JP2982055B2 - Method for producing fine metal particles of gold, silver or copper - Google Patents

Method for producing fine metal particles of gold, silver or copper

Info

Publication number
JP2982055B2
JP2982055B2 JP8089942A JP8994296A JP2982055B2 JP 2982055 B2 JP2982055 B2 JP 2982055B2 JP 8089942 A JP8089942 A JP 8089942A JP 8994296 A JP8994296 A JP 8994296A JP 2982055 B2 JP2982055 B2 JP 2982055B2
Authority
JP
Japan
Prior art keywords
gold
silver
copper
iodine
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8089942A
Other languages
Japanese (ja)
Other versions
JPH09256140A (en
Inventor
克也 本多
正人 佐野
修輔 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Tosoh Corp
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan, Tosoh Corp filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP8089942A priority Critical patent/JP2982055B2/en
Publication of JPH09256140A publication Critical patent/JPH09256140A/en
Application granted granted Critical
Publication of JP2982055B2 publication Critical patent/JP2982055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体基板上に金、銀又は
銅の金属の微粒子を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine particles of gold, silver or copper on a solid substrate.

【0002】[0002]

【従来の技術】金、銀又は銅などの微粒子は有機化合物
の酸化触媒、NOの還元触媒などへの応用が進められて
いる。また、これらの金属の微粒子をガラスマトリック
ス中に分散させることで、非線形光学材料として応用が
期待されている。これらの応用において重要なことは個
々の金、銀又は銅の金属微粒子サイズを如何に小さくす
るかということである。触媒反応においては、化学反応
は触媒表面で起こるため、金、銀又は銅の金属微粒子を
触媒として使用する場合には、金、銀又は銅の金属微粒
子の表面積を極力広く、また個々の金、銀又は銅の金属
微粒子を均一に分散させることが必要である。また、
金、銀又は銅の金属微粒子を非線形光学材料へ応用する
場合、これらの金属の粒径が非常に小さくなることで生
じる量子サイズ効果によって非線形光学効果が発現する
ので、金、銀又は銅の金属微粒子のサイズを極力小さく
する必要がある。
2. Description of the Related Art Fine particles of gold, silver or copper have been applied to oxidation catalysts for organic compounds and reduction catalysts for NO. Further, by dispersing these metal fine particles in a glass matrix, application as a nonlinear optical material is expected. The key in these applications is how to reduce the size of the individual gold, silver or copper metal particles. In the catalytic reaction, since the chemical reaction takes place on the surface of the catalyst, when using gold, silver or copper metal fine particles as a catalyst, the surface area of the gold, silver or copper metal fine particles is as large as possible, It is necessary to uniformly disperse silver or copper metal fine particles. Also,
When applying metal particles of gold, silver or copper to a nonlinear optical material, the nonlinear optical effect is manifested by the quantum size effect caused by the extremely small particle size of these metals, so the gold, silver or copper metal It is necessary to minimize the size of the fine particles.

【0003】従来から行なわれている固体表面上に金、
銀又は銅の金属微粒子を製造させる方法としては、これ
らの金属の真空蒸着法がある。これは真空に排気した容
器の中で、上述の金属を加熱して蒸気化し、これを基板
表面上に析出させる方法である。しかしながら、従来触
媒として用いられるこれら金属のうち、例えば金微粒子
は、主に金の有機錯体を原料に用い、SiO2,Al2
3などのさまざまな担体と混合或いは共沈させた後、熱
処理することで得られてきた。また、非線形光学材料と
して用いられる金微粒子を分散させたガラスでも、その
作製手法はほぼ同様で、原料に有機金錯体を用いている
ことが多い。このように、真空蒸着などの手法によって
得られる金微粒子が触媒として、或いは、非線形光学材
料として利用されなかった理由の1つとしては、多くの
固体表面上に蒸着した金微粒子は、粒子同士が合体し成
長するために、粒子サイズが増大したり、あるいは膜状
になるためである。このような状態の金では望まれる触
媒機能や非線形光学効果を得ることは困難であった。こ
のような粒子同士が合体、成長する現象は銀や銅の金属
についても見られた。従って、蒸着法によって得られる
金、銀又は銅などの金属の微粒子に触媒機能や非線形光
学効果を期待するためには、粒同士の合体の進行を抑制
する必要がある。
[0003] Conventionally, gold,
As a method for producing silver or copper metal fine particles, there is a vacuum deposition method of these metals. This is a method in which the above-described metal is heated and vaporized in a container evacuated to vacuum, and this is deposited on the substrate surface. However, among these metals conventionally used as catalysts, for example, fine gold particles mainly use an organic complex of gold as a raw material and use SiO 2 , Al 2 O
It has been obtained by mixing or co-precipitating with various carriers such as 3 , and then heat-treating. In addition, the method for producing glass in which fine gold particles used as a nonlinear optical material are dispersed is almost the same, and an organic gold complex is often used as a raw material. As described above, one of the reasons that the gold fine particles obtained by a method such as vacuum deposition were not used as a catalyst or as a nonlinear optical material is that gold fine particles deposited on many solid surfaces are particles each other. This is because the size of the particles increases or the film is formed due to coalescence and growth. In such a state of gold, it has been difficult to obtain the desired catalytic function and nonlinear optical effect. Such a phenomenon that the particles coalesce and grow together was also observed for silver and copper metals. Therefore, in order to expect a catalytic function and a nonlinear optical effect for fine particles of a metal such as gold, silver or copper obtained by an evaporation method, it is necessary to suppress the progress of coalescence of the particles.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は金、銀又
は銅の金属を蒸着法によってこれら金属の微粒子を得る
に際し、蒸着した金属粒子同士の合体の進行を抑制し、
これらの金属微粒子を製造する方法について種々検討し
た結果、本発明を完成したもので、本発明の目的は、固
体基板上に均一に分散した金、銀又は銅の金属の微粒子
を製造する方法を提供する。
When the present inventors obtain fine particles of gold, silver or copper metal by a vapor deposition method, the present inventors suppress the progress of coalescence of the vapor-deposited metal particles,
As a result of various studies on a method for producing these metal fine particles, the present invention has been completed, and an object of the present invention is to provide a method for producing gold, silver or copper metal fine particles uniformly dispersed on a solid substrate. provide.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、基板表
面上に蒸着法によって金、銀、又は銅の金属微粒子を製
造するに当たり、ヨウ素を存在させることを特徴とする
金、銀又は銅の金属微粒子の製造方法であり、ヨウ素を
存在させる手段としてヨウ素をあらかじめ基板上に吸着
させておく方法、或いは、基板表面に金、銀、又は銅の
金属の供給と同時にヨウ素を供給する方法が好ましい。
SUMMARY OF THE INVENTION The gist of the present invention is to produce gold, silver or copper metal fine particles on a substrate surface by vapor deposition, wherein iodine is present. A method for producing metal fine particles of the above, in which iodine is previously adsorbed on a substrate as a means for causing iodine to exist, or a method in which iodine is supplied simultaneously with supply of gold, silver, or copper metal to the substrate surface. preferable.

【0006】[0006]

【作用】即ち、本発明においては、高配向性熱分解グラ
ファイト(HOPG)及びSiO2ガラスを基板として
用い、ヨウ素が存在する条件下で金、銀又は銅の金属を
真空蒸着することによって基板表面にこれらの金属の微
粒子を得、蒸着した金、銀又は銅の金属微粒子同士の合
体を抑制し、膜状に成長することを防止することが出来
る。この現象については、未だ十分解明されてはいない
が、金、銀又は銅の金属以外の金属についても同様の微
粒子が製造しうることは可能であると予測出来る。ただ
共存させる元素としてヨウ素以外の場合は蒸着する金属
との反応性について十分考慮しなければならない。
That is, in the present invention, highly oriented pyrolytic graphite (HOPG) and SiO 2 glass are used as a substrate, and gold, silver or copper metal is vacuum-deposited under the condition where iodine is present, thereby forming a substrate surface. In addition, it is possible to obtain fine particles of these metals, to suppress coalescence of the evaporated fine particles of gold, silver or copper, and to prevent them from growing into a film. Although this phenomenon has not been sufficiently elucidated yet, it can be predicted that similar fine particles can be produced for metals other than gold, silver or copper. However, when the coexisting element is other than iodine, the reactivity with the metal to be deposited must be sufficiently considered.

【0007】以下、本発明について詳細に述べる。本発
明における基板としては、高配向性熱分解グラファイト
(HOPG)及びSiO2ガラスを基板を使用すること
が好ましい。殊に、高配向性熱分解グラファイトの(0
001)面(基底面)にはヨウ素が物理吸着するため、
従って、基板上に蒸着した金、銀又は銅の金属微粒子の
合体をより効果的に抑制することが出来ると共に、蒸着
した金、銀又は銅の金属微粒子は3次元方向、即ち高さ
方向にも成長する。
Hereinafter, the present invention will be described in detail. As the substrate in the present invention, it is preferable to use a substrate made of highly oriented pyrolytic graphite (HOPG) and SiO 2 glass. In particular, (0) of highly oriented pyrolytic graphite
Since the iodine physically adsorbs on the (001) plane (base plane),
Therefore, the coalescence of the gold, silver, or copper metal fine particles deposited on the substrate can be more effectively suppressed, and the deposited gold, silver, or copper metal fine particles can be moved in the three-dimensional direction, that is, in the height direction. grow up.

【0008】金の蒸着手段は、ヨウ素の存在によっても
従来の蒸着条件と異ならず、例えば金ワイヤ−、金板等
の原料を使用し、約2×10-4Torr以下の減圧若し
くは真空下で加熱して蒸着して行なう。蒸着の際の条件
としては、蒸着速度をコントロ−ルすることが重要であ
るが、通常、約0.1〜1Å/s程度の蒸着速度範囲で
蒸着し、基板表面に析出させる。基板表面の温度として
は通常室温である。金以外の銀又は銅の金属の蒸着につ
いても従来の蒸着方法と同様である。蒸着の際、ヨウ素
を存在させる方法としては、あらかじめ基板表面に吸着
させるか、或いは金と同時に蒸着装置に供給してもよ
い。使用するヨウ素としては、市販されているヨウ素
(I2)等を用いることが好ましい。得られる金微粒子
のサイズとしては、金コロイドと同程度の約10〜30
nm程度であり、これらは基板表面上に個々独立した状
態にある。他の金属についても同様である。
The gold vapor deposition means does not differ from the conventional vapor deposition conditions even by the presence of iodine. For example, a raw material such as a gold wire or a metal plate is used, and the pressure is reduced under about 2 × 10 -4 Torr or under a vacuum. Heating and vapor deposition are performed. It is important to control the deposition rate as a condition for the deposition. Usually, the deposition is performed at a deposition rate in the range of about 0.1 to 1 Å / s, and the deposition is performed on the substrate surface. The temperature on the substrate surface is usually room temperature. The deposition of silver or copper metal other than gold is the same as the conventional deposition method. At the time of vapor deposition, as a method for causing iodine to be present, the iodine may be adsorbed on the substrate surface in advance, or supplied to the vapor deposition device simultaneously with gold. As iodine to be used, it is preferable to use commercially available iodine (I 2 ) or the like. The size of the obtained gold fine particles is about 10 to 30 which is almost the same as that of the gold colloid.
nm, which are independent on the substrate surface. The same applies to other metals.

【0009】[0009]

【実施例及び比較例】以下、実施例をもって具体的に本
発明を説明する。 実施例1 あらかじめ表面を清浄化したHOPG基板をガラス製容
器にいれ、真空排気後、室温にてヨウ素蒸気を容器内に
導入し、基板をヨウ素蒸気に暴露する。その後、これを
取り出して真空蒸気装置内に設置する。真空蒸気装置を
排気した後、金を蒸着する。この時の基板の温度は室温
とした。蒸着する金の量は膜厚計によって測定した。こ
の方法によって得られたHOPG上の金微粒子のFE−
SEM写真を図1に示す。また比較のためヨウ素を供給
しないで真空蒸着した試料のFE−SEM写真も図2に
併せて示す。いずれの試料も膜厚計による平均膜厚を1
00Åとした場合の結果である。通常の蒸着法で作製し
た金は膜状であるのに対し、ヨウ素を供給した場合には
個々の粒子が独立して存在している。得られた金粒子の
粒径は、数nm〜数10nmまで分布していた。
Examples and Comparative Examples Hereinafter, the present invention will be described specifically with reference to examples. Example 1 A HOPG substrate whose surface has been cleaned in advance is placed in a glass container, and after evacuation, iodine vapor is introduced into the container at room temperature to expose the substrate to iodine vapor. Thereafter, this is taken out and placed in a vacuum steam device. After evacuating the vacuum vapor apparatus, gold is deposited. The temperature of the substrate at this time was room temperature. The amount of gold to be deposited was measured by a film thickness meter. FE- of fine gold particles on HOPG obtained by this method
An SEM photograph is shown in FIG. For comparison, an FE-SEM photograph of a sample vacuum-deposited without supplying iodine is also shown in FIG. The average film thickness of each sample was 1
This is the result when 00 ° is set. Gold produced by a normal vapor deposition method is in the form of a film, whereas when iodine is supplied, individual particles are present independently. The particle size of the obtained gold particles was distributed from several nm to several tens nm.

【0010】実施例2 あらかじめ表面を清浄化したHOPG基板を真空蒸着装
置内に設置し、装置を真空排気する。その後装置に設け
た気体導入装置より基板近傍に配置したノズルからヨウ
素蒸気を直接基板に吹きかける。このヨウ素蒸気の導入
は、蒸着に先立ち開始する。ヨウ素を導入した後、金の
蒸着を開始する。金の蒸着を行なっている間、ヨウ素は
継続して供給する。蒸着終了後、直ちにヨウ素の供給を
停止する。この際の基板温度は室温とした。また、基板
としてSiO2を使用して同様な方法によってSiO2
板上に金の微粒子を蒸着させた。これらの方法によって
作製したHOPG基板上の金の微粒子のFE−SEM写
真を図3に、SiO2基板上の金の微粒子のFE−SE
M写真を図4に示す。この試料の場合の平均膜厚は、蒸
着速度と蒸着時間から、両者とも約60Å程度である。
得られた金微粒子の平均粒径は、実施例1の場合と同様
に、nmサイズであった。さらに図3及び図4を図1と
対比すると、本実施例の方法によって得られた金微粒子
の粒径及び分布が実施例1の場合より均一になっている
ことが分かった。
Example 2 A HOPG substrate whose surface has been previously cleaned is placed in a vacuum evaporation apparatus, and the apparatus is evacuated. Thereafter, iodine vapor is directly blown onto the substrate from a nozzle arranged near the substrate by a gas introduction device provided in the device. The introduction of the iodine vapor starts prior to the vapor deposition. After iodine is introduced, gold deposition is started. Iodine is supplied continuously during the deposition of gold. Immediately after the deposition, the supply of iodine is stopped. The substrate temperature at this time was room temperature. Also, by depositing gold particles on a SiO 2 substrate by the same method using SiO 2 as a substrate. FIG. 3 shows an FE-SEM photograph of the fine gold particles on the HOPG substrate produced by these methods. FIG. 3 shows the FE-SE of the fine gold particles on the SiO 2 substrate.
An M photograph is shown in FIG. The average film thickness of this sample is about 60 ° in both cases, based on the deposition rate and the deposition time.
The average particle size of the obtained gold fine particles was nm size as in the case of Example 1. Further, comparing FIGS. 3 and 4 with FIG. 1, it was found that the particle size and distribution of the gold fine particles obtained by the method of the present embodiment were more uniform than in the case of the first embodiment.

【0011】[0011]

【発明の効果】以上述べたように、金、銀又は銅の金属
の蒸着に際して、ヨウ素を存在させることによって基板
上にこれら金属の微粒子を作製することが可能となり、
これによって蒸着法によって得られる金銀又は銅の金属
微粒子を触媒や非線形光学材料として使用することが期
待できる。
As described above, when depositing a metal of gold, silver or copper, the presence of iodine makes it possible to produce fine particles of these metals on a substrate.
Thus, it can be expected that gold, silver or copper metal fine particles obtained by a vapor deposition method are used as a catalyst or a nonlinear optical material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の方法によって得られたHOPG基板
上の金微粒子のFE−SEM写真
FIG. 1 is an FE-SEM photograph of fine gold particles on a HOPG substrate obtained by the method of Example 1.

【図2】ヨウ素を供給しないで真空蒸着した試料のFE
−SEM写真
FIG. 2 FE of a sample vacuum-deposited without supplying iodine
-SEM photograph

【図3】実施例2の方法によって作製したHOPG基板
上の金の微粒子のFE−SEM写真
FIG. 3 is an FE-SEM photograph of fine gold particles on a HOPG substrate manufactured by the method of Example 2.

【図4】実施例2の方法によって作製したSiO2基板
上の金の微粒子のFE−SEM写真
FIG. 4 is an FE-SEM photograph of fine gold particles on a SiO 2 substrate produced by the method of Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G02F 1/35 505 G02F 1/35 505 (56)参考文献 特開 平7−97226(JP,A) 特開 平4−73722(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 B01J 23/48,23/72,27/06 G02F 1/35 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI G02F 1/35 505 G02F 1/35 505 (56) References JP-A-7-97226 (JP, A) JP-A-4-73722 (JP, A) (58) Fields studied (Int. Cl. 6 , DB name) C23C 14/00-14/58 B01J 23 / 48,23 / 72,27 / 06 G02F 1/35

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板表面上に蒸着法によって金、銀、又
は銅の金属微粒子を製造するに当たり、ヨウ素を存在さ
せることを特徴とする金、銀又は銅の金属微粒子の製造
方法。
1. A method for producing fine metal particles of gold, silver or copper, wherein iodine is present when producing fine metal particles of gold, silver or copper on a substrate surface by vapor deposition.
【請求項2】 ヨウ素をあらかじめ基板上に吸着させて
おく請求項1記載の金、銀又は銅の金属微粒子の製造方
法。
2. The method for producing fine metal particles of gold, silver or copper according to claim 1, wherein iodine is adsorbed on the substrate in advance.
【請求項3】 基板表面に金、銀又は銅の金属の供給と
同時にヨウ素を供給する請求項1記載の金、銀又は銅の
金属微粒子の製造方法。
3. The method for producing fine metal particles of gold, silver or copper according to claim 1, wherein iodine is supplied simultaneously with the supply of gold, silver or copper metal to the substrate surface.
JP8089942A 1996-03-21 1996-03-21 Method for producing fine metal particles of gold, silver or copper Expired - Fee Related JP2982055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8089942A JP2982055B2 (en) 1996-03-21 1996-03-21 Method for producing fine metal particles of gold, silver or copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8089942A JP2982055B2 (en) 1996-03-21 1996-03-21 Method for producing fine metal particles of gold, silver or copper

Publications (2)

Publication Number Publication Date
JPH09256140A JPH09256140A (en) 1997-09-30
JP2982055B2 true JP2982055B2 (en) 1999-11-22

Family

ID=13984767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8089942A Expired - Fee Related JP2982055B2 (en) 1996-03-21 1996-03-21 Method for producing fine metal particles of gold, silver or copper

Country Status (1)

Country Link
JP (1) JP2982055B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020065230A (en) * 2001-02-06 2002-08-13 지니텍 주식회사 A chemical vapor deposition method for depositing copper film using hydrogen plasma and surfactant
JP5232988B2 (en) 2006-02-27 2013-07-10 国立大学法人名古屋大学 Method for producing nanoparticles
JP5052074B2 (en) * 2006-09-06 2012-10-17 株式会社アルバック Method for forming nano metal particles and nano-order wiring
JP6237012B2 (en) * 2013-09-05 2017-11-29 大日本印刷株式会社 Metal particle supported catalyst and method for producing the same
JP6531321B1 (en) * 2017-12-25 2019-06-19 株式会社 Eu−BS Method of manufacturing radioactive substance adsorber, radioactive substance adsorber and radioactive substance recovery method

Also Published As

Publication number Publication date
JPH09256140A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US7713907B2 (en) Method of preparing size-selected metal clusters
Thurier et al. Platinum OMCVD processes and precursor chemistry
JP2561537B2 (en) Metal paste and manufacturing method thereof
US2685124A (en) Method for hi-vac alloying and coated product
JP3419788B2 (en) Method for producing thin layer carrying non-evaporable getter material and getter device produced thereby
JPS6141762A (en) Formation of hyperfine pattern
US5772754A (en) Ultrafine particles and production method thereof
US20100285656A1 (en) Formation of metal-containing nano-particles for use as catalysts for carbon nanotube synthesis
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
JP2002525427A (en) Chemical vapor deposition method with catalyst introduced on the surface
JP2982055B2 (en) Method for producing fine metal particles of gold, silver or copper
JP2969503B2 (en) How to make carbonaceous fiber
US11456358B2 (en) Maskless patterning and control of graphene layers
JP2007091479A (en) Method for production of carbon fiber
US8137763B2 (en) Method of producing a layer of material on a support
KR100513713B1 (en) Growth method for vertically aligned carbon nanotubes by changing the morphologies of a transition metal thin films
JPH05136087A (en) Method and apparatus for growing film
JPH07238000A (en) Intercalation compound, production thereof, electric wiring and semiconductor device
JPH09316504A (en) Superfine al grain
EP1146138B1 (en) Tungsten super fine particle and method for producing the same
JPH03208885A (en) Method for depositing oxide at atomic layer level by vapor growth method
JP3696371B2 (en) Method for producing nanocrystal film
JPS6046372A (en) Thin film forming method
JP5052074B2 (en) Method for forming nano metal particles and nano-order wiring

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees