It may be as follows.
  • a method for manufacturing a negative electrode plate for a lead storage battery is The first step of mixing barium sulfate powder and liquid to prepare a dispersion, A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
  • the average particle size of the barium sulfate powder is 0.4 ⁇ m or less, and the average particle size is 0.4 ⁇ m or less.
  • the electrical resistivity of the pure water may be 0.1 M ⁇ ⁇ cm or more.
  • the electrical resistivity of the pure water may be 1.5 M ⁇ ⁇ cm or less.
  • the average particle size (D50) of the barium sulfate powder may be 0.3 ⁇ m or less.
  • the average particle size of the barium sulfate powder may be 0.01 ⁇ m or more.
  • the maximum particle size of the barium sulfate powder may be 2.5 ⁇ m or less, or 2 ⁇ m or less.
  • the content of barium sulfate in the dispersion is 55% by mass or less, 40% by mass or less, 30% by mass or less, or 25% by mass or less. May be.
  • the content of barium sulfate in the dispersion is 0.1% by mass or more, 1% by mass or more, or 5% by mass or more. May be good.
  • the barium sulfate powder and the liquid may be mixed at 10 ° C. or higher, or 20 ° C. or higher.
  • the barium sulfate powder and the liquid may be mixed at 60 ° C. or lower or 40 ° C. or lower.
  • the amount of the barium sulfate powder is 0.1 part by mass or more, 0.5 by mass with respect to 100 parts by mass of the powder containing the lead oxide as a main component. It may be 1 part by mass or more, or 1 part by mass or more.
  • the amount of the barium sulfate powder is 7 parts by mass or less or 5 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component. May be.
  • the proportion of the lead oxide in the powder containing the lead oxide as a main component is, for example, more than 50% by mass and 70% by mass or more. May be.
  • the ratio of the other component (lead powder, etc.) to the powder containing the lead oxide as a main component is 30% by mass or less. May be good.
  • the carbonaceous material may be further mixed in the second step.
  • the amount of the carbonaceous material may be 0.1 part by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
  • the amount of the carbonaceous material may be 3.5 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
  • an organic shrink-proofing agent may be further mixed in the second step.
  • the amount of the organic shrink-proofing agent may be 0.01 part by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
  • the amount of the organic shrink-proofing agent may be 1.2 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
  • a reinforcing material may be further mixed in the second step.
  • the amount of the reinforcing material may be 0.03 part by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
  • the amount of the reinforcing material may be 0.6 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
  • FIG. 1 shows the appearance of an example of a lead storage battery.
  • the lead-acid battery 1 includes an electric tank 12 for accommodating a plate group 11 and an electrolytic solution (not shown).
  • the inside of the electric tank 12 is partitioned into a plurality of cell chambers 14 by a partition wall 13.
  • one electrode plate group 11 is housed.
  • the opening of the battery case 12 is closed by a lid 15 including a negative electrode terminal 16 and a positive electrode terminal 17.
  • the lid 15 is provided with a liquid spout 18 for each cell chamber. At the time of refilling water, the liquid spout 18 is removed and the refilling liquid is replenished.
  • the liquid spout 18 may have a function of discharging the gas generated in the cell chamber 14 to the outside of the battery.
  • the electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 via a separator 4, respectively.
  • the bag-shaped separator 4 accommodating the negative electrode plate 2 is shown, but the form of the separator is not particularly limited.
  • the negative electrode shelf portion 6 for connecting the plurality of negative electrode plates 2 in parallel is connected to the through connection body 8, and the positive electrode shelf portion for connecting the plurality of positive electrode plates 3 in parallel is connected.
  • 5 is connected to the positive electrode column 7.
  • the positive electrode column 7 is connected to the positive electrode terminal 17 outside the lid 15.
  • the negative electrode column 9 is connected to the negative electrode shelf portion 6, and the penetration connecting body 8 is connected to the positive electrode shelf portion 5.
  • the negative electrode column 9 is connected to the negative electrode terminal 16 outside the lid 15.
  • Each through-connecting body 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plates 11 of the adjacent cell chambers 14 in series.
  • FIG. 4 is a process diagram for explaining a method for manufacturing a negative electrode plate for a lead storage battery according to an embodiment of the present disclosure.
  • a barium sulfate powder and a liquid are mixed to prepare a dispersion (S1).
  • the dispersion liquid and the powder containing lead oxide as a main component are mixed to prepare a negative electrode paste (S2).
  • a dispersion medium is usually used to prepare the negative electrode paste.
  • a negative electrode plate is manufactured using the negative electrode paste (S3).
  • Mixture A was obtained by mixing a powder containing lead oxide as a main component, carbon black, a reinforcing material (synthetic resin fiber), and lignin (sodium lignin sulfonate) as needed. Pure water, a dispersion using an aqueous lignin solution, or a dispersion using pure water was added to the mixture A and mixed to obtain a mixture B. When pure water was added to the mixture A, a dispersion liquid using an aqueous sulfuric acid solution was added to the mixture B and mixed. When the dispersion was added to the mixture A, an aqueous sulfuric acid solution was added to the mixture B and the mixture was mixed. In this way, the negative electrode paste was prepared. When a dispersion liquid using an aqueous lignin solution was used as the mixture B, lignin was not used in the preparation of the mixture A.
  • the negative electrode paste was filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy, aged and dried to obtain an unchemical negative electrode plate (width 100 mm, height 115 mm, thickness 1.2 mm).
  • the amounts of carbon black, lignin and synthetic resin fibers were adjusted to be 0.3% by mass, 0.1% by mass and 0.1% by mass, respectively, when measured in a fully charged state.
  • the amount of the dispersion liquid added was adjusted so that the amount of barium sulfate (parts by mass) with respect to 100 parts by mass of the powder containing lead oxide as a main component became the value shown in the table.
  • a positive electrode paste was prepared by mixing powder containing lead oxide as a main component, a reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the positive electrode paste was filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy, aged and dried to obtain an unchemical positive electrode plate (width 100 mm, height 115 mm, thickness 1.6 mm). ..
  • the ears of the positive electrode plate and the ears of the negative electrode plate were welded to the positive electrode shelf and the negative electrode shelf, respectively.
  • the electrode plate group is inserted into a polypropylene battery case, an electrolytic solution is injected, and chemical conversion is performed in the battery tank.
  • the rated voltage is 12 V and the rated capacity is 30 Ah (5-hour rate capacity (Ah described in the rated capacity).
  • the liquid lead-acid batteries E1 to E26 and R1 to R2 of the liquid type lead storage battery E1 to E26 and R1 to R2 of the liquid type lead storage battery were assembled. In the battery case, six electrode plates are connected in series.
  • a sulfuric acid aqueous solution was used as the electrolytic solution.
  • the specific gravity of the electrolytic solution after chemical conversion at 20 ° C. was 1.285.
  • Lead-acid batteries C1 to C8 Barium sulfate powder having the average particle size shown in the table, powder containing lead oxide as a main component, carbon black, lignin (sodium lignin sulfonate), and a reinforcing material (synthetic resin fiber) were mixed. Pure water was added to the mixture and mixed. An aqueous sulfuric acid solution was added to the obtained mixture and mixed to prepare a negative electrode paste. A negative electrode plate was produced and a lead storage battery was produced in the same manner as the lead storage batteries E1 to E26 except that the obtained negative electrode paste was used.
  • Tables 1 and 2 show the evaluation results of regenerative acceptance.
  • the table also shows the specific gravity of the liquid used to prepare the dispersion.
  • the ratio of the portion exhibiting the intensity above the threshold value to the region A is preferably 2.8 or less, more preferably 2.5 or less, and more preferably 1.0 or less. More preferred.
  • Table 3 shows the results for some lead-acid batteries, the same or similar results as those shown in Table 3 can be obtained for other lead-acid batteries E1 to E11 and E16 to E25.
  • FIGS. 2 and 3 The SEM images of the negative electrode plates at 50% SOC of the lead-acid batteries E15 and C5 are shown in FIGS. 2 and 3, respectively.
  • the particle size of lead sulfate produced during discharge is smaller than that in the lead storage battery C5, and it can be seen that coarsening is suppressed.
  • the lead-acid battery according to the first aspect and the second aspect of the present invention is suitable for applications requiring high regenerative acceptability.
  • the manufacturing method according to the third aspect and the fourth aspect of the present invention is suitable for manufacturing a negative electrode plate of a lead storage battery, which requires high regenerative acceptance.
  • the lead-acid battery including the above-mentioned lead-acid battery and the negative electrode plate obtained by the above-mentioned manufacturing method can be used as a power source for starting a vehicle (automobile, motorcycle, etc.), an industrial power storage device (for example, a power source for an electric vehicle (forklift, etc.)), etc. Suitable for.
  • the applications of lead-acid batteries and negative electrode plates are not limited to these.
  • Negative electrode plate 3 Positive electrode plate 4: Separator 5: Positive electrode shelf part 6: Negative electrode shelf part 7: Positive electrode pillar 8: Through connection body 9: Negative electrode pillar 11: Electrode plate group 12: Electric tank 13: Bulk partition 14: Cell chamber 15: Lid 16: Negative electrode terminal 17: Positive electrode terminal 18: Liquid spout

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A lead storage battery according to the present invention comprises at least one cell which is provided with an electrode plate group and an electrolyte. The electrode plate group is provided with a positive electrode plate, a negative electrode plate, and a separator which is interposed between the negative electrode plate and the positive electrode plate. The negative electrode plate is provided with a negative electrode material which contains barium sulfate particles. When the lead storage battery is fully charged and then discharged at the 5 hour rate current to a 50% charged state, the full width at half maximum of the peak corresponding to the [211] plane of lead sulfate in an X-ray-diffraction spectrum of the negative electrode material is not less than 0.137°.

Description

鉛蓄電池および鉛蓄電池用負極板の製造方法Manufacturing method of lead-acid battery and negative electrode plate for lead-acid battery
 本発明は、鉛蓄電池および鉛蓄電池用負極板の製造方法に関する。 The present invention relates to a lead storage battery and a method for manufacturing a negative electrode plate for a lead storage battery.
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板および負極板と、これらの間に介在するセパレータと、電解液と、を備えている。 Lead-acid batteries are used for various purposes such as in-vehicle use, industrial use, and so on. The lead-acid battery includes a positive electrode plate and a negative electrode plate, a separator interposed therein, and an electrolytic solution.
 鉛蓄電池用負極板は、負極電極材料と負極電極材料を保持する負極集電体とを備える。負極板は、例えば、鉛酸化物を主成分とする粉末を含む負極ペーストを、負極集電体に充填し、乾燥することにより未化成の負極板を作製し、未化成の負極板を化成することにより形成される。負極ペーストは、例えば、鉛酸化物を主成分とする粉末と、必要に応じて添加剤と、硫酸水溶液とを混合することにより調製される。添加剤として、有機防縮剤、硫酸バリウムなどが使用されている。硫酸バリウムは、水または硫酸水溶液に対する溶解性が低く、一般に、粉末の形態で負極ペーストの調製に使用される。硫酸バリウム粉末は凝集性が高く、負極ペースト中に均一に分散させることが難しい。 The negative electrode plate for a lead storage battery includes a negative electrode material and a negative electrode collector that holds the negative electrode material. For the negative electrode plate, for example, a negative electrode paste containing a powder containing a lead oxide as a main component is filled in a negative electrode current collector and dried to produce an unchemical negative electrode plate, and the unchemical negative electrode plate is formed. It is formed by. The negative electrode paste is prepared, for example, by mixing a powder containing lead oxide as a main component, an additive if necessary, and an aqueous sulfuric acid solution. Organic shrink-proofing agents, barium sulfate and the like are used as additives. Barium sulphate has low solubility in water or aqueous sulfuric acid and is commonly used in the preparation of negative electrode pastes in powder form. Barium sulfate powder has high cohesiveness, and it is difficult to disperse it uniformly in the negative electrode paste.
 特許文献1は、硫酸バリウムの凝集粉末を界面活性剤配合の溶液中で解砕し、得られた硫酸バリウム懸濁液を負極活物質の添加剤として鉛蓄電池用負極ペーストを製造することを特徴とする鉛蓄電池用負極ペーストの製造方法を提案している。 Patent Document 1 is characterized in that a coagulated powder of barium sulfate is crushed in a solution containing a surfactant, and the obtained barium sulfate suspension is used as an additive for a negative electrode active material to produce a negative electrode paste for a lead storage battery. We are proposing a method for manufacturing negative electrode paste for lead-acid batteries.
 特許文献2は、バリウムイオンと硫酸イオンとの反応により硫酸バリウムを析出せしめた反応液、またはこれを濃縮した反応液、或いはその濾過により分取したスラリー状の硫酸バリウム反応液を調製すること、次で、これを負極活物質ペーストの調製時に添加し、混練して負極活物質ペーストを調製することから成る工程を特徴とする鉛蓄電池の負極板の製造法を提案している。 Patent Document 2 prepares a reaction solution in which barium sulfate is precipitated by the reaction of barium ion and sulfate ion, a reaction solution in which the reaction solution is concentrated, or a slurry-like barium sulfate reaction solution separated by filtration thereof. Next, we propose a method for manufacturing a negative electrode plate of a lead storage battery, which comprises a process of adding this at the time of preparing a negative electrode active material paste and kneading it to prepare a negative electrode active material paste.
特開2003-257432号公報Japanese Patent Application Laid-Open No. 2003-257432 特開2001-332252号公報Japanese Unexamined Patent Publication No. 2001-332252
 硫酸バリウム粒子は、鉛蓄電池の放電時に生成する硫酸鉛の結晶核となり、硫酸鉛の粗大化を抑制する作用を有する。そのため、硫酸バリウムを負極板に用いると、充電時に硫酸鉛から鉛への還元反応が起こり易くなることで、充電受入性が向上して、回生受入性が高まる傾向がある。一方で、硫酸バリウムを用いると、相対的に鉛の含有量が減少するため、放電容量は低下する傾向がある。高い放電容量を確保しながら、高い回生受入性を確保する観点からは、負極電極材料中に粒子径が小さな硫酸バリウム粒子を均一に分散させることが有利である。しかし、硫酸バリウム粒子は、粒子径が小さくなるほど、凝集性が高まる。そのため、粒子径の小さな硫酸バリウム粒子を負極電極材料中により均一な状態で分散させることは実際には難しく、未だ、回生受入性の十分な向上効果を引き出せていない。 Barium sulfate particles become crystal nuclei of lead sulfate generated when the lead storage battery is discharged, and have the effect of suppressing the coarsening of lead sulfate. Therefore, when barium sulfate is used for the negative electrode plate, the reduction reaction from lead sulfate to lead is likely to occur during charging, so that the charge acceptability is improved and the regenerative acceptability tends to be enhanced. On the other hand, when barium sulfate is used, the lead content is relatively reduced, so that the discharge capacity tends to decrease. From the viewpoint of ensuring high regenerative acceptability while ensuring high discharge capacity, it is advantageous to uniformly disperse barium sulfate particles having a small particle size in the negative electrode electrode material. However, the smaller the particle size of the barium sulfate particles, the higher the cohesiveness. Therefore, it is actually difficult to disperse barium sulfate particles having a small particle size in a more uniform state in the negative electrode material, and the effect of sufficiently improving the regenerative acceptability has not yet been obtained.
 本発明の第1側面は、鉛蓄電池であって、
 前記鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備え、
 前記極板群は、正極板と、負極板と、前記負極板および前記正極板の間に介在するセパレータと、を備え、
 前記負極板は、硫酸バリウム粒子を含む負極電極材料を備え、
 前記鉛蓄電池を満充電した後、5時間率電流で50%の充電状態まで放電したときの前記負極電極材料のX線回折スペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅は、0.137°以上である、鉛蓄電池に関する。
The first aspect of the present invention is a lead storage battery.
The lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
The half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum of the negative electrode material when the lead-acid battery is fully charged and then discharged to a 50% charged state with a 5-hour rate current is It relates to a lead-acid battery having a temperature of 0.137 ° or higher.
 本発明の第2側面は、鉛蓄電池であって、
 前記鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備え、
 前記極板群は、正極板と、負極板と、前記負極板および前記正極板の間に介在するセパレータとを備え、
 前記負極板は、硫酸バリウム粒子を含む負極電極材料を備え、
 前記負極板の厚み方向に平行な断面を、電子線マイクロアナライザで分析した250dpi以上350dpi以下の解像度の画像の画素数がX方向200×Y方向400の領域において、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、前記最大値の1/2の強度を閾値として二値化処理したときの前記閾値以上の強度を示す部分のうち、前記領域の0.05%以上の面積割合を有する島の個数が1個以下である、鉛蓄電池に関する。
The second aspect of the present invention is a lead storage battery.
The lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
The number of pixels of the image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer on the cross section parallel to the thickness direction of the negative electrode plate is assigned to the characteristic X-ray of Ba in the region of 200 × 400 in the X direction. Of the portion showing the intensity equal to or higher than the threshold value when the intensity of R of RGB is adjusted to the maximum value and the binarization process is performed with the intensity of 1/2 of the maximum value as the threshold value, 0.05% of the area. The present invention relates to a lead storage battery in which the number of islands having the above area ratio is one or less.
 本発明の第3側面は、鉛蓄電池用負極板の製造方法であって、
 前記製造方法は、
 硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、
 前記分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備え、
 前記硫酸バリウム粉末の平均粒子径は、1μm以下であり、
 前記液体は、硫酸水溶液である、鉛蓄電池用負極板の製造方法に関する。
The third aspect of the present invention is a method for manufacturing a negative electrode plate for a lead storage battery.
The manufacturing method is
The first step of mixing barium sulfate powder and liquid to prepare a dispersion,
A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
The average particle size of the barium sulfate powder is 1 μm or less, and the average particle size is 1 μm or less.
The liquid relates to a method for manufacturing a negative electrode plate for a lead storage battery, which is an aqueous solution of sulfuric acid.
 本発明の第4側面は、鉛蓄電池用負極板の製造方法であって、
 前記製造方法は、
 硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、
 前記分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備え、
 前記硫酸バリウム粉末の平均粒子径は、0.4μm以下であり、
 前記液体は、純水である、鉛蓄電池用負極板の製造方法に関する。
The fourth aspect of the present invention is a method for manufacturing a negative electrode plate for a lead storage battery.
The manufacturing method is
The first step of mixing barium sulfate powder and liquid to prepare a dispersion,
A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
The average particle size of the barium sulfate powder is 0.4 μm or less, and the average particle size is 0.4 μm or less.
The liquid relates to a method for manufacturing a negative electrode plate for a lead storage battery, which is pure water.
 鉛蓄電池の回生受入性を向上できる。あるいは、鉛蓄電池の回生受入性を向上できる負極板を提供できる。 The regenerative acceptance of lead-acid batteries can be improved. Alternatively, it is possible to provide a negative electrode plate capable of improving the regenerative acceptance of the lead storage battery.
本発明の一実施形態に係る製造方法により得られる負極板を備える鉛蓄電池の外観と内部構造を示す一部切り欠き斜視図である。It is a partially cutaway perspective view which shows the appearance and the internal structure of the lead storage battery provided with the negative electrode plate obtained by the manufacturing method which concerns on one Embodiment of this invention. 実施例の鉛蓄電池E15の充電状態が50%のときの負極板の走査型電子顕微鏡画像である。It is a scanning electron microscope image of the negative electrode plate when the charge state of the lead storage battery E15 of an Example is 50%. 比較例の鉛蓄電池C5の充電状態が50%のときの負極板の走査型電子顕微鏡画像である。It is a scanning electron microscope image of the negative electrode plate when the charge state of the lead storage battery C5 of the comparative example is 50%. 本開示の一実施形態に係る鉛蓄電池用負極板の製造方法を説明するための工程図である。It is a process drawing for demonstrating the manufacturing method of the negative electrode plate for a lead storage battery which concerns on one Embodiment of this disclosure.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 Although the novel features of the invention are described in the appended claims, the invention is further described in detail with respect to both configuration and content, in conjunction with other objects and features of the invention, with reference to the drawings below. It will be well understood.
 鉛蓄電池の高い回生受入性を確保する観点からは、小さな粒子径の硫酸バリウム粒子が負極電極材料中に均一に分散されていることが有利である。しかし、負極スラリーの調製に用いられる硫酸バリウム粉末の粒子径が小さくなると、粒子間の相互作用の影響を受け易く、凝集し易くなる。平均粒子径が小さな硫酸バリウムの粉末を他の成分と混合して負極スラリーを調製しても、凝集した状態で分散されてしまう。そのため、放電時に生成する硫酸鉛の粒子径を小さくする効果はほとんど得られず、回生受入性の向上効果を十分に引き出すことは難しい。 From the viewpoint of ensuring high regenerative acceptance of lead-acid batteries, it is advantageous that barium sulfate particles having a small particle size are uniformly dispersed in the negative electrode material. However, when the particle size of the barium sulfate powder used for preparing the negative electrode slurry becomes small, it is easily affected by the interaction between the particles and easily aggregates. Even if a barium sulfate powder having a small average particle size is mixed with other components to prepare a negative electrode slurry, it is dispersed in an aggregated state. Therefore, the effect of reducing the particle size of lead sulfate generated during discharge can hardly be obtained, and it is difficult to sufficiently bring out the effect of improving the regenerative acceptability.
 特許文献1のように、分散剤として機能するような界面活性作用を有する成分を含む溶液中で、硫酸バリウムを解砕すると、硫酸バリウム粒子の分散性が向上し、高い回生受入性が得られると期待される。しかし、この場合、実際には、回生受入性の向上効果はほとんど得られない。これは、硫酸バリウム粒子の分散性の向上効果が不十分であるためと考えられる。加えて、硫酸バリウム粒子の表面が、界面活性作用を有する成分で覆われた状態となることで、鉛イオンおよび硫酸イオンなどとの反応性が低下し、硫酸バリウム粒子を核とした硫酸鉛の生成が阻害されることも要因であると考えられる。特に、硫酸バリウム粒子の粒子径が小さい場合には、界面活性作用を有する成分で覆われる硫酸バリウム粒子の表面積が相対的に大きくなるため、放電時に硫酸鉛の生成が阻害されることによる影響が顕在化する。また、特許文献2の方法で得られる反応液中の硫酸バリウム粒子は、粒子径のばらつきが大きいため、反応液を用いて負極板を形成しても、回生受入性を高めることが難しい。 When barium sulfate is crushed in a solution containing a component having a surface-active action that functions as a dispersant as in Patent Document 1, the dispersibility of barium sulfate particles is improved and high regenerative acceptability can be obtained. Is expected. However, in this case, in reality, the effect of improving the regenerative acceptability is hardly obtained. It is considered that this is because the effect of improving the dispersibility of the barium sulfate particles is insufficient. In addition, since the surface of the barium sulfate particles is covered with a component having a surface-active action, the reactivity with lead ions and sulfate ions is lowered, and the lead sulfate having the barium sulfate particles as the nucleus is reduced. Inhibition of production is also considered to be a factor. In particular, when the particle size of the barium sulfate particles is small, the surface area of the barium sulfate particles covered with the surface-active component becomes relatively large, which has an effect of inhibiting the production of lead sulfate during discharge. It becomes apparent. Further, since the barium sulfate particles in the reaction solution obtained by the method of Patent Document 2 have a large variation in particle size, it is difficult to improve the regenerative acceptability even if a negative electrode plate is formed by using the reaction solution.
 このような知見に鑑み、本発明の第1側面および第2側面のそれぞれに係る鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備える。極板群は、正極板と、負極板と、負極板および正極板の間に介在するセパレータと、を備える。負極板は、硫酸バリウム粒子を含む負極電極材料を備える。 In view of such findings, the lead-acid battery according to each of the first aspect and the second aspect of the present invention includes at least one cell including a plate group and an electrolytic solution. The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate. The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
 第1側面では、鉛蓄電池を満充電した後、5時間率電流で50%の充電状態まで放電したときの負極電極材料のX線回折(XRD:X-ray diffraction)スペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅は、0.137°以上である(以下、条件(a)と称することがある)。鉛蓄電池を満充電した後、5時間率電流で50%の充電状態(SOC:State of charge)まで放電したときの負極板を、単に、SOC50%における負極板と称することがある。 On the first aspect, the lead sulfate [211] in the X-ray diffraction (XRD: X-ray diffraction) spectrum of the negative electrode material when the lead-acid battery is fully charged and then discharged to a 50% charge state at a 5-hour rate current. ] The half-value full width of the peak corresponding to the surface is 0.137 ° or more (hereinafter, may be referred to as condition (a)). A negative electrode plate when a lead-acid battery is fully charged and then discharged to a 50% charge state (SOC: State of charge) at a 5-hour rate current may be simply referred to as a negative electrode plate at 50% SOC.
 第2側面の鉛蓄電池では、負極板の厚み方向に平行な断面を、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)で分析した250dpi以上350dpi以下の解像度の画像の画素数がX方向200×Y方向400の領域(以下、領域Aと称することがある)において、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、最大値の1/2の強度を閾値として二値化処理したときの閾値以上の強度を示す部分のうち、領域Aの0.05%以上の面積割合を有する島の個数が1個以下である(以下、条件(b)と称することがある)。このような面積割合を有する島は、硫酸バリウム粒子の凝集粒子に相当する。条件(b)により、凝集粒子の個数比率が少ないことで、放電時の硫酸鉛の粗大化を抑制する効果がさらに高まる。1つの島の面積割合は、例えば、0.5%以下であり、0.3%以下または0.1%以下であってもよい。これより大きな面積割合を有する島は、領域Aにおいて観察されない(または含まれない)ことが好ましい。なお、EPMA画像は、信号強度の最も高い点が赤(R)になり、それより信号強度が下がるに従って寒色系に移行するものとする。 In the lead storage battery on the second side, the number of pixels of an image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer (EPMA) in a cross section parallel to the thickness direction of the negative electrode plate is 200 × in the X direction. In the region of 400 in the Y direction (hereinafter, may be referred to as region A), the intensity of R of RGB attributed to the characteristic X-ray of Ba is adjusted to the maximum value, and the intensity of 1/2 of the maximum value is used as a threshold value. The number of islands having an area ratio of 0.05% or more of the region A is one or less among the portions showing the intensity equal to or higher than the threshold value when the binarization treatment is performed (hereinafter, referred to as condition (b)). be). An island having such an area ratio corresponds to agglomerated particles of barium sulfate particles. According to the condition (b), since the number ratio of the aggregated particles is small, the effect of suppressing the coarsening of lead sulfate during discharge is further enhanced. The area ratio of one island is, for example, 0.5% or less, and may be 0.3% or less or 0.1% or less. Islands with larger area ratios are preferably not observed (or not included) in region A. In the EPMA image, the point where the signal intensity is the highest is red (R), and as the signal intensity decreases from that point, the color shifts to a cool color system.
 負極板は、条件(a)および条件(b)の双方を充足してもよい。 The negative electrode plate may satisfy both the condition (a) and the condition (b).
 第1側面および第2側面のそれぞれの鉛蓄電池に含まれる負極板は、硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備える製造方法により製造できる。液体としては、硫酸水溶液が用いられ、このときの硫酸バリウム粉末の平均粒子径は、1μm以下である。また、液体としては、純水が用いられ、このときの硫酸バリウム粉末の平均粒子径は、0.4μm以下である。 The negative electrode plate included in each of the lead storage batteries on the first side surface and the second side surface is mainly composed of the first step of mixing barium sulfate powder and a liquid to prepare a dispersion liquid and the dispersion liquid and lead oxide. It can be produced by a production method comprising a second step of mixing with powder to prepare a negative electrode paste. An aqueous sulfuric acid solution is used as the liquid, and the average particle size of the barium sulfate powder at this time is 1 μm or less. Pure water is used as the liquid, and the average particle size of the barium sulfate powder at this time is 0.4 μm or less.
 本発明の第3側面に係る鉛蓄電池用負極板の製造方法は、硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備える。硫酸バリウム粉末の平均粒子径は、1μm以下である。液体は、硫酸水溶液である。 The method for manufacturing a negative electrode plate for a lead storage battery according to the third aspect of the present invention includes a first step of mixing barium sulfate powder and a liquid to prepare a dispersion, and a powder containing the dispersion and a lead oxide as main components. A second step of mixing and preparing a negative electrode paste is provided. The average particle size of barium sulfate powder is 1 μm or less. The liquid is an aqueous sulfuric acid solution.
 本発明の第4側面に係る鉛蓄電池用負極板の製造方法は、硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備える。硫酸バリウム粉末の平均粒子径は、0.4μm以下である。液体は、純水である。 In the method for manufacturing a negative electrode plate for a lead storage battery according to the fourth aspect of the present invention, a first step of mixing barium sulfate powder and a liquid to prepare a dispersion liquid and a powder containing lead oxide as a main component are mixed. The second step of preparing the negative electrode paste is provided. The average particle size of barium sulfate powder is 0.4 μm or less. The liquid is pure water.
 第1側面の鉛蓄電池では、負極電極材料中において放電時に生成する硫酸鉛の結晶性が低い。これは、負極電極材料中に小さな粒子径の硫酸バリウム粒子が高い分散性で分散されていることを示している。第2側面の鉛蓄電池では、負極電極材料中に粒子径が小さな硫酸バリウム粒子が高い分散性で分散されており、凝集粒子の比率が少ない。また、上記のような製造方法(第3側面および第4側面の製造方法など)によれば、硫酸バリウム粉末を硫酸水溶液または純水を用いて分散液を調製し、この分散液を負極ペーストの調製に用いる。硫酸バリウムは、硫酸水溶液に対する親和性が高い。そのため、平均粒子径が小さな硫酸バリウム粉末を硫酸水溶液中に添加して撹拌するだけでも、硫酸バリウム粒子が帯電して、ファンデルワールス力により、凝集が軽減され、硫酸水溶液中により均一な状態で微分散される。この分散液を負極ペーストの調製に用いることで、負極電極材料中に粒子径が小さな硫酸バリウム粒子が高い分散性で分散された状態の負極板を形成できる。よって、このような負極板を用いた鉛蓄電池(第1側面および第2側面の鉛蓄電池など)では、負極板において、放電時に粒子径が小さな硫酸バリウム粒子を核として硫酸鉛が結晶成長するため、硫酸鉛の粗大化が抑制される。そのため、充電時に硫酸鉛から鉛への還元反応が起こり易くなることで、充電受入性が向上する。その結果、回生受入性を向上することができる。また、負極電極材料中に小さな粒子径の硫酸バリウム粒子を高い分散性で分散できることで、負極活物質である鉛の単位体積当たりの硫酸バリウム含有量が比較的低くても、高い回生受入性が得られる。負極電極材料中の鉛の比率を相対的に高めることができるため、高い放電容量を確保することができる。 In the lead-acid battery on the first side, the crystallinity of lead sulfate generated during discharge in the negative electrode material is low. This indicates that barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility. In the lead-acid battery on the second side, barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility, and the ratio of aggregated particles is small. Further, according to the above-mentioned manufacturing method (manufacturing method of the third side surface and the fourth side surface, etc.), a dispersion liquid is prepared by using a sulfuric acid aqueous solution or pure water for barium sulfate powder, and this dispersion liquid is used as a negative electrode paste. Used for preparation. Barium sulfate has a high affinity for aqueous sulfuric acid. Therefore, even if barium sulfate powder having a small average particle size is added to an aqueous sulfuric acid solution and stirred, the barium sulfate particles are charged, and the van der Waals force reduces aggregation, resulting in a more uniform state in the aqueous sulfuric acid solution. Finely dispersed. By using this dispersion for preparing the negative electrode paste, it is possible to form a negative electrode plate in which barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility. Therefore, in a lead-acid battery using such a negative electrode plate (lead-acid batteries on the first side surface and the second side surface, etc.), lead sulfate crystal grows on the negative electrode plate with barium sulfate particles having a small particle size as nuclei during discharge. , The coarsening of lead sulfate is suppressed. Therefore, the reduction reaction from lead sulfate to lead is likely to occur during charging, which improves charge acceptability. As a result, regenerative acceptability can be improved. In addition, since barium sulfate particles having a small particle size can be dispersed in the negative electrode material with high dispersibility, high regenerative acceptability is achieved even if the barium sulfate content per unit volume of lead, which is the negative electrode active material, is relatively low. can get. Since the ratio of lead in the negative electrode electrode material can be relatively increased, a high discharge capacity can be ensured.
 分散液の調製に純水を用いる場合でも、硫酸バリウム粉末の平均粒子径が0.4μm以下の場合には、硫酸水溶液の場合と同様の効果が得られる。硫酸バリウム粉末を純水に分散させる場合でも、ファンデルワールス力により、硫酸バリウム粒子の凝集が軽減され、硫酸水溶液中により均一な状態で微分散されるためと考えられる。 Even when pure water is used to prepare the dispersion, if the average particle size of the barium sulfate powder is 0.4 μm or less, the same effect as that of the aqueous sulfuric acid solution can be obtained. It is considered that even when the barium sulfate powder is dispersed in pure water, the agglomeration of the barium sulfate particles is reduced by the van der Waals force, and the particles are finely dispersed in the sulfuric acid aqueous solution in a more uniform state.
 上記の製造方法では、界面活性作用を有する成分を含む溶液に硫酸バリウム粉末を分散させる場合とは異なり、分散液中の硫酸バリウム粒子の表面が硫酸鉛の結晶成長を阻害するような成分で覆われることもない。そのため、上記の製造方法により得られる負極板を用いた鉛蓄電池(第1側面および第2側面の鉛蓄電池など)では、放電時に、硫酸バリウム粒子を核とした硫酸鉛の結晶成長が阻害されることが抑制され、高い充電受入性を確保できる。この点からも、高い回生受入性を確保することができる。 In the above production method, unlike the case where barium sulfate powder is dispersed in a solution containing a component having a surface-active action, the surface of barium sulfate particles in the dispersion is covered with a component that inhibits the crystal growth of lead sulfate. You won't be struck. Therefore, in a lead-acid battery using a negative electrode plate obtained by the above manufacturing method (lead-acid battery on the first side surface and the second side surface, etc.), the crystal growth of lead sulfate having barium sulfate particles as nuclei is inhibited at the time of discharge. This is suppressed, and high charge acceptability can be ensured. From this point as well, high regenerative acceptance can be ensured.
 上記の製造方法により得られる負極板では、第1側面の鉛蓄電池について述べたように、負極電極材料中において放電時に生成する硫酸鉛の結晶性が低い。また、上記の製造方法により得られた負極板では、第2側面の鉛蓄電池について述べたように、負極電極材料中に粒子径が小さな硫酸バリウム粒子が高い分散性で分散されており、凝集粒子の比率が少ない。負極電極材料中で放電時に生成する硫酸鉛の結晶性は、例えば、X線回折スペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅により評価することができる。また、負極電極材料中で硫酸バリウム粒子の凝集が低減され、高い分散性で分散されていることは、例えば、負極板の断面を電子線マイクロアナライザで分析した画像のBa分布におけるBaの特性X線の強度に基づいて評価することができる。 In the negative electrode plate obtained by the above manufacturing method, the crystallinity of lead sulfate produced during discharge in the negative electrode electrode material is low, as described for the lead storage battery on the first side surface. Further, in the negative electrode plate obtained by the above manufacturing method, as described for the lead storage battery on the second side surface, barium sulfate particles having a small particle size are dispersed in the negative electrode electrode material with high dispersibility, and aggregated particles. The ratio of is small. The crystallinity of lead sulfate generated during discharge in the negative electrode material can be evaluated, for example, by the half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum. Further, the fact that the aggregation of barium sulfate particles is reduced in the negative electrode electrode material and the particles are dispersed with high dispersibility means that, for example, the characteristic X of Ba in the Ba distribution of the image obtained by analyzing the cross section of the negative electrode plate with an electron probe microanalyzer. It can be evaluated based on the strength of the line.
 より具体的に説明すると、上記の製造方法において、分散液の調製条件を変化させた場合、負極電極材料のXRDスペクトルにおける硫酸鉛に起因する主なピークのうち、[211]面に相当するピークの半値全幅に変化が見られ、その他の面に相当するピークの半値全幅には大きな変化が見られない。鉛蓄電池の回生受入性は、[211]面に相当するピークの半値全幅の変化に応じて変化しており、放電時に生成する硫酸鉛の結晶性と関連することが明らかとなった。なお、[211]面に相当するピークは、2θが28.5°以上30.5°以下の範囲(通常、29.6°付近)に観測される。 More specifically, in the above production method, when the preparation conditions of the dispersion liquid are changed, among the main peaks caused by lead sulfate in the XRD spectrum of the negative electrode material, the peak corresponding to the [211] plane. There is a change in the full width at half maximum of the peak, and there is no significant change in the full width at half maximum of the peak corresponding to the other planes. It was clarified that the regenerative acceptability of the lead storage battery changes according to the change in the full width at half maximum of the peak corresponding to the [211] plane, and is related to the crystallinity of lead sulfate produced during discharge. The peak corresponding to the [211] plane is observed in the range where 2θ is 28.5 ° or more and 30.5 ° or less (usually around 29.6 °).
 条件(a)において、半値全幅は、0.139°以上であることが好ましい。この場合、硫酸鉛の結晶性が低いため、充電受入性がさらに高くなり、より高い回生受入性を確保することができる。 Under the condition (a), the full width at half maximum is preferably 0.139 ° or more. In this case, since the crystallinity of lead sulfate is low, the charge acceptability is further improved, and higher regenerative acceptability can be ensured.
 条件(a)において、半値全幅は、0.2°以下であることが好ましい。この場合、放電時の鉛から硫酸鉛への反応がスムーズに進行し易くなり、高い放電性能が得られ易い。 Under the condition (a), the full width at half maximum is preferably 0.2 ° or less. In this case, the reaction from lead to lead sulfate at the time of discharge tends to proceed smoothly, and high discharge performance can be easily obtained.
 さらに高い回生受入性を確保する観点からは、上記閾値以上の強度を示す部分の領域Aに占める比率は、2.8%以下であることが好ましい。この場合、負極電極材料中で硫酸バリウム粒子がより高い分散性で分散されており、充電受入性が高まることで、高い回生受入性が得られる。 From the viewpoint of ensuring higher regenerative acceptability, the ratio of the portion exhibiting the strength equal to or higher than the threshold value to the region A is preferably 2.8% or less. In this case, the barium sulfate particles are dispersed in the negative electrode material with higher dispersibility, and the charge acceptability is enhanced, so that high regenerative acceptability can be obtained.
 負極電極材料中の硫酸バリウム粒子の含有量は、0.5質量%以上であることが好ましい。この場合、硫酸バリウム粒子の凝集による分散性の低下が顕在化し易い。このような場合であっても、負極電極材料における硫酸バリウムの高い分散性を確保することができる。よって、より高い回生受入性を確保することができる。 The content of barium sulfate particles in the negative electrode electrode material is preferably 0.5% by mass or more. In this case, the decrease in dispersibility due to the aggregation of barium sulfate particles tends to become apparent. Even in such a case, high dispersibility of barium sulfate in the negative electrode material can be ensured. Therefore, higher regenerative acceptability can be ensured.
 負極電極材料中の硫酸バリウム粒子の含有量は、7.5質量%以下であることが好ましい。この場合、高い回生受入性を確保しながら、より高い初期容量を確保することができる。 The content of barium sulfate particles in the negative electrode electrode material is preferably 7.5% by mass or less. In this case, it is possible to secure a higher initial capacity while ensuring high regenerative acceptability.
 負極電極材料において、硫酸バリウム粒子の平均粒子径は、1μm以下であることが好ましい。平均粒子径がこの範囲である場合、通常は、硫酸バリウム粒子の凝集により回生受入性が低下し易い。このような場合でも、負極電極材料中において、硫酸バリウム粒子の高い分散性が得られ、高い回生受入性を確保することができる。 In the negative electrode material, the average particle size of barium sulfate particles is preferably 1 μm or less. When the average particle size is in this range, the regenerative acceptability is usually likely to decrease due to the aggregation of barium sulfate particles. Even in such a case, high dispersibility of barium sulfate particles can be obtained in the negative electrode material, and high regenerative acceptability can be ensured.
 負極電極材料において、硫酸バリウム粒子の平均粒子径は、例えば、0.01μm以上である。このように平均粒子径が小さい場合でも、負極電極材料中に高い分散性で硫酸バリウム粒子を分散することができ、高い回生受入性を確保することができる。 In the negative electrode material, the average particle size of barium sulfate particles is, for example, 0.01 μm or more. Even when the average particle size is small as described above, barium sulfate particles can be dispersed in the negative electrode material with high dispersibility, and high regenerative acceptability can be ensured.
 第3側面および第4側面において、分散液は、通常、有機防縮剤および界面活性剤からなる群より選択される少なくとも一種を含まない。有機防縮剤は、親水性の部分と疎水性の部分とを有しており、界面活性作用を有する。分散液が、有機防縮剤または界面活性剤などの界面活性作用を有する成分を含まないことで、高い充電受入性が得られ、高い回生受入性を確保することができる。また、分散液の段階で硫酸バリウム粒子の表面に付着した有機防縮剤は、負極ペーストを調製する際には、最早、界面活性作用をほとんど有しておらず、負極電極材料中で鉛の細孔を小さく保つ効果を発揮できないため、高い放電性能を確保することが難しい。 On the third and fourth aspects, the dispersion usually does not contain at least one selected from the group consisting of organic shrink proofing agents and surfactants. The organic shrink proofing agent has a hydrophilic portion and a hydrophobic portion, and has a surface-active action. Since the dispersion liquid does not contain a component having a surfactant action such as an organic shrinkage proofing agent or a surfactant, high charge acceptability can be obtained and high regenerative acceptability can be ensured. In addition, the organic shrink-proofing agent adhering to the surface of the barium sulfate particles at the stage of the dispersion liquid no longer has a surface-active effect when preparing the negative electrode paste, and the lead fine particles in the negative electrode electrode material are present. It is difficult to ensure high discharge performance because the effect of keeping the holes small cannot be exhibited.
 第3側面において、硫酸水溶液の20℃における密度は、1.03g/cm以上が好ましい。密度が高まることで、硫酸バリウム粒子がさらに帯電し、分散液中における硫酸バリウム粒子の分散性がさらに向上する。よって、より高い回生受入性を確保することができる。 In the third aspect, the density of the aqueous sulfuric acid solution at 20 ° C. is preferably 1.03 g / cm 3 or more. As the density increases, the barium sulfate particles are further charged, and the dispersibility of the barium sulfate particles in the dispersion is further improved. Therefore, higher regenerative acceptability can be ensured.
 硫酸バリウム粉末の平均粒子径は、例えば、0.01μm以上である。このように平均粒子径が小さい場合でも、分散液中に高い分散性で硫酸バリウム粒子を分散することができ、高い回生受入性を確保することができる。 The average particle size of barium sulfate powder is, for example, 0.01 μm or more. Even when the average particle size is small as described above, barium sulfate particles can be dispersed in the dispersion liquid with high dispersibility, and high regenerative acceptability can be ensured.
 鉛酸化物を主成分とする粉末100質量部に対する硫酸バリウム粉末の量は、0.5質量部以上であることが好ましい。この場合、硫酸バリウム粒子の凝集による分散性の低下が顕在化し易い。このような場合であっても、硫酸水溶液または純水を用いて分散液を予め調製することで、硫酸バリウム粒子の高い分散性を確保することができる。よって、より高い回生受入性を確保することができる。 The amount of barium sulfate powder is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component. In this case, the decrease in dispersibility due to the aggregation of barium sulfate particles tends to become apparent. Even in such a case, high dispersibility of barium sulfate particles can be ensured by preparing a dispersion liquid in advance using an aqueous sulfuric acid solution or pure water. Therefore, higher regenerative acceptability can be ensured.
 鉛酸化物を主成分とする粉末100質量部に対する硫酸バリウム粉末の量は、7質量部以下であることが好ましい。この場合、高い回生受入性を確保しながら、より高い初期容量を確保することができる。 The amount of barium sulfate powder is preferably 7 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component. In this case, it is possible to secure a higher initial capacity while ensuring high regenerative acceptability.
 分散液中の硫酸バリウムの含有量は、55質量%以下が好ましい。この場合、分散液における硫酸バリウム粒子の分散性がさらに高まることで、負極ペースト中における硫酸バリウム粒子の分散性をさらに高めることができる。 The content of barium sulfate in the dispersion is preferably 55% by mass or less. In this case, the dispersibility of the barium sulfate particles in the dispersion liquid is further enhanced, so that the dispersibility of the barium sulfate particles in the negative electrode paste can be further enhanced.
 鉛蓄電池は、制御弁式(密閉式)鉛蓄電池および液式(ベント式)鉛蓄電池のいずれでもよい。制御弁式鉛蓄電池は、VRLA型鉛蓄電池(Valve-regulated lead-acid battery)とも称される。 The lead-acid battery may be either a control valve type (sealed type) lead-acid battery or a liquid type (vent type) lead-acid battery. The control valve type lead-acid battery is also referred to as a VRLA type lead-acid battery (Valve-regulated lead-acid battery).
 本明細書中、EPMA分析は、満充電状態の鉛蓄電池から取り出した負極板について行われる。負極電極材料中の硫酸バリウム粒子の含有量および平均粒子径は、満充電状態の鉛蓄電池から取り出した負極板について求められる。XRDスペクトルは、満充電状態から5時間率電流で50%の充電状態まで放電した状態(SOC50%)の鉛蓄電池から取り出した負極板の負極電極材料について測定される。 In the present specification, the EPMA analysis is performed on the negative electrode plate taken out from the fully charged lead-acid battery. The content and average particle size of the barium sulfate particles in the negative electrode electrode material are obtained for the negative electrode plate taken out from the lead storage battery in a fully charged state. The XRD spectrum is measured for the negative electrode material of the negative electrode plate taken out from the lead storage battery in the state of being discharged from the fully charged state to the charged state of 50% with a 5-hour rate current (SOC 50%).
(用語の説明)
 (電極材料)
 負極電極材料および正極電極材料の各電極材料は、通常、集電体に保持されている。電極材料とは、極板から集電体を除いた部分である。極板には、マット、ペースティングペーパなどの部材が貼り付けられていることがある。このような部材(貼付部材とも称する)は極板と一体として使用されるため、極板に含まれる。極板が貼付部材(マット、ペースティングペーパなど)を含む場合には、電極材料は、極板から集電体および貼付部材を除いた部分である。
(Explanation of terms)
(Electrode material)
Each electrode material of the negative electrode material and the positive electrode material is usually held in the current collector. The electrode material is a portion of the electrode plate excluding the current collector. Members such as mats and pacing papers may be attached to the electrode plate. Since such a member (also referred to as a sticking member) is used integrally with the plate, it is included in the plate. When the electrode plate includes a sticking member (mat, pacing paper, etc.), the electrode material is a portion of the electrode plate excluding the current collector and the sticking member.
 なお、正極板のうち、クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、複数の芯金を連結する集電部と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを備えている。クラッド式正極板では、正極電極材料は、極板から、チューブ、芯金、集電部、および連座を除いた部分である。クラッド式正極板では、芯金と集電部とを合わせて正極集電体と称する場合がある。 Among the positive electrode plates, the clad type positive electrode plate has a plurality of porous tubes, a core metal inserted in each tube, a current collecting portion for connecting the plurality of core metals, and a core metal inserted. It is provided with a positive electrode material filled in a tube and a collective punishment for connecting a plurality of tubes. In the clad type positive electrode plate, the positive electrode electrode material is a portion of the electrode plate excluding the tube, the core metal, the current collector, and the collective punishment. In the clad type positive electrode plate, the core metal and the current collector may be collectively referred to as a positive electrode current collector.
 (硫酸バリウム粒子および硫酸バリウム粉末の平均粒子径)
 硫酸バリウム粒子の平均粒子径および硫酸バリウム粉末の平均粒子径とは、いずれも、硫酸バリウム粒子の一次粒子の平均粒子径である。硫酸バリウム粒子および硫酸バリウム粉末の平均粒子径は、レーザー回折または散乱式の粒度分布測定装置により測定される体積基準の粒度分布において、積算値の50%に相当する粒子径(メディアン径(D50))である。
(Average particle size of barium sulfate particles and barium sulfate powder)
The average particle size of the barium sulfate particles and the average particle size of the barium sulfate powder are both the average particle size of the primary particles of the barium sulfate particles. The average particle size of barium sulfate particles and barium sulfate powder is the particle size corresponding to 50% of the integrated value (median size (D50)) in the volume-based particle size distribution measured by a laser diffraction or scattering type particle size distribution measuring device. ).
 (純水)
 純水とは、電気抵抗率が0.1MΩ・cm以上1.5MΩ・cm以下である水である。純水には、例えば、イオン交換、蒸留、および逆浸透膜濾過からなる群より選択される少なくとも一種の処理で得られる水が包含される。
(Pure water)
Pure water is water having an electrical resistivity of 0.1 MΩ · cm or more and 1.5 MΩ · cm or less. Pure water includes, for example, water obtained by at least one treatment selected from the group consisting of ion exchange, distillation, and reverse osmosis membrane filtration.
 (満充電状態)
 液式の鉛蓄電池の満充電状態とは、JIS D 5301:2019の定義によって定められる。より具体的には、25℃±2℃の水槽中で、定格容量として記載の数値(単位をAhとする数値)の0.2倍の電流(A)で、15分ごとに測定した充電中の端子電圧(V)または20℃に温度換算した電解液密度が3回連続して有効数字3桁で一定値を示すまで、鉛蓄電池を充電した状態を満充電状態とする。また、制御弁式の鉛蓄電池の場合、満充電状態とは、25℃±2℃の気槽中で、定格容量に記載の数値(単位をAhとする数値)の0.2倍の電流(A)で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が定格容量に記載の数値(単位をAhとする数値)の0.005倍の値(A)になった時点で充電を終了した状態である。
(Fully charged)
The fully charged state of a liquid lead-acid battery is defined by the definition of JIS D 5301: 2019. More specifically, in a water tank at 25 ° C ± 2 ° C, charging is performed every 15 minutes with a current (A) 0.2 times the value described as the rated capacity (value whose unit is Ah). The state in which the lead-acid battery is charged is regarded as a fully charged state until the terminal voltage (V) of No. 1 or the electrolyte density converted into temperature at 20 ° C. shows a constant value with three valid digits three times in a row. In the case of a control valve type lead-acid battery, the fully charged state is 0.2 times the current (value with Ah as the unit) described in the rated capacity in the air tank at 25 ° C ± 2 ° C (the unit is Ah). In A), constant current constant voltage charging of 2.23 V / cell is performed, and the charging current at the time of constant voltage charging is 0.005 times the value (value with the unit being Ah) described in the rated capacity (A). When it becomes, charging is completed.
 満充電状態の鉛蓄電池は、既化成の鉛蓄電池を満充電した鉛蓄電池をいう。鉛蓄電池の満充電は、化成後であれば、化成直後でもよく、化成から時間が経過した後に行ってもよい(例えば、化成後で、使用中(好ましくは使用初期)の鉛蓄電池を満充電してもよい)。 A fully charged lead-acid battery is a fully charged lead-acid battery. The lead-acid battery may be fully charged after the chemical conversion, immediately after the chemical conversion, or after a lapse of time from the chemical conversion (for example, after the chemical conversion, the lead-acid battery in use (preferably at the initial stage of use) is fully charged. May be).
 使用初期の電池とは、使用開始後、それほど時間が経過しておらず、ほとんど劣化していない電池をいう。 Batteries in the early stages of use are batteries that have not been used for a long time and have hardly deteriorated.
 以下、本発明の実施形態に係る鉛蓄電池用負極板の製造方法、この製造方法により得られる負極板、およびこの負極板を備える鉛蓄電池または本発明の実施形態に係る鉛蓄電池について、図面を参照しながらより具体的に説明する。ただし、本発明は以下の実施形態に限定されない。 Hereinafter, reference is made to a drawing regarding a method for manufacturing a negative electrode plate for a lead storage battery according to an embodiment of the present invention, a negative electrode plate obtained by this manufacturing method, and a lead storage battery provided with the negative electrode plate or a lead storage battery according to an embodiment of the present invention. I will explain more specifically while doing so. However, the present invention is not limited to the following embodiments.
[鉛蓄電池]
 鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備える。極板群は、負極板と、正極板と、負極板および正極板の間に介在するセパレータとを備える。
[Lead-acid battery]
Lead-acid batteries include at least one cell with a group of plates and an electrolyte. The electrode plate group includes a negative electrode plate, a positive electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
(負極板)
 負極板は、硫酸バリウム粒子を含む負極電極材料を備える。負極板は、通常、負極電極材料に加え、負極集電体を備える。
(Negative electrode plate)
The negative electrode plate comprises a negative electrode material containing barium sulfate particles. The negative electrode plate usually includes a negative electrode current collector in addition to the negative electrode material.
 SOC50%のときの負極板について、負極電極材料のXRDスペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅は、0.137°以上であればよい。負極電極材料中に小さな粒子径の硫酸バリウム粒子が高い分散性で分散されていることで、放電時に生成する硫酸鉛の結晶性が低下した状態となる。これにより、充電時に硫酸鉛から鉛への還元反応が進行し易くなり、充電受入性が向上するため、高い回生受入性が得られる。さらに高い回生受入性を確保する観点からは、上記ピークの半値全幅は、0.139°以上が好ましい。放電時の鉛から硫酸鉛への反応がスムーズに進行し易くなり、高い放電性能を確保し易い観点からは、上記ピークの半値全幅は、0.2°以下が好ましく、0.19°以下がより好ましい。 For the negative electrode plate at SOC 50%, the full width at half maximum of the peak corresponding to the [211] plane of lead sulfate in the XRD spectrum of the negative electrode material may be 0.137 ° or more. Barium sulfate particles having a small particle size are dispersed in the negative electrode material with high dispersibility, so that the crystallinity of lead sulfate generated during discharge is lowered. As a result, the reduction reaction from lead sulfate to lead easily proceeds during charging, and the charge acceptability is improved, so that high regenerative acceptability can be obtained. From the viewpoint of ensuring higher regenerative acceptability, the full width at half maximum of the peak is preferably 0.139 ° or more. From the viewpoint that the reaction from lead to lead sulfate during discharge easily proceeds smoothly and high discharge performance can be easily ensured, the full width at half maximum of the above peak is preferably 0.2 ° or less, and 0.19 ° or less. More preferred.
 上記ピークの半値全幅は、0.137°以上(または0.139°以上)0.2°以下、あるいは0.137°以上(または0.139°以上)0.19°以下であってもよい。 The full width at half maximum of the peak may be 0.137 ° or more (or 0.139 ° or more) 0.2 ° or less, or 0.137 ° or more (or 0.139 ° or more) 0.19 ° or less. ..
 条件(b)に関し、EPMAのBa分布を示す画像において、閾値以上の強度を示す部分のうち、領域Aの0.05%以上の面積割合を有する島の個数は、1個以下であり、1個未満であることが好ましい。凝集粒子の個数比率が少ないことで、放電時の硫酸鉛の粗大化を抑制する効果がさらに高まる。充電時に硫酸鉛から鉛への還元反応が進行し易くなることで、充電受入性が向上するため、高い回生受入性が得られる。 Regarding the condition (b), in the image showing the Ba distribution of EPMA, the number of islands having an area ratio of 0.05% or more of the region A among the portions showing the intensity equal to or higher than the threshold value is 1 or less, and 1 It is preferably less than the number. Since the number ratio of the agglomerated particles is small, the effect of suppressing the coarsening of lead sulfate during discharge is further enhanced. Since the reduction reaction from lead sulfate to lead easily proceeds during charging, charge acceptability is improved, so that high regenerative acceptability can be obtained.
 さらに高い回生受入性を確保する観点からは、上記閾値以上の強度を示す部分の領域Aに占める比率は、2.8%以下であることが好ましく、2.5%以下であることがより好ましく、1.0%以下であることがさらに好ましい。この場合、負極電極材料中で硫酸バリウム粒子がより高い分散性で分散されており、充電受入性が高まることで、高い回生受入性が得られる。 From the viewpoint of ensuring higher regenerative acceptability, the ratio of the portion exhibiting the intensity equal to or higher than the threshold value to the region A is preferably 2.8% or less, and more preferably 2.5% or less. , 1.0% or less is more preferable. In this case, the barium sulfate particles are dispersed in the negative electrode material with higher dispersibility, and the charge acceptability is enhanced, so that high regenerative acceptability can be obtained.
 (負極集電体)
 負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛シートまたは鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工、および打ち抜き(パンチング)加工が挙げられる。負極集電体として格子状の集電体を用いると、負極電極材料を担持させ易いため好ましい。
(Negative electrode current collector)
The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the negative electrode current collector because it is easy to support the negative electrode material.
 負極集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。鉛または鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、およびCuなどからなる群より選択された少なくとも1種を含んでもよい。負極集電体は、表面層を備えていてもよい。負極集電体の表面層と内側の層とは組成が異なってもよい。表面層は、負極集電体の一部に形成されていてもよい。表面層は、負極集電体の耳部に形成されていてもよい。耳部の表面層は、SnまたはSn合金を含有してもよい。 The lead alloy used for the negative electrode current collector may be any of Pb—Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca—Sn-based alloys. The lead or lead alloy may further contain, as an additive element, at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like. The negative electrode current collector may include a surface layer. The composition of the surface layer and the inner layer of the negative electrode current collector may be different. The surface layer may be formed on a part of the negative electrode current collector. The surface layer may be formed on the selvage portion of the negative electrode current collector. The surface layer of the selvage may contain Sn or Sn alloy.
 (負極電極材料)
 負極電極材料は、硫酸バリウム粒子に加え、さらに、酸化還元反応により容量を発現する負極活物質(具体的には、鉛もしくは硫酸鉛)を含んでいる。なお、充電状態の負極活物質は、海綿状鉛である。負極電極材料は、他の添加剤を含んでもよい。他の添加剤としては、炭素質材料、有機防縮剤、補強材、その他の公知の添加剤などが挙げられる。
(Negative electrode material)
In addition to barium sulfate particles, the negative electrode electrode material further contains a negative electrode active material (specifically, lead or lead sulfate) that develops a capacity by a redox reaction. The negative electrode active material in the charged state is spongy lead. The negative electrode material may contain other additives. Other additives include carbonaceous materials, organic shrink proofing agents, reinforcing materials, and other known additives.
 負極電極材料において、硫酸バリウム粒子の平均粒子径(D50)は、1μm以下であり、0.7μm以下または0.6μm以下であってもよく、0.4μm以下または0.3μm以下であってもよい。平均粒子径がこのように小さい場合には、通常は、硫酸バリウム粒子が凝集し易く、回生受入性が低下し易い。しかし、このような場合であっても、硫酸バリウム粒子を負極電極材料中に高い分散性で分散させることができるため、高い回生受入性が得られる。硫酸バリウム粒子の平均粒子径の下限は特に制限されない。硫酸バリウム粒子の平均粒子径は、例えば、0.01μm以上である。 In the negative electrode material, the average particle diameter (D50) of the barium sulfate particles is 1 μm or less, may be 0.7 μm or less or 0.6 μm or less, and may be 0.4 μm or less or 0.3 μm or less. good. When the average particle size is such a small size, the barium sulfate particles are usually likely to aggregate and the regenerative acceptability is likely to decrease. However, even in such a case, the barium sulfate particles can be dispersed in the negative electrode material with high dispersibility, so that high regenerative acceptability can be obtained. The lower limit of the average particle size of barium sulfate particles is not particularly limited. The average particle size of barium sulfate particles is, for example, 0.01 μm or more.
 より高い回生受入性を確保する観点からは、硫酸バリウム粒子の最大粒子径は、例えば、2.5μm以下であり、2μm以下が好ましい。硫酸バリウム粒子の最大粒子径は、負極電極材料に含まれる硫酸バリウム粒子の一次粒子径の最大値である。 From the viewpoint of ensuring higher regenerative acceptability, the maximum particle size of barium sulfate particles is, for example, 2.5 μm or less, preferably 2 μm or less. The maximum particle size of the barium sulfate particles is the maximum value of the primary particle size of the barium sulfate particles contained in the negative electrode electrode material.
 負極電極材料中の硫酸バリウム粒子の含有量は、例えば、0.1質量%以上であり、好ましくは0.5質量%以上または1質量%以上である。硫酸バリウム粒子の含有量が0.5質量%以上の場合、通常は、硫酸バリウム粒子の凝集による分散性の低下が顕在化し易いが、この場合であっても、分散液を用いて負極板を製造することより、負極電極材料中での硫酸バリウム粒子の高い分散性を確保することができる。また、負極電極材料中の硫酸バリウム粒子の含有量は、例えば、7.5質量%以下であり、好ましくは5.3質量%以下である。この場合、高い初期容量を確保することができる。 The content of barium sulfate particles in the negative electrode electrode material is, for example, 0.1% by mass or more, preferably 0.5% by mass or more or 1% by mass or more. When the content of the barium sulfate particles is 0.5% by mass or more, the decrease in dispersibility due to the aggregation of the barium sulfate particles is usually likely to become apparent, but even in this case, the negative electrode plate is formed by using the dispersion liquid. By manufacturing, high dispersibility of barium sulfate particles in the negative electrode electrode material can be ensured. The content of barium sulfate particles in the negative electrode electrode material is, for example, 7.5% by mass or less, preferably 5.3% by mass or less. In this case, a high initial capacity can be secured.
 負極電極材料中の硫酸バリウム粒子の含有量は、0.1質量%以上7.5質量%以下(または5.3質量%以下)、0.5質量%以上7.5質量%以下(または5.3質量%以下)、あるいは1質量%以上7.5質量%以下(または5.3質量%以下)であってもよい。 The content of barium sulfate particles in the negative electrode electrode material is 0.1% by mass or more and 7.5% by mass or less (or 5.3% by mass or less), 0.5% by mass or more and 7.5% by mass or less (or 5). It may be 1.3% by mass or less), or 1% by mass or more and 7.5% by mass or less (or 5.3% by mass or less).
 炭素質材料としては、カーボンブラック、黒鉛(人造黒鉛、天然黒鉛など)、ハードカーボン、ソフトカーボンなどが挙げられる。負極電極材料は、炭素質材料を一種含んでいてもよく、二種以上含んでいてもよい。 Examples of carbonaceous materials include carbon black, graphite (artificial graphite, natural graphite, etc.), hard carbon, soft carbon, and the like. The negative electrode material may contain one kind of carbonaceous material, or may contain two or more kinds of carbonaceous material.
 負極電極材料中の炭素質材料の含有量は、例えば、0.1質量%以上である。負極電極材料中の炭素質材料の含有量は、例えば、3.5質量%以下である。 The content of the carbonaceous material in the negative electrode material is, for example, 0.1% by mass or more. The content of the carbonaceous material in the negative electrode material is, for example, 3.5% by mass or less.
 有機防縮剤としては、リグニン、リグニンスルホン酸またはその塩、合成有機防縮剤(フェノール化合物のホルムアルデヒド縮合物など)などが挙げられる。負極電極材料は、有機防縮剤を一種含んでいてもよく、二種以上含んでいてもよい。 Examples of the organic shrinkage proofing agent include lignin, lignin sulfonic acid or a salt thereof, and a synthetic organic shrinkage proofing agent (formaldehyde condensate of phenol compound, etc.). The negative electrode electrode material may contain one kind of organic shrinkage proofing agent, or may contain two or more kinds of organic shrinkage proofing agents.
 負極電極材料中の有機防縮剤の含有量は、例えば、0.01質量%以上である。負極電極材料中の有機防縮剤の含有量は、例えば、1.2質量%以下である。 The content of the organic shrinkage proofing agent in the negative electrode electrode material is, for example, 0.01% by mass or more. The content of the organic shrinkage barrier in the negative electrode electrode material is, for example, 1.2% by mass or less.
 補強材としては、例えば、繊維(無機繊維、有機繊維など)が挙げられる。有機繊維を構成する樹脂としては、例えば、アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、およびセルロース化合物(セルロース、レーヨンなど)からなる群より選択される少なくとも一種が挙げられる。 Examples of the reinforcing material include fibers (inorganic fibers, organic fibers, etc.). Examples of the resin constituting the organic fiber include at least one selected from the group consisting of an acrylic resin, a polyolefin resin, a polyester resin, and a cellulose compound (cellulose, rayon, etc.).
 負極電極材料中の補強材の含有量は、例えば、0.03質量%以上である。負極電極材料中の補強材の含有量は、例えば、0.6質量%以下である。 The content of the reinforcing material in the negative electrode electrode material is, for example, 0.03% by mass or more. The content of the reinforcing material in the negative electrode electrode material is, for example, 0.6% by mass or less.
 (負極板、負極電極材料、またはその構成成分の分析)
 以下、負極電極材料のXRDスペクトルの測定およびEPMA分析、負極電極材料中の硫酸バリウム粒子の粒子径測定および定量分析、有機防縮剤、炭素質材料、および補強材の定量分析の手順について記載する。XRDスペクトルは、満充電状態から5時間率電流でSOC50%まで放電した状態の鉛蓄電池から取り出した負極板から採取した負極電極材料を用いて行われる。XRDスペクトル以外の分析または測定は、満充電状態の鉛蓄電池から取り出した負極板またはこの負極板から採取した負極電極材料を用いて行われる。
(Analysis of negative electrode plate, negative electrode material, or its constituents)
Hereinafter, procedures for measuring the XRD spectrum and EPMA analysis of the negative electrode material, measuring and quantitatively analyzing the particle size of barium sulfate particles in the negative electrode material, and quantitatively analyzing the organic shrinkage proofing agent, carbonaceous material, and reinforcing material will be described. The XRD spectrum is performed using a negative electrode material taken from a negative electrode plate taken out from a lead storage battery in a state of being discharged to SOC 50% at a rate current of 5 hours from a fully charged state. Analysis or measurement other than the XRD spectrum is performed using a negative electrode plate taken out from a fully charged lead-acid battery or a negative electrode electrode material taken from this negative electrode plate.
《サンプル調製》
 (サンプルA)
 満充電状態の鉛蓄電池をJIS D5301:2019に定義される5時間率電流でSOC50%まで放電する。放電直後の鉛蓄電池を解体して分析対象の負極板を入手する。入手した負極板を水洗し、負極板から電解液を除去する。水洗は、水洗した負極板表面にpH試験紙を押し当て、試験紙の色が変化しないことが確認されるまで行う。ただし、水洗を行う時間は、2時間以内とする。水洗した負極板は、減圧環境下、60±5℃で6時間程度乾燥する。乾燥後に、負極板に貼付部材が含まれる場合には、剥離により負極板から貼付部材が除去される。次に、負極板から負極電極材料を分離することにより、XRDスペクトル測定用のサンプル(以下、サンプルAと称する)を得る。
《Sample preparation》
(Sample A)
A fully charged lead-acid battery is discharged to SOC 50% at a 5-hour rate current as defined in JIS D5301: 2019. Dismantle the lead-acid battery immediately after discharge to obtain the negative electrode plate to be analyzed. The obtained negative electrode plate is washed with water, and the electrolytic solution is removed from the negative electrode plate. Wash with water by pressing the pH test paper against the surface of the negative electrode plate washed with water until it is confirmed that the color of the test paper does not change. However, the time for washing with water shall be within 2 hours. The negative electrode plate washed with water is dried at 60 ± 5 ° C. for about 6 hours in a reduced pressure environment. If the negative electrode plate contains a sticking member after drying, the sticking member is removed from the negative electrode plate by peeling. Next, by separating the negative electrode material from the negative electrode plate, a sample for XRD spectrum measurement (hereinafter referred to as sample A) is obtained.
 (サンプルB)
 満充電状態の鉛蓄電池を解体して分析対象の負極板を入手する。入手した負極板を用いる以外は、サンプルAの手順と同様にして、負極板を水洗、乾燥する。乾燥後に、負極板に貼付部材が含まれる場合には、剥離により負極板から貼付部材が除去される。得られた負極板全体に、エポキシ樹脂を含浸させ、硬化させる。硬化した状態で所定の箇所を負極板の厚み方向に切断し、切断された断面(厚み方向に平行な断面)を研磨する。このようにしてEPMA分析用のサンプルBを作製する。
(Sample B)
Disassemble the fully charged lead-acid battery to obtain the negative electrode plate to be analyzed. The negative electrode plate is washed with water and dried in the same manner as in the procedure of sample A except that the obtained negative electrode plate is used. If the negative electrode plate contains a sticking member after drying, the sticking member is removed from the negative electrode plate by peeling. The entire obtained negative electrode plate is impregnated with epoxy resin and cured. In the cured state, a predetermined portion is cut in the thickness direction of the negative electrode plate, and the cut cross section (cross section parallel to the thickness direction) is polished. In this way, sample B for EPMA analysis is prepared.
 (サンプルC)
 満充電状態の鉛蓄電池を解体して分析対象の負極板を入手する。得られた負極板を用いる以外は、サンプルAの場合と同様の手順でサンプルCを得る。サンプルCは、必要に応じて粉砕され、分析に供される。
(Sample C)
Disassemble the fully charged lead-acid battery to obtain the negative electrode plate to be analyzed. Sample C is obtained by the same procedure as in the case of sample A except that the obtained negative electrode plate is used. Sample C is pulverized as needed and subjected to analysis.
《XRDスペクトル測定》
 粉砕したサンプルAを用いて、負極電極材料のXRDスペクトルを下記の条件で測定し、硫酸鉛の[211]面に相当するピークの半値全幅(°)を求める。
 使用装置:RIGAKU社製の全自動多目的X線回折装置 Smart Lab(水平ゴニオメータθ-θ型、Cu-Kα線)
 解析ソフト:RIGAKU社製の統合粉末X線解析ソフトウェアPDXL2
 印加電圧:40kV
 印加電流:30mA
 試料ホルダー:直径18mmの円形ホルダー
 標準物質:シリコン
<< XRD spectrum measurement >>
Using the pulverized sample A, the XRD spectrum of the negative electrode material is measured under the following conditions, and the full width at half maximum (°) of the peak corresponding to the [211] plane of lead sulfate is obtained.
Equipment used: Fully automatic multipurpose X-ray diffractometer manufactured by RIGAKU Smart Lab (horizontal goniometer θ-θ type, Cu-Kα ray)
Analysis software: Integrated powder X-ray analysis software PDXL2 manufactured by RIGAKU
Applied voltage: 40kV
Applied current: 30mA
Sample holder: Circular holder with a diameter of 18 mm Standard material: Silicon
《EPMA分析》
 サンプルBを用いて、負極板の厚み方向に平行な断面のBaの分布を、EPMA(島津製作所製の電子線マイクロアナライザ EPMA-1600)により分析し、解像度250dpi以上350dpi以下の画像を得る。得られた画像の画素数がX方向200×Y方向400の領域(領域A)において、Baの特性X線に帰属されるRGBのRの強度を最大値(具体的には、255)に調節し、当該最大値の1/2の強度(=255/2≒128)を閾値として、画像処理ソフトにより二値化処理する。二値化処理した画像において、閾値以上の強度を示す部分の、領域Aに占める比率(%)を求める。この比率は、閾値以上の強度を示す部分の面積の、領域Aの面積に占める比率(%)である。また、領域Aの0.05%以上の面積割合を有する島の個数は、二値化処理した画像において計測される。画像処理ソフトとしては、JTrim(ver.1.53c)を用いる。
<< EPMA analysis >>
Using sample B, the distribution of Ba in a cross section parallel to the thickness direction of the negative electrode plate is analyzed by EPMA (electron microanalyzer EPMA-1600 manufactured by Shimadzu Corporation) to obtain an image having a resolution of 250 dpi or more and 350 dpi or less. In the region (region A) where the number of pixels of the obtained image is 200 in the X direction × 400 in the Y direction, the intensity of RGB R attributed to the characteristic X-ray of Ba is adjusted to the maximum value (specifically, 255). Then, the binarization process is performed by the image processing software with the intensity of 1/2 of the maximum value (= 255/2 ≈128) as a threshold value. In the binarized image, the ratio (%) of the portion showing the intensity equal to or higher than the threshold value in the region A is obtained. This ratio is the ratio (%) of the area of the portion showing the intensity equal to or higher than the threshold value to the area of the region A. Further, the number of islands having an area ratio of 0.05% or more of the region A is measured in the binarized image. JTrim (ver. 1.53c) is used as the image processing software.
 《有機防縮剤の定量》
 粉砕されたサンプルCを1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で除き、濾液(以下、濾液Dとも称する。)を回収する。
<< Quantification of organic shrinkage agent >>
The pulverized sample C is immersed in a 1 mol / L NaOH aqueous solution to extract an organic shrinkage proofing agent. The insoluble component is removed by filtration from the extracted NaOH aqueous solution containing the organic shrinkage proofing agent, and the filtrate (hereinafter, also referred to as filtrate D) is recovered.
 濾液Dの所定量を測り取り、脱塩した後、濃縮し、乾燥すれば、有機防縮剤の粉末(以下、サンプルEとも称する。)が得られる。脱塩は、脱塩カラムを用いて行うか、濾液Dをイオン交換膜に通すことにより行うか、もしくは、濾液Dを透析チューブに入れて蒸留水中に浸すことにより行われる。 A predetermined amount of the filtrate D is measured, desalted, concentrated, and dried to obtain an organic shrink-proofing agent powder (hereinafter, also referred to as sample E). Desalting is performed using a desalting column, by passing the filtrate D through an ion exchange membrane, or by placing the filtrate D in a dialysis tube and immersing it in distilled water.
 サンプルEの赤外分光スペクトル、サンプルEを蒸留水等に溶解して得られる溶液の紫外可視吸収スペクトル、サンプルEを重水等の溶媒に溶解して得られる溶液のNMRスペクトル、または物質を構成している個々の化合物の情報を得ることができる熱分解GC-MSなどから得た情報を組み合わせて、有機防縮剤を特定する。 It constitutes an infrared spectral spectrum of sample E, an ultraviolet visible absorption spectrum of a solution obtained by dissolving sample E in distilled water or the like, an NMR spectrum of a solution obtained by dissolving sample E in a solvent such as heavy water, or a substance. The organic shrink-proofing agent is specified by combining the information obtained from the thermal decomposition GC-MS or the like which can obtain the information of the individual compounds.
 上記濾液Dの紫外可視吸収スペクトルを測定する。スペクトル強度と予め作成した検量線と測り取った濾液Dの量とサンプルCの質量とから、負極電極材料中の有機防縮剤の含有量を定量する。分析対象の有機防縮剤の構造式の厳密な特定ができず、同一の有機防縮剤の検量線を使用できない場合は、分析対象の有機防縮剤と類似の紫外可視吸収スペクトル、赤外分光スペクトル、NMRスペクトルなどを示す、入手可能な有機防縮剤を使用して検量線を作成する。 Measure the ultraviolet-visible absorption spectrum of the filtrate D. The content of the organic shrinkage barrier in the negative electrode material is quantified from the spectral intensity, the calibration curve prepared in advance, the measured amount of the filtrate D, and the mass of the sample C. If the structural formula of the organic shrinkage proofing agent to be analyzed cannot be specified exactly and the calibration curve of the same organic shrinkage proofing agent cannot be used, an ultraviolet-visible absorption spectrum or an infrared spectroscopic spectrum similar to that of the organic shrinkage proofing agent to be analyzed, A calibration curve is prepared using an available organic shrink-proofing agent showing an NMR spectrum or the like.
 《炭素質材料、硫酸バリウム、および補強材の定量》
 粉砕されたサンプルC10gに対し、20質量%濃度の硝酸を50mL加え、約20分加熱し、鉛成分を鉛イオンとして溶解させる。次に、得られた溶液を濾過して、炭素質材料、硫酸バリウム等の固形分を濾別する。
<< Quantification of carbonaceous materials, barium sulfate, and reinforcing materials >>
To 10 g of the crushed sample C, 50 mL of nitric acid having a concentration of 20% by mass is added and heated for about 20 minutes to dissolve the lead component as lead ions. Next, the obtained solution is filtered to separate solids such as carbonaceous material and barium sulfate.
 得られた固形分を水中に分散させて分散液とした後、篩いを用いて分散液から補強材を回収する。補強材を、水洗および乾燥し、質量を測定する。乾燥物の質量がサンプルCの質量に占める比率(百分率)を求める。この比率が負極電極材料中の補強材の量に相当する。 After the obtained solid content is dispersed in water to form a dispersion liquid, the reinforcing material is recovered from the dispersion liquid using a sieve. The reinforcing material is washed with water and dried, and the mass is measured. The ratio (percentage) of the mass of the dried product to the mass of the sample C is obtained. This ratio corresponds to the amount of reinforcing material in the negative electrode material.
 補強材を除去した後の分散液に対し、予め質量を測定したメンブレンフィルターを用いて吸引ろ過を施し、濾別された試料とともにメンブレンフィルターを110℃±5℃の乾燥器で乾燥する。得られる試料は、炭素質材料と硫酸バリウムとの混合試料(以下、サンプルFとも称する)である。乾燥後のサンプルFとメンブレンフィルターとの合計質量からメンブレンフィルターの質量を差し引いて、サンプルFの質量(M)を測定する。その後、乾燥後のサンプルFをメンブレンフィルターとともに坩堝に入れ、1300℃以上で灼熱灰化させる。残った残渣は酸化バリウムである。酸化バリウムの質量を硫酸バリウムの質量に変換して硫酸バリウムの質量(M)を求める。質量Mから質量Mを差し引いて炭素質材料の質量を算出する。 After removing the reinforcing material, the dispersion liquid is suction-filtered using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C. ± 5 ° C. The obtained sample is a mixed sample of a carbonaceous material and barium sulfate (hereinafter, also referred to as sample F). The mass of the sample F (M m ) is measured by subtracting the mass of the membrane filter from the total mass of the sample F and the membrane filter after drying. Then, the dried sample F is placed in a crucible together with a membrane filter and incinerated at 1300 ° C. or higher. The remaining residue is barium oxide. The mass of barium oxide is converted into the mass of barium sulfate to obtain the mass of barium sulfate ( MB ). The mass of the carbonaceous material is calculated by subtracting the mass MB from the mass M m .
《硫酸バリウム粒子の粒子径》
 サンプルFの所定量を坩堝に入れ、酸素雰囲気下、500℃で加熱することにより炭素質材料を二酸化炭素に変換して除去する。これにより、残渣として硫酸バリウムを回収する。回収された硫酸バリウム(サンプルG)を用いて、硫酸バリウム粒子の平均粒子径および最大粒子径を測定する。硫酸バリウム粒子の平均粒子径および最大粒子径は、レーザー回折式の粒度分布測定装置により測定される。レーザー回折式の粒度分布測定装置としては、Malvern Panalytical社製のマスターサイザー3000を用いる。硫酸バリウム粒子の平均粒子径は、サンプルGをヘキサメタリン酸ナトリウム(NaHMP)水溶液(NaHMPの濃度:0.05質量%)中に添加し、1分間の超音波分散を行うことにより得られた分散液を用いて測定される。
<< Particle size of barium sulfate particles >>
A predetermined amount of sample F is placed in a crucible and heated at 500 ° C. in an oxygen atmosphere to convert the carbonaceous material into carbon dioxide and remove it. As a result, barium sulfate is recovered as a residue. The recovered barium sulfate (sample G) is used to measure the average particle size and the maximum particle size of the barium sulfate particles. The average particle size and the maximum particle size of the barium sulfate particles are measured by a laser diffraction type particle size distribution measuring device. As the laser diffraction type particle size distribution measuring device, a master sizer 3000 manufactured by Malvern Panasonic is used. The average particle size of barium sulfate particles was obtained by adding sample G to an aqueous solution of sodium hexametaphosphate (NaHMP) (NaHMP concentration: 0.05% by mass) and performing ultrasonic dispersion for 1 minute. Is measured using.
(負極板の製造方法)
 以下に、鉛蓄電池用負極板の製造方法についてより具体的に説明する。負極板(例えば、条件(a)および条件(b)の少なくとも一方を充足する負極板)は、硫酸バリウムの粉末を予め特定の液体に分散させた分散液を用いることにより製造できる。
(Manufacturing method of negative electrode plate)
Hereinafter, a method for manufacturing a negative electrode plate for a lead storage battery will be described more specifically. The negative electrode plate (for example, a negative electrode plate satisfying at least one of the conditions (a) and (b)) can be manufactured by using a dispersion liquid in which barium sulfate powder is dispersed in a specific liquid in advance.
 鉛蓄電池用負極板の製造方法は、分散液を調製する第1工程と、負極ペーストを調製する第2工程と、を備える。製造方法は、通常、さらに、負極ペーストを用いて負極板を作製する第3工程を備える。以下に、各工程についてより具体的に説明する。 The method for manufacturing a negative electrode plate for a lead storage battery includes a first step of preparing a dispersion liquid and a second step of preparing a negative electrode paste. The manufacturing method usually further includes a third step of manufacturing a negative electrode plate using a negative electrode paste. Hereinafter, each step will be described in more detail.
(第1工程)
 第1工程では、硫酸バリウム粉末と液体とを混合して分散液を調製する。液体としては、硫酸水溶液または純水が用いられる。
(First step)
In the first step, barium sulfate powder and a liquid are mixed to prepare a dispersion. As the liquid, an aqueous sulfuric acid solution or pure water is used.
 硫酸バリウム粉末の平均粒子径(D50)は、1μm以下であり、0.7μm以下または0.6μm以下であってもよく、0.4μm以下または0.3μm以下であってもよい。液体として硫酸水溶液を用いる場合には、硫酸バリウム粉末の平均粒子径が1μm以下であれば、回生受入性の向上効果が得られる。液体として純水を用いる場合には、硫酸バリウム粉末の平均粒子径が0.4μm以下であれば、回生受入性の向上効果が得られる。硫酸バリウム粉末の平均粒子径の下限は特に制限されない。硫酸バリウム粉末の平均粒子径は、例えば、0.01μm以上である。硫酸バリウム粉末の平均粒子径は、分散液の調製に用いられる原料としての硫酸バリウム粉末の平均粒子径である。 The average particle size (D50) of the barium sulfate powder is 1 μm or less, may be 0.7 μm or less or 0.6 μm or less, and may be 0.4 μm or less or 0.3 μm or less. When an aqueous sulfuric acid solution is used as the liquid, if the average particle size of the barium sulfate powder is 1 μm or less, the effect of improving the regenerative acceptability can be obtained. When pure water is used as the liquid, if the average particle size of the barium sulfate powder is 0.4 μm or less, the effect of improving the regenerative acceptability can be obtained. The lower limit of the average particle size of barium sulfate powder is not particularly limited. The average particle size of barium sulfate powder is, for example, 0.01 μm or more. The average particle size of barium sulfate powder is the average particle size of barium sulfate powder as a raw material used for preparing a dispersion.
 より高い回生受入性を確保する観点からは、硫酸バリウム粉末の最大粒子径は、例えば、2.5μm以下であり、2μm以下が好ましい。硫酸バリウム粉末の最大粒子径は、分散液の調製に用いられる原料としての硫酸バリウム粉末の一次粒子径の最大値である。 From the viewpoint of ensuring higher regenerative acceptability, the maximum particle size of barium sulfate powder is, for example, 2.5 μm or less, preferably 2 μm or less. The maximum particle size of barium sulfate powder is the maximum value of the primary particle size of barium sulfate powder as a raw material used for preparing a dispersion.
 硫酸バリウム粉末の平均粒子径および最大粒子径は、分散液の調製に用いられる原料としての硫酸バリウム粉末をサンプルとして用い、硫酸バリウム粒子の平均粒子径および最大粒子径の場合に準じて測定できる。 The average particle size and maximum particle size of barium sulfate powder can be measured according to the case of the average particle size and maximum particle size of barium sulfate particles using barium sulfate powder as a raw material used for preparing a dispersion as a sample.
 硫酸水溶液の密度は、1g/cmより大きければよい。硫酸水溶液の密度は、1.03g/cm以上が好ましい。この場合、密度が高まることで、硫酸バリウム粒子がさらに帯電し、分散液中における硫酸バリウム粒子の分散性がさらに向上する。よって、より高い回生受入性を確保することができる。硫酸水溶液の密度が高くなると、回生受入性が高くなる傾向がある。そのため、硫酸水溶液の密度の上限は特に制限されず、例えば、1.4g/cm以下であってもよい。なお、硫酸水溶液の密度は、20℃における密度である。 The density of the aqueous sulfuric acid solution may be larger than 1 g / cm 3 . The density of the aqueous sulfuric acid solution is preferably 1.03 g / cm 3 or more. In this case, as the density increases, the barium sulfate particles are further charged, and the dispersibility of the barium sulfate particles in the dispersion is further improved. Therefore, higher regenerative acceptability can be ensured. The higher the density of the aqueous sulfuric acid solution, the higher the regenerative acceptability tends to be. Therefore, the upper limit of the density of the aqueous sulfuric acid solution is not particularly limited, and may be, for example, 1.4 g / cm 3 or less. The density of the aqueous sulfuric acid solution is the density at 20 ° C.
 分散液は、硫酸バリウム粉末と液体とを混合することにより得られる。混合の方法は特に制限されない。例えば、公知の撹拌機、ミキサーを用いてもよい。混合は、ボールミルなどの粉砕機を用いて行ってもよい。しかし、硫酸バリウム粉末の硫酸水溶液または純水に対する親和性は比較的高いため、硫酸バリウム粉末は、硫酸水溶液または純水に比較的分散し易い。そのため、粉砕機などを用いなくても、撹拌機またはミキサーなどにより、硫酸水溶液または純水中に、硫酸バリウム粒子を高い分散性で分散させることができる。 The dispersion liquid is obtained by mixing barium sulfate powder and a liquid. The mixing method is not particularly limited. For example, a known stirrer or mixer may be used. Mixing may be performed using a crusher such as a ball mill. However, since the barium sulfate powder has a relatively high affinity for the aqueous sulfuric acid solution or pure water, the barium sulfate powder is relatively easy to disperse in the aqueous sulfuric acid solution or pure water. Therefore, barium sulfate particles can be dispersed in a sulfuric acid aqueous solution or pure water with high dispersibility by using a stirrer or a mixer without using a crusher or the like.
 鉛蓄電池において、放電時に生成する硫酸鉛の粗大化をより効果的に抑制する観点からは、第1工程で得られる分散液は、界面活性作用を有する成分(有機防縮剤および界面活性剤からなる群より選択される少なくとも一種など)を含まないことが望ましい。特に、硫酸バリウム粉末と液体との混合を、界面活性作用を有する成分の非存在下で行うことが望ましい。なお、鉛酸化物を主成分とする粉末との混合に先立って、分散液に界面活性作用を有する成分を添加し、得られる分散液を、鉛酸化物を主成分とする粉末と混合する場合を除外することを意図していない。しかし、より高い回生受入性を確保する観点からは、負極ペーストに界面活性作用を有する成分を添加する場合には、分散液とは別に添加することが好ましい。 From the viewpoint of more effectively suppressing the coarsening of lead sulfate generated during discharge in a lead storage battery, the dispersion liquid obtained in the first step comprises a component having a surfactant action (organic shrink proofing agent and a surfactant). It is desirable not to include at least one selected from the group). In particular, it is desirable to mix the barium sulfate powder and the liquid in the absence of a component having a surface-active action. When a component having a surface-active action is added to the dispersion liquid prior to mixing with the powder containing lead oxide as a main component, and the obtained dispersion liquid is mixed with the powder containing lead oxide as a main component. Is not intended to be excluded. However, from the viewpoint of ensuring higher regenerative acceptability, when a component having a surfactant action is added to the negative electrode paste, it is preferable to add it separately from the dispersion liquid.
 硫酸バリウム粉末と液体との混合は、液体が固化しない温度で行うことができ、例えば、10℃以上で行ってもよく、20℃以上で行ってもよい。混合は、例えば、60℃以下の温度で行うことができ、40℃以下で行ってもよい。 The barium sulfate powder and the liquid can be mixed at a temperature at which the liquid does not solidify, and may be performed at, for example, 10 ° C. or higher, or 20 ° C. or higher. The mixing can be carried out, for example, at a temperature of 60 ° C. or lower, and may be carried out at 40 ° C. or lower.
 硫酸バリウム粉末と液体との混合は、10℃以上(または20℃以上)60℃以下、あるいは10℃以上(または20℃以上)40℃以下で行ってもよい。 The barium sulfate powder and the liquid may be mixed at 10 ° C. or higher (or 20 ° C. or higher) at 60 ° C. or lower, or at 10 ° C. or higher (or 20 ° C. or higher) at 40 ° C. or lower.
 硫酸バリウム粉末と液体との混合は、不活性ガス(窒素ガスなど)の雰囲気下で行ってもよく、大気雰囲気下で行ってもよい。 The barium sulfate powder and the liquid may be mixed in an atmosphere of an inert gas (nitrogen gas, etc.) or in an atmospheric atmosphere.
 硫酸バリウム粉末と液体との混合は、減圧下で行ってもよく、大気圧下で行ってもよい。 The barium sulfate powder and the liquid may be mixed under reduced pressure or at atmospheric pressure.
 硫酸バリウム粉末と液体との混合時間は、特に制限されず、混合のスケール、および混合方法などに応じて調節される。 The mixing time of barium sulfate powder and liquid is not particularly limited, and is adjusted according to the mixing scale, mixing method, and the like.
 分散液中の硫酸バリウム(つまり、硫酸バリウム粒子)の含有量は、55質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下または25質量%以下であってもよい。硫酸バリウムの含有量がこのような範囲である場合、分散液における硫酸バリウム粒子の分散性がさらに高まることで、負極ペースト中における硫酸バリウム粒子の分散性をさらに高めることができる。分散液中の硫酸バリウムの含有量は、例えば、0.1質量%以上であり、1質量%以上または5質量%以上であってもよい。 The content of barium sulfate (that is, barium sulfate particles) in the dispersion is preferably 55% by mass or less, more preferably 40% by mass or less, and may be 30% by mass or less or 25% by mass or less. When the content of barium sulfate is in such a range, the dispersibility of the barium sulfate particles in the dispersion liquid is further enhanced, so that the dispersibility of the barium sulfate particles in the negative electrode paste can be further enhanced. The content of barium sulfate in the dispersion is, for example, 0.1% by mass or more, and may be 1% by mass or more or 5% by mass or more.
 分散液中の硫酸バリウムの含有量は、0.1質量%以上55質量%以下(または40質量%以下)、0.1質量%以上30質量%以下(または25質量%以下)、1質量%以上55質量%以下(または40質量%以下)、1質量%以上30質量%以下(または25質量%以下)、5質量%以上55質量%以下(または40質量%以下)、あるいは5質量%以上30質量%以下(または25質量%以下)であってもよい。 The content of barium sulfate in the dispersion is 0.1% by mass or more and 55% by mass or less (or 40% by mass or less), 0.1% by mass or more and 30% by mass or less (or 25% by mass or less), 1% by mass. 55% by mass or less (or 40% by mass or less), 1% by mass or more and 30% by mass or less (or 25% by mass or less), 5% by mass or more and 55% by mass or less (or 40% by mass or less), or 5% by mass or more. It may be 30% by mass or less (or 25% by mass or less).
 第1工程では、必要に応じて、添加剤を用いてもよい。しかし、硫酸バリウム粒子の表面に添加剤が付着して、放電時の硫酸鉛の結晶生成が阻害されないように、添加剤を用いないことが好ましい。 In the first step, additives may be used if necessary. However, it is preferable not to use the additive so that the additive does not adhere to the surface of the barium sulfate particles and inhibit the crystal formation of lead sulfate during discharge.
(第2工程)
 第2工程では、分散液と鉛酸化物を主成分とする粉末とを混合することにより負極ペーストを調製する。分散液および鉛酸化物を主成分とする粉末とともに、必要に応じて、添加剤を混合してもよい。添加剤としては、負極電極材料について記載した他の添加剤が挙げられる。有機防縮剤などを分散液と別に添加することで、放電時の硫酸バリウム粒子を核とする硫酸鉛の結晶成長が妨げられることが低減されるとともに、有機防縮剤の防縮効果を効果的に発揮させることができる。
(Second step)
In the second step, a negative electrode paste is prepared by mixing the dispersion liquid and the powder containing lead oxide as a main component. If necessary, an additive may be mixed with the dispersion liquid and the powder containing lead oxide as a main component. Examples of the additive include other additives described for the negative electrode material. By adding an organic shrinkage proofing agent separately from the dispersion liquid, it is possible to reduce the hindrance of crystal growth of lead sulfate having barium sulfate particles as nuclei during discharge, and effectively exert the shrinkage proofing effect of the organic shrinkage proofing agent. Can be made to.
 混合の順序は特に制限されない。例えば、全ての成分を一度に混合してもよく、一部の成分を予め混合し、残りの成分とともにさらに混合してもよい。例えば、分散液以外の成分(例えば、鉛酸化物を主成分とする粉末、炭素質材料、有機防縮剤および補強材)を予め混合し、得られる混合物を分散液と混合してもよい。分散液以外に、さらに液状成分(純水および硫酸水溶液の少なくとも一方など)を用いて混合してもよい。例えば、分散液以外の成分を予め混合し、純水を加えてさらに混合し、硫酸水溶液を用いた分散液を加えてさらに混合してもよい。また、分散液以外の成分を予め混合し、純水を用いた分散液を加えてさらに混合し、硫酸水溶液を加えてさらに混合してもよい。 The order of mixing is not particularly limited. For example, all components may be mixed at once, some components may be mixed in advance, and the remaining components may be further mixed. For example, components other than the dispersion liquid (for example, a powder containing a lead oxide as a main component, a carbonaceous material, an organic shrink-proofing agent and a reinforcing material) may be mixed in advance, and the obtained mixture may be mixed with the dispersion liquid. In addition to the dispersion liquid, a liquid component (such as at least one of pure water and an aqueous sulfuric acid solution) may be used for mixing. For example, components other than the dispersion liquid may be mixed in advance, pure water may be added and further mixed, and a dispersion liquid using a sulfuric acid aqueous solution may be added and further mixed. Further, components other than the dispersion liquid may be mixed in advance, a dispersion liquid using pure water may be added and further mixed, and a sulfuric acid aqueous solution may be added and further mixed.
 混合は、特に制限されず、例えば、混練機を用いて行うことができる。 Mixing is not particularly limited and can be performed using, for example, a kneader.
 混合は、例えば、10℃以上で行うことができ、20℃以上で行ってもよい。混合は、例えば、40℃以下で行ってもよい。 Mixing can be performed at, for example, 10 ° C or higher, and may be performed at 20 ° C or higher. Mixing may be performed, for example, at 40 ° C. or lower.
 混合は、大気雰囲気下で行うことができる。混合は、通常、大気圧下で行われる。 Mixing can be done in an atmospheric atmosphere. Mixing is usually done under atmospheric pressure.
 鉛酸化物を主成分とする粉末は、鉛酸化物として一酸化鉛を含んでいる。鉛酸化物を主成分とする粉末中の鉛酸化物の割合は、50質量%より多く、通常、70質量%以上である。鉛酸化物を主成分とする粉末は、一酸化鉛の粉末のみを含んでもよい。また、鉛酸化物を主成分とする粉末は、鉛酸化物の粉末に加え、鉛の粉末などの他の成分を含んでいてもよい。鉛酸化物を主成分とする粉末に占める他の成分の割合は、通常、30質量%以下である。鉛酸化物を主成分とする粉末は、一般に、「鉛粉」と呼ばれることもある。鉛酸化物を主成分とする粉末としては、鉛蓄電池の電極材料の製造に利用される一般的な鉛粉を利用してもよい。なお、充電状態の負極活物質は、海綿状鉛である。 The powder containing lead oxide as the main component contains lead monoxide as lead oxide. The proportion of lead oxide in the powder containing lead oxide as a main component is more than 50% by mass, and usually 70% by mass or more. The powder containing lead oxide as a main component may contain only lead monoxide powder. Further, the powder containing lead oxide as a main component may contain other components such as lead powder in addition to the lead oxide powder. The ratio of other components to the powder containing lead oxide as a main component is usually 30% by mass or less. Powder containing lead oxide as a main component is also generally called "lead powder". As the powder containing lead oxide as a main component, general lead powder used for producing an electrode material for a lead storage battery may be used. The negative electrode active material in the charged state is spongy lead.
 分散液と鉛酸化物を主成分とする粉末との混合比は、鉛酸化物を主成分とする粉末100質量部に対する硫酸バリウム(または硫酸バリウム粉末)の量が、例えば、0.1質量部以上、好ましくは0.5質量部以上または1質量部以上となるように調節される。硫酸バリウムの量が0.5質量部以上の場合、通常は、硫酸バリウム粒子の凝集による分散性の低下が顕在化し易いが、この場合であっても、分散液を用いることより、負極電極材料中での硫酸バリウム粒子の高い分散性を確保することができる。また、分散液と鉛酸化物を主成分とする粉末との混合比は、鉛酸化物を主成分とする粉末100質量部に対する硫酸バリウム(または硫酸バリウム粉末)の量が、例えば、7質量部以下、好ましくは5質量部以下となるように調節される。この場合、高い初期容量を確保することができる。分散液と鉛酸化物を主成分とする粉末との混合比は、負極電極材料中の硫酸バリウム粒子の含有量が上述の範囲となるように調節される。 The mixing ratio of the dispersion liquid and the powder containing lead oxide as a main component is such that the amount of barium sulfate (or barium sulfate powder) is 0.1 part by mass with respect to 100 parts by mass of the powder containing lead oxide as a main component. As mentioned above, it is preferably adjusted to be 0.5 parts by mass or more or 1 part by mass or more. When the amount of barium sulfate is 0.5 parts by mass or more, the decrease in dispersibility due to the aggregation of barium sulfate particles is usually likely to become apparent, but even in this case, the negative electrode material can be obtained by using the dispersion liquid. High dispersibility of barium sulfate particles in the inside can be ensured. The mixing ratio of the dispersion liquid and the powder containing lead oxide as a main component is such that the amount of barium sulfate (or barium sulfate powder) is 7 parts by mass with respect to 100 parts by mass of the powder containing lead oxide as a main component. Hereinafter, it is preferably adjusted to be 5 parts by mass or less. In this case, a high initial capacity can be secured. The mixing ratio of the dispersion liquid and the powder containing lead oxide as a main component is adjusted so that the content of barium sulfate particles in the negative electrode electrode material is within the above range.
 鉛酸化物を主成分とする粉末100質量部に対する硫酸バリウムの量は、0.1質量部以上7質量部以下(または5質量部以下)、0.5質量部以上7質量部以下(または5質量部以下)、あるいは1質量部以上7質量部以下(または5質量部以下)であってもよい。 The amount of barium sulfate with respect to 100 parts by mass of the powder containing lead oxide as a main component is 0.1 part by mass or more and 7 parts by mass or less (or 5 parts by mass or less), and 0.5 parts by mass or more and 7 parts by mass or less (or 5). It may be 1 part by mass or less) or 1 part by mass or more and 7 parts by mass or less (or 5 parts by mass or less).
 炭素質材料としては、負極電極材料について例示した炭素質材料が挙げられる。負極ペーストは、炭素質材料を一種含んでいてもよく、二種以上含んでいてもよい。 Examples of the carbonaceous material include carbonaceous materials exemplified for the negative electrode electrode material. The negative electrode paste may contain one kind of carbonaceous material, or may contain two or more kinds of carbonaceous materials.
 炭素質材料の量は、鉛酸化物を主成分とする粉末100質量部に対して、例えば、0.1質量部以上である。炭素質材料の量は、鉛酸化物を主成分とする粉末100質量部に対して、例えば、3.5質量部以下である。 The amount of the carbonaceous material is, for example, 0.1 part by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component. The amount of the carbonaceous material is, for example, 3.5 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component.
 有機防縮剤としては、負極電極材料について例示した有機防縮剤などが挙げられる。負極ペーストは、有機防縮剤を一種含んでいてもよく、二種以上含んでいてもよい。 Examples of the organic shrinkage proofing agent include the organic shrinkage proofing agent exemplified for the negative electrode electrode material. The negative electrode paste may contain one kind of organic shrinkage proofing agent, or may contain two or more kinds.
 有機防縮剤の量は、鉛酸化物を主成分とする粉末100質量部に対して、例えば、0.01質量部以上である。有機防縮剤の量は、鉛酸化物を主成分とする粉末100質量部に対して、例えば、1.2質量部以下である。 The amount of the organic shrinkage proofing agent is, for example, 0.01 part by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component. The amount of the organic shrink proofing agent is, for example, 1.2 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component.
 補強材としては、負極電極材料について例示した補強材が挙げられる。 Examples of the reinforcing material include the reinforcing material exemplified for the negative electrode electrode material.
 補強材の量は、鉛酸化物を主成分とする粉末100質量部に対して、例えば、0.03質量部以上である。補強材の量は、鉛酸化物を主成分とする粉末100質量部に対して、例えば、0.6質量部以下である。 The amount of the reinforcing material is, for example, 0.03 part by mass or more with respect to 100 parts by mass of the powder containing lead oxide as a main component. The amount of the reinforcing material is, for example, 0.6 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component.
(第3工程)
 第3工程では、第2工程で調製した負極ペーストを用いて負極板を作製する。より具体的には、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製する。次いで、未化成の負極板を化成することにより負極板が形成される。形成される負極板は、負極電極材料と負極電極材料を保持する負極集電体とを備える。負極集電体については、鉛蓄電池の負極板についての説明を参照できる。
(Third step)
In the third step, a negative electrode plate is produced using the negative electrode paste prepared in the second step. More specifically, a negative electrode current collector is filled with a negative electrode paste, and aged and dried to produce an unchemicald negative electrode plate. Next, the negative electrode plate is formed by forming the unchemical negative electrode plate. The negative electrode plate to be formed includes a negative electrode material and a negative electrode current collector that holds the negative electrode material. For the negative electrode current collector, the description of the negative electrode plate of the lead storage battery can be referred to.
 熟成工程では、室温(例えば、20℃以上35℃以下)より高温で、かつ高湿度で、未化成の負極板を熟成させることが好ましい。 In the aging step, it is preferable to ripen the unchemical negative electrode plate at a temperature higher than room temperature (for example, 20 ° C. or higher and 35 ° C. or lower) and high humidity.
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group. The formation produces spongy lead.
(正極板)
 鉛蓄電池の正極板としては、ペースト式およびクラッド式のいずれの正極板を用いてもよい。ペースト式正極板は、正極集電体と、正極電極材料とを具備する。クラッド式の正極板の構成は前述の通りである。
(Positive plate)
As the positive electrode plate of the lead storage battery, either a paste type or a clad type positive electrode plate may be used. The paste type positive electrode plate includes a positive electrode current collector and a positive electrode material. The configuration of the clad type positive electrode plate is as described above.
 正極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛シートまたは鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工および打ち抜き(パンチング)加工が挙げられる。正極集電体として格子状の集電体を用いると、正極電極材料を担持させ易いため好ましい。 The positive electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the positive electrode current collector because it is easy to support the positive electrode material.
 正極集電体に用いる鉛合金としては、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金などが挙げられる。正極集電体は、表面層を備えていてもよい。正極集電体の表面層と内側の層とは組成が異なってもよい。表面層は、正極集電体の一部に形成されていてもよい。表面層は、正極集電体の格子部分のみ、耳部分のみ、または枠骨部分のみに形成されていてもよい。 Examples of the lead alloy used for the positive electrode current collector include Pb-Sb-based alloys, Pb-Ca-based alloys, and Pb-Ca-Sn-based alloys. The positive electrode current collector may include a surface layer. The composition of the surface layer and the inner layer of the positive electrode current collector may be different. The surface layer may be formed on a part of the positive electrode current collector. The surface layer may be formed only on the lattice portion, the ear portion, or the frame bone portion of the positive electrode current collector.
 正極板に含まれる正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤(補強材など)を含んでもよい。 The positive electrode material contained in the positive electrode plate contains a positive electrode active material (lead dioxide or lead sulfate) that develops a capacity by a redox reaction. The positive electrode material may contain other additives (reinforcing material, etc.), if necessary.
 添加剤の補強材としては、例えば、繊維(無機繊維、有機繊維(負極電極材料の補強材について例示した樹脂で形成された有機繊維など)など)が挙げられる。 Examples of the reinforcing material for the additive include fibers (inorganic fibers, organic fibers (organic fibers formed of the resin exemplified for the reinforcing material of the negative electrode electrode material, etc.)).
 未化成のペースト式正極板は、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。正極ペーストは、鉛酸化物を主成分とする粉末、添加剤、水、および硫酸を混練することで調製される。未化成のクラッド式正極板は、集電部で連結された芯金が挿入された多孔質なチューブに、正極電極材料の構成成分を含むスラリーまたは鉛酸化物を主成分とする粉末を充填し、複数のチューブを連座で結合することにより形成される。その後、これらの未化成の正極板を化成することにより正極板が得られる。鉛酸化物を主成分とする粉末としては、例えば、負極ペーストについて記載した鉛酸化物を主成分とする粉末が使用される。 The unchemical paste type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying. The positive electrode paste is prepared by kneading a powder containing lead oxide as a main component, an additive, water, and sulfuric acid. In the unchemical clad type positive electrode plate, a porous tube into which a core metal connected by a current collector is inserted is filled with a slurry containing components of a positive electrode material or a powder containing lead oxide as a main component. , Formed by joining multiple tubes in a collective punishment. Then, a positive electrode plate is obtained by forming these unchemical positive electrode plates. As the powder containing lead oxide as a main component, for example, the powder containing lead oxide as a main component described for the negative electrode paste is used.
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の正極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。 Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical positive electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group.
(極板群)
 極板群は、少なくとも1つの正極板と少なくとも1つの負極板と、正極板および負極板の間に介在するセパレータとを備えている。極板群が2つ以上の負極板を備える場合、少なくとも1つの負極板が上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)であればよい。より高い回生受入性を確保し易い観点からは、極板群に含まれる負極板の数の50%以上(好ましくは80%以上)が上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)であることが好ましい。極板群に含まれる負極板のうち、上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)の数の割合は100%以下である。極板群に含まれる負極板の全てが上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)であってもよい。
(Pole plate group)
The electrode plate group includes at least one positive electrode plate, at least one negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate. When the electrode plate group includes two or more negative electrode plates, the negative electrode plate (or the negative electrode obtained by the above manufacturing method) in which at least one negative electrode plate satisfies at least one of the above conditions (a) and (b) is satisfied. It may be a board). From the viewpoint of easily ensuring higher regenerative acceptability, 50% or more (preferably 80% or more) of the number of negative electrode plates included in the electrode plate group satisfies at least one of the above conditions (a) and (b). It is preferable that the negative electrode plate is satisfied (or the negative electrode plate obtained by the above-mentioned manufacturing method). Among the negative electrode plates included in the electrode plate group, the ratio of the number of negative electrode plates (or negative electrode plates obtained by the above manufacturing method) satisfying at least one of the above conditions (a) and (b) is 100%. It is as follows. All of the negative electrode plates included in the electrode plate group may be negative electrode plates (or negative electrode plates obtained by the above manufacturing method) that satisfy at least one of the above conditions (a) and (b).
 鉛蓄電池は、極板群を1つ備えてもよく、2つ以上備えてもよい。鉛蓄電池が、2つ以上の極板群を備える場合、少なくとも1つの極板群が、上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)を備えていればよい。より高い回生受入性を確保し易い観点からは、鉛蓄電池に含まれる極板群の数の50%以上(好ましくは80%以上)において、極板群が上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)を備えていることが好ましい。鉛蓄電池に含まれる極板群のうち、上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)を備える極板群の割合は100%以下である。鉛蓄電池に含まれる極板群の全てにおいて、上記の条件(a)および条件(b)の少なくとも一方を充足する負極板(もしくは上記の製造方法により得られた負極板)が含まれることが好ましい。 The lead-acid battery may be provided with one electrode plate group or two or more lead-acid batteries. When the lead storage battery includes two or more electrode plate groups, at least one electrode plate group is obtained by a negative electrode plate (or the above-mentioned manufacturing method) satisfying at least one of the above conditions (a) and (b). It suffices to have a negative electrode plate). From the viewpoint of facilitating higher regenerative acceptance, the electrode plate group has the above-mentioned conditions (a) and (b) in 50% or more (preferably 80% or more) of the number of electrode plate groups contained in the lead storage battery. ) Satisfying at least one of the negative electrode plates (or the negative electrode plate obtained by the above-mentioned manufacturing method) is preferably provided. Percentage of the electrode plate group including the negative electrode plate (or the negative electrode plate obtained by the above manufacturing method) satisfying at least one of the above conditions (a) and (b) among the electrode plate groups included in the lead storage battery. Is 100% or less. It is preferable that all of the electrode plates included in the lead storage battery include a negative electrode plate (or a negative electrode plate obtained by the above manufacturing method) that satisfies at least one of the above conditions (a) and (b). ..
(電解液)
 電解液は、硫酸を含む水溶液である。電解液は、さらに、Naイオン、Liイオン、Mgイオン、およびAlイオンからなる群より選択される少なくとも一種などを含んでもよい。電解液は、必要に応じてゲル化させてもよい。
(Electrolytic solution)
The electrolytic solution is an aqueous solution containing sulfuric acid. The electrolytic solution may further contain at least one selected from the group consisting of Na ion, Li ion, Mg ion, and Al ion. The electrolytic solution may be gelled if necessary.
 電解液の20℃における比重は、例えば、1.10以上である。電解液の20℃における比重は、1.35以下であってもよい。なお、これらの比重は、既化成で満充電状態の鉛蓄電池の電解液についての値である。 The specific gravity of the electrolytic solution at 20 ° C. is, for example, 1.10 or more. The specific gravity of the electrolytic solution at 20 ° C. may be 1.35 or less. It should be noted that these specific gravities are values for the electrolytic solution of the lead-acid battery which has already been used and is in a fully charged state.
 本発明の第1側面および第2側面に係る鉛蓄電池、第3側面および第4側面に係る鉛蓄電池用負極板の製造方法を以下にまとめて記載する。 The methods for manufacturing the lead-acid battery according to the first side surface and the second side surface of the present invention and the negative electrode plate for the lead storage battery according to the third side surface and the fourth side surface are summarized below.
 (1)鉛蓄電池であって、
 前記鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備え、
 前記極板群は、正極板と、負極板と、前記負極板および前記正極板の間に介在するセパレータと、を備え、
 前記負極板は、硫酸バリウム粒子を含む負極電極材料を備え、
 前記鉛蓄電池を満充電した後、5時間率電流で50%の充電状態まで放電したときの前記負極電極材料のX線回折スペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅は、0.137°以上である(条件(a)と称することがある)、鉛蓄電池。
(1) Lead-acid battery
The lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
The half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum of the negative electrode material when the lead-acid battery is fully charged and then discharged to a 50% charged state with a 5-hour rate current is A lead-acid battery having a temperature of 0.137 ° or higher (sometimes referred to as condition (a)).
 (2)上記(1)において、前記半値全幅は、0.139°以上であってもよい。 (2) In the above (1), the full width at half maximum may be 0.139 ° or more.
 (3)上記(1)または(2)において、前記半値全幅は、0.2°以下または0.19°以下であってもよい。 (3) In the above (1) or (2), the full width at half maximum may be 0.2 ° or less or 0.19 ° or less.
 (4)上記(1)~(3)のいずれか1つにおいて、前記負極板の厚み方向に平行な断面を、電子線マイクロアナライザで分析した250dpi以上350dpi以下の解像度の画像の画素数がX方向200×Y方向400の領域において、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、前記最大値の1/2の強度を閾値として二値化処理したときの前記閾値以上の強度を示す部分の前記領域に占める比率が、2.8%以下、2.5%以下、または1.0%以下であってもよい。 (4) In any one of the above (1) to (3), the number of pixels of an image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron beam microanalyzer on a cross section parallel to the thickness direction of the negative electrode plate is X. When the intensity of R of RGB attributed to the characteristic X-rays of Ba is adjusted to the maximum value in the region of direction 200 × direction 400 and binarized with the intensity of 1/2 of the maximum value as a threshold value. The ratio of the portion exhibiting the intensity equal to or higher than the threshold value to the region may be 2.8% or less, 2.5% or less, or 1.0% or less.
 (5)上記(4)において、前記部分のうち、前記領域の0.05%以上の面積割合を有する島の個数が1個以下(条件(b)と称することがある)であってもよい。 (5) In the above (4), the number of islands having an area ratio of 0.05% or more of the region may be one or less (sometimes referred to as condition (b)) in the portion. ..
 (6)鉛蓄電池であって、
 前記鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備え、
 前記極板群は、正極板と、負極板と、前記負極板および前記正極板の間に介在するセパレータとを備え、
 前記負極板は、硫酸バリウム粒子を含む負極電極材料を備え、
 前記負極板の厚み方向に平行な断面を、電子線マイクロアナライザで分析した250dpi以上350dpi以下の解像度の画像の画素数がX方向200×Y方向400の領域において、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、前記最大値の1/2の強度を閾値として二値化処理したときの前記閾値以上の強度を示す部分のうち、前記領域の0.05%以上の面積割合を有する島の個数が1個以下である(条件(b))、鉛蓄電池。
(6) Lead-acid battery
The lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
The number of pixels of the image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer on the cross section parallel to the thickness direction of the negative electrode plate is assigned to the characteristic X-ray of Ba in the region of 200 × 400 in the X direction. Of the portion showing the intensity equal to or higher than the threshold value when the intensity of R of RGB is adjusted to the maximum value and the binarization process is performed with the intensity of 1/2 of the maximum value as the threshold value, 0.05% of the area. A lead storage battery in which the number of islands having the above area ratio is one or less (condition (b)).
 (7)上記(6)において、前記部分の前記領域に占める比率が、2.8%以下、2.5%以下、または1.0%以下であってもよい。 (7) In the above (6), the ratio of the portion to the region may be 2.8% or less, 2.5% or less, or 1.0% or less.
 (8)上記(5)~(7)のいずれか1つにおいて、1つの前記島の面積割合は、0.5%以下、0.3%以下または0.1%以下であってもよい。 (8) In any one of the above (5) to (7), the area ratio of one island may be 0.5% or less, 0.3% or less, or 0.1% or less.
 (9)上記(5)~(8)のいずれか1つにおいて、前記島の個数は、1個未満であってもよい。 (9) In any one of the above (5) to (8), the number of the islands may be less than one.
 (10)上記(1)~(9)のいずれか1つにおいて、前記負極電極材料中の前記硫酸バリウム粒子の含有量は、0.1質量%以上、0.5質量%以上、または1質量%以上であってもよい。 (10) In any one of the above (1) to (9), the content of the barium sulfate particles in the negative electrode electrode material is 0.1% by mass or more, 0.5% by mass or more, or 1% by mass. It may be% or more.
 (11)上記(1)~(10)のいずれか1つにおいて、前記負極電極材料中の前記硫酸バリウム粒子の含有量は、7.5質量%以下または5.3質量%以下であってもよい。 (11) In any one of the above (1) to (10), even if the content of the barium sulfate particles in the negative electrode electrode material is 7.5% by mass or less or 5.3% by mass or less. good.
 (12)上記(1)~(11)のいずれか1つにおいて、前記負極電極材料において前記硫酸バリウム粒子の平均粒子径は、1μm以下、0.7μm以下、0.6μm以下、0.4μm以下、または0.3μm以下であってもよい。 (12) In any one of the above (1) to (11), the average particle diameter of the barium sulfate particles in the negative electrode material is 1 μm or less, 0.7 μm or less, 0.6 μm or less, 0.4 μm or less. , Or may be 0.3 μm or less.
 (13)上記(1)~(12)のいずれか1つにおいて、前記負極電極材料において前記硫酸バリウム粒子の平均粒子径は、0.01μm以上であってもよい。 (13) In any one of the above (1) to (12), the average particle size of the barium sulfate particles in the negative electrode material may be 0.01 μm or more.
 (14)上記(1)~(13)のいずれか1つにおいて、前記硫酸バリウム粒子の最大粒子径は、2.5μm以下、または2μm以下であってもよい。 (14) In any one of the above (1) to (13), the maximum particle size of the barium sulfate particles may be 2.5 μm or less, or 2 μm or less.
 (15)上記(1)~(14)のいずれか1つにおいて、前記負極電極材料は、炭素質材料を含んでもよい。 (15) In any one of the above (1) to (14), the negative electrode material may contain a carbonaceous material.
 (16)上記(15)において、前記負極電極材料中の前記炭素質材料の含有量は、0.1質量%以上であってもよい。 (16) In the above (15), the content of the carbonaceous material in the negative electrode material may be 0.1% by mass or more.
 (17)上記(15)または(16)において、前記負極電極材料中の前記炭素質材料の含有量は、3.5質量%以下であってもよい。 (17) In the above (15) or (16), the content of the carbonaceous material in the negative electrode material may be 3.5% by mass or less.
 (18)上記(1)~(17)のいずれか1つにおいて、前記負極電極材料は、有機防縮剤を含んでもよい。 (18) In any one of the above (1) to (17), the negative electrode electrode material may contain an organic shrinkage proofing agent.
 (19)上記(18)において、前記負極電極材料中の前記有機防縮剤の含有量は、0.01質量%以上であってもよい。 (19) In the above (18), the content of the organic shrinkage barrier in the negative electrode electrode material may be 0.01% by mass or more.
 (20)上記(18)または(19)において、前記負極電極材料中の前記有機防縮剤の含有量は、1.2質量%以下であってもよい。 (20) In the above (18) or (19), the content of the organic shrinkage barrier in the negative electrode electrode material may be 1.2% by mass or less.
 (21)上記(1)~(20)のいずれか1つにおいて、前記負極電極材料は、補強材を含んでもよい。 (21) In any one of the above (1) to (20), the negative electrode material may include a reinforcing material.
 (22)上記(21)において、前記負極電極材料中の前記補強材の含有量は、0.03質量%以上であってもよい。 (22) In the above (21), the content of the reinforcing material in the negative electrode electrode material may be 0.03% by mass or more.
 (23)上記(21)または(22)において、前記負極電極材料中の前記補強材の含有量は、0.6質量%以下であってもよい。 (23) In the above (21) or (22), the content of the reinforcing material in the negative electrode electrode material may be 0.6% by mass or less.
 (24)上記(1)~(23)のいずれか1つにおいて、前記電解液の20℃における比重は、1.10以上であってもよい。 (24) In any one of the above (1) to (23), the specific gravity of the electrolytic solution at 20 ° C. may be 1.10 or more.
 (25)上記(1)~(24)のいずれか1つにおいて、前記電解液の20℃における比重は、1.35以下であってもよい。 (25) In any one of the above (1) to (24), the specific gravity of the electrolytic solution at 20 ° C. may be 1.35 or less.
 (26)上記(1)~(25)のいずれか1つにおいて、前記鉛蓄電池の極板群は、少なくとも1つの正極板と少なくとも1つの負極板と、正極板および負極板の間に介在するセパレータとを備えていてもよい。 (26) In any one of the above (1) to (25), the electrode plate group of the lead storage battery includes at least one positive electrode plate, at least one negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate. May be provided.
 (27)上記(26)において、前記極板群が2つ以上の負極板を備える場合、少なくとも1つの負極板が上記の条件(a)および条件(b)の少なくとも一方を充足する負極板であってもよく、前記極板群に含まれる負極板の数の50%以上または80%以上が上記の条件(a)および条件(b)の少なくとも一方を充足する負極板であってもよく、前記極板群に含まれる負極板の全てが上記の条件(a)および条件(b)の少なくとも一方を充足する負極板であってもよい。 (27) In the above (26), when the electrode plate group includes two or more negative electrode plates, at least one negative electrode plate is a negative electrode plate that satisfies at least one of the above conditions (a) and (b). There may be a negative electrode plate in which 50% or more or 80% or more of the number of negative electrode plates included in the electrode plate group satisfies at least one of the above conditions (a) and (b). All of the negative electrode plates included in the electrode plate group may be negative electrode plates satisfying at least one of the above conditions (a) and (b).
 (28)上記(27)において、前記極板群に含まれる負極板のうち、上記の条件(a)および条件(b)の少なくとも一方を充足する負極板の数の割合は、通常、100%以下である。 (28) In the above (27), the ratio of the number of negative electrode plates that satisfy at least one of the above conditions (a) and (b) among the negative electrode plates included in the electrode plate group is usually 100%. It is as follows.
 (29)鉛蓄電池用負極板の製造方法であって、
 前記製造方法は、
 硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、
 前記分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備え、
 前記硫酸バリウム粉末の平均粒子径(D50)は、1μm以下であり、
 前記液体は、硫酸水溶液である、鉛蓄電池用負極板の製造方法。
(29) A method for manufacturing a negative electrode plate for a lead storage battery.
The manufacturing method is
The first step of mixing barium sulfate powder and liquid to prepare a dispersion,
A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
The average particle size (D50) of the barium sulfate powder is 1 μm or less.
A method for manufacturing a negative electrode plate for a lead storage battery, wherein the liquid is an aqueous solution of sulfuric acid.
 (30)上記(29)において、前記硫酸水溶液の20℃における密度は、例えば、1g/cmより大きく、1.03g/cm以上であってもよい。 (30) In the above (29), the density of the aqueous sulfuric acid solution at 20 ° C. may be, for example, larger than 1 g / cm 3 and 1.03 g / cm 3 or more.
 (31)上記(29)または(30)において、前記硫酸水溶液の20℃における密度は、1.4g/cm以下であってもよい。 (31) In the above (29) or (30), the density of the aqueous sulfuric acid solution at 20 ° C. may be 1.4 g / cm 3 or less.
 (32)上記(29)~(31)のいずれか1つにおいて、前記硫酸バリウム粉末の平均粒子径(D50)は、0.7μm以下、0.6μm以下、0.4μm以下、または0.3μm以下であってもよい。 (32) In any one of the above (29) to (31), the average particle size (D50) of the barium sulfate powder is 0.7 μm or less, 0.6 μm or less, 0.4 μm or less, or 0.3 μm. It may be as follows.
 (33)鉛蓄電池用負極板の製造方法であって、
 前記製造方法は、
 硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、
 前記分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備え、
 前記硫酸バリウム粉末の平均粒子径は、0.4μm以下であり、
 前記液体は、純水である、鉛蓄電池用負極板の製造方法。
(33) A method for manufacturing a negative electrode plate for a lead storage battery.
The manufacturing method is
The first step of mixing barium sulfate powder and liquid to prepare a dispersion,
A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
The average particle size of the barium sulfate powder is 0.4 μm or less, and the average particle size is 0.4 μm or less.
A method for manufacturing a negative electrode plate for a lead storage battery, wherein the liquid is pure water.
 (34)上記(33)において、前記純水の電気抵抗率は、0.1MΩ・cm以上であってもよい。 (34) In the above (33), the electrical resistivity of the pure water may be 0.1 MΩ · cm or more.
 (35)上記(33)または(34)において、前記純水の電気抵抗率は、1.5MΩ・cm以下であってもよい。 (35) In the above (33) or (34), the electrical resistivity of the pure water may be 1.5 MΩ · cm or less.
 (36)上記(33)~(35)のいずれか1つにおいて、前記硫酸バリウム粉末の平均粒子径(D50)は、0.3μm以下であってもよい。 (36) In any one of the above (33) to (35), the average particle size (D50) of the barium sulfate powder may be 0.3 μm or less.
 (37)上記(29)~(36)のいずれか1つにおいて、前記硫酸バリウム粉末の平均粒子径は、0.01μm以上であってもよい。 (37) In any one of the above (29) to (36), the average particle size of the barium sulfate powder may be 0.01 μm or more.
 (38)上記(29)~(37)のいずれか1つにおいて、前記硫酸バリウム粉末の最大粒子径は、2.5μm以下、または2μm以下であってもよい。 (38) In any one of the above (29) to (37), the maximum particle size of the barium sulfate powder may be 2.5 μm or less, or 2 μm or less.
 (39)上記(29)~(38)のいずれか1つにおいて、前記分散液中の硫酸バリウムの含有量は、55質量%以下、40質量%以下、30質量%以下、または25質量%以下であってもよい。 (39) In any one of the above (29) to (38), the content of barium sulfate in the dispersion is 55% by mass or less, 40% by mass or less, 30% by mass or less, or 25% by mass or less. May be.
 (40)上記(29)~(39)のいずれか1つにおいて、前記分散液中の硫酸バリウムの含有量は、0.1質量%以上、1質量%以上、または5質量%以上であってもよい。 (40) In any one of the above (29) to (39), the content of barium sulfate in the dispersion is 0.1% by mass or more, 1% by mass or more, or 5% by mass or more. May be good.
 (41)上記(29)~(40)のいずれか1つにおいて、前記硫酸バリウム粉末と前記液体との混合は、10℃以上、または20℃以上で行ってもよい。 (41) In any one of the above (29) to (40), the barium sulfate powder and the liquid may be mixed at 10 ° C. or higher, or 20 ° C. or higher.
 (42)上記(29)~(41)のいずれか1つにおいて、前記硫酸バリウム粉末と前記液体との混合は、60℃以下または40℃以下で行ってもよい。 (42) In any one of the above (29) to (41), the barium sulfate powder and the liquid may be mixed at 60 ° C. or lower or 40 ° C. or lower.
 (43)上記(29)~(42)のいずれか1つにおいて、前記鉛酸化物を主成分とする粉末100質量部に対する前記硫酸バリウム粉末の量は、0.1質量部以上、0.5質量部以上、または1質量部以上であってもよい。 (43) In any one of the above (29) to (42), the amount of the barium sulfate powder is 0.1 part by mass or more, 0.5 by mass with respect to 100 parts by mass of the powder containing the lead oxide as a main component. It may be 1 part by mass or more, or 1 part by mass or more.
 (44)上記(29)~(43)のいずれか1つにおいて、前記鉛酸化物を主成分とする粉末100質量部に対する前記硫酸バリウム粉末の量は、7質量部以下、または5質量部以下であってもよい。 (44) In any one of the above (29) to (43), the amount of the barium sulfate powder is 7 parts by mass or less or 5 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component. May be.
 (45)上記(29)~(44)のいずれか1つにおいて、前記鉛酸化物を主成分とする粉末中の前記鉛酸化物の割合は、例えば、50質量%より多く、70質量%以上であってもよい。 (45) In any one of the above (29) to (44), the proportion of the lead oxide in the powder containing the lead oxide as a main component is, for example, more than 50% by mass and 70% by mass or more. May be.
 (46)上記(29)~(45)のいずれか1つにおいて、前記鉛酸化物を主成分とする粉末に占める他の成分(鉛の粉末など)の割合は、30質量%以下であってもよい。 (46) In any one of the above (29) to (45), the ratio of the other component (lead powder, etc.) to the powder containing the lead oxide as a main component is 30% by mass or less. May be good.
 (47)上記(29)~(46)のいずれか1つにおいて、前記第2工程では、さらに炭素質材料を混合してもよい。 (47) In any one of the above (29) to (46), the carbonaceous material may be further mixed in the second step.
 (48)上記(47)において、前記炭素質材料の量は、前記鉛酸化物を主成分とする粉末100質量部に対して、0.1質量部以上であってもよい。 (48) In the above (47), the amount of the carbonaceous material may be 0.1 part by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
 (49)上記(47)または(48)において、前記炭素質材料の量は、前記鉛酸化物を主成分とする粉末100質量部に対して、3.5質量部以下であってもよい。 (49) In the above (47) or (48), the amount of the carbonaceous material may be 3.5 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
 (50)上記(29)~(49)のいずれか1つにおいて、前記第2工程では、さらに有機防縮剤を混合してもよい。 (50) In any one of the above (29) to (49), an organic shrink-proofing agent may be further mixed in the second step.
 (51)上記(50)において、前記有機防縮剤の量は、前記鉛酸化物を主成分とする粉末100質量部に対して、0.01質量部以上であってもよい。 (51) In the above (50), the amount of the organic shrink-proofing agent may be 0.01 part by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
 (52)上記(50)または(51)において、前記有機防縮剤の量は、前記鉛酸化物を主成分とする粉末100質量部に対して、1.2質量部以下であってもよい。 (52) In the above (50) or (51), the amount of the organic shrink-proofing agent may be 1.2 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
 (53)上記(29)~(52)のいずれか1つにおいて、前記第2工程では、さらに補強材を混合してもよい。 (53) In any one of the above (29) to (52), a reinforcing material may be further mixed in the second step.
 (54)上記(53)において、前記補強材の量は、前記鉛酸化物を主成分とする粉末100質量部に対して、0.03質量部以上であってもよい。 (54) In the above (53), the amount of the reinforcing material may be 0.03 part by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
 (55)上記(53)または(54)において、前記補強材の量は、前記鉛酸化物を主成分とする粉末100質量部に対して、0.6質量部以下であってもよい。 (55) In the above (53) or (54), the amount of the reinforcing material may be 0.6 parts by mass or less with respect to 100 parts by mass of the powder containing the lead oxide as a main component.
 図1に、鉛蓄電池の一例の外観を示す。
 鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収容されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で閉じられる。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
FIG. 1 shows the appearance of an example of a lead storage battery.
The lead-acid battery 1 includes an electric tank 12 for accommodating a plate group 11 and an electrolytic solution (not shown). The inside of the electric tank 12 is partitioned into a plurality of cell chambers 14 by a partition wall 13. In each cell chamber 14, one electrode plate group 11 is housed. The opening of the battery case 12 is closed by a lid 15 including a negative electrode terminal 16 and a positive electrode terminal 17. The lid 15 is provided with a liquid spout 18 for each cell chamber. At the time of refilling water, the liquid spout 18 is removed and the refilling liquid is replenished. The liquid spout 18 may have a function of discharging the gas generated in the cell chamber 14 to the outside of the battery.
 極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。 The electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 via a separator 4, respectively. Here, the bag-shaped separator 4 accommodating the negative electrode plate 2 is shown, but the form of the separator is not particularly limited. In the cell chamber 14 located at one end of the battery case 12, the negative electrode shelf portion 6 for connecting the plurality of negative electrode plates 2 in parallel is connected to the through connection body 8, and the positive electrode shelf portion for connecting the plurality of positive electrode plates 3 in parallel is connected. 5 is connected to the positive electrode column 7. The positive electrode column 7 is connected to the positive electrode terminal 17 outside the lid 15. In the cell chamber 14 located at the other end of the battery case 12, the negative electrode column 9 is connected to the negative electrode shelf portion 6, and the penetration connecting body 8 is connected to the positive electrode shelf portion 5. The negative electrode column 9 is connected to the negative electrode terminal 16 outside the lid 15. Each through-connecting body 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plates 11 of the adjacent cell chambers 14 in series.
 図4は、本開示の一実施形態に係る鉛蓄電池用負極板の製造方法を説明するための工程図である。図4の例では、まず、硫酸バリウム粉末と液体とを混合して分散液を調製する(S1)。次いで、分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する(S2)。負極ペーストの調製には、通常、分散媒が使用される。そして、負極ペーストを用いて負極板を作製する(S3)。 FIG. 4 is a process diagram for explaining a method for manufacturing a negative electrode plate for a lead storage battery according to an embodiment of the present disclosure. In the example of FIG. 4, first, a barium sulfate powder and a liquid are mixed to prepare a dispersion (S1). Next, the dispersion liquid and the powder containing lead oxide as a main component are mixed to prepare a negative electrode paste (S2). A dispersion medium is usually used to prepare the negative electrode paste. Then, a negative electrode plate is manufactured using the negative electrode paste (S3).
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されない。
[Example]
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
《電池E1~E26およびR1~R2》
(1)負極板の作製
 表に示す平均粒子径を有する硫酸バリウム粉末と表に示す液体とを容器に入れ、25℃および大気雰囲気下にて、スターラーおよび撹拌子を用いて混合することにより分散液を調製した。分散液中の硫酸バリウム粒子の含有量は、9~23質量%とした。液体のうち、リグニン水溶液としては、リグニン(リグニンスルホン酸ナトリウム)を純水に溶解させた水溶液(リグニン濃度:0.05質量%)を用いた。
<< Batteries E1 to E26 and R1 to R2 >>
(1) Preparation of negative electrode plate Barium sulfate powder having the average particle size shown in the table and the liquid shown in the table are placed in a container and dispersed by mixing with a stirrer and a stirrer at 25 ° C. and an atmospheric atmosphere. The liquid was prepared. The content of barium sulfate particles in the dispersion was 9 to 23% by mass. Among the liquids, as the lignin aqueous solution, an aqueous solution (lignin concentration: 0.05% by mass) in which lignin (sodium lignin sulfonate) was dissolved in pure water was used.
 鉛酸化物を主成分とする粉末、カーボンブラック、補強材(合成樹脂繊維)、および必要に応じてリグニン(リグニンスルホン酸ナトリウム)を混合し、混合物Aを得た。混合物Aに、純水、リグニン水溶液を用いた分散液、または純水を用いた分散液を添加して、混合し、混合物Bを得た。混合物Aに純水を添加した場合には、混合物Bに硫酸水溶液を用いた分散液を添加し、混合した。混合物Aに分散液を添加した場合には、混合物Bに硫酸水溶液を添加して、混合した。このようにして、負極ペーストを調製した。なお、混合物Bにリグニン水溶液を用いた分散液を用いる場合には、混合物Aの調製にはリグニンは用いなかった。 Mixture A was obtained by mixing a powder containing lead oxide as a main component, carbon black, a reinforcing material (synthetic resin fiber), and lignin (sodium lignin sulfonate) as needed. Pure water, a dispersion using an aqueous lignin solution, or a dispersion using pure water was added to the mixture A and mixed to obtain a mixture B. When pure water was added to the mixture A, a dispersion liquid using an aqueous sulfuric acid solution was added to the mixture B and mixed. When the dispersion was added to the mixture A, an aqueous sulfuric acid solution was added to the mixture B and the mixture was mixed. In this way, the negative electrode paste was prepared. When a dispersion liquid using an aqueous lignin solution was used as the mixture B, lignin was not used in the preparation of the mixture A.
 負極ペーストをPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥して、未化成の負極板(幅100mm、高さ115mm、厚さ1.2mm)を得た。カーボンブラック、リグニンおよび合成樹脂繊維の量は、既化成の満充電の状態で測定したときに、それぞれ0.3質量%、0.1質量%および0.1質量%になるように調節した。分散液の添加量は、鉛酸化物を主成分とする粉末100質量部に対する硫酸バリウムの量(質量部)が表に示す値となるように調節した。 The negative electrode paste was filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy, aged and dried to obtain an unchemical negative electrode plate (width 100 mm, height 115 mm, thickness 1.2 mm). The amounts of carbon black, lignin and synthetic resin fibers were adjusted to be 0.3% by mass, 0.1% by mass and 0.1% by mass, respectively, when measured in a fully charged state. The amount of the dispersion liquid added was adjusted so that the amount of barium sulfate (parts by mass) with respect to 100 parts by mass of the powder containing lead oxide as a main component became the value shown in the table.
(2)正極板の作製
 鉛酸化物を主成分とする粉末、補強材(合成樹脂繊維)、水および硫酸を混合して正極ペーストを調製した。正極ペーストをPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成し、乾燥して、未化成の正極板(幅100mm、高さ115mm、厚さ1.6mm)を得た。
(2) Preparation of positive electrode plate A positive electrode paste was prepared by mixing powder containing lead oxide as a main component, a reinforcing material (synthetic resin fiber), water and sulfuric acid. The positive electrode paste was filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy, aged and dried to obtain an unchemical positive electrode plate (width 100 mm, height 115 mm, thickness 1.6 mm). ..
(3)鉛蓄電池の作製
 未化成の負極板を、袋状セパレータに収容し、正極板と積層し、未化成の負極板7枚と未化成の正極板6枚とで極板群を形成した。
(3) Preparation of Lead-acid Battery The unchemical negative electrode plate was housed in a bag-shaped separator and laminated with the positive electrode plate to form a group of electrode plates with 7 unchemical negative electrode plates and 6 unchemical positive electrode plates. ..
 正極板の耳部同士および負極板の耳部同士を、それぞれ、正極棚部および負極棚部と溶接した。極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施して、定格電圧12Vおよび定格容量が30Ah(5時間率容量(定格容量に記載のAhの数値の1/5の電流(A)で放電するときの容量))の液式の鉛蓄電池E1~E26およびR1~R2を組み立てた。なお、電槽内では6個の極板群が直列に接続されている。 The ears of the positive electrode plate and the ears of the negative electrode plate were welded to the positive electrode shelf and the negative electrode shelf, respectively. The electrode plate group is inserted into a polypropylene battery case, an electrolytic solution is injected, and chemical conversion is performed in the battery tank. The rated voltage is 12 V and the rated capacity is 30 Ah (5-hour rate capacity (Ah described in the rated capacity). The liquid lead-acid batteries E1 to E26 and R1 to R2 of the liquid type lead storage battery E1 to E26 and R1 to R2 of the liquid type lead storage battery (capacity when discharging with the current (A) of 1/5 of the value of (A)) were assembled. In the battery case, six electrode plates are connected in series.
 電解液としては、硫酸水溶液を用いた。化成後の電解液の20℃における比重は1.285であった。 A sulfuric acid aqueous solution was used as the electrolytic solution. The specific gravity of the electrolytic solution after chemical conversion at 20 ° C. was 1.285.
《鉛蓄電池C1~C8》
 表に示す平均粒子径を有する硫酸バリウム粉末、鉛酸化物を主成分とする粉末、カーボンブラック、リグニン(リグニンスルホン酸ナトリウム)、および補強材(合成樹脂繊維)を混合した。混合物に純水を添加し、混合した。得られた混合物に硫酸水溶液を添加し、混合することにより負極ペーストを調製した。得られた負極ペーストを用いたこと以外は、鉛蓄電池E1~E26と同様にして、負極板を作製するとともに、鉛蓄電池を作製した。
<< Lead-acid batteries C1 to C8 >>
Barium sulfate powder having the average particle size shown in the table, powder containing lead oxide as a main component, carbon black, lignin (sodium lignin sulfonate), and a reinforcing material (synthetic resin fiber) were mixed. Pure water was added to the mixture and mixed. An aqueous sulfuric acid solution was added to the obtained mixture and mixed to prepare a negative electrode paste. A negative electrode plate was produced and a lead storage battery was produced in the same manner as the lead storage batteries E1 to E26 except that the obtained negative electrode paste was used.
《評価》
(1)回生受入性
 上記で作製した鉛蓄電池を、既述の手順で満充電状態にして、25℃±2℃で、回生受入性を下記の手順で評価した。
 鉛蓄電池をJIS D5301:2019に定義される5時間率電流で0.5時間放電し、SOCを90%に調整した。次いで、鉛蓄電池を12時間放置(休止)した。鉛蓄電池を、2.42V/セルの定電圧にて、最大電流100Aで充電した。このとき、充電開始から10秒間に充電された電気量を求める。この電気量に基づいて、回生受入性を評価する。各鉛蓄電池の回生受入性は、鉛蓄電池C1で得られた値を100%としたときの相対値(%)で示した。
"evaluation"
(1) Regenerative acceptance The lead storage battery produced above was fully charged according to the procedure described above, and the regenerative acceptance was evaluated at 25 ° C ± 2 ° C by the following procedure.
The lead-acid battery was discharged for 0.5 hours at the 5-hour rate current defined in JIS D5301: 2019 to adjust the SOC to 90%. Then, the lead storage battery was left (paused) for 12 hours. The lead-acid battery was charged at a constant voltage of 2.42 V / cell with a maximum current of 100 A. At this time, the amount of electricity charged in 10 seconds from the start of charging is obtained. Regenerative acceptability is evaluated based on this amount of electricity. The regenerative acceptability of each lead storage battery is shown as a relative value (%) when the value obtained by the lead storage battery C1 is taken as 100%.
(2)負極電極材料のXRDスペクトルの測定
 既述の手順で、SOC50%のときの負極板から採取した負極電極材料のXRDスペクトルを測定し、硫酸鉛の[211]面に相当する2θ=29.6°付近のピークの半値全幅を求めた。
(2) Measurement of XRD spectrum of negative electrode material In the procedure described above, the XRD spectrum of the negative electrode material collected from the negative electrode plate at 50% SOC was measured, and 2θ = 29 corresponding to the [211] plane of lead sulfate. The half-value full width of the peak near 6.6 ° was obtained.
(3)EPMA分析
 既述の手順で、負極板の断面のEPMA分析を行い、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、最大値の1/2の強度を閾値として二値化処理したときの閾値以上の強度を示す部分の領域Aに占める比率を求めた。また、閾値以上の強度を示す部分のうち、領域Aの0.05%以上の面積割合を有する島の個数を求めた。
(3) EPMA analysis According to the procedure described above, the EPMA analysis of the cross section of the negative electrode plate is performed, the intensity of R of RGB attributed to the characteristic X-ray of Ba is adjusted to the maximum value, and the intensity is halved of the maximum value. Was used as the threshold value, and the ratio of the portion showing the intensity equal to or higher than the threshold value to the region A when the binarization process was performed was determined. In addition, the number of islands having an area ratio of 0.05% or more of the region A among the portions showing strength equal to or higher than the threshold value was determined.
(4)走査型電子顕微鏡による画像撮影
 鉛蓄電池E15およびC5のそれぞれについて、既述の手順でサンプルAを調製する過程の負極電極材料を分離する前の負極板を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により撮影した。
(4) Imaging with a scanning electron microscope For each of the lead storage batteries E15 and C5, a negative electrode plate before separating the negative electrode material in the process of preparing sample A by the procedure described above was obtained with a scanning electron microscope (SEM:). Photographed by Scanning Electron Microscope).
 回生受入性の評価結果を表1および表2に示す。表には、分散液の調製に使用した液体の比重も示す。 Tables 1 and 2 show the evaluation results of regenerative acceptance. The table also shows the specific gravity of the liquid used to prepare the dispersion.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、硫酸バリウム粉末を、予め分散液を調製することなく、鉛酸化物を主成分とする粉末と混合する場合、硫酸バリウム粉末の平均粒子径が小さくなると、回生受入性が低下する傾向がある(C1~C6)。それに対し、予め、純水または硫酸水溶液を用いて硫酸バリウム粉末を分散させた分散液を調製すると、硫酸バリウム粉末の平均粒子径が小さくなっても、高い回生受入性が得られる(E1~E18)。 As shown in Table 1, when barium sulfate powder is mixed with a powder containing lead oxide as a main component without preparing a dispersion in advance, if the average particle size of the barium sulfate powder becomes smaller, the regenerative acceptability Tends to decrease (C1 to C6). On the other hand, if a dispersion liquid in which barium sulfate powder is dispersed using pure water or an aqueous solution of sulfuric acid is prepared in advance, high regenerative acceptability can be obtained even if the average particle size of the barium sulfate powder is small (E1 to E18). ).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、硫酸バリウム粉末を、予め分散液を調節することなく鉛酸化物を主成分とする粉末と混合する場合、硫酸バリウム粉末の量が多くなるほど、回生受入性は低下する傾向がある(C7、C5、およびC8)。それに対し、予め、純水または硫酸水溶液を用いて硫酸バリウム粉末を分散させた分散液を調製すると、硫酸バリウム粉末の量が多くなるほど、回生受入性が向上する(C7、C5およびC8と、E12~E15およびE19~E26との比較)。また、分散液の調製に使用する液体の密度が大きくなるほど、高い回生受入性が得られる。 As shown in Table 2, when barium sulfate powder is mixed with a powder containing lead oxide as a main component without adjusting the dispersion in advance, the larger the amount of barium sulfate powder, the lower the regenerative acceptability. There is a tendency (C7, C5, and C8). On the other hand, if a dispersion liquid in which barium sulfate powder is dispersed using pure water or an aqueous solution of sulfuric acid is prepared in advance, the larger the amount of barium sulfate powder, the better the regenerative acceptability (C7, C5 and C8, and E12). Comparison with ~ E15 and E19 ~ E26). Further, the higher the density of the liquid used for preparing the dispersion liquid, the higher the regenerative acceptability can be obtained.
 鉛蓄電池C1、E2、C5、E12~E15、およびE26について、XRDスペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅、EPMA分析における閾値以上の強度を示す部分の領域Aに占める比率および領域Aの0.05%以上の面積割合を有する島の個数を表3に示す。 For lead-acid batteries C1, E2, C5, E12 to E15, and E26, the full width at half maximum of the peak corresponding to the [211] plane of lead sulfate in the XRD spectrum, and the ratio of the portion showing the intensity above the threshold in EPMA analysis to the region A. Table 3 shows the number of islands having an area ratio of 0.05% or more of the region A.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、負極板が条件(a)または条件(b)を充足する場合、高い回生受入性が得られた。より高い回生受入性を確保する観点からは、閾値以上の強度を示す部分の領域Aに占める比率は、2.8以下が好ましく、2.5以下がより好ましく、1.0以下であることがさらに好ましい。なお、表3には、一部の鉛蓄電池における結果を示したが、他の鉛蓄電池E1~E11およびE16~E25についても、表3に示す結果と同様のまたは類似の結果が得られる。 As shown in Table 3, when the negative electrode plate satisfies the condition (a) or the condition (b), high regenerative acceptability was obtained. From the viewpoint of ensuring higher regenerative acceptability, the ratio of the portion exhibiting the intensity above the threshold value to the region A is preferably 2.8 or less, more preferably 2.5 or less, and more preferably 1.0 or less. More preferred. Although Table 3 shows the results for some lead-acid batteries, the same or similar results as those shown in Table 3 can be obtained for other lead-acid batteries E1 to E11 and E16 to E25.
 鉛蓄電池E15およびC5のSOC50%における負極板のSEM画像を図2および図3にそれぞれ示す。図2および図3に示されるように、鉛蓄電池E15では、鉛蓄電池C5に比べて、放電時に生成する硫酸鉛の粒子径が小さくなっており、粗大化が抑制されていることが分かる。 The SEM images of the negative electrode plates at 50% SOC of the lead-acid batteries E15 and C5 are shown in FIGS. 2 and 3, respectively. As shown in FIGS. 2 and 3, in the lead storage battery E15, the particle size of lead sulfate produced during discharge is smaller than that in the lead storage battery C5, and it can be seen that coarsening is suppressed.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきである。 Although the present invention has been described with respect to preferred embodiments at this time, such disclosure should not be construed in a limited way. Various modifications and modifications will undoubtedly become apparent to those skilled in the art belonging to the present invention by reading the above disclosure. Accordingly, the appended claims should be construed to include all modifications and modifications without departing from the true spirit and scope of the invention.
 本発明の第1側面および第2側面に係る鉛蓄電池は、高い回生受入性が求められる用途に適している。同様に、本発明の第3側面および第4側面に係る製造方法は、高い回生受入性が求められる鉛蓄電池の負極板の製造に適している。上記の鉛蓄電池および上記の製造方法により得られる負極板を含む鉛蓄電池は、車両(自動車、バイクなど)の始動用電源、産業用蓄電装置(例えば、電動車両(フォークリフトなど)などの電源)などに好適である。しかし、鉛蓄電池および負極板の用途はこれらに限定されない。 The lead-acid battery according to the first aspect and the second aspect of the present invention is suitable for applications requiring high regenerative acceptability. Similarly, the manufacturing method according to the third aspect and the fourth aspect of the present invention is suitable for manufacturing a negative electrode plate of a lead storage battery, which requires high regenerative acceptance. The lead-acid battery including the above-mentioned lead-acid battery and the negative electrode plate obtained by the above-mentioned manufacturing method can be used as a power source for starting a vehicle (automobile, motorcycle, etc.), an industrial power storage device (for example, a power source for an electric vehicle (forklift, etc.)), etc. Suitable for. However, the applications of lead-acid batteries and negative electrode plates are not limited to these.
 1:鉛蓄電池
 2:負極板
 3:正極板
 4:セパレータ
 5:正極棚部
 6:負極棚部
 7:正極柱
 8:貫通接続体
 9:負極柱
 11:極板群
 12:電槽
 13:隔壁
 14:セル室
 15:蓋
 16:負極端子
 17:正極端子
 18:液口栓
 
1: Lead-acid battery 2: Negative electrode plate 3: Positive electrode plate 4: Separator 5: Positive electrode shelf part 6: Negative electrode shelf part 7: Positive electrode pillar 8: Through connection body 9: Negative electrode pillar 11: Electrode plate group 12: Electric tank 13: Bulk partition 14: Cell chamber 15: Lid 16: Negative electrode terminal 17: Positive electrode terminal 18: Liquid spout

Claims (18)

  1.  鉛蓄電池であって、
     前記鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備え、
     前記極板群は、正極板と、負極板と、前記負極板および前記正極板の間に介在するセパレータと、を備え、
     前記負極板は、硫酸バリウム粒子を含む負極電極材料を備え、
     前記鉛蓄電池を満充電した後、5時間率電流で50%の充電状態まで放電したときの前記負極電極材料のX線回折スペクトルにおける硫酸鉛の[211]面に相当するピークの半値全幅は、0.137°以上である、鉛蓄電池。
    It ’s a lead-acid battery.
    The lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
    The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
    The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
    The half-value full width of the peak corresponding to the [211] plane of lead sulfate in the X-ray diffraction spectrum of the negative electrode material when the lead-acid battery is fully charged and then discharged to a 50% charged state with a 5-hour rate current is Lead-acid battery with a temperature of 0.137 ° or higher.
  2.  前記半値全幅は、0.139°以上である、請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the full width at half maximum is 0.139 ° or more.
  3.  前記半値全幅は、0.2°以下である、請求項1または2に記載の鉛蓄電池。 The lead-acid battery according to claim 1 or 2, wherein the full width at half maximum is 0.2 ° or less.
  4.  前記負極板の厚み方向に平行な断面を、電子線マイクロアナライザで分析した250dpi以上350dpi以下の解像度の画像の画素数がX方向200×Y方向400の領域において、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、前記最大値の1/2の強度を閾値として二値化処理したときの前記閾値以上の強度を示す部分の前記領域に占める比率が2.8%以下である、請求項1~3のいずれか1項に記載の鉛蓄電池。 The number of pixels of the image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer on the cross section parallel to the thickness direction of the negative electrode plate is assigned to the characteristic X-ray of Ba in the region of 200 × 400 in the X direction. When the intensity of R of RGB is adjusted to the maximum value and the binarization process is performed with the intensity of 1/2 of the maximum value as the threshold value, the ratio of the portion showing the intensity equal to or higher than the threshold value to the region is 2.8. The lead storage battery according to any one of claims 1 to 3, which is% or less.
  5.  前記部分のうち、前記領域の0.05%以上の面積割合を有する島の個数が1個以下である、請求項4に記載の鉛蓄電池。 The lead-acid battery according to claim 4, wherein the number of islands having an area ratio of 0.05% or more in the area is 1 or less in the portion.
  6.  鉛蓄電池であって、
     前記鉛蓄電池は、極板群および電解液を備える少なくとも1つのセルを備え、
     前記極板群は、正極板と、負極板と、前記負極板および前記正極板の間に介在するセパレータとを備え、
     前記負極板は、硫酸バリウム粒子を含む負極電極材料を備え、
     前記負極板の厚み方向に平行な断面を、電子線マイクロアナライザで分析した250dpi以上350dpi以下の解像度の画像の画素数がX方向200×Y方向400の領域において、Baの特性X線に帰属されるRGBのRの強度を最大値に調節し、前記最大値の1/2の強度を閾値として二値化処理したときの前記閾値以上の強度を示す部分のうち、前記領域の0.05%以上の面積割合を有する島の個数が1個以下である、鉛蓄電池。
    It ’s a lead-acid battery.
    The lead-acid battery comprises at least one cell comprising a group of plates and an electrolyte.
    The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate.
    The negative electrode plate comprises a negative electrode material containing barium sulfate particles.
    The number of pixels of the image having a resolution of 250 dpi or more and 350 dpi or less analyzed by an electron probe microanalyzer on the cross section parallel to the thickness direction of the negative electrode plate is assigned to the characteristic X-ray of Ba in the region of 200 × 400 in the X direction. Of the portion showing the intensity equal to or higher than the threshold value when the intensity of R of RGB is adjusted to the maximum value and the binarization process is performed with the intensity of 1/2 of the maximum value as the threshold value, 0.05% of the area. A lead storage battery in which the number of islands having the above area ratio is one or less.
  7.  前記部分の前記領域に占める比率が2.8%以下である、請求項6に記載の鉛蓄電池。 The lead-acid battery according to claim 6, wherein the ratio of the portion to the region is 2.8% or less.
  8.  前記負極電極材料中の前記硫酸バリウム粒子の含有量は、0.5質量%以上である、請求項1~7のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 7, wherein the content of the barium sulfate particles in the negative electrode electrode material is 0.5% by mass or more.
  9.  前記負極電極材料中の前記硫酸バリウム粒子の含有量は、7.5質量%以下である、請求項1~8のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 8, wherein the content of the barium sulfate particles in the negative electrode electrode material is 7.5% by mass or less.
  10.  前記負極電極材料において前記硫酸バリウム粒子の平均粒子径は、1μm以下である、請求項1~9のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 9, wherein the barium sulfate particles have an average particle size of 1 μm or less in the negative electrode material.
  11.  前記負極電極材料において前記硫酸バリウム粒子の平均粒子径は、0.01μm以上である、請求項1~10のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 10, wherein the barium sulfate particles have an average particle size of 0.01 μm or more in the negative electrode material.
  12.  鉛蓄電池用負極板の製造方法であって、
     前記製造方法は、
     硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、
     前記分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備え、
     前記硫酸バリウム粉末の平均粒子径は、1μm以下であり、
     前記液体は、硫酸水溶液である、鉛蓄電池用負極板の製造方法。
    A method for manufacturing negative electrode plates for lead-acid batteries.
    The manufacturing method is
    The first step of mixing barium sulfate powder and liquid to prepare a dispersion,
    A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
    The average particle size of the barium sulfate powder is 1 μm or less, and the average particle size is 1 μm or less.
    A method for manufacturing a negative electrode plate for a lead storage battery, wherein the liquid is an aqueous solution of sulfuric acid.
  13.  前記硫酸水溶液の20℃における密度は、1.03g/cm以上である、請求項12に記載の鉛蓄電池用負極板の製造方法。 The method for manufacturing a negative electrode plate for a lead storage battery according to claim 12, wherein the density of the aqueous sulfuric acid solution at 20 ° C. is 1.03 g / cm 3 or more.
  14.  鉛蓄電池用負極板の製造方法であって、
     前記製造方法は、
     硫酸バリウム粉末と液体とを混合して分散液を調製する第1工程と、
     前記分散液と鉛酸化物を主成分とする粉末とを混合して負極ペーストを調製する第2工程と、を備え、
     前記硫酸バリウム粉末の平均粒子径は、0.4μm以下であり、
     前記液体は、純水である、鉛蓄電池用負極板の製造方法。
    A method for manufacturing negative electrode plates for lead-acid batteries.
    The manufacturing method is
    The first step of mixing barium sulfate powder and liquid to prepare a dispersion,
    A second step of mixing the dispersion liquid and a powder containing a lead oxide as a main component to prepare a negative electrode paste is provided.
    The average particle size of the barium sulfate powder is 0.4 μm or less, and the average particle size is 0.4 μm or less.
    A method for manufacturing a negative electrode plate for a lead storage battery, wherein the liquid is pure water.
  15.  前記硫酸バリウム粉末の平均粒子径は、0.01μm以上である、請求項12~14のいずれか1項に記載の鉛蓄電池用負極板の製造方法。 The method for manufacturing a negative electrode plate for a lead storage battery according to any one of claims 12 to 14, wherein the barium sulfate powder has an average particle size of 0.01 μm or more.
  16.  前記鉛酸化物を主成分とする粉末100質量部に対する前記硫酸バリウム粉末の量は、0.5質量部以上である、請求項12~15のいずれか1項に記載の鉛蓄電池用負極板の製造方法。 The negative electrode plate for a lead storage battery according to any one of claims 12 to 15, wherein the amount of the barium sulfate powder is 0.5 parts by mass or more with respect to 100 parts by mass of the powder containing the lead oxide as a main component. Production method.
  17.  前記鉛酸化物を主成分とする粉末100質量部に対する前記硫酸バリウム粉末の量は、7質量部以下である、請求項12~16のいずれか1項に記載の鉛蓄電池用負極板の製造方法。 The method for manufacturing a negative electrode plate for a lead storage battery according to any one of claims 12 to 16, wherein the amount of the barium sulfate powder is 7 parts by mass or less with respect to 100 parts by mass of the powder containing lead oxide as a main component. ..
  18.  前記分散液中の硫酸バリウムの含有量は、55質量%以下である、請求項12~17のいずれか1項に記載の鉛蓄電池用負極板の製造方法。 The method for manufacturing a negative electrode plate for a lead storage battery according to any one of claims 12 to 17, wherein the content of barium sulfate in the dispersion is 55% by mass or less.
PCT/JP2021/039780 2020-11-13 2021-10-28 Lead storage battery and method for producing negative electrode plate for lead storage battery WO2022102422A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-189211 2020-11-13
JP2020189212A JP2022078500A (en) 2020-11-13 2020-11-13 Method for manufacturing negative electrode plate for lead storage battery
JP2020-189212 2020-11-13
JP2020189211A JP2022078499A (en) 2020-11-13 2020-11-13 Lead accumulator battery

Publications (1)

Publication Number Publication Date
WO2022102422A1 true WO2022102422A1 (en) 2022-05-19

Family

ID=81601128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039780 WO2022102422A1 (en) 2020-11-13 2021-10-28 Lead storage battery and method for producing negative electrode plate for lead storage battery

Country Status (1)

Country Link
WO (1) WO2022102422A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147961A (en) * 1982-02-26 1983-09-02 Shin Kobe Electric Mach Co Ltd Manufacture of negative plate for lead storage battery
JPH07169464A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Manufacture of negative electrode paste for lead-acid battery
JP2001332252A (en) * 2000-05-25 2001-11-30 Furukawa Battery Co Ltd:The Manufacturing method for negative electrode plate of lead battery, and the lead battery
JP2002134105A (en) * 2000-10-24 2002-05-10 Japan Storage Battery Co Ltd Method of producing electrode plate for lead acid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147961A (en) * 1982-02-26 1983-09-02 Shin Kobe Electric Mach Co Ltd Manufacture of negative plate for lead storage battery
JPH07169464A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Manufacture of negative electrode paste for lead-acid battery
JP2001332252A (en) * 2000-05-25 2001-11-30 Furukawa Battery Co Ltd:The Manufacturing method for negative electrode plate of lead battery, and the lead battery
JP2002134105A (en) * 2000-10-24 2002-05-10 Japan Storage Battery Co Ltd Method of producing electrode plate for lead acid battery

Similar Documents

Publication Publication Date Title
EP3011621B1 (en) Electrode material and use thereof in lithium ion batteries
WO2017025346A1 (en) Silicon particle-containing anode materials for lithium ion batteries
AU2016200591A1 (en) Lead-acid battery
JP5219360B2 (en) Lead acid battery
US10003069B2 (en) Lead-acid battery
JP6311799B2 (en) Lead acid battery
US7395979B2 (en) Methods of modifying fibers
AU2016200589A1 (en) Lead-acid battery
CN107305948A (en) Lead accumulator
KR20160129856A (en) Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
JPWO2018229875A1 (en) Liquid lead storage battery
JP2022078499A (en) Lead accumulator battery
DE69923141T2 (en) Positive active material for a sealed alkaline storage battery
WO2022102422A1 (en) Lead storage battery and method for producing negative electrode plate for lead storage battery
DE60200009T2 (en) Nickel electrode for alkaline secondary battery and alkaline secondary battery
JP2022078500A (en) Method for manufacturing negative electrode plate for lead storage battery
DE60106753T2 (en) ZINC CONTAINING ELECTRODE FOR ALKALINE ELECTROCHEMICAL CELL
DE10115455B4 (en) Graphite particles for a negative electrode of a nonaqueous secondary battery
DE112019005720T5 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
EP3588639B1 (en) Lead acid battery
DE102015106249A1 (en) hydrogen storage
EP3595054A1 (en) Lead acid battery
WO2022196566A1 (en) Lead acid storage battery
WO2022113636A1 (en) Lead-acid battery
JP2024029810A (en) lead acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891669

Country of ref document: EP

Kind code of ref document: A1