JP2001328900A - Method for forming thin film - Google Patents

Method for forming thin film

Info

Publication number
JP2001328900A
JP2001328900A JP2000142216A JP2000142216A JP2001328900A JP 2001328900 A JP2001328900 A JP 2001328900A JP 2000142216 A JP2000142216 A JP 2000142216A JP 2000142216 A JP2000142216 A JP 2000142216A JP 2001328900 A JP2001328900 A JP 2001328900A
Authority
JP
Japan
Prior art keywords
thin film
surface
forming
film
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000142216A
Other languages
Japanese (ja)
Inventor
Harumi Suzuki
Akinosuke Tera
Atsushi Yamamoto
亮之介 寺
敦司 山本
晴視 鈴木
Original Assignee
Denso Corp
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, 株式会社デンソー filed Critical Denso Corp
Priority to JP2000142216A priority Critical patent/JP2001328900A/en
Publication of JP2001328900A publication Critical patent/JP2001328900A/en
Application status is Withdrawn legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To relax stress generated in a thin film, and improve adhesion to the thin film, and further raise the film developing rate on a substrate by the Atomic Layer Epitaxy(ALE) method. SOLUTION: In forming Al2O3 film by ALE method using TMA and H2O on a glass substrate, CH3OH evaporated before forming film or during formation of film is introduced and surface treatment for increasing surface hydroxyl group concentration of the ground surface is carried out by exposing the ground surface in gas atmosphere of CH3OH.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、基板上に原子層成長法(Atomic Layer Epitaxy)により薄膜を形成する薄膜の形成方法に関する。 The present invention relates to the method for forming a thin film for forming a thin film by atomic layer deposition on the substrate (Atomic Layer Epitaxy).

【0002】 [0002]

【従来の技術】原子層成長法(Atomic Laye BACKGROUND OF THE INVENTION atomic layer deposition (Atomic Laye
r Epitaxy、以下、ALE法という)は、2種以上の原料(元素または化合物)を交互に供給して、基板表面の吸着反応、原料と目的生成物との蒸気圧の差を利用することにより、1原子層または1分子層ずつ結晶成長させる方法である。 r Epitaxy, hereinafter referred to as ALE method), two or more raw materials (elements or compounds) are supplied alternately, the adsorption reaction of the substrate surface, by utilizing the difference in vapor pressure between the raw material and the desired product a one atom layer or one molecular layer method for crystal growth.

【0003】 [0003]

【発明が解決しようとする課題】ALE法においては、 In the ALE method The object of the invention is to be Solved,
原料ガス分子の吸着機構は、Langmuir型であらわせるような自己制御型の吸着機構が支配的な場合に限られる。 Adsorption mechanism of the raw material gas molecules, self-controlled adsorption mechanism, such as represented by the Langmuir type only if dominant. Langmuir型吸着機構では、原料の分圧Piのもとで、原料の表面被覆率をθi、吸着速度定数をKa、脱離速度定数をKdとすると、吸着速度はKa The Langmuir-type adsorption mechanism, under partial pressures Pi of the material, .theta.i the surface coverage of the material, Ka adsorption rate constant, the elimination rate constant and Kd, adsorption rate Ka
Pi(1−θi)、脱離速度はKdθiで表される。 Pi (1-θi), elimination rate is represented by Kdshitaai. ここで、吸着速度と脱離速度は等しいので、K=(Ka/ Since adsorption rate and desorption rate equal, K = (Ka /
Kd)とすると、原料の表面被覆率θiは、次の数式1 When kd), surface coverage θi of the raw materials, the following formula 1
にて示される。 It indicated by.

【0004】 [0004]

【数1】θi=KaPi/(Kd+KaPi)=KPi [Number 1] θi = KaPi / (Kd + KaPi) = KPi
/(1+KPi) ここで、KPiが1より十分大きい、即ち、気相に存在する原子または分子の量が吸着量に対し過飽和状態になっていれば、単原子層または単分子層形成が可能となる。 / (1 + KPi) Here, KPi is sufficiently larger than 1, i.e., if turned quantities supersaturated with respect to the adsorption amount of atoms or molecules present in the gas phase, can monolayers or monolayer formation and Become.

【0005】しかしながら、KPiを1より十分大きい状態としても、ほとんどの場合、下地面において、吸着の立体障害や吸着サイトが不均一であり、単原子層または単分子層形成は実現されない。 However, even in a state sufficiently larger than 1 KPi, in most cases, the underlying surface, are sterically hindered and the adsorption sites of the adsorbent is non-uniform, monolayer or monolayer formation is not achieved. 例えば、AlCl 3とH 2 Oとの反応によって500℃程度でALE法により層を成長させると、0.045nm/サイクルの成膜レートとなり、これは1分子層分に満たない。 For example, when growing a layer by the ALE method at about 500 ° C. by reaction between AlCl 3 and H 2 O, it becomes deposition rate of 0.045nm / cycle, which is less than one molecular layer fraction.

【0006】このことは、反応確率が低いことやガス流れ等により、局所的にKPiが1より十分大きくないことが原因である可能性も考えられるが、次に述べるように表面吸着率の低下が大きいことが主原因であると考えられる。 [0006] This is the reaction probability is low that, gas flow etc., locally KPi it is considered possible cause is that not sufficiently larger than 1, a decrease in surface adsorption rate as described below it is large is considered to be the main cause. まず、ALE成長過程では、下地面に吸着している元素または化合物が、次に吸着する元素や化合物と反応する。 First, in the ALE growth process, elements or compounds adsorbed on the underlying surface is then reacted with elemental or compound adsorbable.

【0007】この時、系によっては、次に吸着する元素や化合物が、既に吸着している複数の元素や化合物と反応する。 [0007] At this time, depending on the system, then elements or compounds to be adsorbed is already reacts with the plurality of elements and compounds that are adsorbed. つまり、次に吸着する1個の元素や化合物が、 In other words, then one element or compound to be adsorbed,
複数の吸着サイトに既に吸着している元素や化合物と反応し結合するため、生成した目的生成物の結合力(分子間力やファンデルワールス力)が、近接する吸着サイトに吸着した元素または化合物にも働くので微視的な歪みが生ずる。 To react with elements and compounds that already adsorbed on the plurality of adsorption sites binding, binding force of the produced objective product (intermolecular force and van der Waals forces) is an element or compound adsorbed to the adsorption sites proximate even microscopic distortion occurs because the work in.

【0008】そして、下地面に吸着している結合は、重力や静電気力等にて吸着する物理吸着を除くと水素結合などの強い結合であるため、上記の歪みは非常に大きいものとなる。 [0008] Then, bond adsorbed on the underlying surface are the strong bond such as hydrogen bond except physical adsorption to adsorb at gravity or electrostatic force or the like, the above-mentioned distortion becomes very large. これが原因でALE法にて成膜を続けると、結果として、出来上がった薄膜において、膜が収縮しようとするいわば引っ張り応力が発生すると考えられる。 If this continued deposited by the ALE method because, as a result, in the finished film, considered film speak tensile stress tends to shrink will occur.

【0009】ここで、このような複数の吸着サイト間に結合力が及ぶ場合、たとえ全ての吸着サイトに均一に吸着がなされた場合であっても、上記理由により薄膜内に微視的な歪みが多少生じる。 [0009] Here, if the bonding force between such a plurality of adsorption sites spans, even when the uniform adsorption was made if all of the adsorption sites, microscopic strain in the thin film for the aforementioned reason but some produce. 特に、下地面への吸着が不均一である場合、やはり同様に反応するが、この場合、 In particular, if the adsorption onto the underlying surface is uneven, it reacts Again similarly, in this case,
微小空孔(元素等が吸着すべき吸着サイトであって吸着がなされていない部分により生じる空孔)が存在する。 Microvoided exists (elements such vacancies caused by parts not made adsorbed a adsorption sites to be adsorbed).

【0010】この微小空孔は、通常、反応後の目的生成物の原子間距離よりも大きいため、近接元素または化合物に働く結合力は、より大きくなる。 [0010] The micro voids are usually larger than the interatomic distance of the desired product after the reaction, coupling force acting on the adjacent element or compound becomes larger. 従って、吸着が不均一である場合には、上記の微視的な歪みも大きくなり、問題となってくる。 Therefore, when the suction is not uniform, microscopic distortion of the well increases, becomes a problem. また、下地面への吸着が不均一であると、薄膜の密着性が低下するのは明らかである。 Further, the adsorption to the underlying surface is uneven, it is evident that the reduced adhesion of the thin film.
さらに、吸着が不均一となることで、成膜領域において部分的に成膜レートが遅い部分が生じ、結果的に全体の成膜レートが遅くなる。 Furthermore, the adsorption becomes uneven, partial deposition rate occurs slower part in the film formation region, resulting in the overall deposition rate becomes slow.

【0011】以上のように、本発明者等の検討によれば、ALE法はその成長機構から、優れた表面被覆率を持つ薄膜を得ることが可能ではあるが、その元素または化合物の下地面への吸着の不完全性から、本質的に薄膜に引っ張り応力が発生し、薄膜のクラックや剥離といった問題が生じ、また、薄膜の密着性の低下や成膜レートが遅いといった問題も生じる。 [0011] As described above, according to the study by the present inventors, ALE method from the growth mechanism, although it is possible to obtain a thin film having excellent surface coverage, the underlying surface of the element or compound from the adsorption of imperfections to, essentially generating tensile stress in the thin film, resulting thin film of cracks, separation such problem, also, reduction and deposition rate of the adhesion of the thin film is also caused a problem slow.

【0012】本発明は上記問題に鑑み、基板上にALE [0012] The present invention has been made in view of the above problems, ALE on the substrate
法により薄膜を形成する薄膜の形成方法において、薄膜に発生する応力を緩和するとともに、薄膜の下地に対する密着性を向上させ、更に、成膜レートを向上させることを目的とする。 In the method for forming a thin film for forming a thin film by law, as well as relieving the stress generated in the film, to improve the adhesion to the underlying thin film, further, an object of improving the film deposition rate.

【0013】 [0013]

【課題を解決するための手段】本発明は、ALE法により成膜を行う前または成膜中に、下地面に対して、ガスの吸着サイトの表面密度を高める処理を行えばよいのではないかとの考えに基づいてなされたものである。 Means for Solving the Problems The present invention, before or during deposition to form a film by the ALE method, with respect to the underlying surface, but the embodiment is not processing may be performed to increase the surface density of the adsorption sites of the gas It has been made based on the idea of ​​whether.

【0014】吸着サイトを決定付けるものは、下地面上の水酸基である。 [0014] which determines the adsorption site is a hydroxyl group on the lower ground. これは、水酸基は水素結合による大きな結合力を発生するため、下地に近づいてくる元素や化合物を引きつけ、吸着しやすくできるためである。 This hydroxyl group to generate a large coupling force by a hydrogen bond, attract element or compound approaching the base, in order to be easily adsorbed. 即ち、下地面を水酸基化させる水酸基化終端処理を行うことで、吸着サイトの表面密度を向上でき、薄膜の原料ガスの吸着を促進させることができる。 That is, the underlying surface by performing hydroxylated terminated to hydroxylated, can improve the surface density of the adsorption sites, thereby promoting adsorption of a thin film of the material gas.

【0015】例えば、下地面がTiO 2の場合、この下地面をH 2 Oの気体に暴露させることにより、下地面に表面水酸基が生ずる過程は、図5のように考えられる。 [0015] For example, if the underlying surface is TiO 2, by exposing the underlying surface to a gas of H 2 O, the process of surface hydroxyl groups is generated in the underlying surface is considered as Fig.
配位不飽和な表面Ti 4 +イオンに吸着したH 2 Oは、隣接するO 2 -と水素結合をし、さらに、吸着H 2 OのOH H 2 O adsorbed to the coordinatively unsaturated surface Ti 4 + ions, adjacent O 2 - and a hydrogen bond, further, the adsorption of H 2 O OH
結合の切断により2つの表面水酸基が生成される。 Two surface hydroxyl groups are generated by cleavage of the bond. 他の酸化物についても、ほぼ同様な機構でH 2 Oの化学吸着により表面水酸基が生成すると考えられる。 For other oxides is considered to be generated is the surface hydroxyl groups by of H 2 O chemisorption at substantially the same mechanism.

【0016】請求項1〜請求項6記載の発明は、このような考えに基づいて実験検討を行った結果、見出されたものであり、基板上に原子層成長法により薄膜を形成する方法であって、薄膜の成膜中及び成膜前の少なくとも一方の時期に、下地面に対して表面水酸基濃度を高める表面処理を行うことを特徴としている。 [0016] The invention of claim 1 to claim 6, wherein, as a result of an experiment conducted study based on this concept, has been found, a method of forming a thin film by atomic layer deposition on a substrate a at, at least one time prior and during the deposition formation of the thin film is characterized by performing a surface treatment for increasing the surface hydroxyl group concentration with respect to the underlying surface.

【0017】それによれば、下地面における吸着サイトの表面密度を向上でき、薄膜原料ガスの吸着を促進させることができるため、下地面に対する元素や化合物の吸着がより均一化する。 According to it, can improve the surface density of the adsorption sites in the underlying surface, for the adsorption of a thin film material gas can be promoted, adsorption of elemental or compound to the underlying surface is more uniform. 従って、薄膜に発生する応力を緩和するとともに、薄膜の下地に対する密着性を向上させ、更に、成膜レートを向上させることができる。 Thus, while relieving the stress generated in the film, to improve the adhesion to the underlying thin film, it is possible to further improve the deposition rate.

【0018】また、請求項2の発明では、上記の表面処理は、薄膜の原料とは異なる材料を用いて行うことを特徴としている。 [0018] In the present invention of claim 2, the surface treatment of the above is characterized suggested to use a different material from the film raw material. この表面処理は、薄膜形成のための反応には直接関与しないように、薄膜原料の導入時期とはタイミングをずらして行うが、本発明のように、薄膜原料とは異なる材料を用いれば、当該表面処理を、より好適に薄膜形成反応に関与しないようにすることができる。 This surface treatment, so as not to directly participate in the reaction for forming a thin film, is performed by shifting the timing the introduction timing of the thin film material, as in the present invention, the use of different materials and thin film materials, the the surface treatment can be prevented from participating in more suitably thin film formation reaction.

【0019】ここで、上記の表面処理は、下地面を、水酸基を持つ分子の気体雰囲気中に暴露すること(請求項3の発明)で行うことができる。 [0019] Here, the surface treatment described above, the underlying surface can be performed by exposing the gaseous atmosphere of the molecules having a hydroxyl group (the invention of claim 3). この場合、水酸基を持つ分子の気体を、当該分子をプラズマ化させた状態としたもの(請求項4の発明)とすれば、上記表面処理をより効率的に行うことができる。 In this case, the gas molecules having a hydroxyl group, if a state in which the molecules were plasma state as that (the invention of claim 4), it is possible to perform the surface treatment more efficient. また、上記表面処理は、 In addition, the above-mentioned surface treatment,
薄膜の成膜前に、下地面に対して、水酸基を持つ分子の液体を噴霧すること(請求項5の発明)で行うこともできる。 Before forming the thin film, with respect to the underlying surface, it can also be carried out by spraying a liquid of molecules having a hydroxyl group (the invention of claim 5).

【0020】また、これらの表面処理方法に用いる水酸基を持つ分子としては、H 2 O、H 22 、アルコール類またはこれらの2種以上を組み合わせたものを、採用することができる。 Further, as the molecule having a hydroxyl group to be used for these surface treatment methods, H 2 O, H 2 O 2, alcohol or a combination of two or more of these, can be employed.

【0021】なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。 [0021] The reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in embodiments described later.

【0022】 [0022]

【発明の実施の形態】基板上に原子層成長法(ALE DETAILED DESCRIPTION OF THE INVENTION atomic layer deposition on a substrate (ALE
法)により薄膜を形成する方法は、反応炉内に基板を設置し、反応炉内へ、薄膜の原料ガスを導入することによりなされる。 A method of forming a thin film by law) is a substrate placed in the reaction furnace, the reactor is done by introducing a material gas of the thin film. ここにおいて、下地面に対して表面水酸基濃度を高める表面処理(以下、単に表面処理という)の実行は、薄膜の成膜中及び成膜前の両方の時期にて行っても、成膜中のみに行っても、成膜前のみに行っても良い。 Here, a surface treatment for increasing the surface hydroxyl group concentration with respect to the underlying surface (hereinafter, simply referred to as surface treatment) execution, be performed at during the formation of the thin film and both before film formation time, only during the film formation be carried out, it may be carried out only before the formation.

【0023】この表面処理に用いる材料としては、水酸基を持つ分子よりなる化合物を用いることができ、具体的には、H 2 O、H 22 、アルコール類またはこれらの2種以上を組み合わせたものを採用することができる。 [0023] As a material used for the surface treatment, it is possible to use a compound consisting of molecules having a hydroxyl group, specifically, a combination H 2 O, H 2 O 2, alcohols or two or more of them it is possible to adopt things.
そして、これら表面処理用材料を用いた表面処理の方法としては、次のような方法を採用することができる。 Then, as a method for surface treatment using these surface treatment materials, it can be adopted the following method.

【0024】まず、予め、水酸基を持つ分子よりなる化合物を気化して、下地面をこの気体(水酸基を持つ分子の気体)雰囲気に暴露する方法が挙げられる。 [0024] First, in advance, by vaporizing the compound consisting of molecules having a hydroxyl group, and a method of exposing the underlying surface to the atmosphere (gas molecules having a hydroxyl group) this gas. 例えば、 For example,
メタノールや水等の水酸基を持つ化合物の入った原料ボトルを加熱などして気化させ、N 2やArなどのキャリアガスで、基板が入っている反応炉に導入すれば良い。 The entered raw material bottles of compounds having a hydroxyl group such as methanol and water vaporized by heating or the like, a carrier gas such as N 2 or Ar, may be introduced into the reactor containing the substrate.
それにより、基板における薄膜の下地面が水酸基を持つ分子の気体雰囲気中に暴露され、下地面に対して上記表面処理が施される。 Thereby, the underlying surface of the thin film in the substrate is exposed to a gaseous atmosphere of a molecule having a hydroxyl group, the surface treatment is performed on the underlying surface.

【0025】ここで、水酸基を持つ分子の気体を、当該分子をプラズマ化させた状態としたものとすれば、上記表面処理をより効率的に行うことができる。 [0025] Here, the gas molecules having a hydroxyl group, if those with state the molecule is plasma, it is possible to perform the surface treatment more efficient. 即ち、反応炉内において、対向して離間配置された一対の電極を設け、これら電極の間に基板を設置して高周波電圧を印加した状態で、水酸基を持つ分子の気体を導入する。 That is, in the reaction furnace, a pair of electrodes which are spaced to face is provided and the substrate was placed between the electrodes while applying a high frequency voltage, for introducing a gas of molecules having a hydroxyl group. すると、当該分子がプラズマ化される(例えばCH 3 OHでは、OH -やOHラジカルが生じる)ため、より活性な反応が基板上で可能となり、効率的な表面処理が可能となる。 Then, the molecule is plasma (in e.g. CH 3 OH, OH - and OH radicals generated) for more active reaction becomes possible on the substrate, efficient surface treatment can be performed.

【0026】また、水酸基を持つ分子よりなる化合物の液体を、下地面に対して噴霧するようにしても良い。 Further, the liquid compound consisting of molecules having a hydroxyl group, may be sprayed against the underlying surface. 例えば、インジェクタなどを用いて、基板が配置された反応炉内へ噴霧することが可能である。 For example, by using a injector, the substrate may be sprayed into arranged reactor. ただし、この場合は、上記した下地面を水酸基を持つ分子の気体雰囲気に暴露する方法に比べて、物理吸着する化合物が非常に多く、これがALE法による層成長を阻害する。 However, in this case, as compared with the method of exposing the underlying surface as described above in a gaseous atmosphere of a molecule having a hydroxyl group, compounds that physical adsorption very often, which inhibits the layer growth by the ALE method.

【0027】そのため、基板を若干加熱したりN 2やA [0027] For this reason, some heating or N 2 and A of the substrate
rガスなどの雰囲気にしたりして、この物理吸着分を除去することが望ましい。 And or in an atmosphere such as r gas, it is desirable to remove the physically adsorbed content. さらには、真空にした反応炉内に、水酸基を持つ化合物の液体を適量噴霧すれば、急激な断熱膨張により気化するため、より効率的に噴霧による表面処理が可能となる。 Furthermore, the reactor was evacuated, if appropriate amount spraying liquid compound having a hydroxyl group, to vaporize due to rapid adiabatic expansion, thereby enabling more efficient surface treatment by spraying.

【0028】次に、本実施形態について具体例を示しながら、更に説明する。 Next, the present embodiment by showing a specific example will be further described. ガラス基板上にTMA(テトラメチルアルミニウム、AlCl 3 )とH 2 Oにより、薄膜としてAl 23膜をALE成長させながら、メタノール(CH 3 OH)の気体暴露による表面処理を行った場合と行わない場合(比較例)とを示す。 TMA (tetramethyl aluminum, AlCl 3) on a glass substrate by a H 2 O, while an Al 2 O 3 film is ALE grown as a thin film, made the case of performing the surface treatment by the gas exposure of methanol (CH 3 OH) If there is no showing the (comparative example).

【0029】まず、ガラス基板上にTMAとH 2 Oを用いたALE法によりAl 23膜を形成する薄膜の形成方法において、Al 23膜の成膜前及び成膜中に、CH 3 Firstly, in the method for forming a thin film to form Al 2 O 3 film by ALE method using TMA and H 2 O on a glass substrate, during film formation before and deposition of the Al 2 O 3 film, CH 3
OHによる表面処理を行った場合(本実施形態の具体例)を示す。 When performing the surface treatment with OH showing a (specific example of the present embodiment). そのフローを図1に示す。 The flow shown in FIG.

【0030】40mm×40mm、厚さ1.1mmのガラス製基板を、反応炉に入れた。 [0030] 40 mm × 40 mm, a glass substrate having a thickness of 1.1 mm, was placed in the reactor. その反応炉を40Pa 40Pa The reaction furnace
程度の真空にし、N 2ガスを400sccm程度流しながら基板を加熱し基板温度を100℃に安定させた。 And the degree of vacuum, the substrate temperature heating the substrate while the N 2 gas flow of about 400sccm is stabilized at 100 ° C.. C
3 OHを原料ボトル内で30℃にて気化し、N 2ガス4 The H 3 OH vaporized at 30 ° C. in a feed bottle, N 2 gas 4
00sccmで反応炉に30秒導入した。 It was introduced 30 seconds into the reactor at 00sccm. このCH 3 The CH 3 O
Hの導入により、成膜前の表面処理を行った。 With the introduction of H, it was subjected to a surface treatment prior to deposition.

【0031】この後、TMA、H 2 O、CH 3 OHの順にキャリアガスであるN 2ガス400sccmで反応炉に導入した。 [0031] Thereafter, TMA, was introduced into the reactor with N 2 gas 400sccm as a carrier gas in the order of H 2 O, CH 3 OH. TMAおよびH 2 Oは、原料ボトル内にて室温で気化し、キャリアガスであるN 2ガス400scc TMA and H 2 O is vaporized at room temperature the raw material bottles, N 2 gas 400scc as a carrier gas
mで反応炉に導入した。 It was introduced into the reaction furnace by m.

【0032】反応炉へのガスは、まず気化TMAを0. [0032] gas to the reaction furnace is, first, the vaporized TMA 0.
6秒導入した後、パージとしてN 2ガスを2.4秒導入した。 After introducing 6 seconds, it was introduced 2.4 seconds N 2 gas as a purge. その後、同様に気化H 2 Oを1.0秒、N 2パージを1.0秒のガス導入時間にて成膜した。 Thereafter, similarly vaporized H 2 O to 1.0 seconds, thereby forming a N 2 purge at 1.0 second gas introduction time. その後、成膜中の表面処理を行うために、気化CH 3 OHをN 2ガス4 Thereafter, in order to perform a surface treatment during the film formation, the vaporized CH 3 OH N 2 gas 4
00sccmで反応炉に3秒導入し、気相中のCH 3 3 seconds into a reaction furnace at 00sccm, CH 3 O in the gas phase
Hを排気するためN 2パージを3sccm行った。 I went 3sccm the N 2 purge for exhausting the H.

【0033】このTMA導入→パージ→H 2 O導入→パージ→CH 3 OH導入→パージのサイクルを5000回繰り返し成膜を行った。 The film formation was carried out repeated 5000 times the cycle of the TMA introduction → purge → H 2 O introduced → purge → CH 3 OH introduction → purge. この間、反応炉の圧力は150 During this time, the pressure in the reactor 150
〜320Paであり、基板温度は反応炉内のヒータによって100℃に保持した。 A ~320Pa, the substrate temperature was held at 100 ° C. by the heater in the reactor. 成膜が終了した後は、N 2ガスを400sccm導入しながら、放置冷却を行い、基板温度が70℃になった時点で反応炉を大気圧にし、基板を取り出した。 After deposition is completed, while introducing 400sccm N 2 gas, carried out allowed to cool, the reaction furnace to the atmospheric pressure at the time the substrate temperature became 70 ° C., the substrate was taken out.

【0034】この手法により、膜厚約480nmのAl [0034] This approach, of a thickness of about 480nm Al
23膜が得られた。 2 O 3 film was obtained. この時の成膜レートは0.096n At this time of film formation rate 0.096n
m/サイクルであった。 It was m / cycle. また成膜前後のガラス基板の反り量から測定したAl 23膜の応力は引っ張り応力で、 The stress of the Al 2 O 3 film as measured from the amount of warp of the glass substrate before and after deposition in tensile stress,
220MPaであった。 Was 220MPa.

【0035】次に、比較例として、ガラス基板上にTM Next, as a comparative example, TM on a glass substrate
AとH 2 OによりAl 23膜をALE成長させ、表面処理を行わなかった場合を示す。 An Al 2 O 3 film is ALE grown by A and H 2 O, shows a case where no surface treatment was performed. そのフローを図2に示す。 The flow shown in FIG. 上記と同様のサイズのガラス製基板を、反応炉に入れ、上記具体例と同様に、反応炉を40Pa程度の真空にし、N 2ガスを400sccm程度流しながら基板を加熱し基板温度を100℃に安定させた。 The glass substrate having the same size as above, were placed in a reaction furnace, as in the above embodiment, the reactor was evacuated to about 40 Pa, N 2 gas at a substrate temperature heating the substrate while supplying about 400sccm to 100 ° C. It was stabilized.

【0036】その後、TMA、H 2 Oの順にキャリアガスであるN 2ガス400sccmで反応炉に導入した。 [0036] Thereafter, TMA, was introduced into the reactor with N 2 gas 400sccm as a carrier gas in the order of H 2 O.
反応炉へのガスは、まず、気化TMAを0.6秒導入した後、基板表面に吸着した分子以外の気相に存在する過剰のTMAを取り除くためのパージとしてN 2ガスを2.4秒導入した。 Gas to the reactor, first, after the vaporized TMA were introduced 0.6 seconds, 2.4 seconds N 2 gas as a purge to remove excess TMA present in the gas phase other than molecules adsorbed on the substrate surface introduced. その後、同様に気化H 2 Oを1.0 Thereafter, similarly the vaporized H 2 O 1.0
sec、N 2パージを4.0秒のガス導入時間にて成膜した。 sec, was formed by the N 2 purge 4.0 seconds of the gas introduction time.

【0037】このTMA導入→パージ→H 2 O導入→パージのサイクルを5000回繰り返し成膜を行った。 The film formation was carried out repeated this TMA introduction → purge → H 2 O introduced → 5000 times the cycle of the purge. この間、反応炉の圧力は150〜300Paであり、基板温度は反応炉内のヒータによって100℃に保持した。 During this time, the reactor pressure is 150~300Pa, the substrate temperature was held at 100 ° C. by the heater in the reactor.
成膜が終了した後は、N 2ガスを400sccm導入しながら、放置冷却を行い、基板温度が70℃になった時点で反応炉を大気圧にし、基板を取り出した。 After deposition is completed, while introducing 400sccm N 2 gas, carried out allowed to cool, the reaction furnace to the atmospheric pressure at the time the substrate temperature became 70 ° C., the substrate was taken out.

【0038】この手法により、膜厚約400nmのAl [0038] This approach, of a thickness of about 400nm Al
23膜が得られた。 2 O 3 film was obtained. この時の成膜レートは0.08nm At this time of film formation rate 0.08nm
/サイクルであった。 Was / cycle. また成膜前後のガラス基板の反り量から測定したAl 23膜の応力は、引っ張り応力で、 The stress of the Al 2 O 3 film as measured from the amount of warp of the glass substrate before and after deposition, by tensile stress,
430MPaであった。 Was 430MPa.

【0039】図3は、上記本実施形態の具体例と比較例との結果に基づき、本発明の応力緩和の効果を具体的に示す図である。 [0039] Figure 3 is based on the results of the comparative examples and specific examples of the present embodiment, it is a diagram specifically illustrating the effect of stress relaxation of the present invention. 表面処理を行った方は応力が緩和されているのが分かる。 Write subjected to surface treatment is seen that the stress is relaxed. また、図4は、上記本実施形態の具体例と比較例との結果に基づき、本発明の成膜レート向上の効果を具体的に示す図である。 Further, FIG. 4, based on the results of the comparative examples and specific examples of the present embodiment, is a diagram specifically illustrating the effect of deposition rate improvement of the present invention. 表面処理を行った場合は行わなかった場合に比べて、成膜レートは約1.2倍に速くなり、成膜レートも向上している。 If subjected to a surface treatment as compared with the case where not performed, the deposition rate is faster about 1.2 times, also improved film deposition rate. また、成膜レートが向上したことから、吸着が均一化し、薄膜の密着性も向上できていると言える。 Further, since the film deposition rate is improved, the suction is uniform, it can be said that the adhesion of the thin film also can be improved.

【0040】このように、ALE法において、薄膜の成膜中及び成膜前の少なくとも一方の時期に、下地面に対して表面水酸基濃度を高める表面処理を行うことにより、下地面における吸着サイトの表面密度を向上でき、 [0040] Thus, in the ALE method, the at least one time prior and during the deposition formation of the thin film, by performing the surface treatment for increasing the surface hydroxyl group concentration with respect to the underlying surface, the adsorption sites on the underlying surface surface density can be improved,
薄膜原料ガスの吸着を促進させることができるため、下地面に対する元素や化合物の吸着がより均一化する。 It is possible to promote the adsorption of the thin film material gas, the adsorption element or a compound for the underlying surface is more uniform. 従って、薄膜に発生する応力を緩和するとともに、薄膜の下地に対する密着性を向上させ、更に、成膜レートを向上させることができる。 Thus, while relieving the stress generated in the film, to improve the adhesion to the underlying thin film, it is possible to further improve the deposition rate.

【0041】ここで、上記の表面処理は、薄膜の原料(上記例ではTMAやH 2 O)とは異なる材料(上記例ではCH 3 OH)用いて行うことにより、表面処理が、 [0041] Here, the surface treatment described above, by performing (in the above example TMA and H 2 O) the raw material of the thin film (CH 3 OH in the above example) with a material different from the surface treatment,
薄膜形成のための反応には直接関与しないようにすることを、好適に実現できる。 The reaction for forming a thin film to make it not directly involved, can be suitably realized. なお、表面処理を薄膜原料と同じ材料で行っても良い。 Incidentally, it may be subjected to a surface treatment with the same material as the thin film material. 例えば、上記具体例の場合、 For example, in the specific example case,
表面処理をH 2 Oで行っても良い。 The surface treatment may be performed at H 2 O. この場合、TMA導入→パージ→薄膜原料としてのH 2 O導入→パージ→表面処理用材料としてのH 2 O導入→パージのサイクルを行うようにすればよい。 In this case, it is sufficient to perform the cycle of H 2 O introduced → purge as H 2 O introduced → purge → surface treatment material as TMA introduction → purge → thin material.

【0042】また、表面処理用材料としては、水酸基を持つ分子以外にも、例えば、エーテル系化合物、ケトン系化合物、カルボン酸系化合物等の、エーテル結合、カルボキシル基、カルボニル基を持つ分子等から適宜選択しても良い。 Further, as the surface treatment material, in addition to the molecule having a hydroxyl group, for example, ether compounds, ketone compounds, such as carboxylic acid compounds, ether linkages, carboxyl groups, from the molecular or the like having a carbonyl group it may be appropriately selected.

【0043】なお、本発明は、例えば、基板上に、一対の電極間に有機発光層を挟んでなる構造体を配置してなる有機EL素子において、この構造体を被覆して保護する保護膜を形成する場合等に適用することができる。 [0043] The present invention is, for example, on a substrate, an organic EL device formed by arranging a structure formed by interposing an organic light emitting layer between a pair of electrodes, a protective film for covering and protecting the structure it can be applied to a case or the like to form a.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施形態に係る薄膜の形成方法を示す流れ図である。 1 is a flow diagram illustrating a method for forming a thin film according to an embodiment of the present invention.

【図2】比較例としての薄膜の形成方法を示す流れ図である。 2 is a flow diagram showing a method of forming a thin film as a comparative example.

【図3】本発明の薄膜の応力緩和の効果を具体的に示す図である。 3 is a diagram schematically showing an effect of the stress relaxation film of the present invention.

【図4】本発明の成膜レート向上の効果を具体的に示す図である。 4 is a diagram schematically showing an effect of the deposition rate improvement of the present invention.

【図5】下地面がTiO 2の場合のH 2 O暴露による表面水酸基が生ずる過程の推定メカニズムを示す図である。 [5] the underlying surface is a diagram showing an estimated mechanism of the process of surface hydroxyl groups by H 2 O exposure when the TiO 2 is produced.

フロントページの続き (72)発明者 鈴木 晴視 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA03 BB01 DB08 DB13 EE01 Front page of the continuation (72) inventor Haru Suzuki view Kariya, Aichi Showacho 1-chome 1 address Stock Company DENSO in the F-term (reference) 4G077 AA03 BB01 DB08 DB13 EE01

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基板上に原子層成長法により薄膜を形成する方法であって、前記薄膜の成膜中及び成膜前の少なくとも一方の時期に、下地面に対して表面水酸基濃度を高める表面処理を行うことを特徴とする薄膜の形成方法。 1. A method of forming a thin film by atomic layer deposition on a substrate, at least one time prior film forming and film forming of the thin film, increasing the surface hydroxyl group concentration with respect to the underlying surface the surface the thin film forming method, which comprises carrying out the process.
  2. 【請求項2】 前記表面処理は、前記薄膜の原料とは異なる材料を用いて行うことを特徴とする請求項1に記載の薄膜の形成方法。 Wherein said surface treatment method for forming a thin film according to claim 1, characterized in that by using a different material from the material of the thin film.
  3. 【請求項3】 前記表面処理は、前記下地面を、水酸基を持つ分子の気体雰囲気中に暴露することによりなされることを特徴とする請求項1または2に記載の薄膜の形成方法。 Wherein the surface treatment method for forming a thin film according to claim 1 or 2, characterized in that the lower ground is done by exposing the gaseous atmosphere of the molecule with the hydroxyl group.
  4. 【請求項4】 前記水酸基を持つ分子の気体は、当該分子をプラズマ化させた状態としたものであることを特徴とする請求項3に記載の薄膜の形成方法。 4. A gas molecules with the hydroxyl group, forming a thin film according to claim 3, characterized in that is obtained by the state in which the molecule was plasma.
  5. 【請求項5】 前記表面処理は、前記薄膜の成膜前に、 Wherein said surface treatment, before the formation of the thin film,
    前記下地面に対して、水酸基を持つ分子の液体を噴霧することによりなされることを特徴とする請求項1または2に記載の薄膜の形成方法。 The relative underlying surface, forming a thin film according to claim 1 or 2, characterized in that is made by spraying a liquid of molecules having a hydroxyl group.
  6. 【請求項6】 前記水酸基を持つ分子が、H 2 O、H 2 6. A molecule with the hydroxyl groups, H 2 O, H 2 O
    2 、アルコール類またはこれらの2種以上を組み合わせたものであることを特徴とする請求項3ないし5のいずれか1つに記載の薄膜の形成方法。 2, an alcohol or forming a thin film according to any one of claims 3 to 5, characterized in that a combination of two or more thereof.
JP2000142216A 2000-05-15 2000-05-15 Method for forming thin film Withdrawn JP2001328900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142216A JP2001328900A (en) 2000-05-15 2000-05-15 Method for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142216A JP2001328900A (en) 2000-05-15 2000-05-15 Method for forming thin film

Publications (1)

Publication Number Publication Date
JP2001328900A true JP2001328900A (en) 2001-11-27

Family

ID=18649229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142216A Withdrawn JP2001328900A (en) 2000-05-15 2000-05-15 Method for forming thin film

Country Status (1)

Country Link
JP (1) JP2001328900A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US8123860B2 (en) 2002-01-25 2012-02-28 Applied Materials, Inc. Apparatus for cyclical depositing of thin films
US8668776B2 (en) 2001-10-26 2014-03-11 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US9040969B2 (en) 2012-09-20 2015-05-26 Denso Corporation Organic electroluminescence display device and method for manufacturing the same
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7674715B2 (en) 2000-06-28 2010-03-09 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US7846840B2 (en) 2000-06-28 2010-12-07 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US8668776B2 (en) 2001-10-26 2014-03-11 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US8123860B2 (en) 2002-01-25 2012-02-28 Applied Materials, Inc. Apparatus for cyclical depositing of thin films
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US7745329B2 (en) 2002-02-26 2010-06-29 Applied Materials, Inc. Tungsten nitride atomic layer deposition processes
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8282992B2 (en) 2004-05-12 2012-10-09 Applied Materials, Inc. Methods for atomic layer deposition of hafnium-containing high-K dielectric materials
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US8043907B2 (en) 2008-03-31 2011-10-25 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US9040969B2 (en) 2012-09-20 2015-05-26 Denso Corporation Organic electroluminescence display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Somorjai New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions
JP4396547B2 (en) Film forming method, the film forming apparatus and a storage medium
US8465811B2 (en) Method of depositing film by atomic layer deposition with pulse-time-modulated plasma
JP2534525B2 (en) Method for producing a β- silicon carbide layer
CN101005029B (en) Film formation method and apparatus for semiconductor process
US7329615B2 (en) Atomic layer deposition method of forming an oxide comprising layer on a substrate
US20020164890A1 (en) Method of forming silicon containing thin films by atomic layer deposition utilizing s12cl6 and nh3
US7431966B2 (en) Atomic layer deposition method of depositing an oxide on a substrate
JP3168002B2 (en) Chemical vapor deposition method of the transition metal nitride
US20030162408A1 (en) Insulation film on semiconductor substrate and method for forming same
KR101314002B1 (en) SiCN FILM FORMATION METHOD
Mui et al. Reactions of methylamines at the Si (100)-2× 1 surface
KR0132375B1 (en) Thin film forming method
US8293658B2 (en) Reactive site deactivation against vapor deposition
CN100343960C (en) Method for forming silica layer on substrate by adopting atomic layer deposition technique
JP3265042B2 (en) Film formation method
CN1069112C (en) Method for forming ferrioelectric thin film and appts. therefor
US20120213940A1 (en) Atomic layer deposition of silicon nitride using dual-source precursor and interleaved plasma
US8784950B2 (en) Method for forming aluminum oxide film using Al compound containing alkyl group and alkoxy or alkylamine group
CN1162741C (en) Ion gun deposit and arrangement for liquid crystal device
JP4585692B2 (en) Thin film forming method
KR100408733B1 (en) Thin Film Deposition Method
US20010041441A1 (en) Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
KR100760291B1 (en) Method for forming thin film
JPH0922896A (en) Method of selective forming of metal film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807