JP2001320087A - Method for producing gallium nitride compound semiconductor - Google Patents

Method for producing gallium nitride compound semiconductor

Info

Publication number
JP2001320087A
JP2001320087A JP2000137542A JP2000137542A JP2001320087A JP 2001320087 A JP2001320087 A JP 2001320087A JP 2000137542 A JP2000137542 A JP 2000137542A JP 2000137542 A JP2000137542 A JP 2000137542A JP 2001320087 A JP2001320087 A JP 2001320087A
Authority
JP
Japan
Prior art keywords
gallium nitride
layer
compound semiconductor
type gallium
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137542A
Other languages
Japanese (ja)
Inventor
Ying-Che Sung
盈 徹 宋
Wen-Ming Liou
文 明 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arima Optoelectronics Corp
Original Assignee
Arima Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arima Optoelectronics Corp filed Critical Arima Optoelectronics Corp
Priority to JP2000137542A priority Critical patent/JP2001320087A/en
Publication of JP2001320087A publication Critical patent/JP2001320087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an electrode having a low resistance ohmic contact layer. SOLUTION: At least a P type gallium nitride layer is grown on a substrate and an electrode layer is formed on the P type gallium nitride layer wherein the electrode layer is formed by steps for plating the P type gallium nitride with a layer of beryllium metal or an alloy thereof, proceeding to a diffusion step, diffusing beryllium metal or an alloy thereof into the P type gallium nitride layer, cleaning the surface, depositing a metal on the clean P type gallium nitride layer, and then proceeding to a high temperature processing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化ガリウム化合物
半導体の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium nitride compound semiconductor.

【0002】[0002]

【従来の技術】化合物半導体素子は広範的に通信と表示
器との方面に使用され、近年、ブルーライトの光源のニ
ーズに応じるため、窒化ガリウム系III−V族化合物
半導体が研究開発の重心となる。窒化ガリウム系III
−V族化合物半導体の主要な組成成分が窒化インジウム
アルミニウムや窒化アルミニウムガリウムや窒化アルミ
ニウムインジウムガリウムなどである。
2. Description of the Related Art Compound semiconductor devices are widely used in the field of communications and displays. Recently, gallium nitride III-V compound semiconductors have been developed to meet the needs of blue light sources. Become. Gallium nitride III
The main component of the group V compound semiconductor is indium aluminum nitride, aluminum gallium nitride, aluminum indium gallium nitride, or the like.

【0003】従来、窒化ガリウム系III−V族化合物
半導体に使用される最も有効な基板は三酸化二アルミニ
ウム単結晶基板であるが、この基板が導電できないた
め、素子、例えば発光ダイオードを製造する時にその正
極と負極とが同じ平面に形成されなければならなく、且
つオーム接触層を介して発光ダイオードのPタイプ層と
Nタイプ層に接続しなければならない。一般の電極が金
属材料よりなり、その厚さがかなり薄くなり遮光を避け
るため、オーム接触層の電気特性が前記化合物半導体よ
りなる発光ダイオードの機能に大きく影響する。特にこ
の類の半導体素子の窒化ガリウムのPタイプ層のホール
移動度が低いので、Pタイプ層の抵抗が高くなり、その
ため、ホールフローの拡散が素子製造上のポイントとな
る。
Conventionally, the most effective substrate used for a gallium nitride-based III-V compound semiconductor is a single crystal substrate of dialuminum trioxide. However, since this substrate cannot conduct, it is difficult to manufacture an element such as a light emitting diode. The positive electrode and the negative electrode must be formed on the same plane, and must be connected to the P-type layer and the N-type layer of the light emitting diode via an ohmic contact layer. Since the general electrode is made of a metal material, the thickness of which is considerably thin and light shielding is avoided, the electrical characteristics of the ohmic contact layer greatly affect the function of the light emitting diode made of the compound semiconductor. In particular, since the hole mobility of the P-type layer of gallium nitride in this type of semiconductor device is low, the resistance of the P-type layer is high, so that the diffusion of the hole flow is a key point in device manufacture.

【0004】米国特許第5,563,422号の日本N
ichia会社の提案した発明は窒化ガリウム系III
−V族化合物半導体の製造方法を提供した。それが金属
薄膜をPタイプ層にメッキすると共に、焼きなまし処理
を行い、ホールフローの拡散を増強し、アクセプタとリ
ンクする水素原子が焼きなまし過程中にアクセプタより
離されるので、アクセプタの雑質が活性化され、オーム
接触層の電気特性を改善できる。しかしながら、一般
に、ニッケルやクロムやアルミニウムや金などの金属が
Pタイプ層の窒化ガリウムにおいてそのオーム接触点の
効率と抵抗が明らかに改善されていない。
[0004] US Patent No. 5,563,422 Japan N
The invention proposed by the icia company is a gallium nitride-based III
A method for manufacturing a group V compound semiconductor is provided. It plating the metal thin film on the P-type layer and performing annealing treatment to enhance the diffusion of hole flow, and hydrogen atoms linking with the acceptor are separated from the acceptor during the annealing process, thereby activating acceptor impurities. Thus, the electrical characteristics of the ohmic contact layer can be improved. However, in general, metals such as nickel, chromium, aluminum and gold have not clearly improved the efficiency and resistance of their ohmic contact points in the gallium nitride of the P-type layer.

【0005】[0005]

【発明が解決しようとする課題】そのため、本発明はオ
ーム接触層の電気特性を改善できる窒化ガリウム系化合
物半導体素子の電極製造方法を提供することをその主要
な目的とする。
SUMMARY OF THE INVENTION Accordingly, it is a main object of the present invention to provide a method for manufacturing an electrode of a gallium nitride-based compound semiconductor device capable of improving the electrical characteristics of an ohmic contact layer.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、拡散法によってベリリウムイオンを窒化
ガリウムPタイプ層内に拡散し、ホール移動度を増加
し、また、後続の製造プロセスに電極を追加し、抵抗の
低いオーム接触層を有する電極を得る窒化ガリウム化合
物半導体の製造方法を提供する。
SUMMARY OF THE INVENTION To achieve the above object, the present invention provides a method for diffusing beryllium ions into a gallium nitride P-type layer by a diffusion method to increase the hole mobility and to improve the subsequent manufacturing process. To provide a method for manufacturing a gallium nitride compound semiconductor in which an electrode having an ohmic contact layer with low resistance is obtained by adding an electrode to the gallium nitride compound semiconductor.

【0007】[0007]

【発明の実施の形態】以下に添付図面を参照しながら本
発明の好適な実施の形態を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0008】図1は本発明による窒化ガリウム系化合物
半導体の製造方法による素子構成を示す図である。本発
明の窒化ガリウム系化合物半導体の製造方法は窒化ガリ
ウム化合物半導体素子(例えば窒化ガリウム系発光ダイ
オード)のPタイプ電極を改良したものである。図に示
すように、窒化ガリウム発光ダイオードには、基板10
0におけるNタイプ窒化ガリウム層110とその上に重
ねられるPタイプ窒化ガリウム層120とを有し、その
うち、基板100が三酸化二アルミニウム単結晶基板よ
りなり効率を向上できるが、この種の基板が導電しない
ので発光ダイオードの電極を素子の正面に形成させなけ
ればならない。図に示すように、Nタイプ窒化ガリウム
層110とその上に重ねられるPタイプ窒化ガリウム層
120を形成してから、反応イオン腐食方法によってN
タイプ窒化ガリウム層110とその上に重ねられるPタ
イプ窒化ガリウム層120を平面台形に腐食する。Pタ
イプ窒化ガリウム層のホール移動度が低いため、Pタイ
プ層の抵抗を向上し、そのため、全体のPタイプ窒化ガ
リウム層120にPタイプ電極122を形成し、それか
らPタイプ電極122の上にPタイプ電極溶接パッド1
24を形成し、且つ露出したNタイプ窒化ガリウム層1
10の上にNタイプ電極112を形成し、それからNタ
イプ電極112とPタイプ電極溶接パッド124にリー
ドを設け、通路を形成させる。
FIG. 1 is a view showing an element structure according to a method of manufacturing a gallium nitride-based compound semiconductor according to the present invention. The method for producing a gallium nitride-based compound semiconductor of the present invention is an improvement of a P-type electrode of a gallium nitride-based compound semiconductor device (for example, a gallium nitride-based light-emitting diode). As shown in the figure, the gallium nitride light emitting diode has a substrate 10
0 has an N-type gallium nitride layer 110 and a P-type gallium nitride layer 120 superposed thereon. Among them, the substrate 100 is made of a monocrystalline aluminum trioxide substrate to improve the efficiency. Since it does not conduct, the electrodes of the light emitting diode must be formed in front of the device. As shown in the figure, after forming an N-type gallium nitride layer 110 and a P-type gallium nitride layer 120 overlaid thereon, N-type gallium nitride is formed by reactive ion etching.
The P-type gallium nitride layer 110 and the P-type gallium nitride layer 120 superposed thereon are corroded into a planar trapezoid. Since the hole mobility of the P-type gallium nitride layer is low, the resistance of the P-type layer is improved, so that the P-type electrode 122 is formed on the entire P-type gallium nitride layer 120, and then the P-type electrode 122 is formed on the P-type electrode 122. Type electrode welding pad 1
24 and the exposed N-type gallium nitride layer 1
An N-type electrode 112 is formed on 10, and leads are provided to the N-type electrode 112 and the P-type electrode welding pad 124 to form a passage.

【0009】Pタイプ窒化ガリウム層のホール移動度が
低いため、本発明の要旨は電極製造方法を提供し、ホー
ル移動度を向上し、低い抵抗のオーム接触層を有する電
極を形成することによって窒化ガリウム化合物半導体素
子の効率を向上する。図2は本発明による窒化ガリウム
系化合物半導体の製造方法の具体的な実施例のフローチ
ャートである。本発明の方法は下記のステップを有す
る: (1)Pタイプ窒化ガリウム層(Pタイプ層)にベリリ
ウム金属またはその合金(例えばベリリウム金合金)を
メッキする。 (2)高温の窒素環境下で3−15分間置き、ベリリウ
ムを前記Pタイプ窒化ガリウム層内に拡散し、それから
表面を洗浄する。 (3)30−50Aのニッケルと70−150Aのベリ
リウム合金を蒸着し、窒素環境下で3−15分間の高温
処理を行い、透明の導電膜を形成する。 前記ステップ(1)と(2)では、拡散と高温処理とが
摂氏400−600度の範囲内で実行する場合好まし
い。
[0009] Because of the low hole mobility of the P-type gallium nitride layer, the gist of the present invention is to provide an electrode manufacturing method to improve the hole mobility and form an electrode having an ohmic contact layer with low resistance. Improve the efficiency of gallium compound semiconductor devices. FIG. 2 is a flowchart of a specific embodiment of the method for manufacturing a gallium nitride-based compound semiconductor according to the present invention. The method of the present invention includes the following steps: (1) Plating a P-type gallium nitride layer (P-type layer) with beryllium metal or an alloy thereof (for example, beryllium gold alloy). (2) Place in a high-temperature nitrogen environment for 3 to 15 minutes to diffuse beryllium into the P-type gallium nitride layer, and then clean the surface. (3) A 30-50 A nickel and a 70-150 A beryllium alloy are deposited and subjected to a high-temperature treatment under a nitrogen environment for 3 to 15 minutes to form a transparent conductive film. In the steps (1) and (2), it is preferable that the diffusion and the high-temperature treatment are performed within a range of 400 to 600 degrees Celsius.

【0010】図3は本発明によって製造した電極の抵抗
の測定結果を示す図である。ベリリウム拡散製造プロセ
スを行わなかった製造プロセスの場合では電極の抵抗値
が6.25オームであり、本発明によるベリリウム拡散
製造プロセスを追加する場合、電極の抵抗は1.25オ
ームとなり、元来の1/5となる。そのため、本発明に
よる場合Pタイプ窒化ガリウム層のオーム接触層の抵抗
を大幅に低下させることができ、発光ダイオードの効率
を向上できる。
FIG. 3 is a diagram showing the measurement results of the resistance of the electrode manufactured according to the present invention. In the case of the manufacturing process in which the beryllium diffusion manufacturing process is not performed, the resistance value of the electrode is 6.25 ohm, and when the beryllium diffusion manufacturing process according to the present invention is added, the resistance of the electrode becomes 1.25 ohm, and the original It becomes 1/5. Therefore, according to the present invention, the resistance of the ohmic contact layer of the P-type gallium nitride layer can be significantly reduced, and the efficiency of the light emitting diode can be improved.

【0011】[0011]

【発明の効果】前記のように、本発明の窒化ガリウム系
化合物半導体の製造方法によると、Pタイプ窒化ガリウ
ム層のオーム接触層の抵抗を大幅に低下させることがで
き、発光ダイオードの効率を向上できる。
As described above, according to the method for manufacturing a gallium nitride-based compound semiconductor of the present invention, the resistance of the ohmic contact layer of the p-type gallium nitride layer can be greatly reduced, and the efficiency of the light emitting diode can be improved. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による窒化ガリウム化合物半導体の製造
方法の応用素子の構成を示す図である。
FIG. 1 is a view showing a configuration of an application element of a method for manufacturing a gallium nitride compound semiconductor according to the present invention.

【図2】本発明による窒化ガリウム系化合物半導体の製
造方法の具体的な実施例のフローチャートである。
FIG. 2 is a flowchart of a specific example of a method for manufacturing a gallium nitride-based compound semiconductor according to the present invention.

【図3】本発明によって製造した電極の抵抗の測定結果
を示す図である。
FIG. 3 is a diagram showing a measurement result of resistance of an electrode manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

100 基板 110 Nタイプ窒化ガリウム層 112 Nタイプ電極 120 Pタイプ窒化ガリウム層 122 Pタイプ電極 124 Pタイプ電極溶接パッド DESCRIPTION OF SYMBOLS 100 Substrate 110 N type gallium nitride layer 112 N type electrode 120 P type gallium nitride layer 122 P type electrode 124 P type electrode welding pad

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板に少なくともPタイプ窒化ガリウム
層を成長し、且つ前記Pタイプ窒化ガリウム層に電極層
を形成し、この電極層は、 Pタイプ窒化ガリウム層に一層のベリリウム金属または
其の合金をメッキし、 それから拡散ステップを進め、ベリリウム金属または其
の合金をPタイプ窒化ガリウム層内に拡散し、それから
表面を洗浄し、それから金属をこのきれいなPタイプ窒
化ガリウム層に蒸着し、それから高温処理を進める各段
階により形成されることを特徴とする窒化ガリウム化合
物半導体の製造方法。
At least a P-type gallium nitride layer is grown on a substrate, and an electrode layer is formed on the P-type gallium nitride layer, wherein the P-type gallium nitride layer has a layer of beryllium metal or an alloy thereof. And then proceed with the diffusion step to diffuse the beryllium metal or its alloy into the P-type gallium nitride layer, then clean the surface, and then deposit the metal on this clean P-type gallium nitride layer and then heat treat A method of manufacturing a gallium nitride compound semiconductor formed by each of the following steps.
【請求項2】 前記ベリリウム合金はベリリウム金合金
であることを特徴とする窒化ガリウム化合物半導体の製
造方法。
2. A method for manufacturing a gallium nitride compound semiconductor, wherein the beryllium alloy is a beryllium gold alloy.
【請求項3】 前記拡散ステップでは摂氏400−60
0度の高温窒素の環境下で3−15分間置くことを特徴
とする請求項1に記載の窒化ガリウム化合物半導体の製
造方法。
3. The method according to claim 1, wherein the diffusing step comprises:
The method according to claim 1, wherein the semiconductor substrate is placed in a high-temperature nitrogen atmosphere at 0 degrees for 3 to 15 minutes.
【請求項4】 前記蒸着した金属は30−50Aのニッ
ケルと70−150Aのベリリウム金合金であることを
特徴とする請求項1に記載の窒化ガリウム化合物半導体
の製造方法。
4. The method of claim 1, wherein the deposited metal is a 30-50 A nickel and 70-150 A beryllium gold alloy.
【請求項5】 前記高温処理は窒素環境下で摂氏400
−600度で3−15分間置く高温処理であることを特
徴とする請求項1に記載の窒化ガリウム化合物半導体の
製造方法。
5. The method according to claim 1, wherein the high-temperature treatment is performed in a nitrogen environment at 400 degrees Celsius.
The method for producing a gallium nitride compound semiconductor according to claim 1, wherein the high-temperature treatment is performed at -600 degrees for 3 to 15 minutes.
【請求項6】 前記基板は三酸化二アルミニウム単結晶
基板であることを特徴とする請求項1に記載の窒化ガリ
ウム化合物半導体の製造方法。
6. The method according to claim 1, wherein the substrate is a single crystal substrate of dialuminum trioxide.
JP2000137542A 2000-05-10 2000-05-10 Method for producing gallium nitride compound semiconductor Pending JP2001320087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137542A JP2001320087A (en) 2000-05-10 2000-05-10 Method for producing gallium nitride compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137542A JP2001320087A (en) 2000-05-10 2000-05-10 Method for producing gallium nitride compound semiconductor

Publications (1)

Publication Number Publication Date
JP2001320087A true JP2001320087A (en) 2001-11-16

Family

ID=18645300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137542A Pending JP2001320087A (en) 2000-05-10 2000-05-10 Method for producing gallium nitride compound semiconductor

Country Status (1)

Country Link
JP (1) JP2001320087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792748A (en) * 2022-06-23 2022-07-26 西安中为光电科技有限公司 LED chip processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792748A (en) * 2022-06-23 2022-07-26 西安中为光电科技有限公司 LED chip processing method

Similar Documents

Publication Publication Date Title
US8541290B2 (en) Optoelectronic substrate and methods of making same
US6169297B1 (en) Metal thin film with ohmic contact for light emit diodes
JP2010529658A (en) Light emitting diode and manufacturing method thereof
JP2001015811A (en) Translucent electrode film and group iii nitrogen compound semiconductor device
JP2002164570A (en) Gallium nitride compound semiconductor device
CN105742445A (en) Vertical light emitting diode (LED) chip structure and fabrication method thereof
WO2014187235A1 (en) Method for manufacturing directly attached semiconductor light-emitting eutectic wafer
CN108767083B (en) Stress-adjustable vertical-structure LED chip and preparation method thereof
CN109192823A (en) A kind of light emitting diode (LED) chip with vertical structure and preparation method thereof
JPS60175468A (en) Manufacture of gallium nitride semiconductor device
CN111710761A (en) LED chip preparation method
US7452740B2 (en) Gallium nitride-based compound semiconductor light-emitting device and negative electrode thereof
KR100849737B1 (en) Light emitting diode device and manufacturing method thereof
CN116387428A (en) LED chip preparation method
JP2000208813A (en) GaN SEMICONDUCTOR ELEMENT AND ITS MANUFACTURE
KR100387099B1 (en) GaN-Based Light Emitting Diode and Fabrication Method thereof
JP2001320087A (en) Method for producing gallium nitride compound semiconductor
CN214336736U (en) LED chip structure of double-layer ITO film
CN114400276A (en) Manufacturing method of high-voltage LED chip
JP3905423B2 (en) III-Nitrogen Semiconductor Device Manufacturing Method
TWI240437B (en) Fabrication method of transparent electrode on visible light-emitting diode
US6303485B1 (en) Method of producing gallium nitride-based III-V Group compound semiconductor device
TW473836B (en) Manufacturing method for GaN compound semiconductor
KR20020004438A (en) Method of producing gallium nitride-based iii-v group compound semiconductor device
KR100404170B1 (en) Method for manufacturing blue light emitting diode(led)