JP2001310330A - Mold and molding thereof - Google Patents

Mold and molding thereof

Info

Publication number
JP2001310330A
JP2001310330A JP2000127355A JP2000127355A JP2001310330A JP 2001310330 A JP2001310330 A JP 2001310330A JP 2000127355 A JP2000127355 A JP 2000127355A JP 2000127355 A JP2000127355 A JP 2000127355A JP 2001310330 A JP2001310330 A JP 2001310330A
Authority
JP
Japan
Prior art keywords
mold
lens
shape
glass
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000127355A
Other languages
Japanese (ja)
Inventor
Koji Nishimura
孝司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2000127355A priority Critical patent/JP2001310330A/en
Publication of JP2001310330A publication Critical patent/JP2001310330A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/4922Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as monomers, i.e. as organosilanes RnSiX4-n, e.g. alkyltrialkoxysilane, dialkyldialkoxysilane
    • C04B41/4944Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as monomers, i.e. as organosilanes RnSiX4-n, e.g. alkyltrialkoxysilane, dialkyldialkoxysilane containing atoms other than carbon, hydrogen, oxygen, silicon, alkali metals or halogens, e.g. N-silyldisilazane: Image
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00336Materials with a smooth surface, e.g. obtained by using glass-surfaced moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00939Uses not provided for elsewhere in C04B2111/00 for the fabrication of moulds or cores

Abstract

PROBLEM TO BE SOLVED: To provide a precision working method most suited for highly accurately correcting the shape of precision parts such as a complicatedly shaped mold or the like. SOLUTION: The minute unevenness on the surface of a mold is smoothly covered with a thin film made of glass converting material by coating the surface of the mold with glass converting liquid. After that, the resultant mold is sintered under the predetermined conditions. As a result, the surface of the mold is covered by a thin quartz glass film layer, resulting in improving the surface roughness of the mold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子写真技術を用い
た画像形成装置、カメラ等の光学製品あるいは精密機械
製品の光学素子や精密部品あるいは精密成形用金型等を
製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical element such as an image forming apparatus, a camera or the like, an optical element of a precision machine product, a precision part, a precision molding die or the like using an electrophotographic technique. .

【0002】[0002]

【従来の技術】従来レンズ製造技術として最も一般的な
技術は研磨方法によるものである。例えば、特開昭62
−203744に記載されているように研磨皿をあらか
じめ加工すべきレンズ形状と相反関係をなす形状に加工
しておき、この研磨皿をガラス素材に押し当て、砥粒を
研磨皿とガラス素材の隙間に供給しこすり合わせる方法
である。この方法では非常に微細な砥粒を用いて研磨を
行うため、加工時に硝材に加わる加工応力は小さく、し
たがって被加工物内部に残留する歪は少ないと言う利点
を有する。しかし、被加工物の最終仕上がり形状が単純
な形状でないと加工が行なえないため、加工形状選択の
自由度は小さい。
2. Description of the Related Art Conventionally, the most general technique for manufacturing a lens is based on a polishing method. For example, JP
As described in JP-203744, a polishing plate is preliminarily processed into a shape having a reciprocal relationship with a lens shape to be processed, and the polishing plate is pressed against a glass material, and abrasive grains are formed in a gap between the polishing plate and the glass material. It is a method of supplying and rubbing. In this method, since polishing is performed using very fine abrasive grains, the processing stress applied to the glass material during processing is small, and therefore, there is an advantage that distortion remaining in the workpiece is small. However, since the processing cannot be performed unless the final finished shape of the workpiece is a simple shape, the degree of freedom in selecting the processing shape is small.

【0003】一方、光学系の高性能化が要求されるのに
従い、レンズ形状精度の高精度化とともにレンズ形状の
非球面化技術が重要となる。上述の研磨加工方法で非球
面を加工することは困難であり一般的にはNC制御を用
いて機械加工により非球面を形成する。NC加工によれ
ば所望の形状を加工することは可能であるが、レンズと
して使用に耐えるだけの鏡面を得ることは困難である。
ところで延性モード研削を行えば、ガラスのような脆性
材料でも鏡面の研削面を得ることが可能となる。
On the other hand, as the performance of the optical system is required to be higher, it is important to improve the accuracy of the lens shape and to make the lens shape aspherical. It is difficult to process an aspherical surface by the above-described polishing method, and generally, an aspherical surface is formed by machining using NC control. According to the NC processing, a desired shape can be processed, but it is difficult to obtain a mirror surface that can withstand use as a lens.
By the way, if the ductile mode grinding is performed, it is possible to obtain a mirror ground surface even with a brittle material such as glass.

【0004】例えば特願平2−53557号明細書記載
の非球面レンズ加工方法によれば、被加工物がモータで
回転するテーブル上に取り付けられると共に、これらの
被加工物を加工するための砥石がエアスピンドルに取り
付けられて、10000rpm程度の回転数で回転して
いる。そして、回転テーブルの回転軸に直結したロータ
リーエンコーダーからパルスを検出して、そのパルスを
もとに加工データをピエゾアクチュエータに供給し、直
進テーブルを連続的に前後に動かす。また、エアスピン
ドルは、回転テーブルの一回転毎にステップ送りされ
て、その位置を変化させることにより、砥石と被加工物
の接触位置を変えている。この方法によれば、任意の非
軸対称非球面形状を加工することができる。さらにこの
方法では被加工物に対する砥石の切り込み量をサブミク
ロンオーダーで制御することができるため、脆性材料を
延性モードで研削することが可能となり、研削加工だけ
でレンズとして用いるのに十分な鏡面を得ることが可能
となる。
For example, according to an aspherical lens processing method described in Japanese Patent Application No. 2-53557, a workpiece is mounted on a table rotated by a motor, and a grindstone for processing these workpieces. Is attached to an air spindle and rotates at a rotation speed of about 10,000 rpm. Then, a pulse is detected from a rotary encoder directly connected to the rotation axis of the rotary table, and processing data is supplied to the piezo actuator based on the pulse, and the linear table is continuously moved back and forth. The air spindle is step-feeded every rotation of the rotary table, and changes its position to change the contact position between the grindstone and the workpiece. According to this method, any non-axisymmetric aspherical shape can be processed. Furthermore, in this method, the cutting depth of the grindstone with respect to the workpiece can be controlled on the order of submicron, so that brittle materials can be ground in ductile mode, and a mirror surface sufficient for use as a lens by grinding alone can be obtained. It is possible to obtain.

【0005】しかし、この方法では非球面部仕上げに多
大な加工時間を要し、さらに加工による形状精度のばら
つきが発生する。
[0005] However, this method requires a long processing time for finishing the aspherical surface portion, and further causes variations in shape accuracy due to the processing.

【0006】そこで複雑かつ高精度な表面形状を有する
レンズを効率よく加工する方法として、モールド成形法
がある。例えばプラスチックモールド成形の場合、溶融
したプラスチックを金型内部に注入し、加圧成形するこ
とにより成形品を得る技術である。また、ガラスモール
ド成形では加熱し軟化したガラスを金型内部に入れ、加
圧成形することにより成形品を得る技術である。このよ
うにモールド成形法では金型形状がそのまま成形品形状
として転写複製されることから金型技術が重要となる。
すなわち金型を高精度に加工する技術が必要となる。特
にレンズ等の光学素子成形用金型の場合、金型面の面粗
さと形状精度を両立させる必要がある。そのために従来
技術としては研磨による仕上げ加工を金型面に施す方法
がよく用いられる。研磨方法により金型表面を仕上げる
場合、例えばダイヤモンド砥粒をフェルトのような柔ら
かいパッドで仕上げ面にこすり付ける動作を繰り返し仕
上げ面の状態を整える。形状精度を整えることを主目的
とする場合、小さなパッドを用いて仕上げ面の任意の位
置を局部的に研磨すればよいが、加工時間が遅い。ま
た、大きなパッドを用いて研磨した場合は加工時間は速
くなるが、当然のことながら、形状修正は行えない。特
に複雑な形状を有する金型面に仕上げ加工を施す場合、
研磨作業と形状測定作業を繰り返し行ない、形状精度を
損なわないように注意しながら面粗さの改善を図る必要
がある。このように仕上げ研磨作業は多くの加工時間と
労力を要する。
Therefore, there is a molding method as a method for efficiently processing a lens having a complicated and highly accurate surface shape. For example, in the case of plastic molding, this is a technique of injecting molten plastic into a mold and performing pressure molding to obtain a molded product. Further, glass molding is a technique in which heated and softened glass is put into a mold and molded under pressure to obtain a molded product. As described above, in the molding method, the mold shape is transferred and replicated as it is as a molded product shape, so the mold technology is important.
That is, a technique for processing a mold with high precision is required. In particular, in the case of a mold for molding an optical element such as a lens, it is necessary to achieve both surface roughness of the mold surface and shape accuracy. Therefore, as a conventional technique, a method of performing finishing by polishing on a mold surface is often used. When the mold surface is finished by the polishing method, for example, the operation of rubbing diamond abrasive grains with a soft pad such as felt on the finished surface is repeated to prepare the finished surface. When the main purpose is to adjust the shape accuracy, an arbitrary position on the finished surface may be locally polished using a small pad, but the processing time is slow. Further, when polishing is performed using a large pad, the processing time is shortened, but the shape cannot be corrected as a matter of course. Especially when finishing the mold surface with complicated shape,
It is necessary to repeat the polishing operation and the shape measurement operation to improve the surface roughness while taking care not to impair the shape accuracy. Thus, the finish polishing operation requires a lot of processing time and labor.

【0007】[0007]

【発明が解決しようとする課題】特に高精度な面を必要
とするレンズ等光学素子成形用金型を加工する場合、形
状精度と面粗さを両立させる必要がある。すなわち前加
工でできた形状精度を損なわないように注意して研磨を
行なう必要がある為、多大な労力と時間を要することに
なる。
In particular, when processing a mold for molding an optical element such as a lens that requires a high-precision surface, it is necessary to achieve both shape accuracy and surface roughness. That is, since it is necessary to perform polishing with care so as not to impair the accuracy of the shape formed by the pre-processing, a great deal of labor and time are required.

【0008】本発明の目的は金型を簡易な方法で効率よ
く高精度に加工することができる金型加工技術を提供す
ることにある。
An object of the present invention is to provide a mold processing technique capable of efficiently and accurately processing a mold by a simple method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明の加工方法は以下の通りである。すなわち、被
加工物表面にウエット法によるシリカコーティングを施
すことにより被加工物表面の微細な凹凸をシリカ膜で埋
めることにより面粗さの改善を図る。例えば塗布型のガ
ラス転化液(SOG:Spin On Glass)の一種であるポリシ
ラザンを被加工物表面に塗布し、焼成することでシリカ
膜を形成し、被加工物表面を平滑にする。ポリシラザン
は −SiH2NH−を基本構造とした無機ポリマーで、これ
を有機溶媒に溶かした溶液を塗布液として用いて、被加
工物表面に塗布する。被加工物表面にある微細な凹凸は
塗布液層によって埋められる。次に大気中で焼成するこ
とにより被加工物表面に付いているポリシラザンは水分
や酸素と反応し、450℃程度で緻密な高純度シリカ(ア
モルファスSiO2)膜に転化する。 その結果、被加工物
表面はバルクシリカである石英ガラスに匹敵するシリカ
層で覆われ、表面の面粗さも低減する。
The processing method of the present invention for achieving the above object is as follows. That is, the surface roughness is improved by applying a silica coating to the surface of the workpiece by a wet method to fill fine irregularities on the surface of the workpiece with a silica film. For example, a polysilazane, which is a kind of a coating type glass inversion liquid (SOG: Spin On Glass), is applied to the surface of a workpiece, and baked to form a silica film and smooth the surface of the workpiece. Polysilazane is an inorganic polymer having a basic structure of -SiH2NH-, and is applied to the surface of a workpiece using a solution obtained by dissolving it in an organic solvent as a coating solution. Fine irregularities on the surface of the workpiece are filled with the coating liquid layer. Next, by firing in the air, the polysilazane on the surface of the workpiece reacts with moisture and oxygen, and is converted into a dense high-purity silica (amorphous SiO 2) film at about 450 ° C. As a result, the surface of the workpiece is covered with a silica layer comparable to quartz glass, which is bulk silica, and the surface roughness is reduced.

【0010】[0010]

【発明の実施の形態】以下実施例図面を参照して本発明
を説明する。 (実施例1)鏡面を有する円板形状の金型加工プロセス
の一例を図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. Embodiment 1 FIG. 1 shows an example of a disk-shaped mold processing process having a mirror surface.

【0011】図1(a)に示すように、直径50mm、板厚
10mmのステンレス(SUS420)円板1の表面を平面
研削盤2で平均面粗さ0.05μmの面になるまで加工す
る。次に図1(b)に示すように、この面が平均面粗さ
0.015μmになるまでラップ盤3を用いてラップする。
As shown in FIG. 1A, the diameter is 50 mm and the thickness is
The surface of a 10 mm stainless steel (SUS420) disk 1 is machined by a surface grinder 2 until the surface has an average surface roughness of 0.05 μm. Next, as shown in FIG. 1B, this surface has an average surface roughness.
Lap using lapping machine 3 until it becomes 0.015 μm.

【0012】一方、面のうねりを中央部長さ40mmの範囲
で測定した結果、うねり量は0.35μmP-Pであった。
On the other hand, the undulation of the surface was measured within a range of the central portion length of 40 mm, and the undulation was 0.35 μm P-P.

【0013】次に面粗さを改善する為に石英ガラス薄膜
層をステンレス円板表面にコートした。コート厚は0.5
μmである。
Next, in order to improve the surface roughness, a thin quartz glass layer was coated on the surface of the stainless steel disc. 0.5 coat thickness
μm.

【0014】本実施例ではSi、N、H(または有機
基)からなるポリマーで、加熱等によってシリカ(SiO
2)に転化するポリシラザンを塗布し焼成する方法を用
いた。図1(c)に示すように、ポリシラザン(東燃株
式会社製)をキシレンに溶かし、この溶液4にステンレ
ス円板1を浸し、引き上げて薄膜を形成した。図1
(d)に示すように、自然乾燥させた後、500℃、1時間
電気炉5で焼成し鏡面を有する金型6を得た。図1
(e)に示すように、薄膜面を分析した所、ほぼ100%の
純粋な石英ガラス状態となっていた。
In this embodiment, a polymer made of Si, N, H (or an organic group) is used.
The method of applying the polysilazane to be converted to 2) and baking it was used. As shown in FIG. 1C, polysilazane (manufactured by Tonen Corp.) was dissolved in xylene, and the stainless steel disc 1 was immersed in the solution 4 and pulled up to form a thin film. FIG.
As shown in (d), after air drying, firing was performed in an electric furnace 5 at 500 ° C. for 1 hour to obtain a mold 6 having a mirror surface. FIG.
As shown in (e), when the thin film surface was analyzed, it was found to be almost 100% pure quartz glass.

【0015】コート後の金型面の面粗さ及びうねり量を
測定した結果、平均面粗さは0.009μm、面のうねり量は
中央部長さ40mmの範囲0.35μmP-Pであった。すなわち面
のうねりを変えることなく面粗さを改善することができ
た。表1にシリカコート前後での金型面の平均面粗さ及
びうねりの大きさを示す。
As a result of measuring the surface roughness and the amount of undulation of the mold surface after coating, the average surface roughness was 0.009 μm, and the amount of undulation of the surface was 0.35 μm P-P in the central part length of 40 mm. That is, the surface roughness could be improved without changing the surface undulation. Table 1 shows the average surface roughness and undulation of the mold surface before and after silica coating.

【0016】[0016]

【表1】 [Table 1]

【0017】次にこの金型6を金型本体に組み込み、射
出成形機を用いて板厚3mmの樹脂製円板を成形した。樹
脂材料にはアクリルを用いた。金型温度130℃、最大射
出圧力650kg/cm2で10000ショット連続して成形を行っ
た。成形品の表面精度は金型面と同程度すなわち平均面
粗さは0.009μm面のうねり量は中央部長さ40mmの範囲0.
37μmP-Pであった。成形品のうねりが若干増加している
が、これは成形後に金型から成形品を取り外す際に成形
品が変形した影響が出たものと考えられる。 (実施例2)実施例1で作製した金型6の表面にポリシ
ラザンを塗布し薄膜形成後、500℃、1時間電気炉5で焼
成した。
Next, the mold 6 was assembled into a mold body, and a resin disc having a thickness of 3 mm was molded using an injection molding machine. Acrylic was used as the resin material. Molding was performed continuously at a mold temperature of 130 ° C. and a maximum injection pressure of 650 kg / cm 2 for 10,000 shots. The surface accuracy of the molded product is almost the same as the mold surface, that is, the average surface roughness is 0.009 μm.
37 μm P-P. The undulation of the molded article is slightly increased, which is considered to be due to the influence of the deformation of the molded article when the molded article is removed from the mold after molding. (Example 2) Polysilazane was applied to the surface of the mold 6 produced in Example 1 to form a thin film, and then fired in an electric furnace 5 at 500 ° C for 1 hour.

【0018】この時の膜厚は0.5μmである。すなわち本
実施例で作製した金型の表面はSiO2層が2層構造となっ
ており、実施例1での金型に比べてさらに面粗さが低減
している。2層目コート後の金型面の面粗さ及びうねり
量を測定した結果、平均面粗さは0.005μm、面のうねり
量は中央部長さ40mmの範囲0.34μmP-Pであった。
At this time, the film thickness is 0.5 μm. That is, the surface of the mold manufactured in the present embodiment has a two-layer structure of the SiO2 layer, and the surface roughness is further reduced as compared with the mold in the first embodiment. As a result of measuring the surface roughness and the amount of undulation of the mold surface after the second layer coating, the average surface roughness was 0.005 μm, and the amount of undulation of the surface was 0.34 μm P-P in the central part length of 40 mm.

【0019】さらに同じ手法でこの金型面に3層目のSiO
2層を形成したところ、金型面の平均面粗さは0.003μ
m、面のうねり量は中央部長さ40mmの範囲0.34μmP-Pと
なった。 (実施例3)軸対称非球面マスターレンズの加工プロセ
スを図2に示す。
Further, a third layer of SiO
When two layers were formed, the average surface roughness of the mold surface was 0.003μ
m, the amount of surface undulation was in the range of 0.34 μm P-P with a central length of 40 mm. (Embodiment 3) FIG. 2 shows a processing process of an axisymmetric aspheric master lens.

【0020】ガラス(硝材BK7)を用いて、曲率半径50m
mの凹面状の軸対称非球面マスターレンズを加工する。
図2(a)に示すように、まず所定のサイズにガラスブ
ロック7を切り出した後、図2(b)に示すように、NC
研削加工機8を用いて曲率半径50mmの凹面非球面形状を
有する粗面マスターレンズを作製する。次に図2(b)
に示すように、研削加工機の砥石を仕上げ加工用砥石に
交換し、砥石の切り込み量を極めて小さくし、延性モー
ド研削を行なうことにより、鏡面を有するマスターレン
ズ9を得た。このマスターレンズ面の形状を測定した
所、平均面粗さは0.012μm面のうねり量はサンプル中央
部長さ30mmの範囲0.25μmP-Pであった。次に実施例1と
同様に次にマスターレンズ表面の面粗さを改善する為に
表面にポリシラザン溶液4を0.2μmコートし、自然乾燥
後450℃、1時間電気炉中で焼結した。(図2(c)及
び(d))その結果、図2(e)に示すように、マスタ
ーレンズ表面に極めて平滑な石英ガラス薄膜層が形成さ
れ、さらに面粗さが改善されたマスターレンズ10を得
た。石英ガラス薄膜コート後のマスターレンズ10の面
粗さは平均面粗さで0.007μmであった。また面のうねり
量はサンプル中央部長さ30mmの範囲0.23μmP-Pであっ
た。表2にシリカコート前後でのマスターレンズ面の平
均面粗さ及びうねりの大きさを示す。
Using glass (glass material BK7), radius of curvature 50m
Process the m-shaped concave axisymmetric aspherical master lens.
As shown in FIG. 2A, first, a glass block 7 is cut into a predetermined size, and then, as shown in FIG.
A rough master lens having a concave aspherical shape with a radius of curvature of 50 mm is manufactured using a grinding machine 8. Next, FIG.
As shown in (1), the grindstone of the grinding machine was replaced with a grindstone for finishing, the cut amount of the grindstone was made extremely small, and the ductile mode grinding was performed to obtain a master lens 9 having a mirror surface. When the shape of the master lens surface was measured, the average surface roughness was 0.012 μm, and the undulation amount was 0.25 μm P-P in the range of the central portion of the sample having a length of 30 mm. Next, in the same manner as in Example 1, to improve the surface roughness of the master lens surface, a polysilazane solution 4 was coated on the surface to a thickness of 0.2 μm, air-dried, and then sintered at 450 ° C. for 1 hour in an electric furnace. (FIGS. 2 (c) and (d)) As a result, as shown in FIG. 2 (e), an extremely smooth quartz glass thin film layer is formed on the surface of the master lens, and the master lens 10 further improved in surface roughness. I got The surface roughness of the master lens 10 after coating with the quartz glass thin film was 0.007 μm in average surface roughness. The undulation amount of the surface was 0.23 μm P-P in the range of 30 mm in the central part of the sample. Table 2 shows the average surface roughness and undulation of the master lens surface before and after silica coating.

【0021】[0021]

【表2】 [Table 2]

【0022】次にマスターレンズ10の形状を凸面の球
面レンズ11表面に転写することで、凸面非球面レンズ
の加工を行なった。製造プロセスを図3に示す。すなわ
ちマスターレンズ10の曲率半径にきわめて近い曲率半
径を有する凸のガラス球面レンズ11を基板レンズとし
てその表面にマスターレンズ10の非球面形状を樹脂1
2を用いて転写するものである。樹脂12には紫外線硬
化樹脂を用いる。すなわち基板レンズ11の表面に適量
の紫外線硬化樹脂12を滴下し、(図3(a))その上
から非球面形状を有するマスターレンズ10を適当な圧
力で押しつけて基板レンズ11側にマスターレンズ10
の形状を転写した後(図3(b))、紫外線を照射し硬化
させ離型する。(図3(c)及び(d))完成したレン
ズは球面ガラスレンズと樹脂製非球面レンズが一体とな
ったいわゆるハイブリッド構造の非球面レンズ13とな
る。このように本発明の手法は、ハイブリッドレンズの
金型加工にも有効である。 (実施例4)非軸対称非球面レンズ金型を加工し、それ
を用いてレーザービームプリンター用Fθプラスチック
レンズ14を成形した。レンズ形状を図4に示す。A面
は、主走査方向曲率半径R1をもち、R1と異なる副走
査方向曲率半径rをもち、かつr1、r2、r3がそれ
ぞれ異なる曲率半径をもつ非軸対称非球面形状である。
B面は、球面形状である。レンズ材質にはアクリル系樹
脂を用いた。また、金型にはSUS420系のステンレス材を
用いた。金型の加工プロセスは実施例2と同じである。
Next, the shape of the master lens 10 was transferred to the surface of the convex spherical lens 11 to process a convex aspheric lens. The manufacturing process is shown in FIG. In other words, a convex glass spherical lens 11 having a radius of curvature very close to the radius of curvature of the master lens 10 is used as a substrate lens, and the aspherical shape of the master lens 10
2 is transferred. As the resin 12, an ultraviolet curable resin is used. That is, an appropriate amount of the ultraviolet curable resin 12 is dropped on the surface of the substrate lens 11 (FIG. 3 (a)), and the master lens 10 having an aspherical shape is pressed from above with an appropriate pressure so that the master lens 10
After transferring the shape (FIG. 3 (b)), the resin is irradiated with ultraviolet rays, cured and released. (FIGS. 3C and 3D) The completed lens becomes an aspheric lens 13 having a so-called hybrid structure in which a spherical glass lens and a resin aspheric lens are integrated. As described above, the method of the present invention is also effective for mold processing of a hybrid lens. (Example 4) A non-axisymmetric aspheric lens mold was processed, and an Fθ plastic lens 14 for a laser beam printer was molded using the mold. FIG. 4 shows the lens shape. The surface A is a non-axisymmetric aspherical shape having a radius of curvature R1 in the main scanning direction, a radius of curvature r in the sub-scanning direction different from R1, and r1, r2, and r3 each having a different radius of curvature.
The surface B has a spherical shape. Acrylic resin was used for the lens material. Also, a SUS420 stainless steel material was used for the mold. The working process of the mold is the same as in the second embodiment.

【0023】まず所定のサイズに金型フ゛ランクを切り出し
た後、NC研削加工機を用いてレンズとは逆形状の非軸対
称非球面形状を作製する。次にダイヤモンド砥粒を用い
て金型表面を磨いた。平均面粗さは0.011μm、面のうね
り量は中央部長さ20mmの範囲0.15μmP-Pであった。次に
金型表面の面粗さを改善する為に金型表面にポリシラザ
ン溶液を0.2μmコートし、自然乾燥後450℃、1時間電
気炉中で焼結した。その結果、金型表面には極めて平滑
な石英ガラス薄膜層が形成された。石英ガラス薄膜コー
ト後の金型表面の面粗さは平均面粗さで0.007μmであっ
た。面のうねり量は中央部長さ20mmの範囲0.14μmP-Pで
あった。表3にシリカコート前後での金型面の平均面粗
さ及びうねりの大きさを示す。
First, a mold flank is cut out to a predetermined size, and a non-axisymmetric aspherical shape having a shape reverse to that of the lens is formed using an NC grinding machine. Next, the mold surface was polished using diamond abrasive grains. The average surface roughness was 0.011 μm, and the amount of undulation of the surface was 0.15 μm P-P in the center length of 20 mm. Next, in order to improve the surface roughness of the mold surface, a 0.2 μm polysilazane solution was coated on the mold surface, and was naturally dried and sintered at 450 ° C. for 1 hour in an electric furnace. As a result, an extremely smooth quartz glass thin film layer was formed on the mold surface. The surface roughness of the mold surface after coating with the quartz glass thin film was 0.007 μm in average surface roughness. The amount of undulation of the surface was 0.14 μm P-P in the center length of 20 mm. Table 3 shows the average surface roughness and undulation of the mold surface before and after silica coating.

【0024】[0024]

【表3】 [Table 3]

【0025】この金型を金型本体に組み込み、射出成形
機を用いて非球面プラスチックレンズを成形した。レン
ズ材料にはアクリルを用いた。金型温度115℃、最大射
出圧力670kg/cm2で10000ショット連続して成形を行っ
た。成形したプラスチックレンズの表面精度は金型面と
同程度すなわち平均面粗さは0.007μm、面のうねり量は
レンズ中央部長さ20mmの範囲0.16μmP-Pであった。
This mold was assembled in a mold body, and an aspherical plastic lens was molded using an injection molding machine. Acrylic was used for the lens material. Molding was performed continuously for 10,000 shots at a mold temperature of 115 ° C. and a maximum injection pressure of 670 kg / cm 2. The surface accuracy of the molded plastic lens was comparable to that of the mold surface, that is, the average surface roughness was 0.007 μm, and the undulation amount of the surface was 0.16 μm P-P in the range of the lens center length of 20 mm.

【0026】金型母材として金属材料とガラスを用いた
場合を実施例として示したが、カーボンやセラミックス
あるいはプラスチックなどを母材とする金型面の仕上げ
にも本発明は有効であることは言うまでもない。また、
本発明の金型はレンズやプリズムなどの光学素子や光デ
ィスクなどで用いられる基板などの精密部品のみならず
一般のプラスチック成形品用の成形金型として有効であ
る。
Although a case in which a metal material and glass are used as a mold base material has been described as an example, the present invention is also effective for finishing a mold surface using carbon, ceramics, plastic, or the like as a base material. Needless to say. Also,
The mold of the present invention is effective not only for precision parts such as optical elements such as lenses and prisms and substrates used for optical discs, but also as molds for general plastic molded products.

【0027】さらに本実施例ではSiO2層を作るための前
駆体を含む液状化合物のコート方法としディップ法を示
したが、スピンコート法やスプレー法あるいはブラシや
刷毛を用いた刷毛塗り法や流し塗り法などの方法を用い
てコートすることができる。
Further, in this embodiment, the dipping method is shown as a coating method of the liquid compound containing the precursor for forming the SiO 2 layer. However, the spin coating method, the spraying method, the brush coating method using a brush or a brush, the flow coating method, or the like. It can be coated using a method such as a method.

【0028】[0028]

【発明の効果】上述のように本発明による手法を用いれ
ば、金型表面の微細な凹凸を簡単に効率よく低減するこ
とが可能となる。その結果、複雑な形状を有し、かつ精
度が要求されるような光学素子用金型の加工を短時間で
容易に行なうことが可能となった。
As described above, the use of the method according to the present invention makes it possible to easily and efficiently reduce fine irregularities on the mold surface. As a result, processing of a mold for an optical element having a complicated shape and requiring precision can be easily performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 円板状金型の加工プロセス。FIG. 1 shows a process of processing a disk-shaped mold.

【図2】 ハイフ゛リット゛レンス゛成形用金型加工プロセス。FIG. 2 is a mold processing process for high fidelity molding.

【図3】 ハイフ゛リット゛レンス゛成形プロセス。FIG. 3 shows a high-brightness molding process.

【図4】 Fθフ゜ラスチックレンス゛外観図。FIG. 4 is an external view of an Fθ plastic stick.

【符号の説明】[Explanation of symbols]

1…ステンレス円板、2…平面研削盤、3…ラップ盤、
4…ポリシラザン溶液、5…電気炉、6…鏡面金型、7
…ガラスブロック、8…NC研削加工機、9…粗面マスタ
ーレンズ、10…マスターレンズ、11…ガラス球面レ
ンズ、12…紫外線硬化樹脂、13…非球面レンズ(ハ
イブリッド構造)、14…Fθプラスチックレンズ、A
面…非軸対称非球面形状、B面…平面または球面形状、
R1…主走査方向曲率半径、r1,r2,r3…副走査
方向曲率半径。
1: Stainless steel disk, 2: Surface grinding machine, 3: Lapping machine,
4 polysilazane solution, 5 electric furnace, 6 mirror mold, 7
... Glass block, 8 ... NC grinding machine, 9 ... Rough surface master lens, 10 ... Master lens, 11 ... Glass spherical lens, 12 ... UV curable resin, 13 ... Aspherical lens (hybrid structure), 14 ... Fθ plastic lens , A
Surface: non-axisymmetric aspherical shape, B surface: flat or spherical shape,
R1: radius of curvature in the main scanning direction, r1, r2, r3: radius of curvature in the sub-scanning direction.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 凹凸部が存在する金型において、金型表
面の凹凸部に膜厚が100μm以下のSiO2膜を充填したこ
とを特徴とする金型。
1. A mold having irregularities, wherein the irregularities on the mold surface are filled with a SiO2 film having a thickness of 100 μm or less.
【請求項2】 凹凸部が存在する基板表面にSiO2層を作
るための前駆体を含む液状化合物を塗布し、該液状化合
物を転化して、SiO2となすことにより作製したことを特
徴とする請求項1記載の金型。
2. The method according to claim 1, wherein a liquid compound containing a precursor for forming an SiO2 layer is applied to the surface of the substrate having the irregularities, and the liquid compound is converted into SiO2. Item 7. The mold according to Item 1.
【請求項3】 基板表面にSiO2層を作るための前駆体を
含む液状化合物を塗布し、該液状化合物を転化してSiO2
層を形成した面上に、重ねてSiO2層を作るための前駆体
を含む液状化合物を塗布し、該液状化合物を転化してSi
O2となすことにより作製したことを特徴とする請求項2
記載の金型。
3. A liquid compound containing a precursor for forming an SiO2 layer is applied to the surface of the substrate, and the liquid compound is converted into a SiO2 layer.
On the surface on which the layer is formed, a liquid compound containing a precursor for forming an SiO2 layer is applied, and the liquid compound is converted to Si.
3. The method according to claim 2, wherein the material is made by forming O2.
The mold described.
【請求項4】 SiO2層を作るための前駆体を含む液状化
合物として、ポリシラザンを含む有機溶媒を用いたこと
を特徴とする請求項1乃至3記載の金型。
4. The mold according to claim 1, wherein an organic solvent containing polysilazane is used as the liquid compound containing a precursor for forming the SiO2 layer.
【請求項5】 金型母材として、金属材料、ガラス、カ
ーボン、セラミックスまたはプラスチックを用いたこと
を特徴とする請求項1乃至4記載の金型。
5. The mold according to claim 1, wherein a metal material, glass, carbon, ceramics, or plastic is used as the mold base material.
【請求項6】 請求項5記載の金型を用いて成形された
ことを特徴とする成形品。
6. A molded article characterized by being molded using the mold according to claim 5.
【請求項7】 請求項5記載の金型において、その金型
表面にポリシラザン又はその変性物を塗布し、水蒸気雰
囲気中で焼成しSiO2層を形成したことを特徴とする金型
の製造方法。
7. The method according to claim 5, wherein polysilazane or a modified product thereof is applied to the surface of the mold and fired in a steam atmosphere to form an SiO2 layer.
JP2000127355A 2000-04-27 2000-04-27 Mold and molding thereof Pending JP2001310330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127355A JP2001310330A (en) 2000-04-27 2000-04-27 Mold and molding thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127355A JP2001310330A (en) 2000-04-27 2000-04-27 Mold and molding thereof

Publications (1)

Publication Number Publication Date
JP2001310330A true JP2001310330A (en) 2001-11-06

Family

ID=18636966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127355A Pending JP2001310330A (en) 2000-04-27 2000-04-27 Mold and molding thereof

Country Status (1)

Country Link
JP (1) JP2001310330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089859A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Resin duplication plate and method for manufacturing the same
JP2013003156A (en) * 2011-06-10 2013-01-07 Hoya Corp Lens manufacturing method and spectacle lens manufacturing system
WO2013077066A1 (en) * 2011-11-25 2013-05-30 Hoya株式会社 Imprinting mold and manufacturing method therefor
JP2014026192A (en) * 2012-07-30 2014-02-06 Hoya Corp Method for manufacturing lens and spectacle lens manufacturing system
JP2015111691A (en) * 2010-01-29 2015-06-18 Hoya株式会社 Mold for imprint, method of manufacturing the same, and mold substrate for imprint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089859A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Resin duplication plate and method for manufacturing the same
JP4712663B2 (en) * 2006-09-29 2011-06-29 大日本印刷株式会社 Resin duplication plate and method for producing the same
JP2015111691A (en) * 2010-01-29 2015-06-18 Hoya株式会社 Mold for imprint, method of manufacturing the same, and mold substrate for imprint
JP2013003156A (en) * 2011-06-10 2013-01-07 Hoya Corp Lens manufacturing method and spectacle lens manufacturing system
WO2013077066A1 (en) * 2011-11-25 2013-05-30 Hoya株式会社 Imprinting mold and manufacturing method therefor
JP2013111763A (en) * 2011-11-25 2013-06-10 Hoya Corp Imprinting mold and method of manufacturing the same
JP2014026192A (en) * 2012-07-30 2014-02-06 Hoya Corp Method for manufacturing lens and spectacle lens manufacturing system

Similar Documents

Publication Publication Date Title
KR102588457B1 (en) Rectangular substrate for imprint lithography and making method
Suzuki et al. Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold
JP6252098B2 (en) Square mold substrate
JP2001310330A (en) Mold and molding thereof
EP0924043B1 (en) Method for fabricating molding tools for molding optical surfaces
US6238800B1 (en) Lens and an optical apparatus with the lens
JP2000180602A (en) Hybrid lens and manufacture thereof
US6036873A (en) Process for generating precision polished non-plannar aspherical surfaces
Suzuki et al. Ultraprecision fabrication of glass ceramic aspherical mirrors by ELID-grinding with a nano-level positioning hydrostatic drive system
JPH11246240A (en) Workpiece and its surface processing method
JP4030136B2 (en) Glass lens mold, method for manufacturing the same, and glass lens molding method
JP2002100025A (en) Molded glass substrate for magnetic disk and method for producing the same
Yan et al. Ultraprecision grinding of small-aperture concave aspheric mould insert with tilt axis method
JP5123576B2 (en) Molding member and release film forming method
JPH11114800A (en) Method for specular-polishing cylindrical body
JP2956109B2 (en) Manufacturing method of precision mold
JPH11106222A (en) Production of f theta glass molded lens and optical scanning device using the same
JP2001205645A (en) Mold
JP2000084815A (en) Manufacture of aspherical optical element
JP2005325022A (en) Die for forming glass lens and its manufacturing method as well as method for forming glass lens
JP2002243914A (en) Lens correcting device, lens correcting method and lens
JP2000042902A (en) Polishing tool, and polishing work method using the tool
JPS6328552A (en) Nonspherical face machining method
JP2004202667A (en) Method of generating shape of grindstone for grinding
JP3137359B2 (en) Wrapping actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060823