JP2001332146A - Oxide superconducting wire rod and its manufacturing method - Google Patents

Oxide superconducting wire rod and its manufacturing method

Info

Publication number
JP2001332146A
JP2001332146A JP2000153502A JP2000153502A JP2001332146A JP 2001332146 A JP2001332146 A JP 2001332146A JP 2000153502 A JP2000153502 A JP 2000153502A JP 2000153502 A JP2000153502 A JP 2000153502A JP 2001332146 A JP2001332146 A JP 2001332146A
Authority
JP
Japan
Prior art keywords
wire
superconducting
critical current
oxide superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000153502A
Other languages
Japanese (ja)
Other versions
JP3590567B2 (en
Inventor
Masahiro Kojima
正大 小嶋
Yoshinari Matsui
快成 松井
Norifumi Murakami
法史 村上
Kazuya Yamaguchi
和也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000153502A priority Critical patent/JP3590567B2/en
Publication of JP2001332146A publication Critical patent/JP2001332146A/en
Application granted granted Critical
Publication of JP3590567B2 publication Critical patent/JP3590567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To improve a superconducting characteristics of a metal sheathe Bi-based oxide superconducting wire rod fabricated by PIT method to reach a practical level. SOLUTION: By performing a heat treatment (wire rod annealing) on a wire rod under a given condition after a burning process, a non-superconducting phase of a film amorphous body formed in the burning process is changed into a superconducting crystal having a high Tc and the precipitates of CuO, Cu2O, and Ca2PbO4 whose particle sizes are 1 μm or less, so that the electrical coupling conditions between grain boundaries are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、(BiPb)2
2Ca2Cu3x系酸化物超電導体を用いた臨界電流密
度の高い線材並びにその製造方法に関する。
[0001] The present invention relates to (BiPb) 2 S
The present invention relates to a wire having a high critical current density using an r 2 Ca 2 Cu 3 O x -based oxide superconductor and a method for producing the same.

【0002】[0002]

【従来の技術】酸化物超電導体を用いて線材を製造する
際、主な製造方法として、1)PIT(Powder
in Tube)法 2)コーティング法3)薄膜法が
ある。
2. Description of the Related Art When a wire is manufactured using an oxide superconductor, 1) PIT (Powder)
In Tube) method 2) Coating method 3) Thin film method.

【0003】1)のPIT法は酸化物超電導体とともに
加熱されても、該超電導体と反応を起こさないAg等の
金属製チューブの中に該超電導粉末を充填し、伸線、圧
延、熱処理を繰り返し、線材に加工する方法である。こ
の方法は(BiPb)2Sr2Ca2Cu3x系酸化物超
電導線材を作成する際に用いられる。該Bi系酸化物超
電導体は結晶が板状に成長する性質があり、PIT法に
おける超電導体を引き延ばす工程で板状結晶が長手方向
に配向し易い。ここで、超電導電流は板状結晶の長手方
向に流れやすい性質を持っているので比較的良好な特性
を有する線材を作製することが出来る。
In the PIT method of 1), the superconducting powder is filled in a metal tube made of Ag or the like which does not react with the superconductor even when it is heated together with the oxide superconductor. This is a method of repeatedly processing into a wire. This method is used when producing a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconducting wire. The Bi-based oxide superconductor has a property that the crystal grows in a plate shape, and the plate crystal is easily oriented in the longitudinal direction in the step of extending the superconductor in the PIT method. Here, since the superconducting current has the property of easily flowing in the longitudinal direction of the plate-like crystal, a wire having relatively good characteristics can be manufactured.

【0004】2)のコーティング法は酸化物超電導粉末
に有機バインダーを添加してペースト化し、銀テープ表
面にコーティングしこれを熱処理して線材を得る方法で
ある。この方法は主にBi2Sr2Ca1Cu2x系酸化
物超電導線材を作成する際に用いられる。
[0004] The coating method 2) is a method in which an organic binder is added to an oxide superconducting powder to form a paste, which is coated on the surface of a silver tape and heat-treated to obtain a wire. This method is mainly used when creating a Bi 2 Sr 2 Ca 1 Cu 2 O x based oxide superconducting wire.

【0005】3)の薄膜法は金属テープの表面上に、酸
化物超電導体と格子定数が近い又は反応性が少ない中間
層を成膜しさらにその上に超電導薄膜を積層して線材と
する方法である。この方法は主にY1Ba2Cu3x系酸
化物超電導線材を作成する際に用いられる。
[0005] The thin film method of 3) is a method in which an intermediate layer having a lattice constant close to that of an oxide superconductor or having low reactivity is formed on the surface of a metal tape, and a superconducting thin film is laminated thereon to form a wire. It is. This method is mainly used when preparing a Y 1 Ba 2 Cu 3 O x -based oxide superconducting wire.

【0006】[0006]

【発明が解決しようとする課題】以上、代表的な3つの
線材の製造法について述べたが、製造工程、コスト、超
電導特性等を考慮すると最も実用のレベルに近いと考え
られるのは、1)のPIT法である。しかしこの方法で
得られる線材にしても、臨界電流密度は20,000〜
25,000A/cm2に留まっているが、実用に供す
るためには50,000A/cm2以上の特性が望まれ
ている。本発明の目的は上記PIT法で得られる線材の
超電導特性を向上させ、実用レベルに到達させることに
ある。
The method of manufacturing three typical wires has been described above. However, considering the manufacturing process, cost, superconducting characteristics, and the like, the most practical level is considered to be 1). PIT method. However, even with the wire obtained by this method, the critical current density is from 20,000 to
Remains to 25,000A / cm 2, but for practical use has been desired 50,000A / cm 2 or more properties. An object of the present invention is to improve the superconducting properties of a wire obtained by the above-mentioned PIT method and to reach a practical level.

【0007】[0007]

【課題を解決するための手段】第1の発明は、所定の組
成比のBiO1.5、PbO、SrCO3、CaCO3及び
CuOを混合し、所定の条件で仮焼し、次に所定の条件
で加圧成形し成形体を得た後、金属パイプの中に挿入
し、所定の条件で伸線、圧延して線材とし、この線材に
大気中で840〜845℃の焼成を50〜200時間行
い、この焼成工程を終了した後か、または焼成工程の降
温時において805〜825℃の温度で4〜30時間の
線材アニール処理を行うことを特徴とする酸化物超電導
線材の製造方法である。
According to a first aspect of the present invention, BiO 1.5 , PbO, SrCO 3 , CaCO 3 and CuO having a predetermined composition ratio are mixed, calcined under predetermined conditions, and then calcined under predetermined conditions. After obtaining a molded body by pressure molding, it is inserted into a metal pipe, drawn and rolled under predetermined conditions to obtain a wire, and the wire is fired at 840 to 845 ° C. in the air for 50 to 200 hours. A method of manufacturing an oxide superconducting wire, comprising performing a wire annealing treatment at a temperature of 805 to 825 [deg.] C. for 4 to 30 hours after completion of the firing step or at the time of lowering the temperature of the firing step.

【0008】第2の発明は、金属シース材の中に(Bi
Pb)2Sr2Ca2Cu3x系酸化物超電導体を有する
線材であって、該酸化物超電導体中における酸化物超電
導体結晶粒子の粒界間において、粒径1μm以下のCu
O粒子、Cu2O粒子、及びCa2PbO4粒子のうち少
なくとも1つを含有することを特徴とする酸化物超電導
線材である。
[0008] In the second invention, (Bi)
A wire having a Pb) 2 Sr 2 Ca 2 Cu 3 O x based oxide superconductor, between the grain boundaries of the oxide superconductor crystal grains in the oxide superconductor in a particle size 1μm or less of Cu
An oxide superconducting wire comprising at least one of O particles, Cu 2 O particles, and Ca 2 PbO 4 particles.

【0009】 [0009]

【実施の形態】図1は本発明の実施の形態にかかる金属
シース酸化物超電導線材中に有る酸化物超電導体の断面
TEM写真の模式図である。図1において超電導結晶1
1は(BiPb)2Sr2Ca2Cu3x系酸化物超電導
体を主成分とし、線材の長手方向に配向している。結晶
粒界における超電導結晶同士の接触は良好に保たれてい
る。一方、結晶粒界には粒径0.1〜1μmのCuO、
Cu2O及びCa2PbO 4の少なくとも1つの析出物1
2が見られる。
FIG. 1 shows a metal according to an embodiment of the present invention.
Cross section of oxide superconductor in sheath oxide superconducting wire
It is a schematic diagram of a TEM photograph. In FIG. 1, superconducting crystal 1
1 is (BiPb)TwoSrTwoCaTwoCuThreeOxOxide superconductivity
The body is the main component and is oriented in the longitudinal direction of the wire. crystal
Good contact between superconducting crystals at grain boundaries is maintained.
You. On the other hand, CuO having a particle size of 0.1 to 1 μm
CuTwoO and CaTwoPbO FourAt least one precipitate 1 of
2 can be seen.

【0010】図2は線材アニール処理を実施しない他
は、本発明と同様に作製した金属シース酸化物超電導線
材中に有る酸化物超電導体の断面TEM写真の模式図で
ある。図2において超電導結晶21は(BiPb)2
2Ca2Cu3x系酸化物超電導体を主成分とし、線材
の長手方向に配向している。結晶粒界には主にBi、P
b、Sr、Ca、Cu、及びOを主成分とする膜状でア
モルファス体の非超電導相22が形成されていて、超電
導結晶同士の接触面積が限られている。一方、結晶粒界
には粒径0.1〜1μmのCuO、Cu2O及びCa2
bO4の少なくとも1つの析出物は見られなかった。
FIG. 2 is a schematic TEM photograph of a cross section of an oxide superconductor in a metal sheath oxide superconducting wire manufactured in the same manner as the present invention except that the wire annealing treatment is not performed. In FIG. 2, the superconducting crystal 21 is (BiPb) 2 S
The main component is an r 2 Ca 2 Cu 3 O x -based oxide superconductor, which is oriented in the longitudinal direction of the wire. Bi, P mainly at the grain boundaries
An amorphous non-superconducting phase 22 is formed in the form of a film containing b, Sr, Ca, Cu, and O as main components, and the contact area between superconducting crystals is limited. On the other hand, CuO, Cu 2 O and Ca 2 P having a particle size of 0.1 to 1 μm
At least one precipitate of bO 4 was not found.

【0011】図3はPIT法により作製された金属シー
ス酸化物超電導線材の外観と断面である。金属シース材
31は酸化物超電導体32への熱的安定性の観点からA
g、Au、Ptが好ましい。酸化物超電導体32は(B
iPb)2Sr2Ca2Cu3 x系である。
FIG. 3 shows a metal sheet produced by the PIT method.
1 is an external view and a cross section of an oxide superconducting wire. Metal sheath material
31 is A from the viewpoint of thermal stability to the oxide superconductor 32.
g, Au and Pt are preferred. The oxide superconductor 32 is (B
iPb)TwoSrTwoCaTwoCuThreeO xSystem.

【0012】以下、これらの図を基に本発明の実施の形
態について説明する。従来のPIT法で作製された図3
の(BiPb)2Sr2Ca2Cu3x系金属シース酸化
物超電導線材中の酸化物超電導体32をTEM(透過型
電子顕微鏡)で観察してみると、図2に示すように超電
導結晶21の粒界に主にBi、Pb、Sr、Ca、C
u、及びOを主成分とする膜状でアモルファス体の非超
電導相22が形成されている。この非超電導相22が存
在するため、超電導結晶21間の電流の流れうる実質的
な面積が減少し、臨界電流値および臨界電流密度が制限
されているのではないかと考えられる。従って、(Bi
Pb)2Sr2Ca2Cu3 x系酸化物超電導線材におい
て臨界電流値および臨界電流密度を上げるためには、酸
化物超電導結晶21間の電気的な結合状態を改善するこ
とが重要と考えられる。
An embodiment of the present invention will be described below with reference to these drawings.
The state will be described. FIG. 3 manufactured by the conventional PIT method
(BiPb)TwoSrTwoCaTwoCuThreeOxMetal sheath oxidation
The oxide superconductor 32 in the material superconducting wire is TEM (transmission type).
When observed with an electron microscope), as shown in FIG.
Bi, Pb, Sr, Ca, C mainly at the grain boundaries of the conducting crystal 21
non-super amorphous and non-superficial film composed mainly of u and O
A conductive phase 22 is formed. This non-superconducting phase 22 exists.
, The current can substantially flow between the superconducting crystals 21.
Critical area and critical current value and critical current density are limited
It is thought that it is done. Therefore, (Bi
Pb)TwoSrTwoCaTwoCuThreeO xOxide superconducting wire
To increase the critical current value and critical current density by
To improve the electrical coupling between the superconducting crystals 21
Is considered important.

【0013】そこでこの膜状アモルファス体の非超電導
相22が形成されるプロセスを解明し、該非超電導相を
消滅させるか、または生成を阻止することができれば実
用レベルの臨界電流値および臨界電流密度を有する酸化
物超電導線材を作製することができることに想達した。
Therefore, the process of forming the non-superconducting phase 22 of this film-like amorphous body is clarified, and if the non-superconducting phase can be eliminated or its generation can be prevented, the critical current value and critical current density at practical levels can be reduced. It has been conceived that an oxide superconducting wire having the same can be produced.

【0014】膜状アモルファス体の非超電導相22が形
成されるプロセスは次のように考えられる。酸化物超電
導体32の原料物質である酸化物超電導合成粉を充填さ
れた金属シース線材を大気中で840〜845℃にて5
0〜150時間の焼成を行うと、金属シース中では、高
いTcを示す超電導相の(BiPb)2Sr2Ca2Cu3
x結晶が最も速い速度で成長し図3に示す金属シース
酸化物超電導線材が得られる。しかしこの結晶成長は液
相を伴った成長なので成長する結晶粒界間には常に液相
が介在する。結晶成長が進めば結晶粒界の液相の量も減
少するが、最終的に熱平衡状態の液相が残留し焼成後の
冷却工程において膜状アモルファス体の非超電導相22
が形成されると考えられる。
The process of forming the non-superconducting phase 22 of a film-like amorphous body is considered as follows. A metal sheath wire filled with an oxide superconducting synthetic powder, which is a raw material of the oxide superconductor 32, is heated at 840 to 845 ° C.
When sintering is performed for 0 to 150 hours, a superconducting phase (BiPb) 2 Sr 2 Ca 2 Cu 3 showing a high Tc is formed in the metal sheath.
The Ox crystal grows at the fastest rate, and the metal sheath oxide superconducting wire shown in FIG. 3 is obtained. However, since this crystal growth is accompanied by a liquid phase, a liquid phase always intervenes between the crystal grain boundaries that grow. As the crystal growth progresses, the amount of the liquid phase at the crystal grain boundaries also decreases, but the liquid phase in the thermal equilibrium state finally remains and the non-superconducting phase 22
Is considered to be formed.

【0015】本発明者は該焼成を完全に終了したかまた
は燒結工程の降温時にある金属シース線材に適切な温度
の熱を適切な時間与える(以下、線材アニール処理とい
う)ことで、該焼成工程で形成された膜状アモルファス
体の非超電導相をゆっくりとした反応速度で酸化物超電
導相とCuO、Cu2O及びCa2PbO4の少なくとも1
つの析出物へと変化させ、膜状アモルファス体22の消
滅または発生を阻止し得るのではないかと想達し本発明
を完成したものである。
The inventor of the present invention completes the sintering process or applies heat at an appropriate temperature to a metal sheath wire for an appropriate time during the sintering process when the temperature is lowered (hereinafter referred to as wire annealing process). The non-superconducting phase of the film-like amorphous body formed in the step (a) is slowly reacted with the oxide superconducting phase and at least one of CuO, Cu 2 O and Ca 2 PbO 4 .
The present invention has been completed by assuming that it is possible to prevent the disappearance or generation of the film-like amorphous body 22 by changing it into two precipitates.

【0016】すなわちこの反応の結果、輸送電流の障害
となっていた膜状アモルファス体の非超電導相22が高
いTcを有する超電導結晶11と粒径1μm以下のCu
O、Cu2O及びCa2PbO4の少なくとも1つの析出物
12に変化してしまったのである。該析出物12は非超
電導相ではあるものの粒径が小さいので、粒界中に存在
しても輸送電流への障害とはならないばかりか、該析出
物の存在は、膜状アモルファス体22が超電導体結晶1
1へ変化したことの指標として用いることができる。
That is, as a result of this reaction, the non-superconducting phase 22 of the film-like amorphous body, which has been an obstacle to the transport current, has a superconducting crystal 11 having a high Tc and a Cu
This turned into at least one precipitate 12 of O, Cu 2 O and Ca 2 PbO 4 . Although the precipitate 12 is a non-superconducting phase but has a small particle size, its presence in the grain boundary does not not only hinder the transport current but also the presence of the precipitate Body crystal 1
It can be used as an index of the change to 1.

【0017】[0017]

【実施例1】粒径0.1〜10μm、純度3〜4NのB
iO1.5、PbO、SrCO3、CaCO3及びCuOの
各原料粉末を混合してBiO1.5:PbO:SrCO3
CaCO3:CuO=1.85:0.35:1.90:
2.05:3.05の組成比を有する混合粉末試料を調
製した後、温度740〜820℃、10〜100時間、
大気中にて仮焼し超電導合成粉を得る。次に、この超電
導合成粉1.2gを中空部が3.8mmφ×95mm
L、肉厚が10mmである円筒形ゴム型に充填し、両端
開口部をゴム栓で密封し冷間静水圧プレスにて最大圧力
1.5t/cm2で加圧成形し、約1.95mmφ×9
0mmL成形体を得る。この成形体を内径2.0mm
φ、外径3.0mmφ×100mmLのAgパイプの中
に挿入した。
Example 1 B having a particle size of 0.1 to 10 μm and a purity of 3 to 4 N
The raw material powders of iO 1.5 , PbO, SrCO 3 , CaCO 3 and CuO are mixed to form BiO 1.5 : PbO: SrCO 3 :
CaCO 3 : CuO = 1.85: 0.35: 1.90:
After preparing a mixed powder sample having a composition ratio of 2.05: 3.05, a temperature of 740 to 820 ° C., 10 to 100 hours,
It is calcined in the air to obtain superconducting synthetic powder. Next, 1.2 g of this superconducting synthetic powder was filled with a hollow portion of 3.8 mmφ × 95 mm.
L, filling a cylindrical rubber mold having a thickness of 10 mm, sealing the openings at both ends with rubber stoppers, press-molding with a cold isostatic press at a maximum pressure of 1.5 t / cm 2 , about 1.95 mmφ × 9
Obtain a 0 mmL molded body. This molded body is 2.0 mm in inner diameter
φ, an outer diameter of 3.0 mmφ × 100 mmL was inserted into an Ag pipe.

【0018】このAgパイプを伸線、圧延し線材化す
る。この線材を電気炉に入れ大気雰囲気中において焼成
を行った。昇温速度2℃/minで840℃まで加熱し
150時間保持、その後3℃/minの降温速度で室温
まで戻し、幅約5.0mm、厚さ約0.2mmのテープ
状のAgシース酸化物超電導線材を得た。該線材中にお
ける超電導部分の領域は、幅約4mm、厚さ約0.07
mmであった。この時点での臨界電流値及び臨界電流密
度を測定したところ、温度77K、自己磁界下において
臨界電流値は29.4A、臨界電流密度では約10,5
00A/cm2であった。尚、臨界電流値及び臨界電流
密度の測定は4端子法を用い、77K、自己磁界下にお
いて電圧端子間に1μV/cm発生したときの電流値を
臨界電流値として定義し、その断面積を1cm2に換算
した電流値を臨界電流密度とした。
The Ag pipe is drawn and rolled to form a wire. This wire was placed in an electric furnace and fired in an air atmosphere. Heat to 840 ° C at a rate of temperature rise of 2 ° C / min and hold for 150 hours, then return to room temperature at a rate of 3 ° C / min, tape-shaped Ag sheath oxide with width of about 5.0mm and thickness of about 0.2mm A superconducting wire was obtained. The region of the superconducting portion in the wire has a width of about 4 mm and a thickness of about 0.07.
mm. When the critical current value and the critical current density at this time were measured, the critical current value was 29.4 A at a temperature of 77 K and under a self-magnetic field, and was approximately 10,5 at a critical current density.
It was 00 A / cm 2 . The critical current value and the critical current density were measured using a four-terminal method. The current value when a voltage of 1 μV / cm was generated between the voltage terminals under a self-magnetic field at 77 K was defined as the critical current value, and the cross-sectional area was 1 cm. The current value converted into 2 was defined as the critical current density.

【0019】次に、焼結が終了した後のAgシース酸化
物超電導線材を図4、図5に示す線材アニール温度、ア
ニール時間で処理した結果の臨界電流値を図4に、臨界
電流密度換算値を図5に示す。但し、アニールの際の昇
温速度は2.67℃/min、降温速度は1.33℃/
minとした。これより、アニール処理温度805〜8
20℃、処理時間4〜30時間の範囲において臨界電流
値(Ic)および臨界電流密度(Jc)の高い線材が得
られることが判明した。さらに、アニール処理温度81
0〜815℃、処理時間12〜16時間の範囲において
臨界電流密度(Jc)は44,000A/cm2を超
え、ほぼ実用レベルを達成していることも判明した。
Next, the critical current value obtained by treating the Ag-sheathed oxide superconducting wire after the completion of sintering at the wire annealing temperature and annealing time shown in FIGS. 4 and 5 is shown in FIG. The values are shown in FIG. However, the rate of temperature rise during annealing was 2.67 ° C./min, and the rate of temperature decrease was 1.33 ° C./min.
min. Thus, the annealing temperatures 805-8
It has been found that a wire having a high critical current value (Ic) and a high critical current density (Jc) can be obtained in the range of 20 ° C. and the treatment time of 4 to 30 hours. Further, the annealing temperature 81
It was also found that the critical current density (Jc) exceeded 44,000 A / cm 2 in the range of 0 to 815 ° C. and the treatment time of 12 to 16 hours, and almost reached a practical level.

【0020】[0020]

【実施例2】粒径0.1〜10μm、純度3〜4NのB
iO1.5、PbO、SrCO3、CaCO3及びCuOの
各原料粉末を混合してBiO1.5:PbO:SrCO3
CaCO3:CuO=a:0.35:1.90:2.0
5:3.05の組成比を有する混合粉末試料を調製した
後、温度740〜820℃、10〜100時間、大気中
にて仮焼し超電導合成粉を得る。ただしaは1≦a≦3
の間で変化させて複数の混合粉末試料を調製した後、温
度740〜820℃、10〜100時間、大気中にて仮
焼し複数の超電導合成粉を得る。次に、この超電導合成
粉の各々を1.2gを中空部が3.8mmφ×95mm
L、肉厚が10mmである円筒形ゴム型に充填し、両端
開口部をゴム栓で密封し冷間静水圧プレスにて最大圧力
1.5t/cm2 で加圧成形し、約1.95mmφ×9
0mmL成形体を得る。この成形体を内径2.0mm
φ、外径3.0mmφ×100mmLのAgパイプの中
に挿入した。
Example 2 B having a particle size of 0.1 to 10 μm and a purity of 3 to 4 N
The raw material powders of iO 1.5 , PbO, SrCO 3 , CaCO 3 and CuO are mixed to form BiO 1.5 : PbO: SrCO 3 :
CaCO 3 : CuO = a: 0.35: 1.90: 2.0
After preparing a mixed powder sample having a composition ratio of 5: 3.05, it is calcined in the air at a temperature of 740 to 820 ° C for 10 to 100 hours to obtain a superconducting synthetic powder. Where a is 1 ≦ a ≦ 3
And preparing a plurality of mixed powder samples, and then calcining in air at a temperature of 740 to 820 ° C. for 10 to 100 hours to obtain a plurality of superconducting synthetic powders. Next, 1.2 g of each of the superconducting synthetic powders was filled with a hollow portion of 3.8 mmφ × 95 mm.
L, filling a cylindrical rubber mold having a thickness of 10 mm, sealing the openings at both ends with rubber stoppers, press-molding with a cold isostatic press at a maximum pressure of 1.5 t / cm 2 , about 1.95 mmφ × 9
Obtain a 0 mmL molded body. This molded body is 2.0 mm in inner diameter
φ, an outer diameter of 3.0 mmφ × 100 mmL was inserted into an Ag pipe.

【0021】これらのAgパイプを伸線、圧延し線材化
する。これらの線材を電気炉に入れ大気雰囲気中におい
て焼成を行った。昇温速度2℃/minで840℃まで
加熱し150時間保持、その後3℃/minの降温速度
で室温まで戻し、幅約5.0mm、厚さ約0.2mmの
テープ状のAgシース酸化物超電導線材を得た。該線材
中における超電導部分の領域は、幅約4mm、厚さ約
0.07mmであった。この時点で、これらの線材の臨
界電流値及び臨界電流密度を測定した。尚、臨界電流値
の測定は4端子法を用い、77K、自己磁界下において
電圧端子間に1μV/cm発生したときの電流値を臨界
電流値として定義し、その断面積を1cm2に換算した
電流値を臨界電流密度とした。
These Ag pipes are drawn and rolled to form wires. These wires were placed in an electric furnace and fired in an air atmosphere. Heat to 840 ° C at a rate of temperature rise of 2 ° C / min and hold for 150 hours, then return to room temperature at a rate of 3 ° C / min, tape-shaped Ag sheath oxide with width of about 5.0mm and thickness of about 0.2mm A superconducting wire was obtained. The region of the superconducting portion in the wire had a width of about 4 mm and a thickness of about 0.07 mm. At this time, the critical current value and critical current density of these wires were measured. The critical current value was measured using a four-terminal method. The current value when a voltage of 1 μV / cm was generated between the voltage terminals under a self-magnetic field at 77 K was defined as the critical current value, and the cross-sectional area was converted to 1 cm 2 . The current value was defined as the critical current density.

【0022】次に、焼結が終了した後の各々のAgシー
ス酸化物超電導線材に815℃で12時間のアニール処
理を行った。但し、アニールの際の昇温速度は2.67
℃/min、降温速度は1.33℃/minとした。ア
ニール処理終了後に再度、これらの線材の臨界電流値及
び臨界電流密度を測定した。以上の結果を図6に示し
た。これより1.5≦a≦2.1のとき線材アニール処
理によりAgシース酸化物超電導線材の臨界電流値及び
臨界電流密度が増加することが判明した。
Next, each of the Ag sheath oxide superconducting wires after sintering was annealed at 815 ° C. for 12 hours. However, the rate of temperature rise during annealing is 2.67.
° C / min, and the temperature decreasing rate was 1.33 ° C / min. After the annealing treatment, the critical current value and the critical current density of these wires were measured again. The results are shown in FIG. From this, it was found that the critical current value and the critical current density of the Ag sheath oxide superconducting wire were increased by the wire annealing treatment when 1.5 ≦ a ≦ 2.1.

【0023】上記と同様の試験を今度はbについておこ
なった。但し混合粉末試料の組成比はBiO1.5:Pb
O:SrCO3:CaCO3:CuO=1.85:b:
1.90:2.05:3.05とし0≦b≦0.6の間
でbを変化させた。その結果、0.14≦b≦0.45
のとき線材アニール処理によりAgシース酸化物超電導
線材の臨界電流値及び臨界電流密度が増加することが判
明した。
The same test as described above was performed for b. However, the composition ratio of the mixed powder sample was BiO 1.5 : Pb
O: SrCO 3 : CaCO 3 : CuO = 1.85: b:
1.90: 2.05: 3.05, and b was changed between 0 ≦ b ≦ 0.6. As a result, 0.14 ≦ b ≦ 0.45
At this time, it was found that the critical current value and the critical current density of the Ag sheath oxide superconducting wire were increased by the wire annealing treatment.

【0024】上記と同様の試験を今度はcについておこ
なった。但し混合粉末試料の組成比はBiO1.5:Pb
O:SrCO3:CaCO3:CuO=1.85:0.3
5:c:2.05:3.05とし1≦c≦3の間でbを
変化させた。その結果、1.6≦c≦2.2のとき線材
アニール処理によりAgシース酸化物超電導線材の臨界
電流値及び臨界電流密度が増加することが判明した。
The same test as described above was performed for c. However, the composition ratio of the mixed powder sample was BiO 1.5 : Pb
O: SrCO 3 : CaCO 3 : CuO = 1.85: 0.3
5: c: 2.05: 3.05 and b was changed between 1 ≦ c ≦ 3. As a result, it was found that the critical current value and the critical current density of the Ag sheath oxide superconducting wire were increased by the wire annealing treatment when 1.6 ≦ c ≦ 2.2.

【0025】上記と同様の試験を今度はdについておこ
なった。但し混合粉末試料の組成比はBiO1.5:Pb
O:SrCO3:CaCO3:CuO=1.85:0.3
5:1.90:d:3.05とし1≦d≦3の間でdを
変化させた。その結果、1.7≦d≦2.3のとき線材
アニール処理によりAgシース酸化物超電導線材の臨界
電流値及び臨界電流密度が増加することが判明した。
A test similar to the above was performed on d this time. However, the composition ratio of the mixed powder sample was BiO 1.5 : Pb
O: SrCO 3 : CaCO 3 : CuO = 1.85: 0.3
5: 1.90: d: 3.05, and d was changed between 1 ≦ d ≦ 3. As a result, it was found that when 1.7 ≦ d ≦ 2.3, the critical current value and the critical current density of the Ag sheath oxide superconducting wire increased by the wire annealing treatment.

【0026】[0026]

【発明の効果】本発明によりPIT法により作製された
酸化物超電導線材の臨界電流密度を実用レベルである5
0,000A/cm2以上に上げることが可能になっ
た。この線材および線材作成方法が例えば電力送電ケー
ブルに応用されれば送電ロスのないケーブルとして、電
力利用の効率化、コスト低減に大きく寄与するものであ
る。
According to the present invention, the critical current density of the oxide superconducting wire manufactured by the PIT method is set to a practical level of 5%.
It became possible to raise it to 000 A / cm 2 or more. If this wire and the wire making method are applied to, for example, a power transmission cable, the cable will have no power transmission loss, and will greatly contribute to efficient use of power and cost reduction.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における線材アニール処理実施後の線材
中に有る酸化物超電導体の断面TEM写真の模式図であ
る。
FIG. 1 is a schematic diagram of a cross-sectional TEM photograph of an oxide superconductor in a wire after a wire annealing treatment according to the present invention.

【図2】アニール処理を行わない他は本発明と同様にし
て製造した線材中に有る酸化物超電導体の断面TEM写
真の模式図である。
FIG. 2 is a schematic TEM photograph of a cross section of an oxide superconductor in a wire manufactured in the same manner as in the present invention except that an annealing process is not performed.

【図3】金属シース酸化物超電導線材の外観と断面であ
る。
FIG. 3 is an external view and a cross section of a metal sheath oxide superconducting wire.

【図4】本願発明における線材アニール処理条件(温度
・時間)と線材の臨界電流値(Ic)との関係を表にし
て掲げた図である。
FIG. 4 is a table showing the relationship between wire annealing conditions (temperature and time) and the critical current value (Ic) of the wire in the present invention.

【図5】本願発明における線材アニール処理条件(温度
・時間)と線材の臨界電流密度(Jc)との関係を表に
して掲げた図である。
FIG. 5 is a table showing a relationship between wire annealing conditions (temperature / time) and critical current density (Jc) of the wire in the present invention.

【図6】本願発明におけるBiO1.5の組成比を変化さ
せて調製した酸化物超電導線材の線材アニール処理(8
15℃、12時間)前後の臨界電流値(Ic)および臨
界電流密度(Jc)の値を表にして掲げた図である。
FIG. 6 shows a wire annealing treatment (8) of an oxide superconducting wire prepared by changing the composition ratio of BiO 1.5 in the present invention.
FIG. 3 is a table showing critical current values (Ic) and critical current densities (Jc) around (15 ° C., 12 hours).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 法史 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 山口 和也 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4G047 JA05 JC10 KA18 KB04 LA02 LB01 4G048 AA05 AB05 AC04 AD04 AE05 5G321 AA06 CA07 CA30 DB18 DB47 DB54  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Hofumi Murakami 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Kazuya Yamaguchi 1-2-2, Marunouchi, Chiyoda-ku, Tokyo No. F-term in Dowa Mining Co., Ltd. (Reference) 4G047 JA05 JC10 KA18 KB04 LA02 LB01 4G048 AA05 AB05 AC04 AD04 AE05 5G321 AA06 CA07 CA30 DB18 DB47 DB54

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】所定の組成比のBiO1.5、PbO、Sr
CO3、CaCO3及びCuOを混合し、所定の条件で仮
焼し、次に所定の条件で加圧成形し成形体を得た後、金
属パイプの中に挿入し、所定の条件で伸線、圧延して線
材とし、この線材に大気中で840〜845℃の焼成を
50〜200時間行い、この焼成工程を終了した後か、
または焼成工程の降温時において805〜820℃の温
度で4〜30時間の線材アニール処理を行うことを特徴
とする酸化物超電導線材の製造方法。
1. BiO 1.5 , PbO, Sr having a predetermined composition ratio
CO 3 , CaCO 3 and CuO are mixed, calcined under predetermined conditions, then pressed under predetermined conditions to obtain a molded body, inserted into a metal pipe, and drawn under predetermined conditions. After rolling, the wire is fired at 840 to 845 ° C. in the air for 50 to 200 hours, and after the firing process is completed,
Alternatively, a method for producing an oxide superconducting wire, comprising performing a wire annealing treatment at a temperature of 805 to 820 ° C. for 4 to 30 hours when the temperature is lowered in the firing step.
【請求項2】金属シース材の中に(BiPb)2Sr2
2Cu3x系酸化物超電導体を有する線材であって、
該酸化物超電導体中における酸化物超電導体結晶粒子の
粒界間において、粒径1μm以下のCuO粒子、Cu2
粒子、及びCa2PbO4粒子のうち少なくとも1つを含
有することを特徴とする酸化物超電導線材。
2. A metal sheath material comprising (BiPb) 2 Sr 2 C
a wire having an a 2 Cu 3 O x -based oxide superconductor,
CuO particles having a particle diameter of 1 μm or less, Cu 2 O, between grain boundaries of oxide superconductor crystal particles in the oxide superconductor.
An oxide superconducting wire comprising at least one of particles and Ca 2 PbO 4 particles.
JP2000153502A 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire Expired - Fee Related JP3590567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153502A JP3590567B2 (en) 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153502A JP3590567B2 (en) 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2001332146A true JP2001332146A (en) 2001-11-30
JP3590567B2 JP3590567B2 (en) 2004-11-17

Family

ID=18658746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153502A Expired - Fee Related JP3590567B2 (en) 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3590567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087813A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087813A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT
JP4696811B2 (en) * 2005-09-22 2011-06-08 住友電気工業株式会社 Manufacturing method of Bi-based superconductor

Also Published As

Publication number Publication date
JP3590567B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
JP3450328B2 (en) Improved processing of oxide superconductors
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JPH04292819A (en) Manufacture of oxide superconductive wire
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JPH04262308A (en) Oxide superconductive wire rod
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH06162843A (en) Manufacture of bi oxide superconductor
JPS63299012A (en) Superconductive fiber and its manufacture
JP2727565B2 (en) Superconductor manufacturing method
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
KR100821209B1 (en) Manufacturing method of high temperature superconductor thick films by using cu-free precursors on ni substrates
JPH01203298A (en) Method and apparatus for producing elongated conductor equipped with ceramix oxide superconductive material
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH0692717A (en) Production of bi based oxiee superconductor
JPH10321065A (en) Manufacture of superconducting wire material
JPH04108604A (en) Production of oxide superconductor
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JPH02253516A (en) Ceramics superconducting line and manufacture thereof
JPH01100809A (en) Oxide superconductor
Wang et al. Growth and characterization of Bi2Sr2CaCu2Oy thick films on bare polycrystalline Y-stabilized ZrO2 substrates

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees