JP2001323276A - Carbonization oven - Google Patents

Carbonization oven

Info

Publication number
JP2001323276A
JP2001323276A JP2000141116A JP2000141116A JP2001323276A JP 2001323276 A JP2001323276 A JP 2001323276A JP 2000141116 A JP2000141116 A JP 2000141116A JP 2000141116 A JP2000141116 A JP 2000141116A JP 2001323276 A JP2001323276 A JP 2001323276A
Authority
JP
Japan
Prior art keywords
furnace
carbonization
combustion
temperature
carbonization furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000141116A
Other languages
Japanese (ja)
Other versions
JP4391667B2 (en
Inventor
Masaharu Itatsu
雅春 板津
Koji Itatsu
孝治 板津
Hiroyuki Itatsu
博之 板津
Yukiji Taguchi
幸示 田口
Masafumi Kamei
雅文 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CYC KK
Original Assignee
CYC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CYC KK filed Critical CYC KK
Priority to JP2000141116A priority Critical patent/JP4391667B2/en
Publication of JP2001323276A publication Critical patent/JP2001323276A/en
Application granted granted Critical
Publication of JP4391667B2 publication Critical patent/JP4391667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Abstract

PROBLEM TO BE SOLVED: To provide a carbonization oven capable of completing dry distillation within a short time, utilizing heat sources efficiently, reducing operation cost and downsizing the whole system and also detoxifying and deodorizing combustion exhaust gas. SOLUTION: This carbonization oven 1 has a carbonization oven body 10 having a thermosensor 41 and a directly coupled stack 12 provided with a damping device, a combustion furnace 30 set at the inside of the body 10 and having a combustion burner 32, a directly coupled stack 33 provided with a damping device and having a thermosensor 42, a dry distillation box 20 set at the inside of the body 10, a plurality of combustion gas inlet holes 34 provided in the furnace wall of a combustion furnace, and a dry distillation gas- feeding path 21 making the dry distillation box 20 communicate with the combustion furnace and having a thermosensor 43, wherein the combustion gas is obtained by burning the dry distillation gas, dry-distilling and carbonizing the combustion gas while feeding back the gas to the carbonization oven body 10 and maintaining the inside of the carbonization oven body 10 at a required high temperature based on temperature data measured by each thermosensor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼炉を内蔵装備
した乾留式炭化炉に関するものであり、特に、乾留速度
のコントロールができ、廃プラ等の高発熱被炭化物や木
材等の中級被炭化物或いはこれらの混在物を無人で迅速
且つ安全に自動操炉でき、燃焼エネルギーの削減、設備
の大型化、ランニングコストの低減、更には環境汚染物
質や有害物質等を無毒化できる炭化炉に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonization furnace having a built-in combustion furnace, and more particularly to a carbonization furnace capable of controlling a carbonization speed and a high-heat carbonized material such as waste plastic and a medium-grade carbonized material such as wood. Alternatively, it relates to a carbonization furnace that can automatically and automatically operate these contaminants automatically and safely, reduce combustion energy, increase equipment size, reduce running costs, and detoxify environmental pollutants and harmful substances. is there.

【0002】[0002]

【従来の技術】従来の係る乾留式の炭化炉としては、炭
化炉本体に複数本の燃焼バーナーを装備し、個々の燃焼
バーナーに燃料と空気を供給すると共に、個々のバーナ
ーには燃料及び空気の供給を遮断或いは供給量が調整可
能なバルブが設けたものが汎用されていた。一方、炭化
炉本体の外部に燃焼炉を装備し、炭化炉本体から発生し
た燃焼ガスや乾留ガスをこの燃焼炉に導いて燃焼させる
炭化炉も公知である。
2. Description of the Related Art As a conventional carbonization furnace of the dry distillation type, a plurality of combustion burners are provided in a carbonization furnace main body, fuel and air are supplied to each combustion burner, and fuel and air are supplied to each burner. In general, a valve provided with a valve capable of shutting off the supply or adjusting the supply amount has been used. On the other hand, there is also known a carbonization furnace in which a combustion furnace is provided outside a carbonization furnace main body, and a combustion gas or a carbonization gas generated from the carbonization furnace main body is guided to the combustion furnace for combustion.

【0003】このような従来の炭化炉の運転において
は、燃料及び空気量を遮断して或いは供給量を調製して
燃焼バーナーの火力をコントロールするか、或いは炭化
炉本体に装備した複数のバーナーのうちのいくつかを消
火したり再点火することで、炉本体内の温度雰囲気をコ
ントロールするものであった。
[0003] In the operation of such a conventional carbonization furnace, the heat of the combustion burner is controlled by shutting off the amount of fuel and air or adjusting the supply amount, or a plurality of burners provided in the main body of the carbonization furnace. By extinguishing or reigniting some of them, the temperature atmosphere in the furnace body was controlled.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの制御
方法においては、被炭化物の種類、量等により、燃焼炉
に供給される乾留ガス量が極端に変動するため、その制
御方法が重要になる。例えば被炭化物が廃プラ等のよう
な高級発熱被炭化物であると、炭化炉が高温になると、
燃焼炉に多量の乾留ガスが供給され燃焼されるため、燃
焼炉内温度が急上昇することになり、曳いては炭化炉本
体内も急激に温度上昇することになる。すると、乾留炭
化反応は連鎖的に加速されるから、乾留ガス過剰となっ
て燃焼炉の燃焼能力オーバー状態を招くことになり、黒
煙、有毒ガス発生等の問題を生じ、公害上の問題等もあ
った。
However, in these control methods, the amount of the carbonization gas supplied to the combustion furnace varies extremely depending on the type and amount of the carbonized material, so that the control method is important. . For example, if the material to be carbonized is a high-grade heated carbonized material such as waste plastic, the temperature of the carbonization furnace becomes high,
Since a large amount of carbonization gas is supplied to the combustion furnace and burned, the temperature inside the combustion furnace rises rapidly, and the temperature inside the carbonization furnace itself also rises sharply. Then, since the carbonization reaction is accelerated in a chain, the carbonization gas becomes excessive and the combustion capacity of the combustion furnace becomes excessive, causing problems such as black smoke and toxic gas generation, and pollution problems. There was also.

【0005】一方、被炭化物が例えば木材、竹材等の植
物材料のような中級発熱被炭化物であると、これらを粉
状、粒状に粉砕しても繊維状物質の熱伝導率が小さく炭
化に必要な熱が伝わり難く乾留させ難いために、乾留ガ
スの発生不足し、燃焼炉への乾留ガスの供給不足状態と
なって温度が降下し曳いては炭化炉本体内の温度雰囲気
が降下するようになる。温度が降下すると、乾留炭化反
応は更に進まなくなって乾留ガスの発生も更に減少す
る。すなわち、乾留炭化反応が連鎖的に乾留ガスの供給
不足状態となり、炭化時間が長くなって燃焼費が増加す
るとか、乾留炭化が不可能になる等の問題があった。
On the other hand, if the material to be carbonized is an intermediate heat-generating carbonized material such as plant material such as wood or bamboo, even if these materials are pulverized into powder or granules, the heat conductivity of the fibrous substance is small and it is necessary for carbonization. As it is difficult to conduct heat and dry distillation, it is difficult to generate carbonization gas, and the supply of carbonization gas to the combustion furnace is in an insufficiency state, so that the temperature drops and the temperature atmosphere in the carbonization furnace body drops. Become. When the temperature decreases, the carbonization reaction does not proceed further, and the carbonization gas generation further decreases. That is, the dry distillation carbonization reaction is in a short supply state of the dry distillation gas in a chain, and there are problems that the carbonization time becomes longer and the combustion cost increases, or that the dry distillation carbonization becomes impossible.

【0006】本発明は、叙上の従来技術の具有する問題
点に鑑みなされたものであり、その目的とするところ
は、乾留速度のコントロールができ、廃プラ等の高発熱
被炭化物や木材等の中級被炭化物或いはこれらの混在物
を無人で迅速且つ安全に自動操炉でき、燃焼エネルギー
の削減、設備の大型化、ランニングコストの低減更には
環境汚染物質や有害物質等を無毒化できる乾留式の炭化
炉を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to control the carbonization rate and to provide highly heat-generating carbonized materials such as waste plastics and wood. A dry distillation system that can automatically and automatically operate intermediate-grade carbonized materials or their mixed substances unattended, quickly and safely, reducing combustion energy, increasing equipment size, reducing running costs, and detoxifying environmental pollutants and harmful substances. The carbonization furnace will be provided.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明が採用した手段の要旨とするところは、叙上
の特許請求の範囲に記載のとおりである。
The gist of the means adopted by the present invention to achieve the above object is as set forth in the appended claims.

【0008】このような構成を採用した各請求項記載の
発明に係る炭化炉にあっては、被炭化物が例えば廃プラ
等のような高級発熱被炭化物であり、操炉中に炭化炉が
高温になって燃焼炉に多量の乾留ガスが供給され、これ
らが燃焼するという悪循環が原因となって炭化炉本体内
の温度雰囲気が上昇する前に、乾留ガスの発生供給量を
制限することができる。すなわち、炭化炉本体内の温度
雰囲気を炭化最適温度に維持でき、乾留炭化反応の連鎖
的な加速を防止できる。
[0008] In the carbonizing furnace according to the invention described in each of the claims adopting such a configuration, the carbonized material is a high-grade heat-generating carbonized material such as, for example, a waste plastic, and the carbonizing furnace is heated to a high temperature during operation. As a result, a large amount of carbonized gas is supplied to the combustion furnace, and the amount of carbonized gas generated and supplied can be limited before the temperature atmosphere in the carbonization furnace body rises due to a vicious cycle in which these burn. . That is, the temperature atmosphere in the carbonization furnace main body can be maintained at the optimum carbonization temperature, and chain acceleration of the dry distillation carbonization reaction can be prevented.

【0009】また、被炭化物が例えば木材、竹材等の植
物材料のような中級発熱被炭化物であり、乾留ガスの発
生が不足して燃焼炉への乾留ガス供給量が不足すること
が原因となって炭化炉本体内の温度雰囲気が降下する前
に、燃焼バーナーを再点火して燃料を燃焼して燃焼炉に
燃焼炎を噴射することができ、これにより、乾留炭化反
応の連鎖的な減少を防止できる。すなわち、炭化炉本体
内の温度雰囲気を常時炭化最適温度に維持でき、乾留炭
化が不可能になるとか、炭化時間が長くなって燃焼費が
増加することもない。
[0009] Further, the carbonized material is an intermediate heat-generating carbonized material such as a plant material such as wood or bamboo, which causes a shortage of dry distillation gas and an insufficient supply of dry distillation gas to the combustion furnace. Before the temperature atmosphere in the carbonization furnace body drops, the combustion burner can be reignited to burn fuel and inject a combustion flame into the combustion furnace, thereby reducing the chain reduction of the carbonization reaction. Can be prevented. That is, the temperature atmosphere in the carbonization furnace main body can always be maintained at the optimal temperature for carbonization, and dry distillation carbonization is not possible, and the carbonization time is not increased and the combustion cost is not increased.

【0010】すなわち、各請求項記載の発明に係る炭化
炉にあっては、被炭化物の種類、量等により燃焼炉に供
給される乾留ガスの量の発生が仮に急変した場合であっ
ても、被炭化物の乾留速度を適宜自在制御でき、炭化炉
本体内の温度雰囲気を常時炭化最適温度に維持すること
ができる。
That is, in the carbonization furnace according to the invention described in each claim, even if the generation of the amount of the carbonization gas supplied to the combustion furnace changes suddenly depending on the type and amount of the material to be carbonized, The carbonization speed of the carbonized material can be freely controlled as needed, and the temperature atmosphere in the carbonization furnace main body can always be maintained at the optimum carbonization temperature.

【0011】特に、請求項2記載の発明に係る炭化炉に
よると、特には、エアー供給パイプの噴射口からエアー
を勢い良く噴射するから、エアーの減圧吸引ができ、効
果的に気体ミキシングでき、乾留ガスを燃焼させること
ができる。すなわち、燃焼させることで得られた燃焼ガ
スを炭化炉内にフィードバックさせることによって、炭
化炉内を高温雰囲気にすることができ、燃料費の大幅な
節減が図れる。
[0011] In particular, according to the carbonization furnace according to the second aspect of the present invention, in particular, since the air is vigorously injected from the injection port of the air supply pipe, the air can be suctioned under reduced pressure, and gas mixing can be performed effectively. The carbonization gas can be burned. That is, by feeding back the combustion gas obtained by the combustion into the carbonization furnace, the inside of the carbonization furnace can be set to a high-temperature atmosphere, and the fuel cost can be significantly reduced.

【0012】請求項3記載の発明に係る炭化炉による
と、特には、耐熱性筒体を互い違いに組み合わせてブロ
ックを構成し、且つこのブロックをその長さ以上離間さ
せて配置したハニカム構造体を通過させるから、ハニカ
ム構造体を通過する過程で、ダイオキシン類等の環境汚
染物質や有害物質等をより完全に燃焼、熱分解でき、こ
れにより、環境汚染物質や有害物質等を無毒化若しくは
脱臭することができ、無煙化することもできる。
According to the carbonization furnace according to the third aspect of the present invention, in particular, a honeycomb structure in which heat-resistant cylinders are alternately combined to form a block, and the blocks are arranged so as to be separated by at least the length of the block. Since it passes, in the process of passing through the honeycomb structure, environmental pollutants such as dioxins and harmful substances can be more completely burned and thermally decomposed, thereby detoxifying or deodorizing environmental pollutants and harmful substances. Can be smokeless.

【0013】なお、上述した各請求項記載の発明に係る
炭化炉において、乾留ガス供給路内の前記エアーパイプ
噴射口より燃焼炉側に、固定式気体ミキシング用羽根部
材を内設する構成が採用されていると、乾留ガスとエア
ーを効果的に混合でき、そして前記ハニカム構造体にて
得られる上記作用が加わって、環境汚染物質や有害物質
等をより効率的に無毒化したり脱臭することができ、し
かも無煙化できるようになるから、好適である。
[0013] In the carbonization furnace according to the above-mentioned claims, a configuration is adopted in which a fixed-type gas mixing blade member is provided on the combustion furnace side of the air pipe injection port in the dry distillation gas supply path. In this case, the carbonized gas and air can be effectively mixed, and the above-mentioned action obtained by the honeycomb structure is added, so that environmental pollutants and harmful substances can be more efficiently detoxified or deodorized. This is preferable because smoke can be eliminated.

【0014】すなわち、各請求項記載の発明に係る炭化
炉によると、被炭化物の種類、量等に影響されず、無人
で迅速且つ安全に自動操炉でき、燃焼エネルギーの削
減、設備の大型化、ランニングコストの低減、さらに、
環境汚染物質や有害物質等を浄化することができる。
That is, according to the carbonization furnace according to the invention described in each claim, the automatic furnace can be operated unmanned quickly and safely without being affected by the type and amount of the material to be carbonized, reducing the combustion energy and increasing the size of the equipment. , Lower running costs, and
It can purify environmental pollutants and harmful substances.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を実施例
に基づいて詳細に説明するが、これは単にその代表的な
ものとして例示したに過ぎず、その要旨を越えない限り
以下の実施例により本発明が限定されるものではなく、
様々に設計変更して実施できるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in detail below with reference to examples. However, these are merely exemplifications as typical examples, and the following examples will be described unless they depart from the gist. The invention is not limited by the examples,
It can be implemented with various design changes.

【0016】図1は第1実施例の炭化炉1を概略的に示
す縦断面図であり、図2は図1のA−A線に沿った横断
面図である。
FIG. 1 is a longitudinal sectional view schematically showing a carbonizing furnace 1 according to a first embodiment, and FIG. 2 is a transverse sectional view taken along line AA of FIG.

【0017】図において、炭化炉1は、炭化炉本体10
と、該炭化炉本体10の開閉扉と対面する側面側が開口
する乾留ボックス20と、前記乾留ボックス20内に連
通する乾留ガス供給路21を介してこの乾留ボックス2
0より供給された乾留ガスを燃焼する燃焼炉30と、を
具備しており、燃焼炉30の両側壁には炭化炉本体10
内に連通する複数の燃焼ガス取込孔34が形設されてい
る。そして、乾留ガスを燃焼することで得られる燃焼ガ
スは、炭化炉本体10内にフィードバックできるように
なっている。
In the drawing, a carbonization furnace 1 is provided with a carbonization furnace main body 10.
And a carbonization box 20 having an open side surface facing the opening and closing door of the carbonization furnace main body 10, and a carbonization box 2 through a carbonization gas supply path 21 communicating with the carbonization box 20.
And a combustion furnace 30 for burning the carbonization gas supplied from the combustion furnace 30.
A plurality of combustion gas intake holes 34 communicating with the inside are formed. Then, the combustion gas obtained by burning the carbonization gas can be fed back into the carbonization furnace main body 10.

【0018】炭化炉本体10は、内面全面に耐熱性断熱
材を敷設した耐熱鋼の炉体11と、外気から遮断しその
内部を密封状態に保持する開閉扉を有するとともに、燃
焼排ガスの排出を制御するためのダンバー装置A12a
を煙道内に装備した直結煙突A12と、炉体11内部に
向けて外部の空気を供給し炉体11内を冷却するための
炭化炉冷却用送風機14、を具備している。
The carbonization furnace main body 10 has a heat-resistant steel furnace body 11 in which a heat-resistant heat insulating material is laid on the entire inner surface, an opening / closing door which shuts off the outside air and keeps the inside thereof sealed, and discharges combustion exhaust gas. Dambar device A12a for controlling
The furnace is provided with a directly connected chimney A12 equipped in a flue and a carbonizing furnace cooling blower 14 for supplying external air toward the inside of the furnace body 11 and cooling the inside of the furnace body 11.

【0019】乾留ボックス20は耐熱鋼材製であり、炉
体11の底壁内面上に半固定又は固定した状態に載置さ
れている。炉体11に備えた開閉扉に対峙する側面は開
口されており、被炭化物を例えば耐熱鋼材製のバスケッ
ト(図示しない)等に収容しこのバスケットとともに出
し入れするようになっている。
The dry distillation box 20 is made of a heat-resistant steel material, and is placed on the inner surface of the bottom wall of the furnace body 11 in a semi-fixed or fixed state. The side surface facing the opening / closing door provided in the furnace body 11 is opened, and the material to be carbonized is accommodated in, for example, a heat-resistant steel basket (not shown) or the like, and is put in and out together with the basket.

【0020】燃焼炉30は、炉体31と、該炉体31内
に高温の噴射炎を供給する燃焼バーナー32と、燃焼排
ガスの排出量を自在調整できるダンバー装置B33aを
煙道内に装備した直結煙突33と、炉壁31a両側に形
設され炭化炉本体10内に連通する複数の燃焼ガス取込
孔34とを具備しており、燃焼炉30の天井部は炉体1
1の底壁13を兼ねる構造となっている。
The combustion furnace 30 is directly connected with a furnace body 31, a combustion burner 32 for supplying a high-temperature injection flame into the furnace body 31, and a dambar device B33a capable of freely adjusting a discharge amount of combustion exhaust gas in the flue. The combustion furnace 30 includes a chimney 33 and a plurality of combustion gas intake holes 34 formed on both sides of the furnace wall 31a and communicating with the inside of the carbonization furnace main body 10.
It has a structure that also serves as the bottom wall 13.

【0021】なお、炉体11の底壁13は、厚さ65m
mの耐火れんが13a上に、セラミックウールのような
耐火断熱材13bを適宜敷設したものである。被炭化物
が廃プラ等のような高発熱被炭化物である場合には耐火
断熱材13bの厚さを例えば110〜130mm程度に
し、被炭化物が木材等の植物系材料等のような中発熱被
炭化物である場合にはその厚さを100mm以下にする
と、炉体11内の温度上昇並びに下降に及ぼす燃焼ガス
取込以外の影響要因を除去でき、各センサー装置で検出
した各温度情報に基づいて炉体11内温度を確実に制御
できるようになるから、好ましい。
The bottom wall 13 of the furnace body 11 has a thickness of 65 m.
A refractory heat insulating material 13b such as ceramic wool is appropriately laid on the m refractory brick 13a. When the carbonization target is a high heat generation target such as a waste plastic, the thickness of the refractory heat insulating material 13b is, for example, about 110 to 130 mm, and the carbonization target is a medium heat generation target such as a plant material such as wood. When the thickness is set to 100 mm or less, it is possible to remove the influence factors other than the combustion gas intake on the temperature rise and fall in the furnace body 11 and to determine the furnace based on the temperature information detected by each sensor device. This is preferable because the temperature inside the body 11 can be reliably controlled.

【0022】燃焼バーナー32には、このバーナー32
にエアーを供給するためのバーナー用送風機がセットさ
れており初期操炉時にバーナー用送風機を駆動しつつ燃
焼させるようになっている。
The combustion burner 32 includes the burner 32
A burner blower for supplying air to the burner is set, and the burner blower is driven and burned during the initial furnace operation.

【0023】乾留ボックス20内で発生する乾留ガス
は、乾留ガス供給路21を介して燃焼炉30に導入され
る。乾留ガスにエアーを混合した後、この混合ガスを燃
焼炉30に導入すると、燃焼バーナー32が消火されて
いても、燃焼炉30内が高温雰囲気になっているため、
乾留ガスは自燃するので、熱源として使用可能な燃焼ガ
スを発生させることができる。
The carbonization gas generated in the carbonization box 20 is introduced into the combustion furnace 30 through the carbonization gas supply path 21. After the air is mixed with the carbonized gas, this mixed gas is introduced into the combustion furnace 30, and even if the combustion burner 32 is extinguished, the inside of the combustion furnace 30 is in a high temperature atmosphere.
Since the carbonization gas self-combustes, combustion gas usable as a heat source can be generated.

【0024】乾留ガス供給路21の乾留ボックス側に、
乾留ボックス温度を検出する温度感知センサーC43が
備えてあり、燃焼炉側には、口径が2mm以上の噴射口
35aを有するエアー供給パイプ35が備えてある。一
方、エアー供給パイプ35の他端には、送風量を連続変
換できる乾留ガス燃焼用送風機36aと逆流阻止できる
風圧開閉ダンバー部材36bを有するダンバー装置C3
6(図3)に外装されており、乾留ガスに気体ミキシン
グするエアー供給量を連続的に制御できるようになって
いる。噴射口35aからエアーを勢い良く噴射すると、
この位置が局所的に減圧状態になるから、乾留ガスを減
圧吸引できるから、乾留ガスとエアーを極めて効率的に
気体ミキシングでき且つ逆流防止できる。
On the dry distillation box side of the dry distillation gas supply path 21,
A temperature sensor C43 for detecting the temperature of the carbonization box is provided, and an air supply pipe 35 having an injection port 35a having a diameter of 2 mm or more is provided on the combustion furnace side. On the other hand, the other end of the air supply pipe 35 has a damper device C3 having a blower 36a for dry distillation gas combustion capable of continuously converting the amount of air blow and a wind pressure opening / closing damper member 36b capable of preventing backflow.
6 (FIG. 3), so that the supply amount of air for gas mixing with the carbonization gas can be continuously controlled. When air is vigorously injected from the injection port 35a,
Since this position is locally in a reduced pressure state, the dry distillation gas can be sucked under reduced pressure, so that the dry distillation gas and the air can be mixed very efficiently and the backflow can be prevented.

【0025】エアー供給パイプ35の先端は、乾留ガス
供給路21内であり且つ燃焼炉30の吸気口より50〜
500mm手前に配置されている。噴射口35aの口径
が2mm以下であると、乾留ガス中に混在する煤や飛沫
などが詰まってしまうために燃焼ガスを噴射できなくな
る傾向がある。
The tip of the air supply pipe 35 is located within the dry distillation gas supply path 21 and 50 to 50 mm from the intake port of the combustion furnace 30.
It is arranged 500 mm before. If the diameter of the injection port 35a is 2 mm or less, the combustion gas cannot be injected because the soot and the droplets mixed in the carbonization gas are clogged.

【0026】なお、エアー供給パイプ35の先端は複数
に分枝させてあっても良いし、先端をその内角(θ)が
90°〜180°となるように閉止し、この先端部に孔
径2〜6mmの噴射口35aを複数個形成してもよい。
先端の内角(θ)が90°以下であっても、また180
°以上であっても、燃焼ガス噴射によって得られる減圧
吸収能力が低下する傾向がある。
The tip of the air supply pipe 35 may be branched into a plurality of pieces, or the tip may be closed so that the inner angle (θ) is 90 ° to 180 °, and the tip of the air supply pipe 35 has a hole diameter of 2 °. A plurality of injection ports 35a each having a diameter of 6 mm may be formed.
Even if the inner angle (θ) of the tip is 90 ° or less,
° or more, there is a tendency that the reduced pressure absorption capacity obtained by combustion gas injection is reduced.

【0027】また、エアー供給パイプ35の先端が、燃
焼炉30側に配置されすぎていてもまた離れすぎていて
も、気体ミキシング能力が低下する傾向がある。さらに
また、乾留ガス供給路11の断面積とエアー供給パイプ
35の噴射口35aの断面積との比が5以下であっても
20以上であっても気体ミキシング能力が低下する傾向
がある。その理由は、気体を効率的にミキシングするた
めには、噴射される乾留ガスの負荷圧力(抵抗)を調整
する必要があるためであり、乾留ガス供給路21の断面
積と噴射口35aの断面積との比が5以下であるとこの
負荷圧力(抵抗)が大きすぎ、その比が20以上である
と負荷圧力(抵抗)が小さすぎるからである。
Also, if the tip of the air supply pipe 35 is too far from the combustion furnace 30 or too far, the gas mixing capacity tends to decrease. Furthermore, if the ratio of the cross-sectional area of the dry distillation gas supply passage 11 to the cross-sectional area of the injection port 35a of the air supply pipe 35 is 5 or less or 20 or more, the gas mixing capacity tends to decrease. The reason is that, in order to mix the gas efficiently, it is necessary to adjust the load pressure (resistance) of the carbonized gas to be injected, and the sectional area of the carbonized gas supply passage 21 and the cutoff of the injection port 35a are required. If the ratio with the area is 5 or less, the load pressure (resistance) is too large, and if the ratio is 20 or more, the load pressure (resistance) is too small.

【0028】このように構成した燃焼炉30によると、
エアー供給パイプ35の噴射口35aからエアーを噴射
することで、乾留ガスとエアーとを気体ミキシング、吸
引減圧を行うことができ、乾留ガスを800℃以上で分
解するための燃料費の節減ができる。また、燃焼炉30
の内部に、図4に示すようなハニカム構造体54を配設
することができる。このハニカム構造体50は、耐熱ス
テンレス鋼や、カーボランダム、ムライト若しくはアル
ミナセラミックスなどから製造した耐熱性筒体51a
(外径25〜150mm、内径20〜100mm、長さ
50〜200mm)を互い違いに2〜6列に組み合わせ
て構築したブロック51bを、このブロック51bの長
さ(A)以上の距離(B)離間させて1〜3個配置した
ものが例示できる。
According to the combustion furnace 30 configured as described above,
By injecting air from the injection port 35a of the air supply pipe 35, gas mixing and suction decompression of the carbonized gas and air can be performed, and fuel cost for decomposing the carbonized gas at 800 ° C. or more can be reduced. . In addition, the combustion furnace 30
A honeycomb structure 54 as shown in FIG. The honeycomb structure 50 is made of a heat-resistant stainless steel, a heat-resistant cylinder 51a made of carborundum, mullite, alumina ceramics, or the like.
(The outer diameter is 25 to 150 mm, the inner diameter is 20 to 100 mm, and the length is 50 to 200 mm). A block 51b constructed by combining two to six rows alternately is separated by a distance (B) which is equal to or longer than the length (A) of the block 51b. One to three pieces can be exemplified.

【0029】耐熱性筒体51aを互い違いに組み合わせ
てブロック51bを構成し、ブロック51bその長さ以
上離間させて配置したハニカム構造体50を通過させる
と、ハニカム構造体50を通過する過程で、ダイオキシ
ン類等の環境汚染物質や有害物質等をより完全に燃焼、
熱分解でき、これにより、環境汚染物質や有害物質等を
無毒化若しくは脱臭することができ、無煙化できるか
ら、極めて好適である。
When the block 51b is formed by alternately combining the heat-resistant tubular bodies 51a and the block 51b is passed through the honeycomb structure 50 which is arranged at a distance longer than the length of the block 51b, dioxin is passed through the honeycomb structure 50 in the process of passing through the honeycomb structure 50. More complete combustion of environmental pollutants and harmful substances such as
It is very suitable because it can be thermally decomposed, thereby detoxifying or deodorizing environmental pollutants and harmful substances, and can be smokeless.

【0030】なお、前記エアー供給パイプ35の噴射口
35aと乾留ガス供給路21の出口との間に図示しない
気体ミキシング用羽根部材を内設すると、乾留ガスと燃
焼用エアーとの混合ガスを渦巻き状にして燃焼炉30内
へ供給することができから、混合ガスを更に均質に混合
できるから、ハニカム構造体50にて得られる叙上の作
用に加え、より効率的に環境汚染物質や有害物質等を無
毒化、脱臭でき、無煙化できる。
When a gas mixing blade member (not shown) is provided between the injection port 35a of the air supply pipe 35 and the outlet of the carbonized gas supply passage 21, a mixed gas of the carbonized gas and the combustion air is swirled. Since the gas mixture can be supplied into the combustion furnace 30 and the mixed gas can be mixed more homogeneously, in addition to the above-mentioned action obtained in the honeycomb structure 50, the environmental pollutants and harmful substances can be more efficiently obtained. Can be detoxified, deodorized and smokeless.

【0031】また、ハニカム構造体50を通過させた約
1000℃程度の燃焼ガスは、炭化炉本体10内にフィ
ードバックさせるようになっているから、炭化炉本体1
0の主要な熱源として活用され、大幅な燃焼エネルギー
の削減ができる。すなわち、ランニングコストを削減で
きることに加え、高速炭化が可能となり、さらに設備全
体の小型化が図れるようになるのである。
Since the combustion gas at about 1000 ° C. that has passed through the honeycomb structure 50 is fed back into the carbonization furnace main body 10, the carbonization furnace main body 1
It is used as a major heat source, and can greatly reduce combustion energy. That is, in addition to reducing running costs, high-speed carbonization becomes possible, and the size of the entire equipment can be reduced.

【0032】ところで、この炭化炉1には、燃焼ガス取
込孔34の上方であって且つ乾留ボックス20底壁外面
には、炭化炉本体10内の温度雰囲気、特には燃焼炉3
0から供給される燃焼ガス温度を常時監視するセンサー
装置A41が取り付けてあり、燃焼炉30内には、燃焼
炉30内の温度雰囲気、特には燃焼炉内の温度を常時監
視するためのセンサー装置B42が取り付けてある。
In the carbonization furnace 1, the temperature atmosphere inside the carbonization furnace main body 10, especially the combustion furnace 3, is located above the combustion gas intake hole 34 and on the outer surface of the bottom wall of the carbonization box 20.
A sensor device A41 for constantly monitoring the temperature of the combustion gas supplied from 0 is installed, and a sensor device for constantly monitoring the temperature atmosphere in the combustion furnace 30, particularly the temperature in the combustion furnace, in the combustion furnace 30. B42 is attached.

【0033】温度感知センサーA41、センサーB42
並びにセンサーC43で検出した温度情報はいずれも自
動制御システム(図示しない)に送信される。そして、
自動制御システムからは、炭化炉本体10の温度制御と
燃焼炉30の温度制御(すなわち、乾留速度制御)をす
るための信号が送信され、この信号を受けて、ダンバー
装置A12a、ダンバー装置B33a、ダンバー装置C
36、バーナー用送風機、乾留ガス燃焼用送風機36
a、並びに炭化炉本体冷却用送風機37を駆動制御する
ようになっている。
Temperature sensor A41, sensor B42
All of the temperature information detected by the sensor C43 is transmitted to an automatic control system (not shown). And
From the automatic control system, signals for controlling the temperature of the carbonization furnace main body 10 and the temperature of the combustion furnace 30 (that is, controlling the carbonization speed) are transmitted. In response to the signals, the dambar devices A12a, B33a, Dunbar device C
36, blower for burner, blower for burning carbonized gas
a and the blower 37 for cooling the carbonization furnace main body.

【0034】なお、図5に示すように、燃焼炉の直結煙
突の中間部に炭化炉本体の直結煙突の先端を連結し、ダ
ンバー装置Aとダンバー装置Bを連動駆動するように構
成するとか、図6に示すように、燃焼バーナーから炭化
炉に至る中間の位置に燃焼炉の直結煙突を配設しダンバ
ー装置Aとダンバー装置Bを個別駆動制御する或いは連
動駆動するように構成する等様々に設計変更することが
できる。
In addition, as shown in FIG. 5, the tip of the directly connected chimney of the carbonization furnace main body is connected to the intermediate portion of the directly connected chimney of the combustion furnace, so that the dambar devices A and B are configured to be driven in conjunction with each other. As shown in FIG. 6, a direct connection chimney of the combustion furnace is disposed at an intermediate position from the combustion burner to the carbonization furnace, and the dambar devices A and B are individually driven and controlled or are configured to be driven in conjunction with each other. The design can be changed.

【0035】ついで、この炭化炉10の操炉方法を簡単
に説明する。
Next, a method of operating the carbonization furnace 10 will be briefly described.

【0036】先ず、耐熱鋼材製のバスケット(図示しな
い)内に収容した被炭化物をバスケットとともに乾留ボ
ックス内に入れ、開閉扉を閉じて炭化炉本体10並びに
乾留ボックス20の両方を外気遮断する。この時、炭化
炉本体10の直結煙突12に備えたダンバー装置A12
aは開放状態に、燃焼炉30の直結煙突33に備えたダ
ンバー装置B33aは閉止状態であり、バーナー用送風
機、乾留ガス燃焼用送風機36a並びに炉本体冷却用送
風機37はいずれもオフになっている。ついで、燃焼バ
ーナー32を点火して燃焼炎を噴射させ、炭化炉本体1
0内を500〜600℃から選択した初期所定温度(例
えば550℃)にまで昇温させこの温度を維持する。こ
の過程で、被炭化物の乾燥が終了し、ついで、乾留反応
が開始する。乾留反応が始まると、乾留ガスの温度が5
50℃よりも高くなるから、センサーCにて検出でき
る。
First, the material to be carbonized accommodated in a heat-resistant steel basket (not shown) is put into the carbonization box together with the basket, and the open / close door is closed to shut off both the carbonization furnace main body 10 and the carbonization box 20 from outside air. At this time, the dambar device A12 provided in the directly connected chimney 12 of the carbonization furnace body 10
a is in an open state, the dambar device B33a provided in the direct connection chimney 33 of the combustion furnace 30 is in a closed state, and the blower for the burner, the blower 36a for burning the carbonized gas, and the blower 37 for cooling the furnace body are all off. . Next, the combustion burner 32 is ignited to inject a combustion flame, and the
The temperature in 0 is increased from 500 to 600 ° C. to an initial predetermined temperature (for example, 550 ° C.) and maintained at this temperature. In this process, the drying of the carbonized material is completed, and then the carbonization reaction starts. When the carbonization reaction starts, the temperature of the carbonized gas becomes 5
Since the temperature is higher than 50 ° C., it can be detected by the sensor C.

【0037】ついで、燃焼炉30内の設定温度を900
℃以上(例えば1150℃)に設定変更し直し(異常高
温時の安全対策をし)、炭化炉本体10すなわち乾留ボ
ックスを昇温する。乾留ガスにエアーをミキシングして
燃焼炉30に導入すると、燃焼炉30内が高温状態にな
っているためにこの混合ガスは自燃するので、燃焼ガス
が発生する。すなわち、得られた燃焼ガスを、熱源とし
て使用するという過程を繰り返すことになるので、被炭
化物を完全炭化できるのである。被炭化物の乾留反応を
完了させ、放冷すると、被炭化物の炭化物(炭)が得ら
れる。
Next, the set temperature in the combustion furnace 30 is set to 900
The setting is changed again to at least 1 ° C. (for example, 1150 ° C.) (safety measures at abnormally high temperatures are taken), and the temperature of the carbonization furnace main body 10, that is, the carbonization box is raised. When air is mixed with the carbonized gas and introduced into the combustion furnace 30, the mixed gas self-combustes due to the high temperature inside the combustion furnace 30, so that combustion gas is generated. That is, since the process of using the obtained combustion gas as a heat source is repeated, the material to be carbonized can be completely carbonized. When the carbonization reaction of the carbonized material is completed and left to cool, a carbide (charcoal) of the carbonized material is obtained.

【0038】このようにして得られた炭化物(炭)は、
土壌改良剤や脱臭剤、融雪剤、水質浄化材、調湿材等と
して使用でき、廉価に提供できる。
The carbide (char) obtained in this way is
It can be used as a soil conditioner, deodorant, snow melting agent, water purification material, humidity control material, etc., and can be provided at low cost.

【0039】[0039]

【発明の効果】以上の通り、各請求項記載の発明に係る
炭化炉によると、被炭化物の種類、量等に影響されず、
無人で迅速且つ安全に自動操炉でき、燃焼エネルギーの
削減、設備の大型化、ランニングコストの低減、さら
に、環境汚染物質や有害物質等を浄化することができる
など、極めて実効性に優れた作用効果が得られる。
As described above, according to the carbonization furnace according to the invention described in each claim, the carbonization furnace is not affected by the type and amount of the material to be carbonized,
Extremely effective operation, such as being able to operate the furnace automatically and unattended quickly and safely, reducing combustion energy, increasing equipment size, reducing running costs, and purifying environmental pollutants and harmful substances. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の一炭化炉を概略的に示す縦断
面図である。
FIG. 1 is a longitudinal sectional view schematically showing a carbonization furnace of the present invention.

【図2】図2は、図1のA−A線に沿った横断面図であ
る。
FIG. 2 is a cross-sectional view taken along line AA of FIG.

【図3】図3は、エアー供給パイプに外装されるダンバ
ー装置Cを模式的に示す断面図であり、送風量を連続変
換できる乾留ガス燃焼用送風機と逆流阻止できる風圧開
閉ダンバー部材を有している。
FIG. 3 is a cross-sectional view schematically showing a dambar device C provided outside the air supply pipe, and has a blower for dry distillation gas combustion capable of continuously converting the amount of blown air and a wind pressure opening / closing dambar member capable of preventing backflow. ing.

【図4】図4は、燃焼炉の内部に配設したハニカム構造
体を概略的に示す要部断面図である。
FIG. 4 is a cross-sectional view of a main part schematically showing a honeycomb structure provided inside a combustion furnace.

【図5】図5は、本発明となる他の炭化炉を概略的に示
す縦断面図であり、燃焼炉の直結煙突の中間部に炭化炉
本体の直結煙突の先端が連結しており、ダンバー装置A
とダンバー装置Bが連動駆動するようになっている。
FIG. 5 is a longitudinal sectional view schematically showing another carbonization furnace according to the present invention, in which a tip of a direct connection chimney of a carbonization furnace main body is connected to an intermediate portion of a direct connection chimney of a combustion furnace; Dunbar device A
And the dambar device B are driven in conjunction with each other.

【図6】図6は、本発明となるまた他の炭化炉を概略的
に示す縦断面図であり、燃焼バーナーから炭化炉に至る
中間の位置に、燃焼炉の直結煙突が配設されており、ダ
ンバー装置Aとダンバー装置Bが連動駆動するようにな
っている。
FIG. 6 is a longitudinal sectional view schematically showing still another carbonization furnace according to the present invention, wherein a direct connection chimney of the combustion furnace is provided at an intermediate position from the combustion burner to the carbonization furnace. As a result, the dam bar device A and the dam bar device B are driven in conjunction with each other.

【符号の説明】[Explanation of symbols]

1…炭化炉 10…炭化炉本体 11…炉体 12…直結煙突A 12a…ダンバー装置A 13…底壁 13a…耐火れんが 13b…耐火断熱材 14…炭化炉冷却用送風機 20…乾留ボックス 21…乾留ガス供給路 30…燃焼炉 31…炉体 31a…炉壁 32…燃焼バーナー 33…直結煙突 33a…ダンバー装置B 33c…ダンバー装置B 34…燃焼ガス取込孔 35…エアー供給パイプ 35a…噴射口 36…ダンバー装置C 36a…乾留ガス燃焼用送風機 36b…風圧開閉ダンバー部材 37…炭化炉本体冷却用送風機 41…温度感知センサーA 42…温度感知センサーB 43…温度感知センサーC 50…ハニカム構造体 51a…耐熱性筒体 51b…ブロック DESCRIPTION OF SYMBOLS 1 ... Carbonization furnace 10 ... Carbonization furnace main body 11 ... Furnace body 12 ... Directly connected chimney A 12a ... Dambar device A13 ... Bottom wall 13a ... Refractory brick 13b ... Refractory heat insulating material 14 ... Carbonization furnace cooling blower 20 ... Carbonization box 21 ... Carbonization Gas supply path 30 Combustion furnace 31 Furnace body 31a Furnace wall 32 Combustion burner 33 Directly connected chimney 33a Damper device B 33c Damper device B 34 Combustion gas intake hole 35 Air supply pipe 35a Injection port 36 ... Dumbar device C 36a ... Blower for burning carbonized gas 36b ... Wind pressure opening / closing dambar member 37 ... Blower for cooling the carbonization furnace main body 41 ... Temperature sensing sensor A 42 ... Temperature sensing sensor B 43 ... Temperature sensing sensor C 50 ... Honeycomb structure 51a ... Heat-resistant cylinder 51b… Block

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/50 ZAB F23G 5/50 ZABM ZABH (72)発明者 板津 博之 岐阜県美濃加茂市本郷町9丁目18番37号 株式会社シー・ワイ・シー内 (72)発明者 田口 幸示 岐阜県美濃加茂市本郷町9丁目18番37号 株式会社シー・ワイ・シー内 (72)発明者 亀井 雅文 岐阜県美濃加茂市本郷町9丁目18番37号 株式会社シー・ワイ・シー内 Fターム(参考) 3K061 AA18 AB02 AC01 AC13 AC17 BA06 CA01 EA05 FA10 3K062 AA18 AB02 AC01 AC13 AC17 BA02 CA01 CB03 CB10 DA01 DB01 3K078 AA06 BA06 CA02 4D004 AA07 AA12 AB07 AC04 BA02 BA10 CA26 CA48 CB02 CB34 DA02 DA06 4H012 HB02 HB09 JA01 JA11 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23G 5/50 ZAB F23G 5/50 ZABM ZABH (72) Inventor Hiroyuki Itatsu 9-chome Hongocho, Minokamo-shi, Gifu No. 18-37 C.Y.C. Co., Ltd. (72) Koji Taguchi Inventor 9-18-37 Hongocho, Minokamo-shi, Gifu C.C.Y.C. Co., Ltd. (72) Inventor Masafumi Kamei Gifu, Japan 9-18-37 Hongo-cho, Minokamo-shi F-term in CW Sea (reference) 3K061 AA18 AB02 AC01 AC13 AC17 BA06 CA01 EA05 FA10 3K062 AA18 AB02 AC01 AC13 AC17 BA02 CA01 CB03 CB10 DA01 DB01 3K078 AA06 BA06 CA02 4D004 AA07 AA12 AB07 AC04 BA02 BA10 CA26 CA48 CB02 CB34 DA02 DA06 4H012 HB02 HB09 JA01 JA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内部に炉内温度を検出する温度感知センサ
ーAを有し、煙道Aにダンバー装置Aを備えた直結煙突
Aを有する炭化炉本体と、該炭化炉本体に内蔵装備さ
れ、燃焼バーナーを炉壁に有し、煙道Bにダンバー装置
Bを備えた直結煙突Bを有し内部温度を検出する温度感
知センサーBを備えた燃焼炉と、前記炭化炉本体内に載
置され被炭化物を内部に収容した乾留ボックスと、前記
燃焼炉の炉壁両側に設けられ前記炭化炉本体内に連通す
る複数の燃焼ガス取込孔と、前記乾留ボックスと前記燃
焼炉間を連通し、前記燃焼炉に供給される乾留ガス温度
を検出する温度感知センサーCを備えた乾留ガス供給路
と、を具備しており、 前記燃焼バーナーを消火して前記乾留ガスを燃焼するこ
とで燃焼ガスを発生させ、この燃焼ガスを前記炭化炉本
体内にフィードバックさせながら前記被炭化物を乾留す
る炭化炉であって、 前記温度感知センサーA、温度感知センサーB、及び温
度感知センサーCで検出した温度情報に基づいて、前記
ダンバー装置Aと前記ダンバー装置Bをそれぞれ開閉調
整することにより、前記炭化炉本体内を所望する所定の
高温雰囲気に維持することを特徴とする炭化炉。
1. A carbonization furnace main body having a temperature sensing sensor A for detecting the temperature inside the furnace, a chimney A having a flue A and a directly connected chimney A provided with a damper device A, and a carbonization furnace main body, which is built in the carbonization furnace main body. A combustion furnace having a combustion burner on a furnace wall, a flue B having a directly connected chimney B having a dambar device B, and having a temperature sensing sensor B for detecting an internal temperature, and being placed in the carbonization furnace main body. A carbonization box containing a carbonized material therein, a plurality of combustion gas intake holes provided on both sides of the furnace wall of the combustion furnace and communicating with the carbonization furnace main body, and a communication between the carbonization box and the combustion furnace, A dry distillation gas supply path provided with a temperature sensor C for detecting the temperature of the dry distillation gas supplied to the combustion furnace, and extinguishes the combustion burner to burn the dry distillation gas to burn the combustion gas. Generating this combustion gas into the carbonization furnace. A carbonization furnace for carbonizing the carbonized material while feeding it back into the body, based on temperature information detected by the temperature sensing sensor A, the temperature sensing sensor B, and the temperature sensing sensor C, based on the temperature information. A carbonization furnace characterized by maintaining the inside of the carbonization furnace main body at a desired predetermined high temperature atmosphere by adjusting the opening and closing of each device B.
【請求項2】前記炭化炉において、 前記乾留ガス供給路の前記燃焼炉側内部に備えた内径2
mm以上の噴射口を有し、他端にダンバー装置Cを装備
したエアー供給パイプを具備した炭化炉であって、 前記ダンバー装置Cは、送風量を連続変換できる乾留ガ
ス燃焼用送風機と逆流阻止できる風圧開閉ダンバー部材
とを備えており、 前記温度感知センサーA、温度感知センサーB、及び温
度感知センサーCで検出した温度情報に基づいて、前記
乾留ガスと気体ミキシングするエアーの量を制御するこ
とを特徴とする請求項1記載の炭化炉。
2. The carbonization furnace, wherein an inside diameter 2 provided inside the dry distillation gas supply passage inside the combustion furnace is provided.
A carbonization furnace equipped with an air supply pipe equipped with a damper device C at the other end, having an injection port of at least 2 mm, wherein the damper device C is a blower for burning a carbonized gas that can continuously convert the amount of air blow and a backflow prevention. Controlling the amount of air to be mixed with the dry distillation gas based on temperature information detected by the temperature sensor A, the temperature sensor B, and the temperature sensor C. The carbonization furnace according to claim 1, characterized in that:
【請求項3】前記乾留ガス供給路の断面積と前記噴射口
の断面積との比が5〜20の範囲であり、このエアー供
給パイプ噴射口が、前記燃焼炉の入口よりも手前50〜
500mmの位置に配置されていることを特徴とする請
求項2記載の炭化炉。
3. A ratio of a cross-sectional area of the dry distillation gas supply passage to a cross-sectional area of the injection port is in a range of 5 to 20, and the air supply pipe injection port is 50 to 50 in front of an inlet of the combustion furnace.
The carbonization furnace according to claim 2, wherein the carbonization furnace is arranged at a position of 500 mm.
【請求項4】前記炭化炉において、 前記センサーBで感知した温度が所望する所定温度に設
定した初期設定高温値に達したとき、前記ダンバー装置
Aを閉塞するとともに前記ダンバー装置Bを開放するよ
うに動作させ、そして、前記センサーBの検出温度が前
記初期設定低温値に達したとき、前記ダンバー装置Aを
開放するとともに前記ダンバー装置Bを閉塞するように
動作させる自動制御システムを具備していることを特徴
とする請求項1〜3のいずれかに記載の炭化炉。
4. In the carbonization furnace, when the temperature detected by the sensor B reaches an initial high temperature value set to a desired predetermined temperature, the dambar device A is closed and the dambar device B is opened. And when the temperature detected by the sensor B reaches the initial set low temperature value, the automatic control system operates to open the dambar device A and close the dambar device B. The carbonization furnace according to claim 1, wherein:
【請求項5】前記炭化炉において、 前記炭化炉本体に、炭化炉本体冷却用送風機が更に外装
されており、 前記自動制御システムは、前記センサーBで検出した温
度情報が前記初期設定高温値を大巾に超えたときに前記
炭化炉本体冷却用送風機を駆動させ、前記炭化炉本体に
向けた前記燃焼ガス供給を減少するとともに炭化炉本体
内の高温ガス排出を促進するようにプログラミングされ
ていることを特徴とする請求項4記載の炭化炉。
5. The carbonization furnace, wherein the carbonization furnace main body is further provided with a blower for cooling the carbonization furnace main body, and the automatic control system is configured such that the temperature information detected by the sensor B indicates the initial set high temperature value. It is programmed to drive the carbonizing furnace body cooling blower when greatly exceeded, to reduce the combustion gas supply to the carbonizing furnace body and to promote hot gas emissions within the carbonizing furnace body. The carbonization furnace according to claim 4, characterized in that:
JP2000141116A 2000-05-15 2000-05-15 Carbonization furnace Expired - Lifetime JP4391667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141116A JP4391667B2 (en) 2000-05-15 2000-05-15 Carbonization furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141116A JP4391667B2 (en) 2000-05-15 2000-05-15 Carbonization furnace

Publications (2)

Publication Number Publication Date
JP2001323276A true JP2001323276A (en) 2001-11-22
JP4391667B2 JP4391667B2 (en) 2009-12-24

Family

ID=18648280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141116A Expired - Lifetime JP4391667B2 (en) 2000-05-15 2000-05-15 Carbonization furnace

Country Status (1)

Country Link
JP (1) JP4391667B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145117A (en) * 2001-11-09 2003-05-20 Matsushita Electric Ind Co Ltd Device for treating waste
JP2007146016A (en) * 2005-11-29 2007-06-14 Kochi Univ Of Technology Carbonization furnace for woody material
JP2010254936A (en) * 2009-04-27 2010-11-11 Masakazu Kusakabe High temperature smoke-free charcoal kiln
JP2013146716A (en) * 2012-01-23 2013-08-01 Joyo Kasei Kk Apparatus for recovering metal
JP2013237725A (en) * 2012-05-11 2013-11-28 Maywa Co Ltd Carbonizing apparatus and carbonizing method
CN105910451A (en) * 2016-06-13 2016-08-31 北京神雾环境能源科技集团股份有限公司 Dry distillation device with lower furnace body capable of moving up and down and dry distillation method of dry distillation device
JP2018119060A (en) * 2017-01-25 2018-08-02 株式会社ムラサン Carbonization furnace
JP2022069148A (en) * 2020-10-23 2022-05-11 株式会社前川製作所 Batch type carbonization processing device
JP7228296B1 (en) 2022-03-22 2023-02-24 株式会社トロムソ carbonization furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145117A (en) * 2001-11-09 2003-05-20 Matsushita Electric Ind Co Ltd Device for treating waste
JP2007146016A (en) * 2005-11-29 2007-06-14 Kochi Univ Of Technology Carbonization furnace for woody material
JP2010254936A (en) * 2009-04-27 2010-11-11 Masakazu Kusakabe High temperature smoke-free charcoal kiln
JP2013146716A (en) * 2012-01-23 2013-08-01 Joyo Kasei Kk Apparatus for recovering metal
JP2013237725A (en) * 2012-05-11 2013-11-28 Maywa Co Ltd Carbonizing apparatus and carbonizing method
CN105910451A (en) * 2016-06-13 2016-08-31 北京神雾环境能源科技集团股份有限公司 Dry distillation device with lower furnace body capable of moving up and down and dry distillation method of dry distillation device
CN105910451B (en) * 2016-06-13 2018-02-23 神雾科技集团股份有限公司 A kind of lower furnace body destructive distillation device moving up and down and its method for destructive distillation
JP2018119060A (en) * 2017-01-25 2018-08-02 株式会社ムラサン Carbonization furnace
JP2022069148A (en) * 2020-10-23 2022-05-11 株式会社前川製作所 Batch type carbonization processing device
JP7267617B2 (en) 2020-10-23 2023-05-02 株式会社前川製作所 Batch type carbonization equipment
JP7228296B1 (en) 2022-03-22 2023-02-24 株式会社トロムソ carbonization furnace
JP2023139697A (en) * 2022-03-22 2023-10-04 株式会社トロムソ carbonization furnace

Also Published As

Publication number Publication date
JP4391667B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JPWO2004092648A1 (en) Grate-type waste incinerator and its combustion control method
AU744063B2 (en) Incinerator for removing noxious substances
JP4391667B2 (en) Carbonization furnace
JP2009052845A (en) Exhaust gas treatment apparatus and boiler system
KR101061765B1 (en) Flameless regenerative thermal oxidizer having gas mixing devices
KR19980074713A (en) Cylindrical waste incinerator for both pyrolysis and multistage cyclone combustion
JP2007155301A (en) Incinerator and incineration object incineration method by direct heating carbonization gasification method
JP3636589B2 (en) Exhaust gas denitration method and apparatus in gasification incineration facility
JP2007322099A (en) Dry distillation gasification combustion furnace
JP2974067B1 (en) Waste carbonization equipment
JP2004239509A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP3091181B2 (en) Incinerator
JP7192454B2 (en) Waste Incinerator and Waste Incineration Method
KR101125257B1 (en) pyrolysis incinerator
JP3059935B2 (en) Dioxin removal equipment in refuse incinerators
JP2001279253A (en) Carbonization method using super heated steam atmosphere
KR200256626Y1 (en) Apparatus for drying ignition charcoals
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2000111022A (en) Method for removing dioxins in waste incinerator
WO2003093728A1 (en) Method of operating waste incinerator and waste incinerator
JP3423372B2 (en) Combustion equipment
JP2004169955A (en) Waste incinerator and method of operating the same
JPH04316908A (en) Waste incinerator
JP2745392B2 (en) Incinerator
JP2002302678A (en) Down-draft carbonization furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4391667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141016

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141016

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141016

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141016

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141016

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term